Geometria das Teorias de Gauge

Pedro Matias
Departamento de Matemática
Instituto Superior Técnico
Av. Rovisco Pais, 1049-001 Lisboa, Portugal
pmatias@fisica.ist.utl.pt

26 de Março de 2004

Resumo

Este trabalho é uma introdução à geometria das teorias de gauge clássicas.

No capítulo 1, introduzo alguns conceitos preliminares de carácter geométrico, necessários ao longo do texto. Este capítulo tem por base, de carácter algébrico, o Apêndice.

Nos capítulos 2 e 3 apresento as definições de fibrado principal, conexão e curvatura. Farei algumas observações que relacionam estes conceitos com a Física.

No capítulo 4 introduzo a noção de campo de matéria como caso particular de uma forma tensorial num fibrado principal e também a definição de derivada covariante.

Finalmente, no capítulo 5, apresento um formalismo geral para modelar a interacção de um campo de matéria com um campo de gauge. No final, ilustro este formalismo com exemplos.

Convenções

- Todas as variedades, aplicações entre variedades e campos tensoriais são de classe C^{∞} .
- Se $f: M \to N$ é uma aplicação entre duas variedades, denota-se por $f_{*p} \colon T_p(M) \to T_{f(p)}(N)$ a aplicação derivada no ponto $p \in M$. A aplicação transposta $(f_{*p})^* \colon T_{f(p)}^*(N) \to T_p^*(M)$ é definida por

$$(f_{*p})^*(\omega)(v) = \omega(f_{*p}(v)),$$

para $\omega \in T_{f(p)}^*(N), v \in T_p(M)$.

- Os campos tensoriais em variedades representam-se a **bold**. Usam-se letras gregas $\alpha, \beta, \varphi, \tau, \ldots$ para formas diferenciais e letras maiúsculas X, Y, Z, W, \ldots para campos vectoriais.
- A álgebra dos campos vectoriais na variedade M denota-se por $\mathfrak{X}(M)$.
- Usam-se letras caligráficas $\mathcal{E}, \mathcal{V}, \mathcal{U}, \mathcal{W}, \dots$ para espaços vectoriais.
- As formas em espaços vectoriais representam-se por letras gregas sem bold $\alpha, \beta, \varphi, \dots$
- O símbolo ≡ indica notação.
- Índices repetidos indicam soma (convenção de Einstein).

Conteúdo

		umo				
	Con	venções	2			
1	Preliminares					
	1.1	Representação Adjunta	5			
	1.2	Formas diferenciais com valores num espaço vectorial	6			
		1.2.1 Definições gerais	6			
		1.2.2 Forma canónica de Cartan	8			
	1.3	Orientabilidade	9			
	1.4	O operador de Hodge				
2	Fibrados Principais					
	2.1	Definições gerais	11			
	2.2	Trivializações locais versus secções locais				
	2.3	Subespaços verticais e campos vectoriais fundamentais				
3	Conexões em Fibrados Principais					
	3.1	Definições gerais	15			
	3.2	Curvatura				
	3.3	Expressões locais e grupos de Lie matriciais	20			
4	Formas Tensoriais e Campos de Matéria					
	4.1	Definições gerais	22			
	4.2	Derivada covariante de formas tensoriais	23			
5	Teorias de Gauge Clássicas					
	5.1	Formalismo geral	26			
	5.2	~				
	5.3	Lagrangeanos e invariância de gauge				

	5.4	Princípio da acção m	ínima	34		
	5.5					
	5.6					
	5.7	5.7 Equações do movimento				
	5.8					
		5.8.1 Teoria de Yan	g-Mills sem matéria	45		
		5.8.2 Electromagne	tismo puro	45		
		5.8.3 Electromagne	tismo com matéria de spin 0	46		
٨	Dia	vocaão algábrica		49		
A	Digressão algébrica					
	A.1	Algebra multilinear		49		
	A.2 Orientabilidade de espaços vectoriais			50		
	A.3 O operador de Hodge					

Capítulo 1

Preliminares

1.1 Representação Adjunta

Seja G um grupo de Lie e $g \in G$. Define-se a aplicação **conjugação por** g como

$$C_g: G \rightarrow G$$

 $h \mapsto C_g(h) = (L_g \circ R_{g^{-1}})(h) = ghg^{-1},$

onde L_g e R_g são as translacções esquerda e direita por g, respectivamente. Como C_g é um difeomorfismo de G, a sua derivada em qualquer ponto é um isomorfismo linear. Em particular,

$$(C_g)_{*e} \colon T_e(G) \to T_e(G)$$

 $v \mapsto (L_g \circ R_{g^{-1}})_{*e}(v)$

é um automorfismo linear de $T_e(G)$ e denota-se por Ad_g . A aplicação

$$\begin{array}{cccc} \operatorname{Ad} \colon & G & \to & GL(T_e(G)) \\ & g & \mapsto & \operatorname{Ad}_g \end{array}$$

chama-se a representação adjunta de G em $T_e(G)$ e satisfaz $\mathrm{Ad}_{gh} = \mathrm{Ad}_g \circ \mathrm{Ad}_h$ para todo o $g,h \in G$.

Observação 1. Se G é um grupo de Lie matricial,

$$\operatorname{Ad}_g(A) = gAg^{-1} \qquad \forall g \in G, \, \forall A \in T_e(G).$$
 (1.1)

1.2 Formas diferenciais com valores num espaço vectorial

1.2.1 Definições gerais

Seja X uma variedade de dimensão n e \mathcal{V} um espaço vectorial real de dimensão m. Para $k=0,1,\ldots,n$ denotamos por $\Lambda^k(X)$ o conjunto das k-formas diferenciais em X. Note-se que $\Lambda^k(X)$ tem estrutura de $C^{\infty}(X)$ -módulo e em particular é um espaço vectorial real de dimensão n!/(k!(n-k)!).

Define-se o espaço das k-formas diferenciais em X com valores em $\mathcal V$ por

$$\Lambda^k(X,\mathcal{V}) = \Lambda^k(X) \otimes_{\mathbb{R}} \mathcal{V}.$$

Se $\{T_1, \ldots T_m\}$ é uma base de \mathcal{V} , então qualquer $\boldsymbol{\alpha} \in \Lambda^k(X, \mathcal{V})$ escreve-se de forma única como

$$\boldsymbol{\alpha} = \boldsymbol{\alpha}^i \otimes T_i,$$

onde $\alpha^i \in \Lambda^k(X)$, i = 1, ..., m. A noção de derivada exterior de k-formas diferenciais em X estende-se naturalmente às k-formas diferenciais em X com valores em \mathcal{V} , ou seja

$$d\boldsymbol{\alpha} := d\boldsymbol{\alpha}^i \otimes T_i.$$

É fácil ver que esta definição não depende da escolha de base para \mathcal{V} .

