Grupos e Álgebras de Lie 2001/2002 – Resolução do Exame Tipo

Mestrado em Matemática Aplicada

Duração: 2h30

I.

I.1. Sabendo que

$$sp(n, \mathbb{C}) = \{ C \in M_{2n}(\mathbb{C}) : e^{sC} \in SP(n, \mathbb{C}) , \forall s \in \mathbb{R} \}$$

mostre que $sp(n, \mathbb{C}) = \mathcal{G}$, onde

$$\mathcal{G} = \left\{ C \in M_{2n}(\mathbb{C}) : CJ_n = -J_nC^t \right\} ,$$

е

$$J_n = \left(\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array} \right) .$$

Resolução:

Se $C\in\mathcal{G}$ então $J_nC^t=-CJ_n$ e portanto $J_n(C^t)^k=(-C)^kJ_n\ \forall k\in\mathbb{N}.$ Assim,

$$e^{sC} J_n e^{sC^t} = e^{sC} J_n \sum_{k=0}^{\infty} \frac{s^k (C^t)^k}{k!}$$

$$e^{sC} \sum_{k=0}^{\infty} \frac{s^k (-C)^k}{k!} J_n = e^{sC} e^{-sC} J_n = J_n , \forall s \in \mathbb{R}$$

e portanto $C \in sl(n,\mathbb{C})$ e $\mathcal{G} \subset sp(n,\mathbb{C}).$

Seja agora $C \in sp(n,\mathbb{C})$ pelo que

$$e^{sC}J_ne^{sC^t} = J_n , \quad \forall s \in \mathbb{R} .$$
 (1)

Derivando ambos os membros de (1) em ordem a s e tomando s=0 obtemos

$$CJ_n + J_nC^t = 0 ,$$

e portanto $C \in \mathcal{G}$ e $\mathcal{G} = sp(n, \mathbb{C})$.

1.2. Seja $\mathcal{G} = \operatorname{Lie}(G)$. Mostre que a aplicação exponencial, $\exp : \mathcal{G} \to G$, é um difeomorfismo de uma vizinhança de $0 \in \mathcal{G}$ para uma vizinhança de $e \in G$.

Sugestão: Use $\exp(tE) = a_1^{(t\varphi(E))} = a_t^{(\varphi(E))}$, $\forall t \in \mathbb{R}, \ \forall E \in \mathcal{G}$, onde $\varphi(E)$ designa o campo vectorial invariante à esquerda tal que $\varphi(E)_e = E$.

Resolução:

Seja $\mathcal{G} = \operatorname{Lie}(G) = T_eG$. A aplicação \exp é de classe C^{∞} e $\exp(0) = e$ pelo que basta mostrar que a aplicação

$$\underline{\exp}_{*_0} : T_0 \mathcal{G} \to T_e G = \mathcal{G}$$

é um isomorfismo de espaços lineares. Mostremos que \exp_{*_0} é a aplicação inversa do isomorfismo

$$\chi_0 : \mathcal{G} \to T_0 \mathcal{G}$$

 $\chi_0(E) = \frac{d}{dt} (tE)_{|_{t=0}} .$

De facto

$$\underline{\exp}_{*_0}(\chi_0(E)) = \underline{\exp}_{*_0}(\frac{d}{dt}(tE)_{|_{t=0}}) = \frac{d}{dt}_{|_{t=0}}\underline{\exp}(tE) = E ,$$

uma vez que $\exp(tE)$ é a curva integral do campo invariante à esquerda com valor E em $e \in G$.

1.3. Mostre que, num grupo de Lie G, os campos invariantes à esquerda comutam com os campos invariantes à direita.

Sugestão: É suficiente mostrar que os respectivos fluxos comutam.

