O INTEGRAL DE LEBESGUE

RUI LOJA FERNANDES

ABSTRACT. Esta notas contêm uma introdução à teoria da integração de Lebesgue, e formam como que um capítulo 3,5 do livro de M. Spivak "Calculus on Manifolds". O seu objectivo é servir como texto de apoio aos alunos da Turma E de Análise Matemática III. Apesar de existirem excelentes textos (ver bibliografia) que podem ser utilizados como introdução à teoria do integral de Lebesgue, não conheço nenhum que possua as características do livro de Spivak, e essenciais para o funcionamento deste projecto: (i) elementar; (ii) sucinto e (iii) que exija uma boa dose de trabalho individual. São pois estas as características que pretendi dar a estas notas. É claro que as dificuldades e virtudes mencionadas no prefácio desse livro sobre esta metodologia aplicam-se aqui mutatis mutandis.

Os prerequesitos para esta notas são portanto os três primeiros capítulos do livro de Spivak. Uma citação do tipo $[S, \, thm \, 3\text{-}10]$ refere-se ao teorema 3-10 desse livro.

Lisboa, Outubro de 1998 Departamento de Matemática Instituto Superior Técnico

O INTEGRAL DE LEBESGUE

Vamos agora estudar uma generalização do integral de Riemann, que acabámos de estudar, e que se chama integral de Lebesgue. Esta generalização vai permitir, por exemplo, extender a classe das funções integráveis: um exemplo simples de uma função $f:[0,1] \to \mathbb{R}$ integrável à Lebesgue que não é integravel à Riemann é

$$f(x) = \begin{cases} 0, & \text{se } x \text{ \'e racional;} \\ 1, & \text{se } x \text{ \'e irracional.} \end{cases}$$

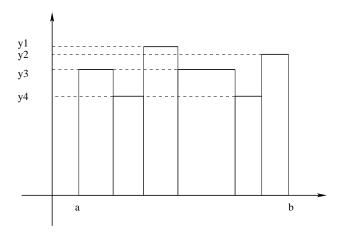
Esta extensão do conceito de integral tem inúmeras vantagens prácticas algumas das quais veremos mais tarde.

Uma forma simples de ilustrar a diferença entre o integral de Lebesgue e o de Riemann é a seguinte analogia. Suponhamos que tinhamos uma saco cheio moedas (digamos euros!) e que prendiamos saber quantos euros temos no saco. Podemos contar estas moedas de duas formas distintas:

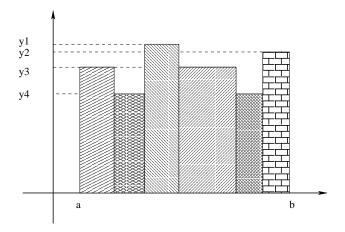
- (i) Retiramos as moedas uma a uma do saco e vamos adicionando os seus valores;
- (ii) Agrupamos as moedas do saco pelos seus valores, formando um grupo de moedas de 5 centimos, outro grupo de 10 centimos, etc. Contamos as moedas em cada grupo, multiplicamos pelos seus valores e somamos;

A segunda forma de contagem (que corresponde ao integral de Lebesgue) é muito mais eficiente do que a primeira forma de contagem (correspondente ao integral de Riemann), embora ambas forneçam o mesmo valor, claro. Note-se que para descrever (ii) tivemos de usar uma linguagem um pouco mais elaborada do que para descrever (i). Como veremos adiante, a definição do integral de Lebesgue também involve de facto um pouco mais de cenceptualização do que a definição do integral de Riemann, mas por fim as funções integráveis à Riemann também são integráveis à Lebesgue e o valor do integral é o mesmo, claro.

A via aqui adoptada para a introdução do integral de Lebesgue assenta no conceito de medida. Uma medida não é mais que uma função que a certos subconjuntos $A \subset \mathbb{R}^n$ associa um número não negativo $\mu(A)$, a sua *medida* ou *volume*. Se considerarmos uma função $f:[a,b] \to \mathbb{R}$ com um número finito de valores como vimos, a

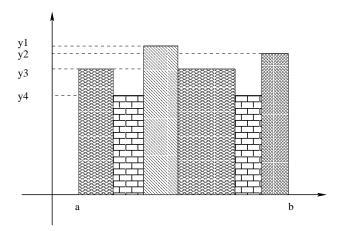


definição de integral de Riemann corresponde essencialmente em dividir o intervalo [a,b] em subintervalos, multiplicar o valor que a função toma em cada subintervalo pelo seu comprimento, e somamos:



$$\int_{a}^{b} f dx = \sum_{k=1}^{n} f(x_{k})(x_{k} - x_{k-1}).$$

Por outro lado, para o integral de Lebesgue, determinamos primeiro qual é a preimagem de cada valor que a função assume, multiplicamos a medida (ou volume) dessa preimagem por esse valor, e somamos:



$$\int_a^b f d\nu = \sum_{k=1}^m y_k \mu(E_k).$$

É claro que estes dois métodos dão o mesmo valor para o integral.

Para adoptar esta via, há pois que definir uma função que a cada conjunto $A \subset \mathbb{R}^n$ associe a sua medida $\mu(A)$. Esta função deve satisfazer certa propriedades naturais. Por exemplo, gostariamos certamente que:

- (i) Para um rectangulo $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$ a medida é dada por $\mu(A) = (b_1 a_1) \cdots (b_n a_n)$;
- (ii) Se A é a união de conjuntos A_1, A_2, \ldots disjuntos dois a dois, então $\mu(A) = \sum_{k=1}^{+\infty} \mu(A_k)$;
- (iii) Se A é um conjunto com medida $\mu(A)$ então a sua tranlação $x+A=\{x+y:y\in A\}$ deverá ter a mesma medida: $\mu(x+A)=\mu(A)$;

Infelizmente não existe tal função!!! Na primeria parte deste capítulo, veremos como resolver este problema.

Medidas e σ -álgebras

Definição A.1. Uma família A de subconjuntos de X diz-se uma álgebra de conjuntos se $\emptyset, X \in \mathfrak{A}$ e

$$A, B \in \mathfrak{A} \Longrightarrow A \cup B, A - B \in \mathfrak{A}.$$

Uma álgebra $\mathfrak A$ diz-se uma σ -álgebra se

$$A_1, A_2, \dots \in A \Longrightarrow \bigcup_{j=1}^{+\infty} A_j \in \mathfrak{A}.$$

Note que se \mathfrak{A} é uma álgebra de conjuntos e $A, B \in \mathfrak{A}$ então

$$A \cap B = A - (A - B) \in \mathfrak{A}$$

logo ${\mathfrak A}$ é fechada para interseções. Da mesma forma, se ${\mathfrak A}$ é uma σ -álgebra é um exercício simples mostrar que se $A_1,A_2,\dots\in\mathfrak{A}$ então $\bigcap_{j=1}^{+\infty}A_j\in\mathfrak{A}$. Vejamos dois exemplos:

- (1) Seja $\mathfrak A$ a coleção de todos os subconjuntos de um conjunto X. É claro que $\emptyset, X \in \mathfrak{A}$ e que \mathfrak{A} é fechada para uniões arbitrárias e diferenças de conjuntos, logo \mathfrak{A} é uma σ -álgebra.
- (2) Seja $\mathfrak A$ a coleção formada por todas as uniões finitas $I_1 \cup \cdots \cup I_m$ de rectângulos de \mathbb{R}^n . Então \mathfrak{A} é uma álgebra de conjuntos mas não é uma σ -álgebra (exercício).

A noção de medida que queremos discutir baseia-se na seguinte definição:

Definição A.2. Seja $\mathfrak A$ uma álgebra. Uma função $\phi:\mathfrak A\to [0,+\infty]$ não-constante diz-se aditiva se, $dados A, B \in \mathfrak{A}$,

$$A \cap B = \emptyset \Longrightarrow \phi(A \cup B) = \phi(A) + \phi(B).$$

A proposição seguinte fornece algumas propriedades elementares das funções aditivas. A sua demonstração fica como exercício.

