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Abstract

This note provides interpretation by way of possible-translations se-
mantics for a group of fundamental paraconsistent logics extending
the positive fragment of classical propositional logic. The logics PI,
Cmin, mbC, bC, mCi and Ci, among others, are all initially pre-
sented through their bivaluation semantics and sequent versions and
then split by way of possible-translations semantics —the set of 3-
valued matrices of the ingredient logics is put forward, together with
the set of admissible translating mappings, in each case. Precise state-
ments and all non-obvious details of proofs are supplied. Other details
are left to the reader.
Key words: Possible-translations semantics, paraconsistent logics.

1 Languages, bivaluations, and sequents

Let P = {p1, p2, . . . , pm, . . .} be a denumerable set of sentential letters, and
consider the sets of formulas

S0 := p | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ ⊃ ψ),
S1 := S0 | ∼ϕ,
S2 := S1 | ◦ϕ,
S3 := S2 | •ϕ,
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2.2 PTS for some weak classically-based paraconsistent logics

where p ranges over P, and ∧ (‘conjunction’), ∨ (‘disjunction’), ⊃ (‘impli-
cation’), ∼ (‘negation’), ◦ (‘consistency’), • (‘inconsistency’) are connective
symbols. As usual, the binary connective ≡ (‘bi-implication’) is defined by
considering ϕ ≡ ψ as an abbreviation for (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ). Outermost
parentheses are omitted whenever there is no risk of confusion.

A mapping b : Si −→ {0, 1} is called a bivaluation over Si. One can easily
write some possible axioms governing the set of admissible bivaluations:
(b1.1) b(ϕ ∧ ψ) = 1 ⇒ b(ϕ) = 1 and b(ψ) = 1

(b1.1r) b(ϕ ∧ ψ) = 0 ⇒ b(ϕ) = 0 or b(ψ) = 0
(b1.2) b(ϕ ∨ ψ) = 1 ⇒ b(ϕ) = 1 or b(ψ) = 1

(b1.2r) b(ϕ ∨ ψ) = 0 ⇒ b(ϕ) = 0 and b(ψ) = 0
(b1.3) b(ϕ ⊃ ψ) = 1 ⇒ if b(ϕ) = 1 then b(ψ) = 1

(b1.3r) b(ϕ ⊃ ψ) = 0 ⇒ b(ϕ) = 1 and b(ψ) = 0
(b2) b(∼ϕ) = 0 ⇒ b(ϕ) = 1
(b3) b(◦ϕ) = 1 ⇒ b(ϕ) = 0 or b(∼ϕ) = 0

(b3r) b(◦ϕ) = 0 ⇒ b(ϕ) = 1 and b(∼ϕ) = 1
(b4) b(∼◦ϕ) = 1 ⇒ b(ϕ) = 1 and b(∼ϕ) = 1

(b5.n) b(◦∼n◦ϕ) = 1, given n ∈ N
(b6) b(∼∼ϕ) = 1 ⇒ b(ϕ) = 1

(b6r) b(∼∼ϕ) = 0 ⇒ b(ϕ) = 0

where ∼0ϕ
def== ϕ and ∼n+1ϕ

def== ∼n∼ϕ.
The converse of (b4) clearly follows from (b2) and (b3), and the latter two

axioms are to be respected by most logics we will consider below. Moreover,
the reader will surely have noticed the difference between (b4) and (b3r),
the converse of (b3):

Fact 1.1 In the presence of (b2), axiom (b3r) can be derived from (b4). The
axiom (b4) can be derived from (b3r) in the presence of (b3) and (b5.0).

All the above axioms are in ‘dyadic form’ (cf. [10]). In that case, there
is a canonical method for transforming all of them into appropriate sequent
rules, as devised in [9]. This results in the following:

(s1.1) ϕ ∧ ψ ` ϕ and ϕ ∧ ψ ` ψ
(s1.1r) ϕ,ψ ` ϕ ∧ ψ
(s1.2) ϕ ∨ ψ ` ϕ,ψ

(s1.2r) ϕ ` ϕ ∨ ψ and ψ ` ϕ ∨ ψ
(s1.3) ϕ ⊃ ψ,ϕ ` ψ

(s1.3r) ` ϕ,ϕ ⊃ ψ and ψ ` ϕ ⊃ ψ
(s2) ` ϕ,∼ϕ
(s3) ◦ϕ,ϕ,∼ϕ `

(s3r) ` ◦ϕ,ϕ and ` ◦ϕ,∼ϕ
(s4) ∼◦ϕ ` ϕ and ∼◦ϕ ` ∼ϕ

(s5.n) ` ◦∼n◦ϕ, given n ∈ N
(s6) ∼∼ϕ ` ϕ

(s6r) ϕ ` ∼∼ϕ
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2.2 PTS for some weak classically-based paraconsistent logics

For the sake of legibility, the side contexts of the above rules were dropped.
Any subset of those rules, together with reflexivity, weakening, cut, and the
usual structural rules, determines a specific sequent system. We will write
Γ a` ∆ as an abbreviation for Γ ` ∆ and ∆ ` Γ.