Gostariamos também de estender o produto exterior de k-formas diferenciais em X ao espaço $\Lambda^k(X, \mathcal{V})$. Para o conseguirmos teremos de introduzir uma estrutura algébrica adicional no espaço vectorial \mathcal{V} . Numa situação mais geral a construcção é a seguinte: sejam $\mathcal{U}, \mathcal{V}, \mathcal{W}$ espaços vectoriais reais e $\rho \colon \mathcal{U} \times \mathcal{V} \to \mathcal{W}$ uma aplicação bilinear. Se $\alpha \in \Lambda^k(X, \mathcal{U})$ e $\beta \in \Lambda^l(X, \mathcal{V})$, define-se o ρ -produto exterior $\alpha \wedge_{\rho} \beta \in \Lambda^{k+l}(X, \mathcal{W})$ por

$$(\boldsymbol{\alpha} \wedge_{\rho} \boldsymbol{\beta})(\boldsymbol{X}_{1}, \dots, \boldsymbol{X}_{k+l}) =$$

$$= \frac{1}{k!l!} \sum_{\sigma} (-1)^{\sigma} \rho \left(\boldsymbol{\alpha}(\boldsymbol{X}_{\sigma(1)}, \dots, \boldsymbol{X}_{\sigma(k)}), \, \boldsymbol{\beta}(\boldsymbol{X}_{\sigma(k+1)}, \dots, \boldsymbol{X}_{\sigma(k+l)}) \right), \quad (1.2)$$

onde $X_1, \ldots, X_{k+l} \in \mathfrak{X}(X)$ e a soma é sobre as permutações $\sigma \in S_{k+l}$ de $\{1, \ldots, k+l\}$. Se $\alpha \in \Lambda^0(X, \mathcal{U}), \beta \in \Lambda^0(X, \mathcal{V})$ definimos $\alpha \wedge_{\rho} \beta = \rho(\alpha, \beta)$.

Usando a definição anterior, mostra-se facilmente a seguinte relação entre a derivada exterior e o ρ -produto exterior:

$$d(\boldsymbol{\alpha} \wedge_{\rho} \boldsymbol{\beta}) = d\boldsymbol{\alpha} \wedge_{\rho} \boldsymbol{\beta} + (-1)^{k} \boldsymbol{\alpha} \wedge_{\rho} \boldsymbol{\beta}. \tag{1.3}$$

Exemplo 1. Seja $\mathcal{U} = \mathcal{V} = \mathcal{W} = \mathfrak{g}$ uma álgebra de Lie e consideremos a aplicação bilinear

$$\rho_1: \quad \mathfrak{g} \times \mathfrak{g} \quad \to \quad \mathfrak{g} \\ (A,B) \quad \mapsto \quad \rho_1(A,B) = [A,B].$$

Seja $\{T_1, \ldots, T_m\}$ uma base de \mathfrak{g} com constantes de estrutura definidas por $[T_i, T_j] = C_{ij}^k T_k$. Usando a equação (1.2) é fácil ver que para $\boldsymbol{\alpha} = \boldsymbol{\alpha}^i \otimes T_i \in \Lambda^k(X, \mathfrak{g})$ e $\boldsymbol{\beta} = \boldsymbol{\beta}^j \otimes T_j \in \Lambda^l(X, \mathfrak{g})$,

$$\alpha \wedge_{\rho_1} \beta \equiv [\alpha, \beta] = \alpha^i \wedge \beta^j \otimes [T_i, T_j] = C_{ij}^k \alpha^i \wedge \beta^j \otimes T_k.$$
 (1.4)

 $O \rho_1$ -produto exterior goza de algumas propriedades que passamos a enunciar.

Proposição 1. Se $\alpha \in \Lambda^k(X, \mathfrak{g}), \beta \in \Lambda^l(X, \mathfrak{g}) \ e \ \varphi \in \Lambda^i(X, \mathfrak{g}), \ então$

1.
$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = (-1)^{kl+1} [\boldsymbol{\beta}, \boldsymbol{\alpha}];$$

2.
$$(-1)^{ki}[[\boldsymbol{\alpha},\boldsymbol{\beta}],\boldsymbol{\varphi}] + (-1)^{il}[[\boldsymbol{\varphi},\boldsymbol{\alpha}],\boldsymbol{\beta}] + (-1)^{lk}[[\boldsymbol{\beta},\boldsymbol{\varphi}],\boldsymbol{\alpha}] = 0.$$

Demonstração. [Bl, pp. 36].

Exemplo 2. Seja $\mathcal{U} = \mathcal{V} = \mathcal{W} = \mathfrak{g}$ uma álgebra de Lie de um grupo de Lie matricial e consideremos a aplicação bilinear

$$\begin{array}{cccc} \rho_2 \colon & \mathfrak{g} \times \mathfrak{g} & \to & \mathfrak{g} \\ & (A,B) & \mapsto & \rho_2(A,B) = AB. \end{array}$$

Para $\alpha \in \Lambda^k(X, \mathfrak{g})$ e $\beta \in \Lambda^l(X, \mathfrak{g})$ denotation of ρ_2 -produte exterior por

$$\alpha \wedge_{\rho_2} \beta \equiv \alpha \wedge \beta.$$

Existe uma relação entre os produtos exteriores relativos a ρ_1 e ρ_2 quando ρ_1 é uma aplicação bilinear de uma álgebra de Lie de um grupo de Lie matricial. Nesse caso $\rho_1(A, B) = AB - BA$ (comutador de matrizes) para $A, B \in \mathfrak{g}$, logo

$$\boldsymbol{\alpha} \wedge_{\rho_1} \boldsymbol{\beta} = \boldsymbol{\alpha} \wedge_{\rho_2} \boldsymbol{\beta} - (-1)^{kl} \boldsymbol{\beta} \wedge_{\rho_2} \boldsymbol{\alpha},$$

ou na nossa notação,

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}] = \boldsymbol{\alpha} \wedge \boldsymbol{\beta} - (-1)^{kl} \boldsymbol{\beta} \wedge \boldsymbol{\alpha}. \tag{1.5}$$

1.2.2 Forma canónica de Cartan

Seja G um grupo de Lie n-dimensional e \mathfrak{g} a sua álgebra de Lie, vista como $T_e(G)$. A **forma canónica de Cartan** é a 1-forma diferencial Θ em G com valores em \mathfrak{g} definida da seguinte maneira: para cada $g \in G$,

$$\Theta_g \colon \quad T_g(G) \quad \to \quad \mathfrak{g}$$

$$v \quad \mapsto \quad \Theta_g(v) = (L_{g^{-1}})_{*g}(v).$$

Teorema 1. Seja $\{T_1, \ldots, T_n\}$ uma base de \mathfrak{g} , $\{T^1, \ldots, T^n\}$ a respectiva base dual em $\mathfrak{g}^* = T_e^*(G)$ e $\{\Theta^1, \ldots, \Theta^n\}$ as únicas 1-formas diferenciais em G invariantes à esquerda geradas por $\{T^1, \ldots, T^n\}$, i.e., $\Theta_e^i = T^i$ para $i = 1, \ldots, n$. Então, a forma canónica de Cartan Θ é dada por

$$\mathbf{\Theta} = \mathbf{\Theta}^1 \otimes T_1 + \ldots + \mathbf{\Theta}^n \otimes T_n.$$

Demonstração. Seja $(T_j)_g:=(L_g)_{*e}T_j$. Para cada $g\in G$ e $v=v^j(T_j)_g\in T_g(G)$ temos

$$(\Theta^{i} \otimes T_{i})_{g}(v) = \Theta^{i}_{g}(v)T_{i}$$

$$= (L_{g^{-1}})^{*}_{*g}(T^{i})(v)T_{i}$$

$$= T^{i}((L_{g^{-1}})_{*g}(v))T_{i}$$

$$= T^{i}((L_{g^{-1}})_{*g}(L_{g})_{*e}(v^{j}T_{j}))T_{i}$$

$$= v^{i}T_{i}$$

$$= v^{i}(L_{g^{-1}})_{*g}(T_{i})_{g}$$

$$= (L_{g^{-1}})_{*g}(v)$$

$$= \Theta_{g}(v).$$

Proposição 2. A forma canónica de Cartan é invariante à esquerda, i.e., $(L_g)^*\Theta = \Theta$ para todo o $g \in G$.