Proposição A.3. Seja $\mathfrak A$ uma álgebra $e \phi : \mathfrak A \to [0, +\infty]$ uma função aditiva. Se $A, B, A_1, A_2, \ldots, A_k \in \mathfrak{A}$ então:

- (i) $\phi(\emptyset) = 0$;
- (ii) $\phi(B) < \phi(A)$ se $B \subset A$;
- (iii) $\phi(A-B) = \phi(A) \phi(B)$ se $B \subset A$ e $\phi(B) < +\infty$;
- (iv) $\phi(A_1 \cup A_2) = \phi(A_1) + \phi(A_2) \phi(A_1 \cap A_2)$ se $\phi(A_1 \cap A_2) < +\infty$; (v) $\phi(A_1 \cup \cdots \cup A_k) = \phi(A_1) + \cdots + \phi(A_k)$ se $A_i \cap A_j = \emptyset$ para $i \neq j$;

Note que, em princípio, não podemos dizer nada sobre o comportamento das funções aditivas para conjuntos A que são uniões (mesmo disjuntas) de conjuntos A_1, A_2, \ldots Para isso precisamos de mais uma definição:

Definição A.4. Seja $\mathfrak A$ uma álgebra. Uma função $\phi:\mathfrak A\to [0,+\infty]$ aditiva diz-se σ -aditiva se, para $A_1, A_2, \dots \in \mathfrak{A}$ com $\bigcup_{j=1}^{+\infty} A_j \in \mathfrak{A}$, temos

$$A_i \cap A_j = \emptyset \ (i \neq j) \Longrightarrow \phi(\bigcup_{j=1}^{+\infty} A_j) = \sum_{j=1}^{+\infty} \phi(A_j).$$

Um espaço de medida é uma par (\mathfrak{M}, μ) onde \mathfrak{M} é uma σ -álgebra num conjunto $X \in \mu : \mathfrak{M} \to [0, +\infty]$ é uma função σ -aditiva. Os elementos de \mathfrak{M} dizem-se conjuntos mensuráveis e a função μ diz-se uma medida em X. Uma boa parte do nosso estudo incidirá sobre uma certa medida em \mathbb{R}^n , a chamada medida de Lebesgue. Para esta medida, os rectângulos de \mathbb{R}^n são conjuntos mensuráveis e a sua medida de Lebesgue coincide com os seu volume n-dimensional [S, chp 3].

Como um exemplo simples de um espaço de medida (\mathfrak{M}, X) mencionamos a **medida discreta** num conjunto X. A σ -álgebra \mathfrak{M} é formada por todos os subconjuntos $A \subset X$, e a medida de um subconjunto $A \subset X$ é

$$\mu(A) = \left\{ \begin{array}{ll} \text{cardinal de } A, & \text{se } A \text{ \'e finito;} \\ \\ +\infty, & \text{se } A \text{ \'e infinito.} \end{array} \right.$$

Esta medida é muito importante, por exemplo, na Teoria das Probabilidades.

Uma propriedade importante das funções σ -aditivas é a de podermos calculá-las por aproximação. Mais precisamente temos:

Teorema A.5. Seja $\mathfrak A$ uma álgebra $e \phi : \mathfrak A \to [0, +\infty]$ uma função σ -aditiva. Se $A_1 \subset A_2 \subset A_3 \subset \ldots$ com $A_i \in \mathfrak A$ $e A = \bigcup_{i=1}^{+\infty} A_i \in \mathfrak A$ então

$$\lim_{j \to +\infty} \phi(A_j) = \phi(A).$$

Demonstração. Seja $B_1=A_1$ e defina-se para $j=2,3,\ldots$

$$B_j = A_j - A_{j-1}.$$

Claramente $B_j \in \mathfrak{A}, B_i \cap B_j = \emptyset$ se $i \neq j$ e $A_j = B_1 \cup \cdots \cup B_j$. Logo

$$\phi(A_j) = \sum_{k=1}^j \phi(B_k).$$

Como ϕ é σ -aditiva e $A = \bigcup_{j=1}^{+\infty} B_j$ obtemos

$$\lim_{j \to +\infty} \phi(A_j) = \sum_{j=1}^{+\infty} \phi(B_j) = \phi(\bigcup_{j=1}^{+\infty} B_j) = \phi(A).$$

Problemas

A.1. Seja $\mathfrak A$ uma σ -álgebra. Mostre que se $A_1, A_2, \dots \in \mathfrak A$ então $\bigcap_{i=1}^{+\infty} A_i \in \mathfrak A$.

A.2. Demonstre a proposição A.3.

A.3. Seja $\mathfrak A$ uma álgebra $e \phi : \mathfrak A \to [0, +\infty]$ uma função σ -aditiva. Se $A_1 \supset A_2 \supset A_3 \supset \cdots \in \mathfrak A$, $\phi(A_1) < +\infty$ $e A = \bigcap_{i=1}^{+\infty} A_i \in \mathfrak A$ mostre que

$$\lim_{j \to +\infty} \phi(A_j) = \phi(A).$$

A.4. Seja $\mathfrak A$ a família dos subconjuntos de $\mathbb R^n$ que são união de um número finito de rectângulos disjuntos. Se $A=\bigcup_{j=1}^N I_j$ é um elemento de $\mathfrak A$ defina

$$\mu^*(A) = \sum_{j=1}^N v(I_j).$$

- (a) Mostre que A é uma álgebra de conjuntos;
- (b) Mostre que $\mu^*: \mathfrak{A} \to \mathbb{R}$ é uma função aditiva;

A.5. Seja $\mathfrak A$ uma σ -álgebra com um número infinito de elementos. Será que $\mathfrak A$ pode ser numerável?

MEDIDA DE LEBESGUE

Seja $X=\mathbb{R}^n$ o espaço euclideano n-dimensional. Sabemos o que sigifica o volume n-dimensional v(I) de um rectângulo $I\subset\mathbb{R}^n$ ([S,p. 47]). Se $A\subset\mathbb{R}^n$ é um conjunto, é natural considerar coberturas de A por rectângulos abertos $\{I_1,I_2,\dots\}$ e definir

$$\mu^*(A) = \inf \sum_{n=1}^{+\infty} v(I_n),$$

onde o inf é tomado sobre todas as coberturas numeráveis de A por rectângulos abertos. A função μ^* fica assim definida na σ -álgebra $\mathfrak A$ formada por todos os subconjuntos de \mathbb{R}^n e costuma designar-se por medida exterior de Lebesgue.

Proposição A.6. A medida exterior de Lebesgue $\mu^*: \mathfrak{A} \to [0, +\infty]$ satisfaz as seguintes propriedades:

- (i) $\mu^*(\emptyset) = 0$;
- (ii) $\mu^*(B) \le \mu^*(A) \text{ se } B \subset A;$
- (iii) $\mu^*(I) = v(I)$ se $I \subset \mathbb{R}^n$ é um rectângulo;
- (iv) $\mu^*(x+A) = \mu^*(A) \text{ se } x \in \mathbb{R}^n;$
- (v) $\mu^*(A) = 0$ sse A é um conjunto de medida nula;
- (vi) Se $A = \bigcup_{j=1}^{+\infty} A_j$ então $\mu^*(A) \leq \sum_{j=1}^{+\infty} \mu^*(A_j)$.

Demonstração. As demonstrações de (i)-(v) são deixadas como exercício. Para demonstrar (vi) podemos assumir que $\mu^*(A_j) < +\infty$, para todo o j. Dado $\varepsilon > 0$ existe uma cobertura $I_{i,k}$ $(k=1,2,\ldots)$ de A_i por rectângulos abertos, tal que

$$\sum_{k=1}^{+\infty} v(I_{j,k}) < \mu^*(A_j) + \frac{\varepsilon}{2^j}.$$

Os $I_{j,k}$ (j, k = 1, 2, ...) formam um cobertura de A por rectângulos abertos, logo

$$\mu^*(A) \le \sum_{j=1}^{+\infty} \sum_{k=1}^{+\infty} v(I_{j,k}) < \sum_{j=1}^{+\infty} \mu^*(A_j) + \varepsilon.$$

Um função que satifaz a desigualdade (vi) diz-se uma função subaditiva. Existem exemplos de subconjuntos $A_i \subset \mathbb{R}^n$, com $A_j \cap A_k = \emptyset$ se $j \neq k$, para os quais esta desigualdade é estrita, i. e., a medida exterior de Lebesgue não é σ -aditiva.

Exemplo A.7. Definimos uma relação de equivalência no intervalo [0, 1] estipulando que $x \sim y$ sse $x - y \in \mathbb{Q}$ (é fácil verificar que esta relação binária é de facto transitiva, simétrica e reflexiva).

Seja $E \subset [0,1]$ um conjunto formado por exactamente um elemento de cada classe de equivalência de ~. A existência de E é garantida pelo axioma da escolha. Este conjunto tem as sequintes propriedades:

- (a) $(q+E)\cap (r+E)=\emptyset$ se $q,r\in\mathbb{Q}$ e $q\neq r;$ (b) $\mathbb{R}=\bigcup_{q\in\mathbb{Q}}(q+E);$

De facto, se q + x = r + y onde $x, y \in E$, $q, r \in \mathbb{Q}$, com $x \neq y$ e $q \neq r$, então temos $x \sim y$, o que não pode acontecer pois E contém um elemento de cada classe de equivalência de \sim . Logo (a) é verdadeira. Por outro lado, se $x \in \mathbb{R}$ então existe um $q \in \mathbb{Q}$, tal que $x-q \in [0,1]$ e, portanto, existe $e \in E$ tal que $x-q \sim e$. Concluimos que $x \in q' + E$ para algum racional q', e (b) é verdadeira. Como R não tem medida nula, (b) mostra que E $tamb\'em n\~ao tem medida nula. Pela proposiç\~ao A.6 (v), concluímos que <math>\mu^*(E) > 0$.

Dada uma enumeração $\{q_1, q_2, q_3, \dots\}$ dos racionais entre 0 e 1, definimos subconjuntos $A_j \subset [0,2] \ por$

$$A_j = q_j + E, \qquad j = 1, 2, 3, \ldots$$

Seja $A = \bigcup_{j=1}^{+\infty} A_j$. Afirmamos que

$$\mu^*(A) < \sum_{j=1}^{+\infty} \mu^*(A_j).$$

É claro que $A \subset [0,2]$ logo, pela proposição A.6 (ii), $\mu^*(A) \leq 2$. Por outro lado, pela proposição A.6 (iv), os A_j têm todos a mesma medida exterior: $\mu^*(A_j) = \mu^*(E) > 0$. Assim, $\sum_{j=1}^{+\infty} \mu^*(A_j) = +\infty$.