The following is a straightforward byproduct of the above:

Fact 1.2 Rule (s5.0) is derivable with the help of (s2), (s3) and (s4). Rules
(s5.n), for n ∈ N, are all derivable in the presence of (s3), (s4), (s5.0) and
(s6).

2 Some fundamental paraconsistent logics

Let CL+ denote the positive fragment of classical propositional logic, built
over the set of formulas S0, axiomatized by way of the rules (s1.X) and
interpreted through the set of all bivaluations respecting the axioms (b1.X).

The very weak paraconsistent logic PI (cf. [7]) is built over S1 simply
by adding (s2) to the rules of CL+ or (b2) to its bivaluational axioms. The
full classical propositional logic, CL, could be obtained now from PI over
S1 by adding

(b2r) b(∼ϕ) = 1 ⇒ b(ϕ) = 0
to the bivaluational axioms of PI, or, equivalently, by adding

(s2r) ϕ,∼ϕ `
to PI’s sequent rules. The bivaluational axioms (b2) and (b2r) are thus
sufficient for interpreting classical negation in isolation from the other con-
nectives, and the sequent rules (s2) and (s2r) can be seen as the pure char-
acterizing rules of classical negation.

A fundamental logic of formal inconsistency (cf. [18]) called mbC is
built next over S2 by adding (s3) to the rules of PI or, equivalently, by
adding (b3) to its bivaluational axioms. A 0-ary connective ⊥ (‘bottom’),
characterized semantically by setting b(⊥) = 0, can be defined in mbC if
one takes ⊥ def== ◦ψ ∧ (ψ ∧ ∼ψ), for any formula ψ. As a byproduct:

Fact 2.1 A classical negation ¬ can be defined in mbC by setting ¬ϕ def==
ϕ ⊃ ⊥.

The logic mbC, as presented above, had only a primitive consistency connec-
tive ◦ but no primitive connective for inconsistency. The latter can nonethe-
less be defined in mbC if one just sets •ϕ def== ∼◦ϕ. This way one could in
fact rebuild mbC over S3, if that be the case.

An important extension of mbC is the logic mCi, again built over S2,
but now by adding (s4) and (s5.n), n ∈ N, to the rules of mbC, or (b4) and
(b5.n), n ∈ N, to its bivaluational axioms. The fundamental characteristic
of mCi is the classical behavior of its consistency connective ◦ with respect
to the negation ∼:
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2.2 PTS for some weak classically-based paraconsistent logics

Fact 2.2 In mCi:
(i) b(∼◦α) = b(¬◦α),
(ii) b(∼n◦α) = 1 ⇔ b(∼n+1◦α) = 0.

As a particular consequence, the above mentioned inconsistency connec-
tive •, in mCi, will be perfectly dual to the consistency connective ◦. In-
deed:

Fact 2.3 In mCi, ◦α a` ∼•α.

Let ψ[p] denote a formula ψ having p as one of its atomic components, and
let ψ[p/γ] denote the formula obtained from ψ by uniformly substituting
all occurrences of p by the formula γ. Given a pair of formulas α and β,
we say that they are logically indistinguishable if for every formula ϕ[p] we
have that ϕ[p/α] a` ϕ[p/β]. Algebraically, this will mean that α and β will
have the ‘same reference’, and belong thus to the same congruence class. In
terms of bivaluation semantics, this will mean that b(ϕ[p/α]) = b(ϕ[p/β]),
for any formula ϕ. By the very definition of • we know that the formulas •α
and ∼◦α are logically indistinguishable. However, in spite of the equivalence
between the formulas ◦α and ∼•α mentioned in the last fact, such formulas
are not logically indistinguishable inside the logics studied in the present
paper. We will use our possible-translations tool to check this feature in
Example 5.15, further on.

The logics PIf , bC and Ci extend, respectively, the logics PI, mbC
and mCi, by the addition of the bivaluational axiom (b6) or, equivalently,
of the sequent rule (s6). The logic PIf appears in ch.4 of [20] and then
at [15] under the appellation Cmin. Both bC and Ci, as well as an enormous
number of their extensions, are studied in close detail at [18]. The logic mCi
is suggested at the final section of the latter paper, but axiomatized here
for the first time. This logic, together with mbC, constitute the most
fundamental logics explored in [13]. Inaccuracies in the axiomatization (as
introduced in [18]) and in the bivaluation semantics (as presented in [16, 17])
of the logic Ci are also fixed at [13].

