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GRAPHIC SCHEMES OF ROOT ORDERING IN SIMPLE LIE
ALGEBRAS

Yuri A. Kubyshin®, Jose M. Mourio#, 1gor P. Volobujev*
«Nuclear Physics Institute, Moscow State University, Moscow 117899, USSR
sCentro de Fisica Nuclear, Av. Prof. Gama Pinto 2, 1699 Lisboa Codex, Portu gal

i . All information about roots, root vectors and commutation

siations of complex simple Lie algebras is coded in +the Dynkin
.. zgrams [1] (see also f2-3]). Analogously, one can derive a system
; weights and weight wvectors of finite dimensional jrreducible
qpresentations (irreps) of the algebras using schemes of the
épresentations proposed by Dynkin [(1]. However, for numerous
.-oblems, which one encounters in theoretical pnysics, it is very

seful to have more detailed schemes, providing a graphic image of

.ne structure of the algebra or representation. In the present paper
schemes representing the positive

e will consider such ordering
Ye

e simple Lie algebras or the weights of their irreps.
-3ll  them root lattices {RL) and weight lattices (WL)

-srrespondingly. An example of their application will be given in

-rots of th

-~e last section.
2 . Let u be a simple complex Lie algebra and ¢ be
simple roots of the

root « by e .

its finite
simensional irrep. We denote the set of the
sigebra by 1. the root vector in g corresponding to a
-xe set of the weights of the representation ¢ by A(¢) and the

~aximal weight of ¢ by .

The WL of @ is constructed in the following way. First draw a
ior ( we call it vertex ) for each weight £ = Al&). Then, if two
weights & and £’ differ by a simple root 2 ¢ ii. i.e. £ - &' = Ta,

scheme by a line (calied

izin the correspending vertices on the

useful to indicate the

“ink). For many appiications it is also
weight £ near

F.‘, ""':r] [1.4] of the

1 e n

-he wertex correspending te it apnd the cerrespeonding simple root
; s P g T

Dynkin} tc

ovnkin coordinates (F)

-ezr sach link. We fzllcw a cenvention \introduced by

wzight & at kne wery bottom of WL i{zero level),

" iraw tne maximal t
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[
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simple root one
above (first level) and so on. A weight & = 1 -} Eoow Gk
Fal

non-negative integers) is placed on the ievei number

weights obtained from % by subtracting omne

M
Ly}
b

yif)=j k .
achi ¥

rding o the genera! theory of algebras the WLs must be of =&

In Fig. ! we present twe examples of the WL: a3 for

ard by fer & c¢f A We

~he Zundamental representation n of A
a -

should menticon that the WLs are very close to the idea of etages ¢

deseribed in [<4].

weignts by Dynkin (i} and to weight dlagrams

3 . The Lie algebra ¢ can be viewed as a wvector of  the

space
adjoint representatisn which is realited by operators adx, x < u
adx(y) = {x., ¥}, ¥ ¢ 4. Since the negative roots form exactly the
same pattern as positive ones, it suffices for +this representaticrn
to draw only a "half” of the WL and represent positive rocots only.

We omit alse the vertices of zero weights corresponding to the

elements of the Cartan sukalgebra of g. Such modification of the WL
called RL. Note., that all
reots (non-zerc weights) are non-degenerate, while the zero
have the degeneracy egual to n = Traditionally, +the toP
level of the RL, representing the simple roets, is drawn in the same
about the

for the adjoint representation adg is
weights
rank agq.
way as the Dynkin diagram with all standard conventions
vertices and the connecting lines [1-3].

The RLs for the classical Lie algebras were described in |

w

1
i

~

‘see also {6&}). As an example we will discuss here the RL for A,

(Fig. 2}. The vertex lying at the intersection of segments startiaf

from &) and aj corresponds to the root wo(k, j) = @ + LI +

+ LS The non-trivial action of aderx corresponds to shifts of roots
k

on the BL, these shifits are indicated by arrows in Fig. 2.

4 ., The RL can 5e analyzed as a graph, using results from graph
-hLecry. Tor example. one can prove that the RL for the algebras D,

. 2 5 are non-planar. This foillows from the Kuratowski thecrem {7]

and the fact that these lattices <contain the graph XK__ 315 ~°
subgraph. (¢,.,00-1)
O(n__i
(0...0-11)
Figure } a (0-14{0...0) b
dl
(-1100...0}
€y
(1000...0)
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and the fact that +thess
subgraph.