Vemos pois que a função μ^* não é σ -aditiva na σ -álgebra formada por todos os subconjuntos de \mathbb{R}^n . Podemos, no entanto, procurar uma σ -álgebra mais pequena, que ainda contenha os rectângulos $I \subset \mathbb{R}^n$, e na qual μ^* é σ -aditiva.

Definição A.8. Um conjunto $A \subset \mathbb{R}^n$ diz-se **mensurável à Lebesgue** se para todo o $\varepsilon > 0$ existem rectângulos $\{I_1, I_2, \dots\}$ tais que a sua união $U = \bigcup_{j=1}^{+\infty} I_j$ satisfaz $\binom{1}{j}$

$$\mu^*(A \triangle U) < \varepsilon$$
.

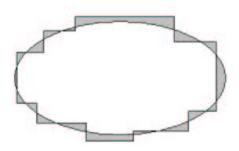


Figura 1. O conjunto $A \triangle U$.

Observe-se que nesta definição é indiferente supôr que os rectângulos são disjuntos. Em termos geométricos, podemos dizer que um conjunto é mensurável se puder ser bem aproximado, em termos de medida, por uma união numerável de rectângulos. De facto temos o seguinte resultado cuja demonstração deixamos como exercício:

Lema A.9. Sejam $A, B \in \mathbb{R}^n$ com $\mu^*(A) < +\infty$ ou $\mu^*(B) < +\infty$. Então:

$$|\mu^*(A) - \mu^*(B)| \le \mu^*(A \triangle B)$$

Daqui em diante designamos por ${\mathfrak M}$ a família dos conjuntos mensuráveis à Lebesgue.

Teorema A.10. A familía \mathfrak{M} dos subconjuntos de \mathbb{R}^n mensuráveis à Lebesgue é uma σ -álgebra. A restrição de μ^* a \mathfrak{M} é uma função $\mu: \mathfrak{M} \to [0, +\infty]$ σ -aditiva.

Demonstração. Designemos por conjuntos elementares os conjuntos formados por uniões finitas, disjuntas, de rectângulos. Como vimos num problema da secção anterior, a família $\mathfrak A$ dos conjuntos elementares é uma álgebra e a restrição de μ^* a $\mathfrak A$ é aditiva.

Para efeitos da demonstração vamos ainda designar por \mathfrak{M}_F a família dos subconjuntos $A \subset \mathbb{R}^n$ que podem ser aproximados por um conjunto elementar: $A \in \mathfrak{M}_F$ se, dado $\varepsilon > 0$, existe $E \in \mathfrak{A}$ tal que

$$\mu^*(A \triangle E) < \varepsilon$$
.

Deixamos como exercício verificar os seguintes factos:

- (a) Se $A \in \mathfrak{M}$ e $\mu^*(A) < +\infty$ então $A \in \mathfrak{M}_F$;
- (b) Se $A \in \mathfrak{M}$ então $A = \bigcup_{j=1}^{\infty} A_j$, com $A_j \in \mathfrak{M}_F$ disjuntos dois a dois;

$$A \triangle B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B).$$

 $^{^{1}}$ Usamos o símbolo $A \bigtriangleup B$ para designar a diferença simétrica dos conjuntos A e $B\colon$

(c) Se $A_j \in \mathfrak{M}_F$ então $A = \bigcup_{i=1}^{\infty} A_i \in \mathfrak{M}$.

Dividimos a demonstração em vários passos.

(i) \mathfrak{M}_F é uma álgebra:

 \mathfrak{M}_F é fechada para os complementares pois se $A\in\mathfrak{M}_F$ então $A^c\in\mathfrak{M}_F$, já que é válida a relação

$$A^c \triangle E^c = A \triangle E.$$

Por outro lado, \mathfrak{M}_F é fechada para uniões finitas: Se $A_1, A_2 \in \mathfrak{M}_F$, dado $\varepsilon > 0$, existem conjuntos elementares $E_1, E_2 \in \mathfrak{A}$ tais que

$$\mu^*(A_1 \triangle E_1) < \frac{\varepsilon}{2}, \qquad \mu^*(A_2 \triangle E_2) < \frac{\varepsilon}{2}.$$

Como

$$(A_1 \cup A_2) \triangle (E_1 \cup E_2) \subset (A_1 \triangle E_1) \cup (A_2 \triangle E_2),$$

segue-se que

$$\mu^*((A_1 \cup A_2) \triangle (E_1 \cup E_2)) \le \mu^*(A_1 \triangle E_1) + \mu^*(A_2 \triangle E_2) < \varepsilon.$$

Logo $A_1 \cup A_2 \in \mathfrak{M}_F$.

Sendo \mathfrak{M}_F fechada para reuniões e complementares, é claro que se $A, B \in \mathfrak{M}_F$ então $A - B = (A^c \cup B)^c \in \mathfrak{M}_F$. Como $\mathbb{R}^n, \emptyset \in \mathfrak{M}_F$ concluímos que \mathfrak{M}_F é uma álgebra.

(ii) A restrição de μ^* a \mathfrak{M}_F é aditiva:

Sejam $A_1, A_2 \in \mathfrak{M}_F$ conjuntos mensuráveis disjuntos. Já sabemos que

$$\mu^*(A_1 \cup A_2) \le \mu^*(A_1) + \mu^*(A_2).$$

Basta pois mostrar a desigualdade oposta e para isso podemos assumir que $\mu^*(A_1), \mu^*(A_2) < +\infty$.

Dado $\varepsilon > 0$, escolha-se conjuntos elementares $E_1, E_2 \in \mathfrak{A}$ tais que

$$\mu^*(A_1 \triangle E_1) < \varepsilon, \qquad \mu^*(A_2 \triangle E_2) < \varepsilon.$$

Como $A_1 \cap A_2 = \emptyset$, temos

$$E_1 \cap E_2 \subset (A_1 \triangle E_1) \cup (A_2 \triangle E_2),$$

e concluímos que

$$\mu^*(E_1 \cap E_2) < 2\varepsilon$$
.

Por outro lado, pelo lema A.9, também temos

$$|\mu^*(A_1) - \mu^*(E_1)| < \varepsilon, \qquad |\mu^*(A_2) - \mu^*(E_2)| < \varepsilon.$$

Tomemos $A = A_1 \cup A_2$ e $E = E_1 \cup E_2$. Visto que para conjuntos elementares a medida exterior é aditiva, obtemos

$$\mu^*(E) = \mu^*(E_1) + \mu^*(E_2) - \mu^*(E_1 \cap E_2) > \mu^*(A_1) + \mu^*(A_2) - 4\varepsilon.$$

Finalmente, observamos que

$$A \triangle E \subset (A_1 \triangle E_1) \cup (A_2 \triangle E_2),$$

logo

$$\mu^*(A_1 \cup A_2) \ge \mu^*(E) - \mu^*(A \triangle E) > \mu^*(A_1) + \mu^*(A_2) - 6\varepsilon.$$

Como ε era arbitrário, concluímos que

$$\mu^*(A_1 \cup A_2) \ge \mu^*(A_1) + \mu^*(A_2),$$

o que mostra que a restrição de μ^* a \mathfrak{M}_F é aditiva.

(iii) μ^* restrita a \mathfrak{M} é σ -aditiva:

Se $A_j \in \mathfrak{M}$ são disjuntos, $A = \bigcup_{j=1}^{+\infty} A_j \in \mathfrak{M}$, e existe um A_j com $\mu^*(A_j) = +\infty$, é claro que

$$\mu^*(A) = \sum_{j=1}^{+\infty} \mu^*(A_j).$$

Por outro lado, se todos os A_j têm $\mu^*(A_j) < +\infty$, então $A_j \in \mathfrak{M}_F$. Sendo μ^* sub-aditiva, temos, a priori,

$$\mu^*(A) \le \sum_{j=1}^{+\infty} \mu^*(A_j).$$

Como μ^* é aditiva em \mathfrak{M}_F e $\bigcup_{j=1}^N A_j \subset A$, para todo o inteiro N, obtemos

$$\mu^*(\bigcup_{j=1}^N A_j) = \sum_{j=1}^N \mu^*(A_j) \le \mu^*(A).$$

Passando ao limite, concluímos que

$$\sum_{j=1}^{+\infty} \mu^*(A_j) \le \mu^*(A).$$

Logo, também neste caso, temos

$$\mu^*(A) = \sum_{j=1}^{+\infty} \mu^*(A_j).$$

(iv) \mathfrak{M} é uma σ -álgebra:

Se $A_1, A_2, \dots \in \mathfrak{M}$ são conjuntos mensuráveis, seja $A = \bigcup_{j=1}^{+\infty} A_j$. Dado $\varepsilon > 0$, existem rectângulos $\{I_{j,k}\}$ tais que se $U_j = \bigcup_{k=1}^{+\infty} I_{j,k}$ então:

$$\mu^*(A_j \triangle U_j) < \frac{\varepsilon}{2i}$$
.