On a similar vein, the logics PIfe, bCe and Cie can here be introduced
as extensions of the previous logics obtained by the further addition of the
bivaluational axiom (b6r) or, equivalently, of the sequent rule (s6r). In the
light of the results from the preceding facts, it might seem natural that
mCi, Ci, and Cie should from this point on be built instead directly over
the extended set of formulas S3, where • could be introduced by a definition
using ∼ and ◦, as above.

To summarize the 9 previously mentioned paraconsistent logics:

PI formulas: S1

sequent rules: (s1.X) and (s2)
axioms on bivaluations: (b1.X) and (b2)
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2.2 PTS for some weak classically-based paraconsistent logics

mbC formulas: S2

sequent rules: as in PI, plus (s3)
axioms on bivaluations: as in PI, plus (b3)

mCi formulas: S3

sequent rules: as in mbC, plus (s4) and (s5.n), n ∈ N
axioms on bivaluations: as in mbC, plus (b4) and (b5.n), n ∈ N

PIf formulas: S1

sequent rules: as in PI, plus (s6)
axioms on bivaluations: as in PI, plus (b6)
(a.k.a. Cmin)

bC formulas: S2

sequent rules: as in mbC, plus (s6)
axioms on bivaluations: as in mbC, plus (b6)

Ci formulas: S3

sequent rules: as in bC, plus (s4) and (s5.0)
axioms on bivaluations: as in bC, plus (b4) and (b5.0)

PIfe formulas: S1

sequent rules: as in PIf , plus (s6r)
axioms on bivaluations: as in PIf , plus (b6r)

bCe formulas: S2

sequent rules: as in bC, plus (s6r)
axioms on bivaluations: as in bC, plus (b6r)

Cie formulas: S3

sequent rules: as in Ci, plus (s6r)
axioms on bivaluations: as in Ci, plus (b6r)

The simplification in the rules and axioms of Ci, as compared to those of
mCi, is sanctioned by the results in Fact 1.2.

For a quick scan, one can find in Figure 1 a schematic illustration dis-
playing the relationships between the above logics. An arrow L1 −→ L2
indicates that the logic L1 is (properly) extended by the logic L2.

mCi // Ci // Cie

mbC

OO

// bC

OO

// bCe

OO

PI

OO

// PIf

OO

// PIfe

OO

Figure 1: Some fundamental paraconsistent logics.
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2.2 PTS for some weak classically-based paraconsistent logics

3 Bivalued entailment, modalities and matrices

Fixed any of the logics presented in the above section, let biv be its set of
admissible bivaluations. Given b ∈ biv, let Γ �b ∆ hold good, for given
sets of formulas Γ and ∆, iff (∃γ ∈ Γ)b(γ) = 0 or (∃δ ∈ ∆)b(δ) = 1. The
canonical entailment relation �biv is defined as usual: Γ �biv ∆ iff Γ �b ∆ for
every b ∈ biv. Moreover, given a set of sequent rules seq, let `seq denote the
derivability relation defined by its canonical notion of (multiple-conclusion)
proof-from-premises. Entailment and derivability relations are examples of
consequence relations. Given any consequence relation B associated to a
logic L, we will write Γ 6B ∆ to say that the inference Γ B ∆ fails according
to L, and we will write Γ CB ∆ to say that both Γ B ∆ and ∆ B Γ hold
good in L.

Can the 9 above paraconsistent logics be given semantics that are more
informative than their respective bivaluation semantics? Good question. It
should be remarked for instance that those logics cannot be endowed with
usual modal-like semantics. Indeed, all of them fail the replacement property,
a property that is typical of normal modal systems:

Theorem 3.1 In any of the logics from Figure 1, a` does not constitute a
congruence relation over the set of formulas, that is, there are formulas α
and β such that α a` β, but ∼α 6` ∼β.

Proof: Consider the 3-valued matrices of the logic LFI1, at Table 2, where
F is the only undesignated truth-value.

∧ T t F

T T t F
t t t F
F F F F

∨ T t F

T T T T
t T t t
F T t F

⊃ T t F

T T t F
t T t F
F T T T

∼ ◦

T F T
t t F
F T T

Figure 2: Matrices of the logic LFI1.

