Análise Matemática IV

Problemas para as Aulas Práticas

Semana 2

1. Estabeleça as seguintes identidades (onde z = x + iy):

a) $\cos(iz) = \cosh(z)$;

b) sen(iz) = i senh z:

c) $|\cos z|^2 + |\sin z|^2 = \cosh(2y);$ d) $\cos^2 z + \sin^2 z = 1;$ e) $\sin(z+w) = \sin z \cdot \cos w + \cos z \cdot \sin w;$ f) $\cosh^2 z + \sinh^2 z = \cosh(2z).$

2. Calcule o valor principal (i.e., tomando na função log z o ângulo correspondente à restrição principal) de:

a) $\log(-i)$; b) $\log(1-i)$; c) i^{i} ; d) $\left(\frac{1+i}{\sqrt{2}}\right)^{1+i}$.

3. Determine todas as soluções das seguintes equações:

a) $e^z = 2$ b) $e^{iz} + e^{-iz} + 2 = 0$ c) $\log z = 1 + 2\pi i$ d) $\operatorname{sen}(2z) = 5$

4. Determine o conjunto dos pontos do plano complexo onde as seguintes funções admitem derivada:

(a) xy - ix (b) $z^2 - 3z$ (c) $z - \overline{z}$ (d) $\overline{e^z}$ (e) $\operatorname{Im}(z^2)$

5. Considere a função $f: \mathbb{C} \to \mathbb{C}$ definida por $f(z) = f(x+iy) = x^2 - y^2 + 2i|xy|$.

(a) Estude a analiticidade de f(z).

(b) Calcule f'(z) nos pontos onde f é analítica.

6. Considere a função $f: \mathbb{C} \to \mathbb{C}$ definida por

 $f(z) = f(x+iy) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} + i\frac{x^3 + y^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

(a) Mostre que as equações de Cauchy-Riemann são verificadas em (x, y) = (0, 0).

(b) Verifique, utilizando a definição, que f'(0) não existe.

(c) Porquê que isto não contradiz o Teorema de Cauchy-Riemann?

7. Mostre que se f e \overline{f} são ambas inteiras, então f é constante.

8. Seja $A\subset\mathbb{C}$ um abe<u>rto e</u> defina $A^*=\{z\in\mathbb{C}:\bar{z}\in A\}$. Se f é uma função analítica em Amostre que $F(z) = \overline{f(\overline{z})}$ é uma função analítica em A^* .

1