Se $U = \bigcup_{j,k=1}^{+\infty} I_{j,k} = \bigcup_{j=1}^{+\infty} U_j$, então temos $A \triangle U \subset \bigcup_{j=1}^{+\infty} (A_j \triangle U_j)$ logo:

$$\mu^*(A \triangle U) \le \sum_{j=1}^{+\infty} \mu^*(A_j \triangle U_j) = \varepsilon.$$

Isto mostra que $A \in \mathfrak{M}$, e \mathfrak{M} é fechada para uniões numeráveis.

Se $A, B \in \mathfrak{M}$ então temos as decomposições

$$A = \bigcup_{j=1}^{+\infty} A_j, \qquad B = \bigcup_{k=1}^{+\infty} B_k,$$

onde $A_i, B_k \in \mathfrak{M}_F$. Como \mathfrak{M}_F é uma álgebra, $A_i \cap B_k \in \mathfrak{M}_F$. Assim,

$$A \cap B = \bigcup_{j,k=1}^{+\infty} A_j \cap B_k \in \mathfrak{M}.$$

Logo $\mathfrak M$ também é fechada para intersecções. Deixamos como exercício verificar que $\mathfrak M$ é fechada para complementares, donde se segue que $\mathfrak M$ é uma σ -álgebra. \square

A função $\mu:\mathfrak{M}\to [0,+\infty]$ costuma designar-se por medida de Lebesgue. A classe \mathfrak{M} dos conjuntos mensuráveis à Lebesgue é uma classe bastante ampla e inclui muitos dos conjuntos que nos são familiares. Por exemplo, como \mathfrak{M} é uma σ -álgebra e contém os rectângulos $I\subset\mathbb{R}^n$, vemos que:

(i) \mathfrak{M} contém os conjuntos abertos $O \subset \mathbb{R}^n$, pois todo o aberto de \mathbb{R}^n é uma união numerável de rectângulos;

(ii) \mathfrak{M} contém os conjuntos fechados $F \subset \mathbb{R}^n$, pois todo o conjunto fechado é o complementar de um conjunto aberto;

É claro que \mathfrak{M} contém muitos outros conjuntos. Por exemplo, \mathfrak{M} contém os conjuntos que antes designamos por *conjuntos de medida nula*, pois estes são de facto os conjuntos mensuráveis à Lebesgue com medida de Lebesgue nula.

Problemas

A.6. Demonstre as seguintes propriedades da medida exterior de Lebesgue:

- (a) $\mu^*(\emptyset) = 0$;
- (b) $\mu^*(B) \le \mu^*(A) \text{ se } B \subset A;$
- (c) $\mu^*(I) = v(I)$ se $I \subset \mathbb{R}^n$ é um rectângulo;
- (d) $\mu^*(x+A) = \mu^*(A) \text{ se } x \in \mathbb{R}^n;$
- (e) $\mu^*(A) = 0$ sse A é um conjunto de medida nula;

A.7. Se $A, B \subset \mathbb{R}^n$ defina $d(A, B) = \mu^*(A \triangle B)$. Mostre que esta função satisfaz:

- (a) $d(A,B) \ge 0$ e d(A,A) = 0;
- (b) d(A,B) = d(B,A);
- (c) $d(A, C) \le d(A, B) + d(B, C)$;
- (d) $|\mu^*(A) \mu^*(B)| \le d(A, B)$, se $\mu^*(A), \mu^*(B) < +\infty$.

O que é que pode dizer se d(A,B) = 0?

A.8. Mostre que:

- (a) Se $A \in \mathfrak{M}$ e $\mu^*(A) < +\infty$ então $A \in \mathfrak{M}_F$;
- (b) Se $A \in \mathfrak{M}$ então $A = \bigcup_{j=1}^{\infty} A_j$ com $A_j \in \mathfrak{M}_F$ disjuntos dois a dois;
- (c) Se $A_j \in \mathfrak{M}_F$ então $A = \bigcup_{j=1}^{\infty} A_j \in \mathfrak{M}$.

A.9. Verifique que o complementar dum conjunto mensurável à Lebesgue é mensurável à Lebesgue.

A.10. Considere conjuntos $A_0 \supset A_1 \supset A_2 \supset \ldots$ onde cada A_i é uma união finita de intervalos obtidos indutivamente da seguinte forma: $A_0 = [0,1]$ e A_{i+1} é obtido a partir de A_i retirando o terço do meio de cada intervalo de A_i . Assim:

$$A_{0} = [0, 1];$$

$$A_{1} = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1];$$

$$A_{2} = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, 1];$$

$$\vdots$$

Mostre que o conjunto de Cantor $C = \bigcap_{i=0}^{+\infty} A_i$ é mensurável e não numerável. Qual é a sua medida de Lebesgue?

A.11. Mostre que o conjunto E do exemplo A.7 não é mensurável à Lebesgue.

A.12. Mostre que um conjunto mensurável à Jordan é mensurável à Lebesgue. Será o inverso verdadeiro?

Funções Mensuráveis

Definição A.11. Seja $f: A \to \mathbb{R}$ uma função definida num conjunto mensurável $A \subset \mathbb{R}^n$. Dizemos que f é uma função mensurável (à Lebesgue) se o conjunto

$$f^{-1}(]c, +\infty[) = \{x \in A : f(x) > c\}$$

é mensurável para todo o $c \in \mathbb{R}$.

Exemplo A.12. Se $f: \mathbb{R}^n \to \mathbb{R}$ é uma função contínua então f é mensurável: como o conjunto $]c, +\infty[$ é aberto e f é contínua sabemos que $f^{-1}(]c, +\infty[$) é aberto, logo é mensurável.

Exemplo A.13. A função de Dirichelet

é mensurável à Lebesgue (porquê?).

Proposição A.14. Seja $f: A \to \mathbb{R}$ uma função definida num conjunto mensurável $A \subset \mathbb{R}^n$. As seguintes afirmações são todas equivalentes:

- (i) $\{x \in A : f(x) > c\}$ é mensurável;
- (ii) $\{x \in A : f(x) \ge c\}$ é mensurável;
- (iii) $\{x \in A : f(x) < c\}$ é mensurável;
- (iv) $\{x \in A : f(x) \le c\}$ é mensurável;

Demonstração. As relações:

$$\{x \in A : f(x) \ge c\} = \bigcap_{k=1}^{+\infty} \left\{ x \in A : f(x) > c - \frac{1}{k} \right\}$$

$$\{x \in A : f(x) < c\} = A - \{x \in A : f(x) \ge c\}$$

$$\{x \in A : f(x) \le c\} = \bigcap_{k=1}^{+\infty} \left\{ x \in A : f(x) < c + \frac{1}{k} \right\}$$

$$\{x \in A : f(x) > c\} = A - \{x \in A : f(x) \le c\}$$

mostram que (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i).

Exemplo A.15.

Os próximos resultados permitem obter mais exemplos de funções mensuráveis.

Proposição A.16. Se f, f_1, f_2, \ldots são funções mensuráveis, então

- (i) |f| é mensurável;
- (ii) $\sup f_n$, $\inf f_n$, $\lim_{n\to\infty} \sup f_n$ $e \lim_{n\to\infty} \inf f_n$ são mensuráveis;

Demonstração. A parte (i) segue-se da proposição anterior e da relação

$$\{x \in A : |f(x)| > c\} = \{x \in A : f(x) > c\} \cup \{x \in A : f(x) < -c\}.$$

Por outro lado, se $g(x) = \sup f_n(x)$, vemos que

$${x \in A : g(x) > c} = \bigcup_{n=1}^{+\infty} {x \in A : f_n(x) > c}.$$

Assim sup f_n é mensurável. De igual modo mostra-se que inf f_n é mensurável. Como temos que

$$\lim_{n\to\infty}\sup f_n=\inf g_m$$

onde $g_m(x) = \sup\{f_n(x) : n \ge m\}$, vemos ainda que $\lim_{n\to\infty} \sup f_n$ é mensurável. De forma análoga mostra-se que $\lim_{n\to\infty} \inf f_n$ é mensurável. Portanto, (ii) também se verifica.

Corolário A.17. Se f,g são funções mensuráveis, então $\max(f,g)$ e $\min(f,g)$ são funções mensuráveis. Em particular, $f^+ = \max(f,0)$ e $f^- = -\min(f,0)$ são funções mensuráveis.

Corolário A.18. Se f_1, f_2, \ldots são funções mensuráveis e $f(x) = \lim_{n \to \infty} f_n(x)$, então f é mensurável.

Se A é um conjunto mensurável designamos por M(A) o conjunto das funções mensuráveis em A. O próximo resultado mostra que este conjunto é um espaço linear para as operações usuais de adição de funções e multiplicação de uma função por um número real.

Teorema A.19. Sejam f e g funções mensuráveis, e $F:\mathbb{R}^2\to\mathbb{R}$ uma função contínua. Então a função

$$h(x) = F(f(x), g(x))$$

é mensurável. Em particular, f + g, f - g e $f \cdot g$ também são mensuráveis.

