Análise Matemática III Exercícios

Cálculo de integrais de linha pela definição.

 $\mathbf{1}$ Calcule o integral do campo vectorial F ao longo do caminho indicado.

- a) $F(x,y) = (x^2 2xy)\mathbf{i} + (y^2 2xy)\mathbf{j}$, de (-1,1) a (1,1) ao longo da parábola $y = x^2$.
- b) $F(x,y)=(x^2+y^2)\mathbf{i}+(x^2-y^2)\mathbf{j}$, de (0,0) a (2,0) ao longo da curva y=1-|1-x|.
- c) $F(x,y) = (2a y)\mathbf{i} + x\mathbf{j}$ ao longo do caminho $\alpha(t) = a(t \sin t)\mathbf{i} + a(1 \cos t)\mathbf{j}$, $0 \le t \le 2\pi$.
- d) $F(x,y)=(x+y)\mathbf{i}+(x-y)\mathbf{j}$ uma vez à volta da elipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ no sentido contrário aos ponteiros do relógio.
- e) $F(x,y,z)=2xy\mathbf{i}+(x^2+z^2)\mathbf{j}+y\mathbf{k}$ de (1,0,2) a (3,4,1) ao longo de um segmento de recta.
- f) $F(x,y,z)=x\mathbf{i}+y\mathbf{j}+(xz-y)\mathbf{k}$ ao longo do caminho $\alpha(t)=t^2\mathbf{i}+2t\mathbf{j}+4t^3\mathbf{k}$ com $0\leq t\leq 1$.
- 2 Calcule

$$\int_C \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$$

onde C é a circunferência $x^2+y^2=a^2$ percorrida uma vez no sentido dos ponteiros do relógio.

3 Calcule

$$\int_C \frac{dx + dy}{|x| + |y|}$$

onde C é o quadrado com vértices (1,0), (0,1), (-1,0) e (0,-1) percorrido uma vez no sentido contrário à dos ponteiros do relógio.

4 Calcule

$$\int_C ydx + zdy + xdz$$

onde C é

a) a curva formada pela intersecção das duas superfícies x+y=2 e $x^2+y^2+z^2=2(x+y)$ percorrida uma vez no sentido que visto da origem parece o dos ponteiros do relógio.

- b) a intersecção das superfícies z = xy e $x^2 + y^2 = 1$ percorrida uma vez no sentido que parece contrário ao dos ponteiros do relógio quando visto de muito acima do plano xOy.
- **5** Calcule o trabalho realizado pela força $F(x,y)=(x^2-y^2)\mathbf{i}+2xy\mathbf{j}$ sobre uma partícula que se desloca uma vez, no sentido dos ponteiros do relógio, à volta do quadrado limitado pelos eixos coordenados e pelas rectas x=a e y=a onde a>0.
- 6 Calcule o trabalho realizado pela força $F(x,y,z)=yz\mathbf{i}+xz\mathbf{j}+x(y+1)\mathbf{k}$ sobre uma partícula que se desloca uma vez à volta do triângulo com vértices $(0,0,0),\,(1,1,1)$ e (-1,1,-1) percorridos por esta ordem.
- 7 Um campo de forças bidimensional é dado pela expressão $F(x,y) = cxy\mathbf{i} + x^6y^2\mathbf{j}$ onde c é uma constante. A força actua numa partícula que se move ao longo de uma curva da forma $y = ax^b$ com a > 0, b > 0 entre o ponto (0,0) e a linha x = 1. Calcule, em termos de c, o valor de a tal que o trabalho realizado pela força é independente de b.
- **8** Calcule o trabalho realizado pela força $F(x,y,z) = y^2\mathbf{i} + z^2\mathbf{j} + x^2\mathbf{k}$ ao longo da curva de intersecção da esfera $x^2 + y^2 + z^2 = a^2$ e do cilindro $x^2 + y^2 = ax$ onde $z \ge 0$ e a > 0, percorrido num sentido que parece o dos ponteiros do relógio quando observado de muito acima do plano xOy.
- 9 Calcule $\int_C y^2 ds$ onde C é descrita pelo caminho $\alpha(t) = a(t \sin t)\mathbf{i} + a(1 \cos t)\mathbf{j}$ com $0 \le t \le \frac{\pi}{2}$.
 - ${\bf 10}\,$ Considere um filamento homogéneo semicircular de raio a.
 - a) Mostre que o centróide se encontra no eixo de simetria a uma distância de $\frac{2a}{\pi}$ do centro.
 - b) Mostre que o momento de inércia em relação ao eixo definido pelos extremos do filamento é $\frac{1}{2}Ma^2$ onde M designa a massa do filamento.
- 11 Calcule a coordenada z do centróide de um filamento unindo os pontos (0,0,0) e $(1,1,\sqrt{2})$ e descrevendo a curva de intersecção das superfícies $x^2+y^2=z^2$ e $y^2=x$.
 - 12 Esboce a espiral descrita pelo caminho

$$\alpha(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k} \operatorname{com} 0 \le t \le 4\pi$$

e calcule a sua massa se a densidade de massa for dada por $f(x, y, z) = x^2 + y^2 + z^2$.