Demonstração. É trivial pois $\Theta = \Theta^i \otimes T_i$ e Θ^i são 1-formas diferenciais invariantes à esquerda em G.

Proposição 3. A forma canónica de Cartan satisfaz $R_g^* \Theta = \operatorname{Ad}_{g^{-1}} \circ \Theta$ para todo o $g \in G$.

Demonstração. Para $v \in T_h(G)$ temos

$$(R_g^* \Theta)_h(v) = \Theta_{gh}((R_g)_{*h}(v))$$

$$= (L_{(gh)^{-1}})_{*gh} \circ (R_g)_{*h}(v)$$

$$= (L_{h^{-1}} \circ L_{g^{-1}})_{*gh} \circ (R_g)_{*h}(v)$$

$$= (L_{h^{-1}} \circ L_{g^{-1}} \circ R_g)_{*h}(v)$$

$$= (L_{g^{-1}} \circ R_g)_{*e} \circ (L_{h^{-1}})_{*h}(v)$$

$$= \operatorname{Ad}_{g^{-1}}(\Theta_h(v)).$$

1.3 Orientabilidade

No apêndice define-se o conceito de orientabilidade em espaços vectoriais e mostra-se que qualquer espaço vectorial tem duas orientações possíveis. Nesta secção iremos introduzir a noção de orientabilidade em variedades.

Intuitivamente, a definição mais natural de orientação numa variedade X consiste numa escolha de orientações para cada espaço tangente $T_x(X)$ "variando suavemente com x" num sentido apropriado. De acordo com a definição abaixo nem sempre é possível efectuar tal escolha e existem variedades que não admitem nenhuma orientação.

Seja X uma variedade n-dimensional e $U \subset X$ um conjunto aberto. Uma **orientação em** U é uma função μ que associa a cada $x \in U$ uma orientação μ_x em $T_x(X)$ satisfazendo a seguinte condição: para cada $x_0 \in U$ existe uma vizinhança $W \subset U$ de x_0 e n campos vectoriais $\mathbf{X}_1, \dots \mathbf{X}_n$ em W tais que $\{\mathbf{X}_{1,x}, \dots \mathbf{X}_{n,x}\} \in \mu_x$ para todo o $x \in W$. A variedade X diz-se **orientável** se existe uma orientação em X. Um variedade orientável X diz-se **orientada** se fixármos uma determinada orientação μ em X.

Tal como no caso da orientabilidade em espaços vectoriais, existe uma relação entre o espaço das n-formas diferenciais em X e as possíveis orientações de X (no caso da variedade ser orientável).

Teorema 2. Uma variedade n-dimensional X é orientável sse admite uma n-forma diferencial não nula em todos os pontos $x \in X$.

Demonstração. [N2, pp. 241]

O teorema anterior garante que uma n-forma diferencial em X que nunca se anule, determina uma única orientação numa variedade orientável X. Porém, uma orientação em X não determina unicamente um elemento não nulo de $\Lambda^n(X)$. Esta questão pode ser contornada se equipármos X com uma métrica pseudo-Riemanniana, em analogia com o que fizémos no contexto algébrico (ver apêndice).

Teorema 3. Seja X uma variedade de dimensão n com orientação μ e métrica pseudo-Riemanniana \mathbf{g} . Então existe uma única forma diferencial $\operatorname{vol} \in \Lambda^n(X)$ tal que para cada $x \in X$ e cada base ortonormada e orientada $\{e_1, \ldots e_n\}$ de $T_x(X)$, $\operatorname{vol}_x(e_1, \ldots e_n) = 1$.

$$Demonstração.$$
 [N2, pp. 242]

A n-forma diferencial **vol** acima chama-se a **forma de volume canónica** em X induzida por μ e g.

1.4 O operador de Hodge

Uma orientação μ e uma métrica pseudo-Riemanniana \boldsymbol{g} em X equipam cada espaço tangente $T_x(X)$ com uma orientação μ_x e um produto interno \boldsymbol{g}_x . Em cada $x \in X$ está definido um operador de Hodge (ver apêndice)

$$^{*_x}: \Lambda^k(T_x(X)) \to \Lambda^{n-k}(T_x(X)),$$

para k = 0, ...n. O operador de Hodge na variedade X é definido ponto a ponto, i.e.

$$(*\beta)_x(v_1,\ldots,v_{n-k}) = *x(\beta_x)(v_1,\ldots,v_{n-k}),$$

onde $\beta \in \Lambda^k(X), v_1, \dots, v_{n-k} \in T_x(X)$.

Observação 2. Mostra-se que $*: \Lambda^k(X) \to \Lambda^{n-k}(X)$ é um operador $C^{\infty}(X)$ -linear. Além disso, todas as construções algébricas com espaços vectoriais introduzidas no apêndice estendem-se ao caso das formas diferenciais numa variedade, efectuando as definições ponto a ponto.

Capítulo 2

Fibrados Principais

2.1 Definições gerais

Definição 1. Sejam X uma variedade e G um grupo de Lie. Um fibrado principal sobre X com grupo de estrutura G (ou simplesmente um G-fibrado principal sobre X) consiste em

- uma variedade P;
- uma aplicação sobrejectiva $\pi: P \to X$;
- uma acção direita de G em P, $\sigma \colon P \times G \to P$, $\sigma(p,g) \equiv \sigma_g(p) \equiv p \cdot g$ para $p \in P$, $g \in G$,

obedecendo às seguintes condições:

- 1. $\pi(p \cdot g) = \pi(p)$ para todo o $p \in P$ e todo o $g \in G$;
- 2. $P \notin localmente trivial$, i.e., para cada $x \in X$ existe uma vizinhança $V \subset X$ de x e um difeomorfismo $\Psi \colon \pi^{-1}(V) \to V \times G$ da forma

$$\Psi(p) = (\pi(p), \psi(p)),$$

onde $\psi \colon \pi^{-1}(V) \to G \ satisfaz$

$$\psi(p \cdot g) = \psi(p)g$$

para todo o $p \in \pi^{-1}(V)$ e todo o $g \in G$.

As variedades P e X designam-se por **espaço total** e **base**, respectivamente, a aplicação $\pi \colon P \to X$ diz-se a **projecção** e para cada $x \in X$, $\pi^{-1}(x)$ chama-se **a fibra sobre** x. O grupo de estrutura G designa-se normalmente em Física por **grupo de gauge**.

O par (V, Ψ) diz-se uma **trivialização local** (terminologia da Matemática) ou uma **gauge local** (terminologia da Física). A escolha de uma gauge local diferente é usualmente designada em Física por **transformação de gauge local**. Uma família de trivializações locais $\{(V_j, \Psi_j)\}_{j \in J}$ tal que $\bigcup_{i \in J} V_j = X$ chama-se uma **cobertura trivializante de** X.

Denotaremos um G-fibrado principal sobre X por $G \hookrightarrow P \xrightarrow{\pi} X$.

Observação 3. A projecção $\pi: P \to X$ é uma submersão, i.e., a aplicação $\pi_{*p}: T_p(P) \to T_{\pi(p)}(X)$ é sobrejectiva para todo o $p \in P$ (ver [N1, pp. 207]). Consequentemente, a fibra sobre $\pi(p)$ é uma subvariedade de P de dimensão $\dim P - \dim X$. Como P é localmente trivial, cada fibra é difeomorfa ao grupo de estrutura G e portanto $\dim P - \dim X = \dim G$.