Demonstração. O conjunto $O_c = \{(x,y) \in \mathbb{R}^2 : F(x,y) > c\}$ é aberto, pois F é contínua, logo podemos escrever

$$O_c = \bigcup_{k=1}^{+\infty} I_k,$$

onde cada I_k é um rectângulo aberto de \mathbb{R}^2 :

$$I_k = \{(x, y) \in \mathbb{R}^2 : a_k < x < b_k, c_k < y < d_k\}.$$

Como os conjuntos

$$\{x \in A : a_k < f(x) < b_k\} = \{x \in A : f(x) < b_k\} \cap \{x \in A : f(x) > a_k\}$$

$$\{x \in A : c_k < g(x) < d_k\} = \{x \in A : g(x) < b_k\} \cap \{x \in A : g(x) > a_k\}$$

são mensuráveis, segue-se que o conjunto

 $\{x \in A : (f(x), g(x)) \in I_k\} = \{x \in A : a_k < f(x) < b_k\} \cap \{x \in A : c_k < g(x) < d_k\}$ é mensurável. Logo, também é mensurável o conjunto:

$$\{x \in A : F(f(x), g(x)) > c\} = \bigcup_{k=1}^{+\infty} \{x \in A : (f(x), g(x)) \in I_k\}.$$

Vemos pois que as operações mais comuns da Análise, incluindo as passagens ao limite, quando aplicadas a funções mensuráveis resultam em funções mensuráveis. Assim, as funções que encontramos mais frequentemente são funções mensuráveis.(²)

A seguinte classe de funções desempenha um papel importante na teoria.

Definição A.20. Um função simples é uma função $s : \mathbb{R}^n \to \mathbb{R}$ cuja imagem é finita, i. e., s(x) assume um número finito de valores.

As funções constantes são funções simples. Se $A\subset \mathbb{R}^n,$ então a função característica de A dada por

$$\chi_A(x) = \begin{cases} 1 & \text{se } x \in A, \\ 0 & \text{se } x \notin A, \end{cases}$$

é uma função simples. Qualquer função simples $s: \mathbb{R}^n \to \mathbb{R}$ é uma combinação linear de funções características. De facto, se Im $s = \{c_1, \dots, c_m\}$, basta tomar

$$A_i = \{ x \in \mathbb{R}^n : s(x) = c_i \}$$

de forma que

$$s = \sum_{i=1}^{m} c_i \chi_{A_i}.$$

Desta expressão, é claro que a função simples s é mensurável s
se os conjuntos A_i são mensuráveis.

Qualquer função pode ser aproximada por funções simples. No caso de uma função mensurável, pudemos escolher funções simples mensuráveis.

 $^{^2}$ No entanto, deve-se observar que a composição de duas funções mensuráveis pode não ser mensurável, ou até que a composição de f(g(x)), onde f é uma função mensurável e g é uma função contínua, pode não ser uma função mensurável.

Teorema A.21. Seja $f: A \to \mathbb{R}$ uma função. Então existe uma sucessão $\{s_k\}_{k \in \mathbb{N}}$ de funções simples tais que

$$\lim_{k \to \infty} s_k(x) = f(x), \qquad \forall x \in A.$$

Temos ainda que:

- (i) Se f é mensurável, os s_k podem ser escolhidos mensuráveis;
- (ii) Se $f \geq 0$, podemos escolher $\{s_k\}_{k \in \mathbb{N}}$ uma sucessão monótona crescente:

$$0 \le s_1(x) \le s_2(x) \le \dots \le s_k(x) \le \dots \le f(x), \quad \forall x \in A$$

Demonstração. Se $f \ge 0$ definimos, para cada $k = 1, 2, \ldots$, conjuntos

$$A_{kj} = \left\{ x \in A : \frac{j-1}{2^k} \le f(x) \le \frac{j}{2^k} \right\}, \qquad j = 1, \dots, k2^k,$$

$$B_k = \left\{ x \in A : f(x) \ge k \right\}.$$

Basta então tomar

$$s_k = \sum_{j=1}^{k2^k} \frac{j-1}{2^k} \chi_{A_{kj}} + k \chi_{B_k}.$$

No caso geral, escrevemos $f = f^+ - f^-$, com $f^+, f^- \ge 0$, e construimos sucessões de funções simples que convergem para f^+ e f^- .

Problemas

A.13. Seja $f \in M(A)$. Mostre que o conjunto

$$\{x \in A : f(x) = c\}$$

é mensurável para todo o real $c \in \mathbb{R}$.

A.14. Seja $f \in M(A)$. Mostre que se $B \subset A$ é mensurável então $f \in M(B)$.

A.15. Sejam $f,g \in M(A)$, e suponha que $g \neq 0$ em A. Mostre que a função $\frac{f}{g}$ é mensurável em A.

A.16. Seja f uma função mensurável. Mostre que se g(x) = f(x), excepto num conjunto de medida nula, então g é mensurável.

A.17. Mostre que uma função $f: \mathbb{R} \to \mathbb{R}$ monótona é mensurável.

A.18. Seja $\{f_k\}_{k\in\mathbb{N}}$ uma sucessão de funções mensuráveis. Mostre que o conjunto dos pontos onde $\{f_k(x)\}_{k\in\mathbb{N}}$ converge é mensurável.

A.19. Construa um exemplo de uma função f para a qual não existe uma sucessão monótona crescente de funções simples $\{s_k\}_{k\in\mathbb{N}}$ tal que $\lim_{k\to\infty} s_k = f$.

A.20. Mostre que se $f: A \to \mathbb{R}$ é limitada então existe uma sucessão $\{s_k\}_{k \in \mathbb{N}}$ de funções simples que converge uniformemente para f, i. e., tal que

$$\lim_{k\to\infty}\sup\left\{|s_k(x)-f(x)|:x\in A\right\}=0.$$

Vamos agora definir o integral de Lebesgue de uma função mensurável sobre um conjunto mensurável, em situações bastante gerais.

Seja $s:\mathbb{R}^n \to \mathbb{R}$ uma função simples mensurável, não negativa,

$$s(x) = \sum_{i=1}^{m} c_i \chi_{A_i}(x), \qquad x \in \mathbb{R}^n, c_i > 0.$$

Se $A \in \mathfrak{M}$ é um conjunto mensurável, definimos:

$$I_A(s) = \sum_{i=1}^m c_i \mu(A \cap A_i).$$

Definição A.22. Seja $f: A \to \mathbb{R}$ uma função mensurável, não-negativa, definida num conjunto mensurável. O **integral de Lebesgue** de f em A \acute{e} :

$$\int_A f d\mu = \sup \{I_A(s) : 0 \le s \le f \text{ \'e uma função simples, mensur\'avel}\}$$

No caso de uma função simples $s:\mathbb{R}^n \to \mathbb{R}$ verifica-se facilmente que

$$\int_A s d\mu = I_A(s).$$

Uma vez definido o integral para uma função não-negativa podemos definir o integral para uma função mensurável através da decomposição $f = f^+ - f^-$, onde as componentes f^{\pm} são as funções mensuráveis, não-negativas, definidas por:

$$f^+ = \max(f, 0), \qquad f^- = -\min(f, 0).$$

Definição A.23. Seja $f: A \to \mathbb{R}$ uma função mensurável, definida num conjunto mensurável. O integral de Lebesgue de f em A \acute{e}

$$\int_A f d\mu = \int_A f^+ d\mu - \int_A f^- d\mu,$$

desde que pelo menos um dos integrais $\int_A f^\pm d\mu$ seja finito.

Note que o integral de Lebesgue de uma função assume valores em $[-\infty, +\infty]$. Dizemos que $f: A \to \mathbb{R}$ é uma função integrável em A, e escrevemos $f \in \mathcal{L}(A)$ se o integral de Lebesge de f existe e é finito.

Na proposição seguinte fornecemos algumas propriedades elementares do integral de Lebesgue. A sua demonstração fica como exercício.

Proposição A.24. Seja A um conjunto mensurável e f : $A \to \mathbb{R}$ uma função mensurável.

- (i) Se f é limitada e $\mu(A) < +\infty$ então $f \in \mathcal{L}(A)$;
- (ii) Se $f, g \in \mathcal{L}(A)$ e f(x) < g(x) para $x \in A$ então

$$\int_A f d\mu \le \int_A g d\mu;$$

(iii) Se $a \le f(x) \le b$ para $x \in A$ e $\mu(A) < +\infty$ então $f \in \mathcal{L}(A)$ e

$$a\mu(A) \le \int_A f d\mu \le b\mu(A);$$

(iv) $Se \mu(A) = 0 \ ent\tilde{a}o$

$$\int_A f d\mu = 0;$$

(v) Se $f \in \mathcal{L}(A)$ e $B \subset A$ é mensurável então $f \in \mathcal{L}(B)$.

Uma outra propriedade importante do integral de Lebesgue é a σ -aditividade em relação ao domínio de integração.