It is easy to check that LFI1 (properly) extends all the above paraconsistent
logics —it constitutes in fact a maximally paraconsistent extension of those
logics (cf. [20, 19]). Nevertheless, in LFI1, while tautologies such as (p∨∼p)
and (q ∨∼q) are equivalent, the formulas ∼(p ∨∼p) and ∼(q ∨∼q) are not
equivalent: To see that, consider any 3-valued valuation such that the atomic
sentence p receives the value t while q receives a different value. �

Note 3.2 (A seeming paradox) The logic of formal inconsistency mbC
(and any of its non-trivial paraconsistent extensions) can be seen both as
a conservative extension and as a deductive fragment of classical logic, CL.
Indeed, for the first assertion, recall the set of formulas S0 of positive classical
logic (Section 1), and consider now the sets of formulas:
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2.2 PTS for some weak classically-based paraconsistent logics

S4 := S0 | ¬ϕ,
S5 := S4 | ∼ϕ | ◦ϕ.

Interpret the connectives from S4 as in CL, using the bivaluational axioms
(b1.X) and (b2.X) (where ¬ takes the place of ∼). Interpret the new con-
nectives in S5 as in mbC, using the bivaluational axioms (b2) and (b3).
It is clear that this last move provides just a new way of presenting mbC.
Indeed, as we have seen in Fact 2.1, ¬ can be defined from the original pre-
sentation of mbC. Consider again the matrices of LFI1, from Table 2, a
logic that deductively extends mbC. The classical negation ¬ in LFI1, de-
fined as above, would be such that v(¬ϕ) = T if v(ϕ) = F , and v(¬ϕ) = F
otherwise. It is easy to see, in that case, that the matrices of ∼ and ◦, the
new connectives of S5 cannot be defined, in LFI1, from the matrices of the
connectives in S4. If you recall now that CL is a maximal logic, then you
have concluded the proof that mbC can be seen as a (proper) conservative
extension of CL. For the second assertion, consider CL to be written in the
language of S5. Recall that classical logic is presupposed consistent, and
interpret the connective ◦ accordingly, by taking as axiom b(◦ϕ) = 1. Based
on the received idea that there is just ‘one true classical negation’, interpret
both ¬ and ∼ using axioms (b2) and (b2r). In that case mbC is clearly
characterized as a (proper) deductive fragment of CL. Notice that this is,
however, a very peculiar fragment of CL —it is a fragment into which all
classical reasoning can be internalized by way of a definitional translation.

Note 3.3 (More on internalizing stronger logics) Not only can mbC
faithfully internalize classical logic, but it can also internalize the reasoning
of other logics of formal inconsistency that are deductively stronger than
itself. To see that, consider now the following sets of formulas:

S6 := S0 | ⊥,
S7 := S6 | ∼ϕ,
S8 := S7 | ◦ϕ.

Interpret the 0-ary connective (‘bottom’) from S6 by taking as axiom b(⊥) =
0, and interpret the new connectives from S7 and S8 as in mbC. Again, this
provides just another presentation for mbC, as we have seen in Section 1
that ⊥ is definable in this logic. On the other hand, a new consistency
connective strictly stronger than ◦ can be defined using the connectives
from S7. Indeed, as in [18], consider a connective ◦̃ defined by setting ◦̃ϕ def==
(ϕ ⊃ ⊥) ∨ (∼ϕ ⊃ ⊥) (or, equivalently, ◦̃ϕ def== ¬ϕ ∨ ¬∼ϕ). This connective
is naturally characterizable by axiom (b3) and its converse (b3r), while
the original consistency connective of mbC was characterized by axiom
(b3) alone. If you recall Fact 1.1 you will notice that the last definition
determines a logic of formal inconsistency that lies right in between mbC
and mCi. As a matter of fact, this approach provides one way of presenting
the logic CLuN, the preferred logic of adaptive logicians (cf. [8]), often used
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2.2 PTS for some weak classically-based paraconsistent logics

as the lower limit logic of their inconsistency-adaptive systems. Though
the first presentations of CLuN made this logic coincide with PI, it has
been more recently presented as a conservative extension of PI obtained by
adding a bottom connective to the language of the latter, as in S7 above.
If one writes the whole thing in the language of S8, using the above defined
consistency connective, CLuN is very naturally recast thus as a logic of
formal inconsistency that lies in between mbC and mCi.

Problem 3.4 Is there a definitional translation of mCi into mbC? Can
the logic mbC faithfully internalize in some way the reasoning of mCi?

Note 3.5 (Other logics extending mbC but not mCi)
Besides CLuN, there are many other interesting logics of formal incon-
sistency that extend mbC but do not go through mCi. There is even a
large class of such logics that satisfies the full replacement property. I have
shown in [21, 23], in fact, that any non-degenerate normal modal logic can
be easily recast as a logic of formal inconsistency extending CLuN (and
thus extending mbC), but not mCi.