Lema 1. Para cada $p \in P$, a fibra sobre $\pi(p)$ coincide com a órbita de p sob a acção de G, i.e.

$$\pi^{-1}(\pi(p)) = \{ p \cdot g \mid g \in G \} = p \cdot G.$$

Demonstração. $\pi^{-1}(\pi(p)) \supset p \cdot G$ é imediato pela condição 1 na definição de fibrado principal. Para mostrármos a inclusão no sentido contrário consideremos $p' \in \pi^{-1}(\pi(p))$. Usando a condição 2, escolha-se uma trivialização local (V, Ψ) em $x = \pi(p) = \pi(p')$. Como $\psi(p), \psi(p') \in G$, existe $g \in G$ tal que $\psi(p)g = \psi(p')$, logo $\psi(p \cdot g) = \psi(p')$ e portanto $\Psi(p \cdot g) = (\pi(p \cdot g), \psi(p \cdot g)) = (\pi(p), \psi(p')) = (\pi(p'), \psi(p')) = \Psi(p')$. Como Ψ é bijectiva, temos $p' = p \cdot g$.

Exemplo 3. Sejam $P = X \times G$, $\pi \colon X \times G \to X$, $\pi(x,g) = x$ e $\sigma((x,h),g) = (x,h) \cdot g = (x,hg)$. Tomemos V = X na condição 2 e Ψ a aplicação identidade em $\pi^{-1}(V) = \pi^{-1}(X) = X \times G$. Então $G \hookrightarrow X \times G \xrightarrow{\pi} X$ chama-se o G- fibrado principal trivial sobre X.

Seja $G \hookrightarrow P \xrightarrow{\pi} X$ um G-fibrado principal sobre X. Fixemos uma cobertura trivializante $\{(V_j, \Psi_j)\}_{j \in J}$ de X e sejam $i, j \in J$ tais que $V_i \cap V_j \neq \emptyset$. É fácil ver que para cada $x \in V_i \cap V_j$, $\psi_i(p)(\psi_j(p))^{-1}$ toma o mesmo valor em todo o $p \in \pi^{-1}(x)$. De facto,

$$\psi_i(p \cdot g)(\psi_j(p \cdot g))^{-1} = \psi_i(p)gg^{-1}(\psi_j(p))^{-1} = \psi_i(p)(\psi_j(p))^{-1}.$$

Consequentemente, podemos definir, para $i, j \in J$ tais que $V_i \cap V_j \neq \emptyset$, a aplicação

$$g_{ij} \colon V_i \cap V_j \to G$$

 $x \mapsto g_{ij}(x) = \psi_i(p)(\psi_j(p))^{-1},$

onde $p \in \pi^{-1}(x)$ é arbitrário. Estas funções chamam-se funções de transição da trivialização local (V_j, Ψ_j) para a trivialização local (V_i, Ψ_i) e satisfazem as seguintes propriedades:

- $g_{ii}(x) = e$;
- $g_{ij}(x)g_{ji}(x) = e;$
- $\bullet \ g_{ij}(x)g_{jk}(x)g_{ki}(x) = e,$

sempre que $i, j, k \in J$ e $x \in V_i \cap V_j \cap V_k \neq \emptyset$.

2.2 Trivializações locais versus secções locais

Definição 2. Uma secção local de $G \hookrightarrow P \xrightarrow{\pi} X$ sobre um conjunto aberto $V \subset X$ é uma aplicação $s \colon V \to \pi^{-1}(V)$ tal que $\pi \circ s = \mathrm{id}_V$.

Proposição 4. Existe uma correspondência biunívoca entre trivializações locais e secções locais de $G \hookrightarrow P \xrightarrow{\pi} X$.

Demonstração. Se $s\colon V\to \pi^{-1}(V)$ é uma secção local, definimos uma trivialização local $\Psi\colon \pi^{-1}(V)\to V\times G$ por $\Psi(s(x)\cdot g)=(x,g)$. Reciprocamente, dada uma trivialização local (V,Ψ) , definimos uma secção local $s\colon V\to \pi^{-1}(V)$ por $s(x)=\Psi^{-1}(x,e)$.

Proposição 5. Se $\Psi_i \colon \pi^{-1}(V_i) \to V_i \times G$, $\Psi_j \colon \pi^{-1}(V_j) \to V_j \times G$ são trivializações locais de um G-fibrado principal sobre X com $V_i \cap V_j \neq \emptyset$ e $s_i \colon V_i \to \pi^{-1}(V_i)$, $s_j \colon V_j \to \pi^{-1}(V_j)$ são as secções associadas às trivializações locais (V_i, Ψ_i) e (V_j, Ψ_j) respectivamente, então

$$s_j(x) = s_i(x) \cdot g_{ij}(x), \qquad x \in V_i \bigcap V_j.$$

Demonstração. [N1].

2.3 Subespaços verticais e campos vectoriais fundamentais

Seja $G \hookrightarrow P \xrightarrow{\pi} X$ um G-fibrado principal sobre X. Pela observação 3, cada $\pi^{-1}(x)$, $x \in X$, é uma subvariedade de P difeomorfa a G. Podemos então definir o **subespaço vertical de** $T_p(P)$ em $p \in \pi^{-1}(x)$ por $V_p(P) = T_p(\pi^{-1}(x)) \subset T_p(P)$. Os elementos de $V_p(P)$ chamam-se **vectores verticais** em p.

A acção σ de G em P permite-nos identificar de uma forma natural cada subespaço vertical $V_p(P)$ com a álgebra de Lie \mathfrak{g} de G da seguinte forma: a cada $A \in \mathfrak{g}$ associamos um campo vectorial $A^{\#} \in \mathfrak{X}(P)$ tal que

$$A_p^{\#} = (\sigma_p)_{*e}(A) = \frac{d}{dt} p \cdot \exp(tA) \mid_{t=0},$$
 (2.1)

onde $\sigma_p \colon G \to P$ é a aplicação $\sigma_p(g) = p \cdot g$. $A^\#$ chama-se o **campo vectorial** fundamental em P induzido por A. É válida a seguinte

Proposição 6. A aplicação $A \to A_p^\#$ é um isomorfismo linear de \mathfrak{g} para $V_p(P)$. Além disso temos

1.
$$[A, B]^{\#} = [A^{\#}, B^{\#}], \quad \forall A, B \in \mathfrak{g},$$

2.
$$(\sigma_q)_*(A^\#) = (\mathrm{Ad}_{q^{-1}}(A))^\#, \quad \forall g \in G, \forall A \in \mathfrak{g}.$$

Demonstração. [N1, pp. 243-245]

Capítulo 3

Conexões em Fibrados Principais

3.1 Definições gerais

Seja $G \hookrightarrow P \xrightarrow{\pi} X$ um G-fibrado principal sobre X.

Definição 3. Uma conexão em $G \hookrightarrow P \xrightarrow{\pi} X$ é uma 1-forma diferencial ω em P com valores em $\mathfrak g$ tal que

1.
$$\omega(A^{\#}) = A, \quad \forall A \in \mathfrak{g};$$

2.
$$(\sigma_g)^* \boldsymbol{\omega} = \operatorname{Ad}_{g^{-1}} \circ \boldsymbol{\omega}, \quad \forall g \in G.$$

Observação 4. Em Física, uma conexão ω diz-se um potencial de gauge em $G \hookrightarrow P \xrightarrow{\pi} X$.