Resolução:

Sejam X e Y campos invariantes à esquerda e direita respectivamente. Uma vez que os seus fluxos são $\psi_t^{(X)}=R_{\exp(tX)}$ e $\psi_s^{(Y)}=L_{\exp(sY)}$ tem-se

$$\begin{split} & \left(R_{\underline{\exp}(tX)} \circ L_{\underline{\exp}(sY)} \right)(g) = \underline{\exp}(sY) g \underline{\exp}(tX) = \\ & = \left(L_{\underline{\exp}(sY)} \circ R_{\underline{\exp}(tX)} \right)(g) \;, \forall s,t \in \mathbb{R} \;, \; \forall g \in G \;, \end{split}$$

o que mostra que os fluxos comutam.

II.

II.1. Considere a álgebra de Lie definida por $\mathcal{G} = \operatorname{span}_{\mathbb{C}} \{X,Y\}$ e [X,Y] = Y. Mostre, usando o critério de Cartan, que \mathcal{G} é solúvel.

Resolução:

A primeira derivada de \mathcal{G} é

$$\mathcal{G}^{(1)} = \operatorname{span}_{\mathbb{C}} \{Y\} .$$

As matrizes de ad_X e de ad_Y na base $\{X,Y\}$ são

$$(ad_X) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = P_{22} , \quad (ad_Y) = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} = -P_{21} .$$

Os produtos internos de Y com os elementos da base são então $B(X,Y) = \operatorname{tr}(\operatorname{ad}_X \circ \operatorname{ad}_Y) = 0$ e $B(Y,Y) = \operatorname{tr}(\operatorname{ad}_Y \circ \operatorname{ad}_Y) = 0$ pelo que $\mathcal{G}^{(1)} \perp \mathcal{G}$ e \mathcal{G} é solúvel pelo critério de Cartan.

II.2. Existe algum homomorfismo sobrejectivo de $sl(2,\mathbb{C})$ para \mathcal{G} ? Porquê?

Resolução:

Não porque como condição necessária para a existência de um homomorfismo sobrejectivo de $sl(2,\mathbb{C})$ para \mathcal{G} , $sl(2,\mathbb{C})$ teria de ter um ideal de dimensão um. Mas $sl(2,\mathbb{C})$ é simples pelo que não contém ideais próprios diferentes de zero.

II.3. Construa um homomorfismo injectivo de \mathcal{G} para $sl(2,\mathbb{C})$.

Resolução: É suficiente encontrar dois elementos linearmente independentes de $sl(2,\mathbb{C})$ \widetilde{X} e \widetilde{Y} que tenham o mesmo parentesis que X e Y ou, mais precisamente, tais que $[\widetilde{X},\widetilde{Y}]=\widetilde{Y}$. Uma possibilidade é $\widetilde{X}=\frac{1}{2}h$ e $\widetilde{Y}=e$, onde $h=P_{11}-P_{22}$ e $e=P_{12}$ e portanto [h,e]=2e. Um homomorfismo é então dado por

$$\varphi(aX + bY) = \frac{a}{2}h + be = \begin{pmatrix} \frac{a}{2} & b \\ 0 & -\frac{a}{2} \end{pmatrix}.$$

II.4. Determine o núcleo de ρ_{Ad} , a representação adjunta de $SL(n,\mathbb{C})$, $(SL(n,\mathbb{C}), sl(n,\mathbb{C}), \rho_{\mathrm{ad}})$,

$$\rho_{\rm ad}(A)(C) = ACA^{-1}$$
.

Resolução:

O núcleo é dado por

$$\begin{split} Ker(\rho_{\mathrm{ad}}) &= \left\{ A \in SL(n,\mathbb{C}) \ : \ ACA^{-1} = C \ , \ \forall C \in sl(n,\mathbb{C}) \right\} = \\ &= \left\{ A \in SL(n,\mathbb{C}) \ : \ AC = CA \ , \ \forall C \in sl(n,\mathbb{C}) \right\} = \left\{ A = \lambda I_n \ , \lambda^n = 1 \right\} \ , \\ \text{coincidindo com o centro de } SL(n,\mathbb{C}) \ \text{(isomorfo a \mathbb{Z}_n)}. \end{split}$$

III.