Teorema A.25. Seja f uma função mensurável não-negativa e $A = \bigcup_{j=1}^{+\infty} A_j$ uma união numerável de conjuntos mensuráveis, disjuntos dois a dois. Então

$$\int_A f d\mu = \sum_{j=1}^{+\infty} \int_{A_j} f d\mu.$$

Demonstração. Pretende-se mostrar que a função $\phi:\mathfrak{M}\to\mathbb{R}$ dada por

$$\phi(A) = \int_A f d\mu,$$

é uma função σ -aditiva.

Se $f=\chi_X$ é uma função característica dum conjunto mensurável X, então a σ -aditividade de ϕ não é mais que a σ -aditividade de μ .

Se f=s é uma função simples, mensurável, não-negativa, então $s=\sum_{k=1}^m c_i\chi_{X_k}$ com $c_i>0$ e verifica-se também a σ -aditividade.

Seja então f mensurável, não-negativa. Se $0 \le s \le f$ é uma função simples, mensurável, então

$$\int_A s d\mu = \sum_{j=1}^{+\infty} \int_{A_j} s d\mu \le \sum_{j=1}^{+\infty} \int_{A_j} f d\mu,$$

logo ϕ é subaditiva:

$$\phi(A) \le \sum_{j=1}^{+\infty} \phi(A_j).$$

Falta pois mostrar a desigualdade oposta. Como $\phi(A) \geq \phi(A_j)$ o resultado é verdadeiro se algum $\phi(A_j) = +\infty$. Podemos pois assumir que $\phi(A_j) < +\infty$, para todo o j. Então, para $N \in \mathbb{N}$ fixo, dado $\varepsilon > 0$ podemos escolher uma função simples $0 \leq s \leq f$, mensurável, tal que

$$\int_{A_j} s d\mu \ge \int_{A_j} f d\mu - \frac{\varepsilon}{N}, \qquad j = 1, \dots, N.$$

Logo, vemos que

$$\phi(\bigcup_{j=1}^N A_j) \geq \int_{\bigcup_{j=1}^N A_j} s d\mu = \sum_{j=1}^N \int_{A_j} s d\mu \geq \sum_{j=1}^N \phi(A_j) - \varepsilon.$$

Sendo $\varepsilon > 0$ arbitrário, esta desigualdade mostra que

$$\phi(\bigcup_{j=1}^{N} A_j) \ge \sum_{j=1}^{N} \phi(A_j).$$

Finalmente, observando que $A \supset \bigcup_{i=1}^{N} A_i$, obtemos

$$\phi(A) \ge \sum_{j=1}^{+\infty} \phi(A_j).$$

Corolário A.26. Seja $A \in \mathfrak{M}$ e $B \subset A$ com $\mu(A - B) = 0$, então

$$\int_{A} f d\mu = \int_{B} f d\mu$$

Este resultado mostra que os conjuntos de medida nula não contribuem para o valor do integral. Assim, na teoria da integração, é frequente estarmos interessados em afirmações P(x) que são verdadeiras excepto possivelmente para $x \in N$, onde N é um conjunto de medida nula. Dizemos nesse caso, que P(x) é verdadeira quase em toda a parte, o que abreviamos para P(x) é verdadeira q.t.p.

Problemas

A.21. Mostre que se $f \in \mathcal{L}(A)$ e $B \subset A$ é mensurável então $f \in \mathcal{L}(B)$.

A.22. Seja A um conjunto mensurável e $f:A \to \mathbb{R}$ uma função mensurável. Mostre que:

(a) Se $f,g \in \mathcal{L}(A)$ e $f(x) \leq g(x)$ para $x \in A$ então

$$\int_A f d\mu \le \int_A g d\mu;$$

(b) Se $a \le f(x) \le b$ para $x \in A$ e $\mu(A) < +\infty$ então $f \in \mathcal{L}(A)$ e

$$a\mu(A) \leq \int_A f d\mu \leq b\mu(A);$$

A.23. Seja A um conjunto mensurável e $f: A \to \mathbb{R}$ uma função mensurável. Mostre que se $f \ge 0$ e $\int_A f d\mu = 0$ então f(x) = 0 q.t.p.

A.24. Se $f \in \mathcal{L}(\mathbb{R}^n)$ é uma função tal que $\int_A f d\mu = 0$ para todo o $A \in \mathfrak{M}$, o que é que pode dizer sobre f?

A.25. Mostre que o teorema A.25 pode ser generalizado a funções $f \in \mathcal{L}(A)$.

A.26. Mostre que se $f \in \mathcal{L}(A)$ e g(x) = f(x) q.t.p. em A, então $g \in \mathcal{L}(A)$ e

$$\int_A g d\mu = \int_A f d\mu.$$

A.27. Mostre que se $f \in \mathcal{L}(A)$ então $|f| \in \mathcal{L}(A)$ e

$$\left|\int_A f d\mu\right| \leq \int_A |f| \, d\mu.$$

A.28. Mostre que se f é mensurável em A e $|f| \leq g$ com $g \in \mathcal{L}(A)$ então $f \in \mathcal{L}(A)$.

TEOREMAS DE CONVERGÊNCIA

Uma das propriedades mais úteis do integral de Lebesgue é a possibilidade de, sob hipóteses bastante fracas, podermos trocar o sinal de integral e de limite:

$$\lim_{k \to +\infty} \int_A f_k d\mu = \int_A \lim_{k \to +\infty} f_k \ d\mu.$$

Nesta secção vamos estudar alguns resultados deste tipo.

Teorema A.27. (Teorema da Convergência Monótona de Levi) Seja $A \in \mathfrak{M}$ e $\{f_n\}_{n \in \mathbb{N}}$ uma sucessão de funções mensuráveis em A tais que

$$0 \le f_1(x) \le f_2(x) \le \dots \qquad (x \in A).$$

 $Se \ f: A \to \mathbb{R} \ \'e \ tal \ que$

$$\lim_{k \to +\infty} f_k(x) = f(x), \qquad (x \in A),$$

 $ent\~ao$

$$\lim_{k\to +\infty} \int_A f_k d\mu = \int_A f d\mu.$$

Demonstração. Como $0 \le f_1(x) \le f_2(x) \le \cdots \le f(x)$ para $x \in A$, vemos que existe $l \in [0, +\infty]$ tal que

$$\lim_{k\to +\infty} \int_A f_k d\mu = l \qquad \text{ e} \qquad l \leq \int_A f d\mu.$$

Falta pois mostrar que $l \ge \int_A f d\mu$.

Seja 0 < c < 1 e $0 \le s \le f$ uma função simples mensurável. Defina-se

$$A_k = \{x \in A : f_k(x) \ge cs(x)\}$$
 $(k = 1, 2, ...).$

Como $0 \le f_1(x) \le f_2(x) \le \cdots \le f(x)$ em A, vemos que $A_1 \subset A_2 \subset \cdots$ e

$$A = \bigcup_{k=1}^{+\infty} A_k,$$

Concluímos que, para todo o k,

$$\int_{A} f_k d\mu \ge \int_{A_k} f_k d\mu \ge c \int_{A_k} s d\mu.$$

Tomando $k \to +\infty$, podemos aplicar o teorema A.5 (pois o integral é σ -aditivo), para concluir que

$$l \ge c \int_A s d\mu.$$

Sendo 0 < c < 1 arbitrário, isto mostra que

$$l \geq \int_A s d\mu,$$

para toda a função simples $0 \le s \le f$. Logo $l \ge \int_A f d\mu$, como pretendido.

O exemplo seguinte mostra que os resultados de convergência obtidos não são válidos se substituirmos integral de Lebesgue por integral de Riemann.

Exemplo A.28. Seja $\{q_1, q_2, \dots\} = \mathbb{Q} \cap [0, 1]$ uma enumeração dos racionais entre 0 e 1. Para cada $k = 1, 2, \dots$, defina-se $f_k : [0, 1] \to \mathbb{R}$ por

$$f_k(x) = \left\{ egin{array}{ll} 0 & & se \; x = \left\{q_1, \ldots, q_k
ight\}, \ & \ 1 & & caso \; contrário. \end{array}
ight.$$

Então $f(x)=\lim_{k\to+\infty}f_k$ é a função de Dirichelet. Concluímos do teorema da convergência monótona que

$$\int_{[0,1]} f d\mu = \lim_{k \to +\infty} \int_{[0,1]} f_k d\mu = 0,$$

logo f é integrável à Lebesgue

Corolário A.29. Seja A um conjunto mensurável. Então $\mathcal{L}(A)$ é um espaço vectorial e o integral $f: \mathcal{L}(A) \to \mathbb{R}$ é uma transformação linear.