Se escolhermos uma gauge local $s\colon V\to \pi^{-1}(V),\; \mathcal{A}:=s^*\boldsymbol{\omega}\in \Lambda^1(V,\mathfrak{g})$ chama-se um **potencial de gauge local** (na gauge s). Se $\{(V_j,\Psi_j)\}_{j\in J}$ é uma cobertura trivializante de X e $s_j\colon V_j\to \pi^{-1}(V_j)$ é a secção local associada à trivialização (V_j,Ψ_j) , a família $\{\mathcal{A}_j=s_j^*\boldsymbol{\omega}\}_{j\in J}$ de potenciais de gauge locais satisfaz

$$\mathcal{A}_{j} = \operatorname{Ad}_{g_{ij}^{-1}} \circ \mathcal{A}_{i} + g_{ij}^{*} \Theta$$
(3.1)

para todo o $i, j \in J$ com $V_i \cap V_j \neq \emptyset$, onde $g_{ij} \colon V_i \cap V_j \to G$ é a correspondente função de transição e Θ é a forma canónica de Cartan em G (ver [N1, pp. 260]).

Observação 5. Se G é um grupo de Lie matricial, $g_{ij}^*\Theta = g_{ij}^{-1}dg_{ij}$, onde dg_{ij} é a derivada exterior de cada componente da matriz $g_{ij} \in G$.

Reciprocamente, dada uma cobertura trivializante $\{(V_j, \Psi_j)\}_{j\in J}$ de X e uma família $\{\mathcal{A}_j\}_{j\in J}$ de 1-formas em V_j com valores em \mathfrak{g} satisfazendo (3.1) sempre que $V_i \cap V_j \neq \emptyset$, existe uma única conexão $\boldsymbol{\omega}$ em $G \hookrightarrow P \xrightarrow{\pi} X$ tal que $\mathcal{A}_j = s_j^* \boldsymbol{\omega}$ para cada $j \in J$ ([N1, pp. 292]).

Estabelecemos então uma correspondência biunívoca entre conexões num fibrado principal e famílias de potenciais de gauge locais.

Dada uma conexão ω em $G \hookrightarrow P \xrightarrow{\pi} X$ podemos definir para cada $p \in P$ o subespaço horizontal de $T_p(P)$ por

$$H_p(P) = \{ v \in T_p(p) \mid \omega_p(v) = 0 \}.$$

Proposição 7. As seguintes propriedades são válidas:

1.
$$T_p(P) = H_p(P) \oplus V_p(P), \quad \forall p \in P;$$

2.
$$(\sigma_g)_{*p}(H_p(P)) = H_{p \cdot g}(P), \quad \forall p \in P, \forall g \in G;$$

3.
$$\pi_{*p} \mid_{V_p(P)} = 0, \quad \forall p \in P;$$

4. $\pi_{*p} \mid_{H_p(P)} : H_p(P) \to T_{\pi(p)}(X)$ é um isomorfismo linear para todo o $p \in P$.

Demonstração. Mostremos primeiro que $T_p(P) = H_p(P) \oplus V_p(P)$. Se $v \in H_p(P) \cap V_p(P)$, $v = A_p^\#$ para algum $A \in \mathfrak{g}$ (ver proposição 6), logo $\omega_p(v) = 0 = \omega_p(A_p^\#) = A \Rightarrow v = 0$ e portanto $H_p(P) \cap V_p(P) = \{0\}$. Resta mostrar que dim $H_p(P) + \dim V_p(P) = \dim T_p(P)$. Como $\omega_p \colon T_p(P) \to \mathfrak{g}$ é uma transformação linear, dim $\ker(\omega_p) + \dim \operatorname{Im}(\omega_p) = \dim T_p(P)$. Mas $\ker(\omega_p) = H_p(P)$ por definição e $\omega_p \mid_{V_p(P)} \colon V_p(P) \to \mathfrak{g}$ é um isomorfismo, logo $T_p(P) = H_p(P) \oplus V_p(P)$.

Mostremos agora que $(\sigma_g)_{*p} \operatorname{H}_p(P) = \operatorname{H}_{p \cdot g}(P)$. Se $v \in \operatorname{H}_p(P)$, então $\boldsymbol{\omega}_{p \cdot g}((\sigma_g)_{*p}v) = \operatorname{Ad}_{g^{-1}}(\boldsymbol{\omega}_p(v)) = 0$, logo $(\sigma_g)_{*p} \operatorname{H}_p(P) \subset \operatorname{H}_{p \cdot g}(P)$. Seja agora $u \in \operatorname{H}_{p \cdot g}(P)$. Como $(\sigma_g)_{*p} \colon T_p(P) \to T_{p \cdot g}(P)$ é um isomorfismo linear, existe $v \in T_p(P)$ tal que $(\sigma_g)_{*p}v = u$. Mas $\boldsymbol{\omega}_p(v) = \boldsymbol{\omega}_p((\sigma_{g^{-1}})_{*p \cdot g}u) = \operatorname{Ad}_g(\boldsymbol{\omega}_{p \cdot g}(u)) = 0$, logo $v \in \operatorname{H}_p(P)$ e portanto $\operatorname{H}_{p \cdot g}(P) \subset (\sigma_g)_{*p} \operatorname{H}_p(P)$.

A propriedade 3 segue de

$$\pi_{*p}(A_p^{\#}) = \pi_{*p} \frac{d}{dt} p \cdot \exp(tA) \mid_{t=0} = \frac{d}{dt} \pi(p \cdot \exp(tA)) \mid_{t=0} = \frac{d}{dt} \pi(p) \mid_{t=0} = 0,$$

logo $\pi_{*p} \mid_{V_p(P)} = 0$. Então $V_p(P) \subset \ker(\pi_{*p})$. Por outro lado, como a aplicação $\pi_{*p} \colon T_p(P) \to T_{\pi(p)}(X)$ é sobrejectiva para todo o $p \in P$, dim $(\ker \pi_{*p}) + \dim X = \dim P$, logo dim $\ker \pi_{*p} = \dim G$ e portanto $V_p(P) = \ker \pi_{*p}$. Usando a propriedade 1 demonstrada acima é fácil ver que $\pi_{*p} \mid_{H_p(P)}$ é injectiva e como dim $X = \dim H_p(P)$ concluimos que é válida a propriedade 4.

Reciprocamente, dada uma distribuição $p \mapsto \mathcal{D}_p$ em P satisfazendo as propriedades 1 e 2 da proposição 7, existe uma única conexão $\boldsymbol{\omega}$ em $G \hookrightarrow P \xrightarrow{\pi} X$ tal que $H_p(P) = \mathcal{D}_p$ para cada $p \in P$ (ver [N1, pp. 294]).

Estabelecemos então uma correspondência biunívoca entre conexões num fibrado principal e distribuições de subespaços horizontais em P.

3.2 Curvatura

Seja ω uma conexão em $G \hookrightarrow P \xrightarrow{\pi} X$.

Definição 4. Se $\varphi \in \Lambda^k(P, \mathfrak{g})$, define-se $\varphi^H \in \Lambda^k(P, \mathfrak{g})$ por

$$oldsymbol{arphi}^{ ext{H}}(oldsymbol{X}_1,\ldots,oldsymbol{X}_k) = oldsymbol{arphi}(oldsymbol{X}_1^{ ext{H}},\ldots,oldsymbol{X}_k^{ ext{H}}),$$

onde X_1^H, \ldots, X_k^H são as componentes horizontais dos campos vectoriais $X_1, \ldots, X_k \in \mathfrak{X}(P)$.