III.1

III.1.a) Considere a decomposição em espaços raíz de uma álgebra de Lie semisimples complexa. Mostre que $\mathcal{G}_{\alpha} \perp \mathcal{G}_{\beta}$ (em relação à forma de Killing) se $\alpha, \beta \in \Delta \cup \{0\}$ e $\alpha + \beta \neq 0$.

Resolução:

Se
$$E_{\alpha} \in \mathcal{G}_{\alpha}, E_{\beta} \in \mathcal{G}_{\beta}, X \in \mathcal{G}_{\lambda}$$
 então

$$\operatorname{ad}_{E_{\alpha}} \circ \operatorname{ad}_{E_{\beta}}(X) \in \mathcal{G}_{\lambda + \alpha + \beta}$$

pelo que o endomorfismo $\mathrm{ad}_{E_\alpha}\circ\mathrm{ad}_{E_\beta}$, numa base adaptada à decomposição em espaços raíz, não tem entradas na diagonal se $\alpha+\beta\neq 0$ e assim $B(E_\alpha,E_\beta)=\mathrm{tr}\left(\mathrm{ad}_{E_\alpha}\circ\mathrm{ad}_{E_\beta}\right)=0.$

III.1.b) Mostre que se $\alpha \in \Delta$ então $-\alpha \in \Delta$.

Resolução:

Como a forma de Killing B de uma álgebra semisimples é não degenerada, se $0 \neq X \in \mathcal{G}_{\alpha}$ da alínea anterior concluímos que $B(X, \mathcal{G}_{-\alpha}) \neq 0$ pois caso contrário $X \in \operatorname{rad}(B)$.

III.2 Mostre que o grupo de Weyl é um subgrupo finito de $O(\mathcal{H}_{\mathbb{R}}^*, <\cdot, \cdot>)$.

Resolução:

O grupo de transformações lineares de Weyl, W, preserva o produto interno $<\cdot,\cdot>$ em $\mathcal{H}_{\mathbb{R}}^*$, $W\subset O(\mathcal{H}_{\mathbb{R}}^*,<\cdot,\cdot>)$, e o sistema de raízes $\Delta\subset\mathcal{H}_{\mathbb{R}}^*$. Consideremos o homomorfismo

$$\varphi : W \to \operatorname{Trans}(\Delta)$$

$$w \mapsto w_{|_{\Delta}}.$$

O grupo $\operatorname{Trans}(\Delta)$ das aplicações bijectivas de Δ em Δ é finito. Uma vez que Δ gera $\mathcal{H}_{\mathbb{R}}^*$, o núcleo de φ é trivial

$$\operatorname{Ker}(\varphi) = \left\{ w \in W \ : \ w_{|_{\Delta}} = Id_{\Delta} \right\} = \left\{ Id_{\mathcal{H}_{\mathbb{R}}^*} \right\} \ ,$$

pelo que W é isomorfo à sua imagem $\varphi(W) \subset \operatorname{Trans}(\Delta)$ e portanto é um grupo finito.

III.3 Sabendo que $B_2 \cong so(5,\mathbb{C})$ determine o número de raízes positivas de B_2 . Usando o grupo de Weyl determine, a partir do diagrama de Dynkin para B_2 , as raízes positivas não simples de B_2 .

Resolução:

Uma vez que $so(5,\mathbb{C})$ coincide com a algebra de Lie das matrizes antisimétricas 5×5 a sua dimensão é $\dim(so(5,\mathbb{C}))=\dim(B_2)=5\times 4/2=10$. Logo o número de raízes positivas é

$$\#(\Delta^+) = \frac{\dim(B_2) - \operatorname{rank}(B_2)}{2} = 4,$$

sendo duas as raízes positivas não simples. A matriz de Cartan obtida a partir do diagrama de Dynkin é

$$\left(\begin{array}{cc} 2 & -2 \\ -1 & 2 \end{array}\right) .$$

Aplicando a transformação de Weyl s_{α_1} a α_2 obtemos a raíz positiva

$$s_{\alpha_1}(\alpha_2) = \alpha_2 - 2 \frac{\langle \alpha_1, \alpha_2 \rangle}{\langle \alpha_1, \alpha_1 \rangle} \alpha_1 = \alpha_2 - A_{12}\alpha_1 = \alpha_2 + 2\alpha_1 \in \Delta^+$$
.