Demonstração. É preciso mostrar que se $f,g\in\mathcal{L}(A),\,c\in\mathbb{R},$ então $f+g,cf\in\mathcal{L}(A)$ e

$$\int_A (f+g)d\mu = \int_A f d\mu + \int_A g d\mu,$$
 $\int_A cf d\mu = c \int_A f d\mu.$

Limitamo-nos a demonstrar a primeira relação, deixando a segunda como exercício. Suponhamos primeiro que $f, g \ge 0$. Se f, g são simples, então

$$\int_A (s_1 + s_2) d\mu = I_A(s_1 + s_2) = I_A(s_1) + I_A(s_2) = \int_A s_1 d\mu + \int_A s_2 d\mu.$$

Senão, pelo teorema A.21, podemos escolher sucessões monótonas de funções simples $\{s'_n\}_{n\in\mathbb{N}}$ e $\{s''_n\}_{n\in\mathbb{N}}$ que convergem para f e g. Como

$$\int_A (s'_n + s''_n) d\mu = \int_A s'_n d\mu + \int_A s''_n d\mu,$$

passando ao limite, concluímos que

$$\int_A (f+g)d\mu = \int_A f d\mu + \int_A g d\mu.$$

Para provar o caso geral consideram-se separadamente os conjuntos onde f e g têm sinal constante. \Box

Para obter um resultado de convergência para sucessões não-monótonas de funções precisamos do

Lema A.30. (Lema de Fatou) Seja $A \in \mathfrak{M}$ e $\{f_n\}_{n \in \mathbb{N}}$ uma sucessão de funções não-negativas, mensuráveis em A. Se $f: A \to \mathbb{R}$ é tal que

$$\lim_{k \to +\infty} \inf f_k(x) = f(x), \qquad (x \in A),$$

 $ent ilde{a}o$

$$\lim_{k\to +\infty}\inf \int_A f_k d\mu \geq \int_A f d\mu.$$

Demonstração. Para cada $n = 1, 2, \ldots$, defina-se

$$g_m(x) = \inf \{ f_k(x) : k \ge m \}, \quad (x \in A).$$

Então g_m é mensurável em A e temos

$$0 \le g_1(x) \le g_2(x) \le \dots$$
 com $g_m(x) \to f(x)$ $(m \to +\infty)$.

Pelo teorema da convergência monótona, concluímos que

$$\lim_{m \to +\infty} \int_A g_m d\mu = \int_A f d\mu.$$

Como $f_m(x) \geq g_m(x)$ para $x \in A$, obtemos

$$\lim_{k \to +\infty} \inf \int_A f_k d\mu \geq \lim_{m \to +\infty} \int_A g_m d\mu = \int_A f d\mu.$$

Como mostra um exercício no final desta secção, a desigualdade do lema de Fatou pode ser estrita.

Teorema A.31. (Teorema da Convergência Dominada de Lebesgue) Seja $A \in \mathfrak{M}$ e $\{f_n\}_{n \in \mathbb{N}}$ uma sucessão de funções mensuráveis em A. Se $f: A \to \mathbb{R}$ é tal que

$$\lim_{k \to +\infty} f_k(x) = f(x), \qquad (x \in A),$$

 $e \ existe \ g \in \mathcal{L}(A) \ tal \ que$

$$|f_k(x)| \le g(x), \qquad (x \in A),$$

 $ent\~ao$

$$\lim_{k \to +\infty} \int_A f_k d\mu = \int_A f d\mu.$$

Demonstração. Como f_k e f são mensuráveis e dominadas por uma função integrável, por um exercício da secção precedente, vemos que f_k , $f \in \mathcal{L}(A)$.

Como $f_k + g \ge 0$ o lema de Fatou mostra que

$$\int_{A} (f+g) d\mu \le \lim_{k \to +\infty} \inf \int_{A} (f_k + g) d\mu,$$

ou seja

$$\int_A f d\mu \le \lim_{k \to +\infty} \inf \int_A f_k d\mu.$$

Por outro lado, $g-f_k \geq 0$ logo, também pelo lema de Fatou,

$$\int_A (g - f) d\mu \le \lim_{k \to +\infty} \inf \int_A (g - f_k) d\mu,$$

ou seja

$$-\int_A f d\mu \le \lim_{k \to +\infty} \inf - \int_A f_k d\mu,$$

o que equivale a

$$\int_A f d\mu \ge \lim_{k \to +\infty} \sup \int_A f_k d\mu.$$

Assim, vemos que $\lim_{k\to+\infty}\int_A f_k d\mu$ existe e é igual a $\int_A f d\mu$.

Corolário A.32. (Teorema da Convergência Limitada) $Se \mu(A) < +\infty$, $\{f_n\}_{n \in \mathbb{N}}$ é uma sucessão limitada de funções mensuráveis em A e $f: A \to \mathbb{R}$ é tal que

$$\lim_{k \to +\infty} f_k(x) = f(x), \qquad (x \in A),$$

 $ent\~ao$

$$\lim_{k \to +\infty} \int_A f_k d\mu = \int_A f d\mu.$$

Demonstração. Por hipótese, existe M>0 tal que $|f_k(x)|\leq M$ para $x\in A$. Como $\mu(A)<+\infty$, uma função constante em A é integrável, logo podemos aplicar o teorema da convergência dominada.

Exemplo A.33. As funções

$$f_k(x) = \frac{\cos^k(x)}{1 + x^2}, \qquad x \in [0, \pi],$$

formam uma sucessão limitada de funções mensuráveis e

$$\lim_{k \to +\infty} f_k(x) = 0, \qquad x \neq 0, \pi$$

Pelo teorema da convergência limitada vemos que

$$\lim_{k \to +\infty} \int_{[0,\pi]} \frac{\cos^k(x)}{1+x^2} d\mu = \int_{[0,\pi]} \lim_{k \to +\infty} \frac{\cos^k(x)}{1+x^2} d\mu = 0.$$

Problemas

A.29. Seja g(x)=0 para $0 \le x \le \frac{1}{2}$ e g(x)=1 para $\frac{1}{2} < x \le 1$. Defina uma sucessão de funções $f_k:[0,1] \to \mathbb{R}$ por

$$f_{2k}(x) = g(x),$$

 $f_{2k+1}(x) = g(1-x).$

Mostre que para esta sucessão a desigualdade do lema de Fatou é estrita.

A.30. Seja $A \in \mathfrak{M}$ e $\{f_n\}_{n \in \mathbb{N}}$ uma sucessão de funções não-negativas, mensuráveis em A. Mostre que:

$$\sum_{k=0}^{+\infty} \int_A f_k d\mu = \int_A \sum_{k=0}^{+\infty} f_k d\mu.$$

A.31. Seja $A \in \mathfrak{M}$ e $\{f_n\}_{n \in \mathbb{N}}$ uma successão de funções mensuráveis em A. Mostre que se existe $g \in \mathcal{L}(A)$ tal que $\sum_{k=0}^{+\infty} |f_k(x)| \leq g(x)$, então:

$$\sum_{k=0}^{+\infty} \int_A f_k d\mu = \int_A \sum_{k=0}^{+\infty} f_k d\mu.$$

A.32. Se A é mensurável, dizemos que $f \in \mathcal{L}^2(A)$ se $f : A \to \mathbb{R}$ é mensurável e

$$\int_{\Lambda} |f|^2 d\mu < +\infty.$$

Se $f, g \in \mathcal{L}^2(A)$ então define-se a norma em \mathcal{L}^2 por:

$$\|f\|=\left(\int_{A}\left|f
ight|^{2}d\mu
ight)^{rac{1}{2}},$$

e o produto interno em L2 por

$$\langle f, g \rangle = \int_{\Lambda} f g d\mu.$$

Mostre que:

- (a) Se $f \in \mathcal{L}^2(A)$ e $c \in \mathbb{R}$ então ||cf|| = |c| ||f||;
- (b) Se $f, g \in \mathcal{L}^2(A)$ então $fg \in \mathcal{L}(A)$ e é válida a desigualdade de Schwarz:

$$|\langle f, g \rangle| \le ||f|| ||g||;$$

(c) Se $f, g \in \mathcal{L}^2(A)$ então $f + g \in \mathcal{L}^2(A)$ e é válida a desigualdade triangular $\|f + g\| \le \|f\| + \|g\|.$

O que é que pode dizer sobre f se ||f|| = 0?

RELAÇÃO COM O INTEGRAL DE RIEMANN

Vamos agora mostrar que o integral de Lebesgue é de facto uma extensão do integral de Riemann, i. e., que se $f:A\to\mathbb{R}$ é uma função integrável à Riemann então f é integrável à Lebesgue e os dois integrais coincidem. Vemos pois que a teoria de Lebesgue permite estender a noção de integral a uma classe muito mais ampla de funções. Por outro lado, como o limite de funções integráveis à Riemann (mesmo funções contínuas) pode não ser integrável à Riemann, a teoria de Lebesgue resolve ainda muitos dos problemas com a passagem ao limite que ocorrem na teoria de integração.

Teorema A.34. Seja $f:A\to\mathbb{R}$ uma função integrável à Riemann. Então f é integrável à Lebesque e

$$\int_A f d\mu = \int_A f dx_1 dx_2 \dots dx_n$$

Demonstração. Podemos assumir que $A \subset \mathbb{R}^n$ é um rectângulo limitado. Para $k = 1, 2, \ldots$, existe uma partição P_k de A tal que

- (a) P_{k+1} é um refinamento de P_k ;
- (b) $\lim_{k\to+\infty} L(f,P_k) = \underline{\int}_A f$ e $\lim_{k\to+\infty} U(f,P_k) = \overline{\int}_A f$;

Sejam U_k e L_k funções simples tais que para todo o rectângulo S de P_k temos

$$L_k(x) = m_S(f)$$
 e $U_k(x) = M_S(f)$ $(x \in \text{int } S)$.