Before the diversion provided by the above set of notes, we had seen
in Theorem 3.1 that the 9 paraconsistent logics from the last section can-
not be endowed with usual modal-like semantics. The reader might now
be wondering whether those logics would still stand some chance of being
truth-functional, should they turn out themselves to be characterizable by
way of some convenient set of finite-valued matrices (just like their exten-
sion LFI1). But some negative results about that possibility can also be
promptly checked as follows. The following theorem and its corollary correct
a result suggested in [1]:

Theorem 3.6 No sequent of the form ` ∼iϕ ≡ ∼jϕ is derivable, for non-
negative i 6= j, in logics from the first two columns of Figure 1.

Proof: Consider a set of infinite-valued matrices that take the natural num-
bers N as truth-values, where 0 is the only undesignated truth-value. Define
the matrices for the connectives as follows:

v(ϕ ∧ ψ) =

{
1, if v(ϕ) > 0 and v(ψ) > 0
0, otherwise

v(ϕ ∨ ψ) =

{
1, if v(ϕ) > 0 or v(ψ) > 0
0, otherwise

v(ϕ ⊃ ψ) =

{
0, if v(ϕ) > 0 and v(ψ) = 0
1, otherwise
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2.2 PTS for some weak classically-based paraconsistent logics

v(∼ϕ) =

{
1, if v(ϕ) = 0
v(ϕ)− 1, otherwise

v(◦ϕ) =

{
0, if v(ϕ) > 1
1, otherwise

It is easy to check that all the sequent rules from Section 1 are validated by
the above matrices, with the sole exception of (s6r). At the same time, the
above matrices can also easily be seen to invalidate all sequents of the form
` ∼iϕ ≡ ∼jϕ, for non-negative i 6= j. �

Corollary 3.7 (Uncharacterizability by finite matrices, version I)
None of the logics from the first two columns of Figure 1 (i.e., the fragments
of Ci) is finite-valued.

Proof: Would any of these logics be characterized by matrices with only m
truth-values, then we would have, by the Pigeonhole Principle, some i < j ≤
(i +mm) such that v(¬ip) = v(¬jp), for all v. This would in turn validate
some sequent of the form ` ∼iϕ ≡ ∼jϕ, for i < j. �

The following theorem and its corollary correct a result suggested in [11]:

Theorem 3.8 Let δij , for i, j 6= 0, denote the formula ◦pi ∧ pi ∧ ∼pj , and
let δn denote the disjunctive formula

∨
1≤i<j≤n(δij ⊃ pn+1), for n > 0. No

sequent of the form ` δn is derivable in the logics from the first two lines of
Figure 1.

Proof: Take now the truth-values from the set N ∪ {ω}, where ω is the
only undesignated truth-value. Define the matrices for the connectives as
follows:

v(ϕ ∧ ψ) = max(v(ϕ), v(ψ)) v(ϕ ∨ ψ) = min(v(ϕ), v(ψ))

v(ϕ ⊃ ψ) =


ω, if v(ϕ) ∈ N and v(ψ) = ω

v(ψ), if v(ϕ) = ω and v(ψ) ∈ N
0, if v(ϕ) = ω = v(ψ)
max(v(ϕ), v(ψ)), otherwise

v(∼ϕ) =


ω, if v(ϕ) = 0
0, if v(ϕ) = ω

v(ϕ), otherwise

v(◦ϕ) =

{
0, if v(ϕ) ∈ {0, ω}
ω, otherwise

It is easy to check that all the sequent rules from Section 1 are validated by
the above matrices. At the same time, the above matrices can be seen to
invalidate all sequents of the form ` δn. Indeed, just consider a model such
that v(pi) = i, for i ≤ n, and v(pn+1) = ω. �

Corollary 3.9 (Uncharacterizability by finite matrices, version II)
None of the logics from the first two lines of Figure 1 (i.e., extensions of
mbC) is finite-valued.
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2.2 PTS for some weak classically-based paraconsistent logics

Proof: Notice, again using the Pigeonhole Principle, that the formula δn

is validated by any set of m-valued matrices that is adequate for the logics
extending mbC (use (s3) and (s1.2.2)) and such that m < n. �

One logic from Figure 1, however, was not covered by the previous re-
sults. So, the following is here left open:

Problem 3.10 Find a proof that PIfe is not characterizable by finite ma-
trices.

4 Interpretations through possible translations

We will see in this section that all the previous paraconsistent logics can
still be given adequate interpretations in terms of combinations of 3-valued
logics, by way of specific possible-translations semantics (PTS). Consider
the 3-valued matrices of M, at Table 3), where F is the only undesignated
truth-value.

∧ T t F

T t t F

t t t F

F F F F

∨ T t F

T t t t

t t t t

F t t F

⊃ T t F

T t t F

t t t F

F t t t

∼1 ∼2 ∼3

T F F F

t F t t

F T t T

◦1 ◦2 ◦3

T T t F

t F F F

F T t F

Figure 3: Matrices of M.