Definição 5. Se $\varphi \in \Lambda^k(P, \mathfrak{g})$, define-se a derivada covariante de φ por

$$d^{\omega}\varphi := (d\varphi)^{\mathrm{H}} \in \Lambda^{k+1}(P, \mathfrak{g}).$$

Definição 6. A curvatura da conexão ω é

$$\mathbf{\Omega}^{\boldsymbol{\omega}} = d^{\boldsymbol{\omega}} \boldsymbol{\omega} \in \Lambda^2(P, \mathfrak{g}).$$

Observação 6. Em Física, a curvatura Ω^{ω} de uma conexão ω diz-se um campo de gauge em $G \hookrightarrow P \xrightarrow{\pi} X$.

Teorema 4 (Equação de estrutura de Cartan). A 2-forma de curvatura satisfaz a seguinte equação

$$\Omega^{\omega} = d\omega + \frac{1}{2} [\omega, \omega]. \tag{3.2}$$

Para demonstrármos este teorema necessitamos de alguns resultados auxiliares.

Lema 2. Se $\mathbf{Y} \in \mathfrak{X}(X)$, existe um único $\tilde{\mathbf{Y}} \in \mathfrak{X}(P)$ tal que $\boldsymbol{\omega}(\tilde{\mathbf{Y}}) = 0$ e $\pi_{*p}(\tilde{\mathbf{Y}}_p) = \mathbf{Y}_{\pi(p)}$ para todo o $p \in P$. Necessariamente $(\sigma_g)_*\tilde{\mathbf{Y}} = \tilde{\mathbf{Y}}$ para todo o $g \in G$. O campo vectorial $\tilde{\mathbf{Y}}$ chama-se o **levantamento horizontal de** \mathbf{Y} .

Demonstração. A existência e unicidade de $\tilde{\boldsymbol{Y}}$ seguem do facto da aplicação $\pi_{*p}\mid_{\mathbf{H}_p(P)}: \mathbf{H}_p(P) \to T_{\pi(p)}(P)$ ser um isomorfismo linear. Note-se ainda que $\pi_{*p \cdot g}((\sigma_g)_{*p}\tilde{\boldsymbol{Y}}_p) = (\pi \circ \sigma_g)_{*p}\tilde{\boldsymbol{Y}}_p = \pi_{*p}\tilde{\boldsymbol{Y}}_p = \boldsymbol{Y}_{\pi(p)}$ e portanto $(\sigma_g)_{*p}\tilde{\boldsymbol{Y}}_p = \tilde{\boldsymbol{Y}}_{p \cdot g}$

Lema 3. Se $A \in \mathfrak{g}$ e $\mathbf{Y} \in \mathfrak{X}(X)$, então $[A^{\#}, \tilde{\mathbf{Y}}] = 0$.

Demonstração. Pela equação (2.1) é fácil ver que o fluxo de $A^{\#}$ em P é dado por $\sigma_{\exp(tA)}.$ Então

$$[A^{\#}, \tilde{\boldsymbol{Y}}]_{p} = \frac{d}{dt} (\sigma_{\exp(tA)})_{*p \cdot \exp(tA)} (\tilde{\boldsymbol{Y}}_{p \cdot \exp(tA)}) \mid_{t=0}$$

$$= \frac{d}{dt} \tilde{\boldsymbol{Y}}_{p} \mid_{t=0}$$

$$= 0,$$

onde se usou o facto de $(\sigma_g)_{*p}\tilde{\boldsymbol{Y}}_p=\tilde{\boldsymbol{Y}}_{p\cdot g}.$

Demonstração do Teorema 4. Sejam $Y, Z \in \mathfrak{X}(P)$. Note-se que

$$\begin{array}{lcl} \frac{1}{2} \left[\boldsymbol{\omega}, \boldsymbol{\omega} \right] (\boldsymbol{Y}, \boldsymbol{Z}) & = & \frac{1}{2} \left(\left[\boldsymbol{\omega}(\boldsymbol{Y}), \boldsymbol{\omega}(\boldsymbol{Z}) \right] - \left[\boldsymbol{\omega}(\boldsymbol{Z}), \boldsymbol{\omega}(\boldsymbol{X}) \right] \right) \\ & = & \left[\boldsymbol{\omega}(\boldsymbol{Y}), \boldsymbol{\omega}(\boldsymbol{Z}) \right]. \end{array}$$

Temos de mostrar que

$$d\omega(\mathbf{Y}^{\mathrm{H}}, \mathbf{Z}^{\mathrm{H}}) = d\omega(\mathbf{Y}, \mathbf{Z}) + [\omega(\mathbf{Y}), \omega(\mathbf{Z})]$$
(3.3)

para todo o $Y, Z \in \mathfrak{X}(P)$. Por linearidade, basta considerar três casos:

- 1. $Y, Z \in H(P)$;
- 2. $\boldsymbol{Y}, \boldsymbol{Z} \in V(P);$

3. $\boldsymbol{Y} \in V(P), \boldsymbol{Z} \in H(P),$

onde H(P) e V(P) denotam os campos vectoriais horizontais e verticais em P, respectivamente.

No caso 1 a equação (3.3) é satisfeita pois $\boldsymbol{\omega}(\boldsymbol{Y}) = \boldsymbol{\omega}(\boldsymbol{Z}) = 0, \ \boldsymbol{Y}^{\mathrm{H}} = \boldsymbol{Y}$ e $\boldsymbol{Z}^{\mathrm{H}} = \boldsymbol{Z}$.

No caso 2 podemos supor que $\boldsymbol{Y}=A^{\#}$ e $\boldsymbol{Z}=B^{\#}$ para $A,B\in\mathfrak{g}$. Então

$$d\omega(Y, Z) = A^{\#}[\omega(B^{\#})] - B^{\#}[\omega(A^{\#})] - \omega([A^{\#}, B^{\#}])$$

$$= -\omega([A, B]^{\#})$$

$$= -[A, B]$$

$$= -[\omega(A^{\#}), \omega(B^{\#})]$$

$$= -[\omega(Y), \omega(Z)],$$

e portanto ambos os membros de (3.3) anulam-se.

No caso 3 podemos supor que $Z = \tilde{W}$, onde \tilde{W} é o levantamento horizontal de um campo vectorial W em X e $Y = A^{\#}$ para $A \in \mathfrak{g}$. Então

$$d\omega(\boldsymbol{Y}, \boldsymbol{Z}) = A^{\#}(\omega(\tilde{\boldsymbol{W}})) - \tilde{\boldsymbol{W}}(\omega(A^{\#})) - \omega([A^{\#}, \tilde{\boldsymbol{W}}]) = 0,$$

pois $\omega(\tilde{\boldsymbol{W}}) = 0$, $\omega(A^{\#}) = A \in \mathfrak{g}$ e usámos o lema 3 para garantir $[A^{\#}, \tilde{\boldsymbol{W}}] = 0$. Portanto ambos os membros de (3.3) anulam-se.