For a given algebrz
topologicaliy equivalen=
graphs) ways, and there
positive roots of the =.
the advantage of using -
arranging positive root:
‘convenient arranging o
of non-regular and comp
¥¢ need a guiding princ-
recursive algorithm-for
tase of An. Let us take
striction of the adjoin-

S

. ad An :}'-\n.1

Ihen the RL for A can &
ind the WL for the fur
Starting from the RL for
éﬁg.RLs for the
fccordance with this pr-
é? As the
ggnsider the exceptiona

whole
second &

Fasic decompositicn in

adE':Dr = ac
Taking the RL for D_ (&
°f D_ (shown by filled~
529- 3. Of course. the

hcﬂmpositian {z}y of ad

o

ey
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ple roor  sre leva)
4 -k
=t ! r’= ire
e i
“vimber

: WLa' must be of a
~of the WL: a3  foy
tor £ of A, ' We
ne idea of etaéés of
described in [471.

2Ctor space of +hg

‘rators adx, x ¢ g

5 form exactly +he
this representatign
asitive roots only,
crresponding to the
dification of the WL
L. Note, +that ali
ile the zero weights

iitionally, the top

is drawn in the same

aventicns about +the
2 described in (5]
:re  the RL for 3
n
2f segments starting
e Y e *
5 to shifts of roots
in Fig. 2.
* results from graph
Jor the algebras D )
n
.towski theorem [7]
graph X as a

$,5
(0-2)

(-10)

iattices contain +the graph K as a

:nd the fact that these -
:ubgraph.

For a given algebra the RLs can be drawn in different but
:gpologicaliy equivélent ffrom the point of view of the theory of

:raphs) ways, and there is no natural pattern for presenting the

This point is important indeed since

-asitive roots of the algebra.
;he advantage of using the RL is based mainly on the apt way of
;rranging positive roots. Fer exceptional aigebras the problem of
convenient arranging of roots® becomes even more important because
:{ non-regular and complicated character of their root systems. So,
:e need a guiding principle for drawing the RLs. We propose here a
recursive algorithm for building the RLs and will explain it for the
-ase of A . Let us take the decomposition of adAna A__,» the re-

striction of the adjeint representationof A_to its subalgebra A

ad A A = ad A +n+n + 1. (1)
n n-1 -

1 - = =

-hen the RL for An can be drawn as a combination of the RL for A
and the WL for +the
starting from the RL for A{ {which is just one vertex) we can obtain
serjes; the RL in Fig. 1 is

n-1

fundamental representation n “(see Fig. 1).

-he RLs for the whole drawn in
zccordance with this principle,.

As the algorithm described we

second application of the
:onsider the exceptional algebra g = Ee' In this case we take the

nasic decompesition in the form
adE 1D_ = adD + 16 + 16"+1. (2)
o - _ —_— -

Taking the RL for Ds {6] and completing it by the WL of the irrep 16
of 5 (shown by filled-in dots) one gets the RL for }5.,J presented in
basic

ig. 3. Of course, the RL depends on the
decomposition (2) of ada. We will discuss <his ambiguity as well as

subalgebra in  the
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the RLs for other exceptional algebras elsewhere.

5 . In conclusion we give an example of application of the RL.
Let b be a regular subalgebra of a, and we are interested 1in the
decomposition of ada restricted to b into irreps and +the explicit
realization of these irreps en root vectors of a. Problems of <this
type arise in calculations of +the Lagrangians cbtained by
dimensional! reduction of multidimensional gauge theories {5,6]. In

the case g = An, n o= Ak Fig. 2 gives us the answer immediately. If

bhis realized on the simple roots L then the algebra .

Aﬂ_k, realized on PR 3 is the non-abelian part of the
centralizer of h in g (trivial representations of h). The roots,
which belong neither +to § nor o ¢, lie on the segments
(uk,....rx(l.k)), {alk,k+1),...,a(2, k+1)), . .. (ufk.n), ....a{1l,n)}.
These segments represent irreps of h of dimension k (fundamental
representations), since adx, x ¢ h shifts these roots along them.
The transformations adc permute these invariant subspaces so that
they form the irrep n-k+l. &An element of +the Cartan subalgebra
orthogonal to the elements of h and ¢ generate +the 1-dimensional
subspace of the trivial representation of .

Other applications of the RLs for both regular and non-regular
embeddings b ¢ a can be found in [8]. We would like to mention that
graphic schemes similar to the RLs were used in [9]} for representing

the so-called corresponding to

non-compact positive roots

non—compact real forms of simple Lie algebras.
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