Given a 3-valued assignment a : P −→ {T, t, F}, let w be its unique
homomorphic extension into the whole language of M, and let Γ �w ∆
hold good, for given sets of formulas Γ and ∆, iff (∃γ ∈ Γ)w(γ) = F
or (∃δ ∈ ∆)w(δ) ∈ {T, t}. Then, the canonical (multiple-conclusion) en-
tailment relation �M determined by the above 3-valued matrices is set by
taking Γ �M ∆ iff Γ �w ∆ for every interpretation w ∈M.

Consider next the following possible restrictions over the set of admissi-
ble translating mappings ∗ : Si −→M:

(tr0) p∗ = p, for p ∈ P
(tr1) (ϕ ./ ψ)∗ = (ϕ∗ ./ ψ∗), for ./ ∈ {∧,∨,⊃}

(tr2.1) (∼ϕ)∗ ∈ {∼1ϕ
∗,∼2ϕ

∗}
(tr2.2) (∼ϕ)∗ ∈ {∼1ϕ

∗,∼3ϕ
∗}

(tr2.3) (∼n+1◦ϕ)∗ = ∼1(∼n◦ϕ)∗
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2.2 PTS for some weak classically-based paraconsistent logics

(tr3.1) (◦ϕ)∗ ∈ {◦2ϕ
∗, ◦3ϕ

∗, ◦2(∼ϕ)∗, ◦3(∼ϕ)∗}
(tr3.2) (◦ϕ)∗ ∈ {◦1ϕ

∗, ◦1(∼ϕ)∗}
(tr3.3) if (∼ϕ)∗ = ∼1ϕ

∗ then (◦ϕ)∗ = ◦1(∼ϕ)∗

(tr4) if (∼ϕ)∗ = ∼3ϕ
∗ then (∼∼ϕ)∗ = ∼3(∼ϕ)∗

One can now select appropriate sets of restrictions in order to split each of
the paraconsistent logics from the last section by way of PTS:

Logic Restrictions over the translating mappings

PI (tr0), (tr1), (tr2.1)
mbC (tr0), (tr1), (tr2.1), (tr3.1)
mCi (tr0), (tr1), (tr2.1), (tr2.3), (tr3.2)
PIf (tr0), (tr1), (tr2.2)
bC (tr0), (tr1), (tr2.2), (tr3.1)
Ci (tr0), (tr1), (tr2.2), (tr3.2), (tr3.3)

PIfe (tr0), (tr1), (tr2.2), (tr4)
bCe (tr0), (tr1), (tr2.2), (tr3.1), (tr4)
Cie (tr0), (tr1), (tr2.2), (tr3.2), (tr3.3), (tr4)

Let Tr denote some set of translating mappings defined according to an
appropriate subset of the previously mentioned restrictions. Define a pt-
model as a pair 〈w, ∗〉, where ∗ ∈ Tr and w ∈M, and let Γ 
∗w ∆ hold good,
for given sets of formulas Γ and ∆, iff Γ∗ �w ∆∗. A pt-consequence relation

pt is then set by taking Γ 
pt ∆ iff Γ 
∗w ∆ for every pt-model 〈w, ∗〉 allowed
by Tr. Equivalently, in the cases presently under consideration, Γ 
pt ∆ also
means, more simply, that Γ∗ �M ∆∗, for every admissible translation ∗ ∈ Tr.

Note 4.1 (The development of PTS) A logic L is said to have a possible-
translations semantics when it can be given an adequate interpretation in
terms of pt-models, for some appropriate set of translating mappings. Each
translation can then be seen as a sort of interpretation scenario for L. This
intuition is good enough for the purposes of the present paper, but the
possible-translations tool is in fact more general than that. For a generous
and clear formal definition of this sort of structures, check [22]. For other
more specific and carefully explained examples, check [20, 15, 12]. The in-
terested reader will notice that the PTS offered for Ci above is distinct
from the one presented in [16]. Possible-translations semantics were first
introduced in [11], restricted to the splitting of a logic into finite-valued
truth-functional scenarios. The embryo was then frozen for a period, and
in between 1997 and 1998 it was publicized under the denomination ‘non-
deterministic semantics’, in [14], and in several talks by Carnielli and a few
by myself. Noticing that the non-deterministic element was but a particular
accessory of the more general picture, from 1999 on the semantics returned
to its earlier denomination.
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Note 4.2 (PTS and non-deterministic semantics) PTS are related to
(but are more general than) the non-deterministic semantics (NDS) pro-
posed by Avron & Lev (cf. [5]) in ways that are still to be more carefully
explained. On what concerns the logics studied in the present paper, it
should be noticed that [4] proposes a 2-valued NDS for PI, and [2] also
offers an 3-valued NDS for PIf which is strikingly similar to the PTS pre-
sented for this logic above (and that comes from [20, 15]). More recently, [3]
offers 3-valued NDS for the logics mbC, bC, bCe. Roughly speaking, one
could say that dynamic NDS are based on clauses having the same format
of (tr0)–(tr2.2), and static NDS additionally impose constraints having the
format of (tr2.3) or (tr4) for each of the involved connectives. There is a
mechanical way, thus, to move from a given NDS to an equivalent PTS.
Further discussion of that issue shall be postponed to a future work.