Das propriedades de α -cordas que passam por raízes podiamos concluir desde já que $\alpha_2+\alpha_1$ também é uma raíz positiva (e portanto a única que faltava). Por outro lado também

$$s_{\alpha_2}(\alpha_1) = \alpha_1 - 2 \frac{\langle \alpha_2, \alpha_1 \rangle}{\langle \alpha_2, \alpha_2 \rangle} \alpha_2 = \alpha_1 - A_{21}\alpha_2 = \alpha_2 + \alpha_1 \in \Delta^+$$
.

IV

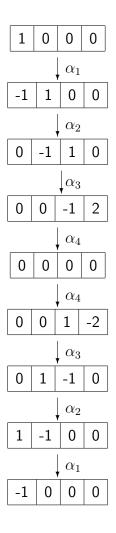
IV.a) Determine o sistema de pesos da representação irredutível ρ_{λ_1} de $B_4 \cong so(9,\mathbb{C})$.

Resolução:

As linhas da matriz de Cartan transposta de B_2

$$\left(\begin{array}{ccccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -2 \\
0 & 0 & -1 & 2
\end{array}\right)$$

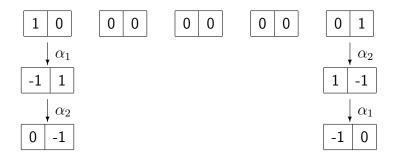
dão os coeficientes da decomposição das raízes simples na base de pesos fundamentais. Com base nas propriedades das α cordas através de pesos obtemos o seguinte sistema de pesos para a representação irredutível com peso máximo λ_1 :



IV.b) Determine o sistema de pesos da restrição de ρ_{λ_1} a uma subalgebra regular $A_2\subset B_4.$

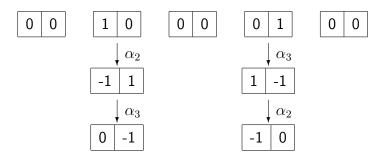
Resolução:

Escolhendo a subalgebra A_2 correspondente às raízes simples α_1 e α_2 obtemos da alínea anterior o seguinte sistema de pesos para $\rho_{\lambda_1}{}_{|A_2}$



Resolução Alternativa:

Como subalgebra A_2 regular podiamos escolher também a correspondente às raízes simples α_2 e α_3 . Da alínea anterior obtemos o seguinte sistema de pesos para $\rho_{\lambda_{1_{|A_2}}}$ para este caso



IV.c) Diga justificando qual o peso máximo de $\rho = \rho_{\lambda_1} \wedge \rho_{\lambda_1}$.

Observação:

Pode usar o facto de que o peso máximo de uma representação irredutível de peso máximo μ tem multiplicidade um.

Resolução:

Existe uma base de vectores peso da representação $\rho_{\lambda_1} \wedge \rho_{\lambda_1}$ da forma $u \wedge v$, onde $u \in v$ são vectores peso da representação ρ_{λ_1} .

Como o peso máximo de uma representação irredutível de peso máximo μ tem multiplicidade um no produto exterior não há nenhum vector com peso 2μ pelo que o peso máximo é $\mu+\tilde{\mu},$ onde $\tilde{\mu}$ é o peso maior a seguir a $\mu.$ No caso que estamos a considerar $\mu=\lambda_1$ e $\tilde{\mu}=\lambda_1-\alpha_1=-\lambda_1+\lambda_2.$ Um vector peso máximo é dado por $v_1\wedge v_2$ onde v_1 é um vector peso com peso λ_1 e v_2 é um vector peso com peso $-\lambda_1+\lambda_2.$ O peso máximo é então $\lambda_{max}=\mu+\tilde{\mu}=\lambda_2.$