Teorema 5 (Identidade de Bianchi). Se ω é uma conexão com curvatura Ω^{ω} , então

$$d^{\omega}\Omega^{\omega} = 0 \tag{3.4}$$

Demonstração.

$$d^{\omega} \Omega^{\omega} = (d(d\omega + \frac{1}{2} [\omega, \omega]))^{H}$$
$$= \frac{1}{2} ([d\omega, \omega] - [\omega, d\omega])^{H}$$
$$= ([d\omega, \omega])^{H} \in \Lambda^{3}(P, \mathfrak{g}).$$

Então $d^{\boldsymbol{\omega}}\Omega^{\boldsymbol{\omega}}(\boldsymbol{Y},\boldsymbol{Z},\boldsymbol{W}) = [d\boldsymbol{\omega},\boldsymbol{\omega}](\boldsymbol{Y}^{\mathrm{H}},\boldsymbol{Z}^{\mathrm{H}},\boldsymbol{W}^{\mathrm{H}})$ para $\boldsymbol{Y},\boldsymbol{Z},\boldsymbol{W} \in \mathfrak{X}(P)$. Como $\boldsymbol{\omega}$ anula qualquer campo vectorial horizontal, temos que $d^{\boldsymbol{\omega}}\Omega^{\boldsymbol{\omega}} = 0$.

Teorema 6. Para todo o $q \in G$,

$$(\sigma_g)^* \mathbf{\Omega}^{\boldsymbol{\omega}} = \mathrm{Ad}_{g^{-1}} \circ \mathbf{\Omega}^{\boldsymbol{\omega}}. \tag{3.5}$$

Demonstração. Pela equação (1.4) é evidente que [,] é preservado pelo pullback, i.e., $F^*[\varphi, \psi] = [F^*\varphi, F^*\psi]$. Então

$$(\sigma_g)^* \mathbf{\Omega}^{\boldsymbol{\omega}} = \sigma_g^* (d\boldsymbol{\omega} + \frac{1}{2} [\boldsymbol{\omega}, \boldsymbol{\omega}])$$

$$= d(\sigma_g)^* \boldsymbol{\omega} + \frac{1}{2} [\sigma_g^* \boldsymbol{\omega}, \sigma_g^* \boldsymbol{\omega}]$$

$$= d \operatorname{Ad}_{g^{-1}} \circ \boldsymbol{\omega} + \frac{1}{2} [\operatorname{Ad}_{g^{-1}} \circ \boldsymbol{\omega}, \operatorname{Ad}_{g^{-1}} \circ \boldsymbol{\omega}]$$

$$= \operatorname{Ad}_{g^{-1}} \circ (d\boldsymbol{\omega} + \frac{1}{2} [\boldsymbol{\omega}, \boldsymbol{\omega}])$$

$$= \operatorname{Ad}_{g^{-1}} \circ \mathbf{\Omega}^{\boldsymbol{\omega}}.$$

3.3 Expressões locais e grupos de Lie matriciais

Se $s: V \to \pi^{-1}(V)$ é uma gauge local, $\mathcal{F} := s^* \Omega^{\omega} \in \Lambda^2(V, \mathfrak{g})$ chama-se o campo de gauge local (na gauge s).

Se $\mathcal{A} = s^* \boldsymbol{\omega}$ é o potencial de gauge local (na gauge s), então a equação de estrutura de Cartan (3.2) (na gauge s) escreve-se

$$\mathcal{F} = d\mathcal{A} + \frac{1}{2} [\mathcal{A}, \mathcal{A}]. \tag{3.6}$$

Sem perda de generalidade, podemos assumir que $V \subset X$ é uma vizinhança de coordenadas para uma carta (V, x^1, \ldots, x^n) em X e então

$$\mathcal{A} = \mathcal{A}_{\alpha} dx^{\alpha}, \tag{3.7}$$

$$\mathcal{F} = \frac{1}{2} \mathcal{F}_{\alpha\beta} dx^{\alpha} \wedge dx^{\beta}, \tag{3.8}$$

onde $\mathcal{F}_{\alpha\beta} = \partial_{\alpha} \mathcal{A}_{\beta} - \partial_{\beta} \mathcal{A}_{\alpha} + [\mathcal{A}_{\alpha}, \mathcal{A}_{\beta}] \in \mathcal{A}_{\alpha}, \mathcal{F}_{\alpha\beta} \in \Lambda^{0}(V, \mathfrak{g}).$

Mostra-se ainda que a lei de transformação para os campos de gauge locais sob uma transformação de gauge local $s_i\mapsto s_j=s_i\cdot g_{ij}$ é dada por

$$\mathcal{F}_i \mapsto \mathcal{F}_j = \mathrm{Ad}_{g_{ij}^{-1}} \circ \mathcal{F}_i.$$
 (3.9)

Proposição 8. Se G é um grupo de Lie matricial, as leis de transformação para os potenciais de gauge locais e os campos de gauge locais são

$$\mathbf{A}_i \mapsto \mathbf{A}_j = g_{ij}^{-1} \mathbf{A}_i g_{ij} + g_{ij}^{-1} dg_{ij}$$
 (3.10)

$$\mathcal{F}_i \mapsto \mathcal{F}_j = g_{ij}^{-1} \mathcal{F}_i g_{ij}. \tag{3.11}$$

Demonstração. Basta usar as equações (1.1), (3.1), (3.9) e a observação 5.

Proposição 9. Se G é um grupo de Lie matricial, a equação de estrutura de Cartan é dada por

$$\Omega^{\omega} = d\omega + \omega \wedge \omega. \tag{3.12}$$

Além disso, se escolhermos uma gauge local s, a equação (3.12) escreve-se

$$\mathcal{F} = d\mathcal{A} + \mathcal{A} \wedge \mathcal{A}. \tag{3.13}$$

Demonstração. Basta usar a equação (1.5).

Capítulo 4

Formas Tensoriais e Campos de Matéria

4.1 Definições gerais

Seja $G \hookrightarrow P \xrightarrow{\pi} X$ um G-fibrado principal sobre X e $\rho \colon G \to GL(\mathcal{V})$ uma representação de G no espaço vectorial real \mathcal{V} . Denotaremos $\rho(g)v \equiv g \cdot v$ para $g \in G, v \in \mathcal{V}$.

Definição 7. Uma k-forma diferencial φ em P com valores em V diz-se pseudotensorial do tipo ρ se satisfaz

$$(\sigma_g)^* \varphi = g^{-1} \cdot \varphi, \quad \forall g \in G.$$

Denotamos por $\Lambda_{\rho}^{k}(P, \mathcal{V})^{\mathrm{PT}}$ o conjunto das k-formas diferenciais em P com valores em \mathcal{V} , pseudotensoriais do tipo ρ .

 φ diz-se **tensorial do tipo** ρ se é pseudotensorial do tipo ρ e **horizon**tal, no sentido em que $\varphi(X_1, ..., X_k) = 0$ se algum $X_1, ..., X_k \in V(P)$.

Denotamos por $\Lambda_{\rho}^{k}(P, \mathcal{V})$ (respectivamente $\Lambda^{k}(P, \mathcal{V})^{\mathrm{H}}$) o conjunto das k-formas diferenciais em P com valores em \mathcal{V} , tensoriais do tipo ρ (respectivamente horizontais). Claramente $\Lambda_{\rho}^{k}(P, \mathcal{V}) = \Lambda_{\rho}^{k}(P, \mathcal{V})^{\mathrm{PT}} \bigcap \Lambda^{k}(P, \mathcal{V})^{\mathrm{H}}$.

Observação 7. Note-se que as noções de forma pseudotensorial, tensorial e horizontal não requerem a existência de uma conexão no fibrado principal $G \hookrightarrow P \xrightarrow{\pi} X$.

