Análise Matemática III Exercícios

Conjuntos de medida nula

- 1 Indique justificadamente quais dos seguintes conjuntos têm medida nula.
- a) $A = \{ln(|q|+1): q \in \mathbb{Q}\} \subset \mathbb{R}$
- b) $A = \{(x, y) \in \mathbb{R}^2 : y = \text{sen}(x)\}$
- c) Um subconjunto aberto não vazio de \mathbb{R}^n .
- d) $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$
- e) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$
- f) $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = 0\}$
- g) $A = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0, x y + z = 1\}$
- h) $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = \frac{1}{n} + \frac{1}{m}, \ x \notin \mathbb{Q}, \ n, m \in \mathbb{N} \}$
- i) $A = \{(x, y, z, w) \in \mathbb{R}^4 : w = e^{x y \operatorname{sen}(z)} \}$
- j) $A = \{(x, y) \in \mathbb{R}^2 : \lim_{n \to \infty} [sen(xy)]^n = 1\}$
- ${\bf 2}$ Diga justificadamente quais das seguintes propriedades são válidas quase em toda a parte.
 - a) A distância de $(x,y) \in \mathbb{R}^2$ à origem é menor do que 1.
 - b) $(x,y) \in \mathbb{R}^2$ está numa recta de declive irracional que passa pela origem.
 - c) $\lim_{n\to\infty} x^n = 0$ para $|x| \le 1$.
 - d) $\lim_{n\to\infty} \frac{1}{1+(x^2+y^2+z^2)^n}$ é uma função contínua no ponto $(x,y,z)\in\mathbb{R}^3$.
 - e) $x \in \mathbb{R}$ é tal que $\lim_{n \to \infty} n \operatorname{sen}(\frac{x}{n}) \in \mathbb{Q}$.
 - **3** Prove que um intervalo de \mathbb{R}^{n-1} tem medida nula em \mathbb{R}^n .
- ${\bf 4}$ Prove que a fronteira de um subconjunto de \mathbb{R}^n de conteúdo nulo tem conteúdo nulo.
- 5 Dê um exemplo de um conjunto limitado de medida nula cuja fronteira não tenha medida nula.
- **6** Prove que o conjunto de pontos de descontinuidade de uma função monótona $f:[a,b]\to\mathbb{R}$ tem medida nula.

7 Seja $A_0 = [0,1]$. Dividamo-lo em três partes iguais e retiremos-lhe o intervalo aberto do meio, $]\frac{1}{3},\frac{2}{3}[$. Obtemos assim o conjunto $A_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$. Repetindo o processo, retiramos o terço do meio aos intervalos $[0,\frac{1}{3}]$ e $[\frac{2}{3},1]$. Obtemos o conjunto $A_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1]$. Continuando, obtemos sucessivamente os conjuntos $A_3,A_4,\ldots,A_n,\ldots$. Seja $C = \cap_n A_n$. Prove que C é um conjunto não vazio e tem medida nula.

É possível provar (tente!) que C não é numerável. C é portanto um exemplo de um subconjunto de $\mathbb R$ não numerável e com medida nula.