Então é claro que

$$L(f,P_k) = \int_{A} L_k d\mu, \qquad U(f,P_k) = \int_{A} U_k d\mu,$$

e por (a) vemos que

$$L_1(x) \le L_2(x) \le \dots \le f(x) \le \dots \le U_2(x) \le U_1(x)$$
 (q.t.p. em A).

Assim, existem funções mensuráveis

$$L(x) = \lim_{k \to +\infty} L_k(x), \qquad U(x) = \lim_{k \to +\infty} U_k(x), \qquad (\text{q.t.p. em } A),$$

tais que

$$L(x) \le f(x) \le U(x)$$
, (q.t.p. em A).

De (b) e pelo teorema da convergência monótona, concluímos que

$$\int_A L d\mu = \int_A f dx, \qquad \int_A U d\mu = \overline{\int}_A f dx.$$

Se f é integrável à Riemann, estes dois integrais são iguais. Logo, temos $U-L\geq 0$ q.t.p. em A, e

$$\int_{A} (U - L) d\mu = 0.$$

Isto mostra que U=L q.t.p. em A. Então f(x)=U(x)=L(x) q.t.p. em A, portanto f é integrável à Lebesgue e

$$\int_A f d\mu = \int_A f dx_1 dx_2 \dots dx_n.$$

A relação entre o integral de Lebesgue e de Riemann, que acabámos de mostrar, também é útil no cálculo de integrais de Lebesgue, pois muitas funções integráveis são limites de funções contínuas e para estas sabemos calcular o seu integral de Riemann. Ilustramos esta técnica nos exemplos seguintes.

Exemplo A.35. Seja a > 0 e consideremos a função $f(x) = \frac{1}{x^a}$ no intervalo A =]0, 1[. Para cada k = 1, 2, ..., as funções

são limitadas e contínuas q.t.p., logo são integráveis à Riemann e

$$\int_{]0,1[} f_k dx = \int_{\frac{1}{k}}^1 \frac{1}{x^a} dx = \begin{cases} \frac{1}{a-1} \left(k^{a-1} - 1 \right) & (a \neq 1), \\ \log k & (a = 1). \end{cases}$$

Assim, vemos que $\{f_k\}$ é uma sucessão monótona de funções integráveis à Lebesgue, nãonegativas, tais que

$$f(x) = \lim_{k \to +\infty} f_k(x).$$

Pelo teorema da convergência monótona, concluímos que

$$\int_{]0,1[} \frac{1}{x^a} d\mu = \lim_{k \to +\infty} \int_{]0,1[} f_k dx = \begin{cases} \frac{1}{1-a} & \text{se } a < 1, \\ +\infty & \text{se } a \ge 1. \end{cases}$$

Por exemplo, vemos que $\frac{1}{\sqrt{x}} \in \mathcal{L}(]0,1[)$ mas $\frac{1}{\sqrt{x}} \not \in \mathcal{L}^2(]0,1[).$

Exemplo A.36. Para cada y > 0 consideremos a função $f:]0, +\infty[\to \mathbb{R}$ definida por

$$f(x) = e^{-x} x^{y-1}.$$

Afirmamos que $f \in \mathcal{L}(]0, +\infty[)$.

De facto, para $x \in]0, 1[$ temos que

$$|f(x)| < x^{y-1}$$

e, pelo exemplo precedente, a função x^{y-1} é integrável se y>0. Portanto, $f\in\mathcal{L}(]0,1[)$. Para $x\geq 1$ a função $\exp(-x/2)x^{y-1}$ é contínua e tende para zero quando $x\to\infty$. Logo existe M>0 tal que

$$f(x) < Me^{-x/2}$$
 $(x > 1),$

e basta verificar que $\exp(-x/2) \in \mathcal{L}([1,+\infty[)$. Defina-se $f_k: [1,+\infty[\to \mathbb{R} \ portion = 0]]$

$$f_k(x) = \left\{ egin{array}{ll} e^{-x/2} & se \ x \in [1,k], \ \\ 0 & se \ x \in]k, +\infty[, \end{array}
ight.$$

Então f_k é integrável à Riemann em [1, k] e

$$\int_{[1,+\infty[} f_k d\mu = \int_1^k e^{-x/2} dx = 2\left(e^{-1/2} - e^{-1/k}\right).$$

Pelo teorema da convergência monótona, concluímos que $\exp(-x/2) \in \mathcal{L}([1,+\infty[)$ com

$$\int_{[1,+\infty[} e^{-x/2} d\mu = \frac{2}{\sqrt{e}}.$$

Concluímos ainda que $f \in \mathcal{L}(]0, +\infty[)$.

A função gama é a função $\Gamma:]0, +\infty[\to \mathbb{R}$ definida por

$$\Gamma(y) = \int_{]0,+\infty[} e^{-x} x^{y-1} d\mu_x.$$

Deixamos como exercício mostrar que $\Gamma(1)=1$ e que esta função satisfaz a relação de recorrência

$$\Gamma(y+1) = y\Gamma(y).$$

Em particular, conclui-se que sobre os inteiros esta função coincinde com a função factorial:

$$\Gamma(n+1) = n!$$
 $(n = 0, 1, 2, ...).$

Exemplo A.37. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função

$$f(x,y) = e^{-(x^2+y^2)}.$$

Definitions funções integráveis $f_k: \mathbb{R}^2 \to \mathbb{R}$ por

$$f_k(x,y) = \begin{cases} e^{-\left(x^2 + y^2\right)} & se\left(x,y\right) \in B_k(0), \\ 0 & se\left(x,y\right) \not\in B_k(0) \end{cases}$$

Então $\{f_k\}_{k\in\mathbb{N}}$ é uma sucessão monótona que converge pontualmente para f. Usando a fórmula de mudança de variáveis calculamos

$$\int_{\mathbb{R}^2} f_k d\mu = \int_{B_k(0)} e^{-\left(x^2+y^2\right)} dx dy = \int_0^{2\pi} \left(\int_0^k e^{-r^2} r dr\right) d\theta = \pi \left(1-e^{-k^2}\right).$$

Pelo teorema da convergência monótona, concluímos que $f \in \mathcal{L}(\mathbb{R}^2)$ e

$$\int_{\mathbb{R}^2} f d\mu = \lim_{k \to +\infty} \int_{\mathbb{R}^2} f_k d\mu = \pi.$$

Como

$$\int_{\mathbb{R}^{\,2}}fd\mu=\left(\int_{\mathbb{R}}e^{-x^2}d\mu_x\right)\left(\int_{\mathbb{R}}e^{-y^2}d\mu_y\right),$$

obtemos

$$\int_{\mathbb{R}} e^{-x^2} d\mu = \sqrt{\pi}.$$

Problemas

A.33. Calcule ou mostre que não existem os seguintes limites:

- (a) $\int_{1}^{+\infty} t \sin(\frac{1}{t}) 1 dt$; (b) $\lim_{k \to \infty} \int_{0}^{+\infty} \frac{1}{\sqrt{t}} e^{-\frac{t}{k}} dt$; (c) $\lim_{n \to +\infty} \int_{0}^{+\infty} \frac{\cos(x/n)}{1+x^2} dx$; (d) $\lim_{n \to +\infty} \int_{-\infty}^{+\infty} e^{-|x|} \cos^n x dx$; (e) $\int_{B} \frac{1}{(x^2+y^2)^2} dx dy$ onde $B = \{(x,y) \in \mathbb{R}^2 : x^2+y^2 > 1\}$. (f) $\lim_{n \to +\infty} \int_{B} \frac{e^{\frac{x^2+y^2+z^2}{n^2}}}{x^2+y^2+z^2} dx dy dz$ onde $B = \{(x,y,z) \in \mathbb{R}^3 : 0 < x^2+y^2+z^2 < 1\}$.

A.34. Seja $A \in \mathfrak{M}$ com $\mu(A) < +\infty$. Mostre que $\mathcal{L}^2(A) \subset \mathcal{L}(A)$. O que é que pode dizer $se \ \mu(A) = +\infty$?

A.35. Mostre que a função Γ satisfaz:

$$\Gamma(1) = 1,$$
 $\Gamma(y+1) = y\Gamma(y).$

Sugestão: Aplique integração por partes ao integral

$$\int_{\frac{1}{k}}^{k} e^{-x} x^{y} dx.$$

A.36. Considere a função $g: \mathbb{R} \to \mathbb{R}$ definda por

$$g(t) = \int_0^{t^2} e^{tx^2} dx.$$

- (a) Mostre que g é contínua;
- (b) Mostre que g é diferenciável;
- (c) Calcule g'(0).

Bibliografia

- [1] M. Spivak, Calculus on Manifolds, Addison-Wesley, 1992
- [2] L. T. Magalhães, *Integrais Múltiplos*, 2ª Edição, Texto Editora, 1995.
- [3] W. Rudin, Principles of Mathematical Analysis, McGraw Hill, 1976.
- [4] W. Rudin, Real and Complex Analysis, McGraw Hill, 1986.
- [5] A. Kolmogorov e S. Fomin, Elementos da Teoria das Funções e de Análise Funcional, MIR, 1982.
- [6] F. Riesz e B. Nagy, Functional Analysis, Dover, 1990.