Análise Matemática III - Turma Especial

Ficha Extra 1 - Partições da Unidade

Não precisam de entregar esta ficha

Esta ficha destina-se a demonstrar o

Teorema da partição da unidade: Seja $A \subset \mathbb{R}^n$ e \mathcal{O} uma cobertura aberta de A. Então existe uma família Φ de funções $\varphi: \mathbb{R}^n \to \mathbb{R}$ de classe C^∞ e suporte compacto com as seguintes propriedades:

- (i) Para cada $\mathbf{x} \in \mathbb{R}^n$ tem-se $0 \le \varphi(\mathbf{x}) \le 1$;
- (ii) Para cada $\mathbf{x} \in \mathbb{R}^n$ existe um aberto $U_{\mathbf{x}} \ni \mathbf{x}$ tal que apenas finitas funções $\varphi \in \Phi$ não se anulam em $U_{\mathbf{x}}$;
- (iii) Para cada $\mathbf{x} \in A$ temos

$$\sum_{\varphi \in \Phi} \varphi(\mathbf{x}) = 1$$

(por (ii) esta soma faz sentido);

- (iv) Para cada $\varphi \in \Phi$ existe um aberto $U \in \mathcal{O}$ tal que o suporte de φ está contido em U.
- $(\Phi \text{ diz-se uma } partição da unidade para A subordinada a <math>\mathcal{O})$.

1. Preliminares:

(a) Seja $A \subset \mathbb{R}^n$ não vazio. Mostre que a função distância a A, $d_A : \mathbb{R}^n \to \mathbb{R}$ dada por

$$d_A(\mathbf{x}) = \inf_{\mathbf{y} \in A} \|\mathbf{x} - \mathbf{y}\|$$

é uma função contínua que se anula exactamente em \overline{A} .

(b) Seja U aberto e $C \subset U$ compacto. Mostre que existe $\varepsilon > 0$ tal que $V_{\varepsilon}(C) \subset U$, onde

$$V_{\varepsilon}(C) = \{ \mathbf{x} \in \mathbb{R}^n : d_C(\mathbf{x}) < \varepsilon \}.$$

Conclua que existe sempre um compacto D tal que $C \subset \operatorname{int} D \subset D \subset U$.

(c) Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$\begin{cases} e^{-(x-1)^{-2}}e^{-(x+1)^{-2}} \text{ se } x \in]-1,1[\\ 0 \text{ se } x \notin]-1,1[\end{cases}$$

é uma função C^{∞} que é positiva em]-1,1[e que se anula em todos os outros pontos.

(d) Para cada $\mathbf{a} \in \mathbb{R}^n$ e $\varepsilon > 0$ construa uma função $g: \mathbb{R}^n \to \mathbb{R}$ de classe C^∞ que seja positiva no intervalo

$$|a^1 - \varepsilon, a^1 + \varepsilon| \times \ldots \times |a^n - \varepsilon, a^n + \varepsilon|$$

e nula fora deste intervalo.

- (e) Mostre que dados $\varepsilon > 0$ e $C \subset \mathbb{R}^n$ compacto existe uma função $\varphi : \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} , positiva em todos os pontos de C e cujo suporte está contido em $V_{\varepsilon}(C)$.
- (f) Dado $\varepsilon>0$ construa a partir de f uma função $h:\mathbb{R}\to\mathbb{R}$ de classe C^∞ com h(x)>0 para $x\in]0, \varepsilon[$ e h(x)=0 nos restantes pontos. Use o integral indefinido de h para construir uma função $i:\mathbb{R}\to\mathbb{R}$ tal que $0\le i(x)\le 1$ para todo o $x\in\mathbb{R},\ i(x)=0$ para todo o $x\le 0$ e i(x)=1 para todo o $x\ge \varepsilon$.
- (g) Use a última alínea para mostrar que pode escolher φ em (e) satisfazendo $0 \le \varphi(\mathbf{x}) \le 1$ para todo o $\mathbf{x} \in \mathbb{R}^n$ e $\varphi(\mathbf{x}) = 1$ para todo o $\mathbf{x} \in C$.

2. Demonstração do teorema:

- (a) Suponha que A é compacto. Então \mathcal{O} admite uma subcobertura finita $\{U_k\}_{k=1}^N$. Mostre que cada aberto U_k contém um compacto C_k tal que $\{\operatorname{int} C_k\}_{k=1}^N$ é ainda uma cobertura aberta de A.
- (b) Mostre que é possível escolher funções $\psi_k : \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} , constantes iguais a 1 em C_k e cujo suporte é compacto e está contido em U_k .
- (c) Seja

$$\Psi = \sum_{k=1}^{N} \psi_k$$

e $U=\Psi^{-1}(]0,+\infty[)$. Mostre que U é um aberto contendo A, e que portanto é possível escolher uma função $f:\mathbb{R}^n\to\mathbb{R}$ de classe C^∞ e suporte contido em U, tal que $0\leq f\leq 1$ e cuja restrição a A é constante igual a 1. Conclua que as funções $\varphi_k:\mathbb{R}^n\to\mathbb{R}$ dadas em U por

$$\varphi_k = \frac{f\psi_k}{\Psi}$$

e estendidas por 0 a \mathbb{R}^n formam uma partição da unidade para A subordinada a \mathcal{O} .

(d) Seja agora A arbitrário. Mostre que uma partição da unidade para o aberto

$$V = \bigcup_{U \in \mathcal{O}} U$$

é também uma partição da unidade para A. Conclua que podemos assumir sem perda de generalidade que A é aberto.

(e) Mostre que qualquer aberto A é a união numerável dos compactos

$$A_k = \left\{ \mathbf{x} \in A : d_{\partial A}(\mathbf{x}) \geq \frac{1}{k} \ \mathbf{e} \ \|\mathbf{x}\| \leq k \right\}.$$

para os quais $A_k \subset \operatorname{int} A_{k+1}$ (se $\partial A = \emptyset$, i.e., se $A = \emptyset$ ou $A = \mathbb{R}^n$, definimos $d_A \equiv +\infty$).

(f) Para cada $k \in \mathbb{N}$ considere-se a cobertura aberta

$$\mathcal{O}_k = \{ V \cap (\operatorname{int} A_{k+1} \setminus A_{k-2}) : V \in \mathcal{O} \}$$

do compacto $C_k=A_k\setminus \operatorname{int} A_{k-1}$ (define-se $A_{-1}=A_0=\varnothing$). Conclua que existe uma partição da unidade Φ_k para C_k subordinada a \mathcal{O}_k . Mostre que a soma

$$\sigma(\mathbf{x}) = \sum_{k=1}^{+\infty} \sum_{\varphi_k \in \Phi_k} \varphi_k(\mathbf{x})$$

é uma soma finita nalgum aberto contendo x, e que portanto

$$\Phi = \left\{ \frac{\varphi_k}{\sigma} : \varphi_k \in \Phi_k \right\}$$

é uma partição da unidade para A subordinada a \mathcal{O} .