We now have a number of quite diverse consequence relations associated
to each of the above logics. Of course we want to keep this fauna under
control —in the best of all possible worlds we want to be able to prove that
all those consequence relations deliver just the same the result, for each
given logic, that is, we want to prove that:

`seq = �biv = 
pt

That is matter for the next, and final, section.

5 Adequacy of each of the newly proposed PTS

As mentioned in Section 1, the technology that solves the first part of our
problem is well-known, and its outcome will here be taken for granted: `seq

= �biv.
Now, to check soundness of each of the paraconsistent logics in section 2

with respect to its specific PTS in section 4, one has two alternatives from the
start. The first is to prove it directly from the axiomatizations in section 1
and the appropriate sets of translating mappings:

Theorem 5.1 (Soundness) `seq ⊆ 
pt.

Proof: Just translate each sequent axiom in all possible ways allowed by
Tr and check that these translations are validated by M. �

The second alternative is to prove that each pt-model is bisimulated by some
appropriate bivaluation:

Theorem 5.2 (Convenience)

(∀w ∈M)(∀∗ ∈ Tr)(∃b ∈ biv) �b α ⇔ 
∗w α.
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Proof: Just set b(α) = 0 iff w(α∗) = F . Then check that the axioms in biv
are all respected, in each case. �

Corollary 5.3 (Soundness again) �biv ⊆ 
pt.

Now for completeness. Given that the evaluation of the consistency
connective, ◦, in the way we have defined it, takes into account the evaluation
of the negation connective, ∼, it will be helpful, when doing some of the next
proofs by induction on the complexity of the formulas, to make use of the
following non-canonical measure of complexity, mc:
(mc0) mc(p) = 0, for p ∈ P
(mc1) mc(ϕ ./ ψ) = mc(ϕ) + mc(ψ) + 1, for ./ ∈ {∧,∨,⊃}
(mc2) mc(∼ϕ) = mc(ϕ) + 1
(mc3) mc(◦ϕ) = mc(∼ϕ) + 1

With such apparatus in hands, we can start looking for a proof that each
particular bivaluation is bisimulated by some appropriate pt-model:

Theorem 5.4 (Representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr) 
∗w α ⇔ �b α.

From what it would easily follow that:

Corollary 5.5 (Completeness) �biv ⊇ 
pt.

With respect to the above mentioned representability result, still to be
proven, the safest strategy at this point seems to be that of checking it for
each of our paraconsistent logics on its own turn, refining the statements
and proofs to better suit each case. So, here we go:

Theorem 5.6 (PI-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = t ⇔ b(α) = 1, and
w(α∗) = F ⇔ b(α) = 0.

Proof: To take care of w, set, for p ∈ P:
(rw) a(p) = F if b(p) = 0, and

a(p) = t otherwise
and extend a into w homomorphically, according to the strictures of M.

On what concerns ∗, set:
(rt0) p∗ = p, for p ∈ P
(rt1) (ϕ ./ ψ)∗ = (ϕ∗ ./ ψ∗), for ./ ∈ {∧,∨,⊃}
(rt2) (∼ϕ)∗ = ∼1ϕ

∗, if b(∼ϕ) = 0
(∼ϕ)∗ = ∼2ϕ

∗, otherwise
The main statement above can now easily be checked by induction on the
complexity measure mc. �
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Theorem 5.7 (mbC-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

Proof: To take care of w, set, for p ∈ P:
(rw) a(p) = F if b(p) = 0,

a(p) = T if b(∼p) = 0, and
a(p) = t otherwise

and extend a into w homomorphically, according to the strictures of M.
On what concerns ∗, set:

(rt0) p∗ = p, for p ∈ P
(rt1) (ϕ ./ ψ)∗ = (ϕ∗ ./ ψ∗), for ./ ∈ {∧,∨,⊃}
(rt2) (∼ϕ)∗ = ∼1ϕ

∗, if b(∼ϕ) = 0 or b(ϕ) = 0 = b(∼∼ϕ)
(∼ϕ)∗ = ∼2ϕ

∗, otherwise
(rt3) (◦ϕ)∗ = ◦3ϕ

∗, if b(◦ϕ) = 0
(◦ϕ)∗ = ◦2(∼ϕ)∗, if b(◦ϕ) = 1 and b(∼ϕ) = 0
(◦ϕ)∗ = ◦2ϕ

∗, otherwise
Check now the result by induction on mc. Notice from (rt3) how the non-
standard clause (mc3) of the previously defined non-canonical measure of
complexity finally proves to be useful. �

Theorem 5.8 (mCi-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

Proof: Do as in parts (rt0)–(rt2) of Theorem 5.7, but now set:
(rt3) (◦ϕ)∗ = ◦1(∼ϕ)∗, if b(∼ϕ) = 0

(◦ϕ)∗ = ◦1ϕ
∗, otherwise

(rt4) (∼n+1◦ϕ)∗ = ∼1(∼n◦ϕ)∗

Check the result by induction on mc. �

Theorem 5.9 (PIf-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

Proof: Do as in Theorem 5.6, except that in now setting:
(rt2) (∼ϕ)∗ = ∼3ϕ

∗, if b(ϕ) = 1 = b(∼ϕ)
(∼ϕ)∗ = ∼1ϕ

∗, otherwise
Check the result by induction on mc.

164



2.2 PTS for some weak classically-based paraconsistent logics

(A slightly different proof of this fact —check clause (rw)— can be found in
the ch.4 of [20] and in [15] —bear in mind though that this logic PIf shows
up there under the name Cmin.) �

Theorem 5.10 (bC-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

Proof: Do as in Theorem 5.7, except that in now setting (rt2) as in Theo-
rem 5.9. Check the result by induction on mc. �

Theorem 5.11 (Ci-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

Proof: Do as in Theorem 5.10, except that in now setting:
(rt3) (◦ϕ)∗ = ◦1(∼ϕ)∗, if b(◦ϕ) = 1

(◦ϕ)∗ = ◦1ϕ
∗, otherwise

Check the result by induction on mc.
(Notice that the PTS offered for Ci in the paper [16] uses different inter-
pretations for the consistency connective and is based on a stricter set of
restrictions over the set Tr. The present semantics seems, in a sense, to be
more in accordance with the classical behavior of ◦ with respect to ∼.) �

Theorem 5.12 (PIfe-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

Proof: Do as in Theorem 5.9, except that in now setting the extra require-
ment:
(rt4) if (∼ϕ)∗ = ∼3ϕ

∗ then (∼∼ϕ)∗ = ∼3(∼ϕ)∗

Check the result by induction on mc.
(The practical difference in this proof with respect to the previous ones is
that one will not only have a base case of induction for the atomic sentences
and a complex case for each of the connectives, but one will also explicitly
have to take into consideration the extra case of complex formulas preceded
by at least two negation symbols.) �
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Theorem 5.13 (bCe-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

Proof: Do as in Theorem 5.10, except that in now setting (rt4) as in The-
orem 5.12. Check the result by induction on mc. �

Theorem 5.14 (Cie-representability)

(∀b ∈ biv)(∃w ∈M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

Proof: Do as in Theorem 5.8, except that in now setting (rt4) as in Theo-
rem 5.12. Check the result by induction on mc. �

Example 5.15 We could now use the above defined PTS to check that, in
Cie (thus, also in Ci, bC, mCi, CLuN or mbC), the formulas ◦α and ∼•α
are logically distinguishable even if equivalent, as announced in Section 2.
Indeed, by the definition of •, the formula ∼•α is logically indistinguishable
from the formula∼∼◦α. Yet, given a formula ϕ of the form∼p and a formula
ψ of the form ϕ[p/(p ∧ p)], it is easy to see that, in spite of the equivalence
between ϕ[p/◦p] and ϕ[p/∼∼◦p] in logics as weak as mCi, formulas such
as ψ[p/◦p] and ψ[p/∼∼◦p] are not equivalent in Cie. To check that, select
some Cie-admissible translating mapping such that (◦p)∗ = ◦1∼1p, (∼(◦p∧
◦p))∗ = ∼1(◦p ∧ ◦p)∗ and (∼(∼∼◦p ∧ ∼∼◦p))∗ = ∼3(∼∼◦p ∧ ∼∼◦p)∗, and
then select a 3-valued model w ∈M for which w(p) = t.

Note 5.16 (Dualizing the above constructions) One might now start
everything all over again, back from Section 1, and easily dualize all results
for paracomplete counterparts of all the above paraconsistent logics. To such
an effect, one only needs to explore the symmetry of the present multiple-
conclusion environment, exchange each bivaluational axiom (si) and each
sequent rule (si) for their converses (bir) and (sir), and exchange the con-
sistency connective for a completeness, or determinedness, connective (as
in [21]), and so on and so forth. The case of the dual of PIf was already
explored in ch.4 of [20] and in [15], under the appellation Dmin.
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