Observação 8. Se $\phi \in \Lambda^0(P, \mathcal{V})$, ϕ é automaticamente horizontal, logo as noções de 0-forma pseudotensorial e tensorial coincidem. Em geral, para uma k-forma, $k \geq 1$, isto não é verdade. Por exemplo, se $\omega \in \Lambda^1(P, \mathfrak{g})$ é uma conexão, ω é pseudotensorial do tipo Ad mas não é tensorial. A curvatura de qualquer conexão é tensorial do tipo Ad.

Definição 8. Um campo de matéria do tipo ρ em $G \hookrightarrow P \xrightarrow{\pi} X$ é uma aplicação $\phi \in \Lambda_o^0(P, \mathcal{V})$.

Exemplo 4. Se $V = \mathfrak{g}$ e $\rho = \operatorname{Ad}$, ϕ diz-se um campo de Higgs. Se $V = \mathbb{C}$, ϕ diz-se um campo escalar complexo. Se $V = \mathbb{C}^2$, ϕ diz-se uma função de onda com 2 componentes.

4.2 Derivada covariante de formas tensoriais

Lema 4. Se $\varphi \in \Lambda^k_{\rho}(P, \mathcal{V})^{\operatorname{PT}}$, então $d\varphi \in \Lambda^k_{\rho}(P, \mathcal{V})^{\operatorname{PT}}$.

Demonstração. Por hipótese, φ satisfaz $(\sigma_g)^*\varphi = g^{-1} \cdot \varphi$ para todo o $g \in G$. Como d comuta com o pullback e a acção de G em \mathcal{V} é linear, temos

$$(\sigma_g)^*(d\varphi) = d(\sigma_g^*\varphi) = d(g^{-1} \cdot \varphi) = g^{-1} \cdot d\varphi.$$

O lema anterior garante, em particular, que a derivada exterior de uma forma tensorial é pseudotensorial, mas não é necessariamente horizontal (e por isso pode nao ser tensorial).

Para obtermos um operador de derivação $D \colon \Lambda_{\rho}^{k}(P, \mathcal{V}) \to \Lambda_{\rho}^{k+1}(P, \mathcal{V})$, é necessário introduzir uma conexão em $G \hookrightarrow P \xrightarrow{\pi} X$. Fixemos então uma conexão $\boldsymbol{\omega}$ em $G \hookrightarrow P \xrightarrow{\pi} X$. Antes de definirmos o operador D vamos reformular as definições 4 e 5, introduzidas na secção 3.2, para o caso de k-formas diferenciais em P com valores em \mathcal{V} , pseudotensoriais do tipo ρ .

Definição 9. Se $\varphi \in \Lambda^k_{\rho}(P, \mathcal{V})^{\operatorname{PT}}$, define-se $\varphi^{\operatorname{H}} \in \Lambda^k(P, \mathcal{V})$ por

$$\boldsymbol{\varphi}^{\mathrm{H}}(\boldsymbol{X}_{1},\ldots,\boldsymbol{X}_{k}) = \boldsymbol{\varphi}(\boldsymbol{X}_{1}^{\mathrm{H}},\ldots,\boldsymbol{X}_{k}^{\mathrm{H}}),$$

onde X_1^H, \ldots, X_k^H são as componentes horizontais de $X_1, \ldots, X_k \in \mathfrak{X}(P)$.

Note-se que $\boldsymbol{\varphi}^{\mathrm{H}}$ é tensorial do tipo ρ pois é horizontal por definição e verifica

$$\begin{split} ((\sigma_g)^* \boldsymbol{\varphi}^{\mathrm{H}})(\boldsymbol{X}_1, \dots, \boldsymbol{X}_k) &= \boldsymbol{\varphi}^{\mathrm{H}}((\sigma_g)_* \boldsymbol{X}_1, \dots, (\sigma_g)_* \boldsymbol{X}_k) \\ &= \boldsymbol{\varphi}(((\sigma_g)_* \boldsymbol{X}_1)^{\mathrm{H}}, \dots, ((\sigma_g)_* \boldsymbol{X}_k)^{\mathrm{H}}) \\ &= \boldsymbol{\varphi}((\sigma_g)_* \boldsymbol{X}_1^{\mathrm{H}}, \dots, (\sigma_g)_* \boldsymbol{X}_k^{\mathrm{H}}) \\ &= (\sigma_g^* \boldsymbol{\varphi})(\boldsymbol{X}_1^{\mathrm{H}}, \dots, \boldsymbol{X}_k^{\mathrm{H}}) \\ &= g^{-1} \cdot \boldsymbol{\varphi}(X_1^{\mathrm{H}}, \dots, \boldsymbol{X}_k^{\mathrm{H}}) \\ &= g^{-1} \cdot \boldsymbol{\varphi}^{\mathrm{H}}(\boldsymbol{X}_1, \dots, \boldsymbol{X}_k). \end{split}$$

Teorema 7. Seja $\varphi \in \Lambda_{\rho}^k(P, \mathcal{V})^{\operatorname{PT}}$. A derivada covariante de φ definida por

$$d^{\omega}\varphi = (d\varphi)^{\mathrm{H}}$$

é uma (k+1)-forma tensorial do tipo ρ . Em particular

$$d^{\boldsymbol{\omega}} \colon \Lambda^k_{\rho}(P, \mathcal{V}) \to \Lambda^{k+1}_{\rho}(P, \mathcal{V}).$$

Demonstração. $d^{\omega}\varphi$ é claramente horizontal por definição. Pelo lema 4 e pela observação anterior, $d^{\omega}\varphi$ é pseudotensorial do tipo ρ , logo $d^{\omega}\varphi$ é tensorial.

Gostariamos de ter uma fórmula explícita para o operador de derivação covariante $d^{\boldsymbol{\omega}}$ quando aplicado a elementos de $\Lambda_{\rho}^{k}(P, \mathcal{V})$. Para o conseguirmos vamos introduzir um novo produto exterior entre formas com valores em \mathfrak{g} e formas com valores em \mathcal{V} .

Consideremos a aplicação bilinear

$$\rho_3: \quad \mathfrak{g} \times \mathcal{V} \to \mathcal{V}
(A, v) \mapsto \rho_3(A, v) = \frac{d}{dt} \exp(tA) \cdot v \mid_{t=0}.$$

Observação 9. $Se \rho = Ad$,

$$\rho_3(A, B) = \frac{d}{dt} \operatorname{Ad}_{\exp(tA)}(B) \mid_{t=0} = [A, B]$$

para todo o $A, B \in \mathfrak{g}$.

Se $\alpha \in \Lambda^k(P, \mathfrak{g})$ e $\varphi \in \Lambda^l(P, \mathcal{V})$, define-se o ρ_3 -produto exterior $\alpha \wedge_{\rho_3} \varphi$ por

$$(\boldsymbol{\alpha} \wedge_{\rho_3} \boldsymbol{\varphi})(\boldsymbol{X}_1, \dots, \boldsymbol{X}_{k+l}) =$$

$$= \frac{1}{k!l!} \sum_{\sigma} (-1)^{\sigma} \rho_3 \left(\boldsymbol{\alpha}(\boldsymbol{X}_{\sigma(1)}, \dots, \boldsymbol{X}_{\sigma(k)}), \, \boldsymbol{\varphi}(\boldsymbol{X}_{\sigma(k+1)}, \dots, \boldsymbol{X}_{\sigma(k+l)}) \right), \quad (4.1)$$

onde $X_1, \ldots, X_{k+l} \in \mathfrak{X}(P)$ e a soma é sobre as permutações $\sigma \in S_{k+l}$ de $\{1, \ldots, k+l\}$. Denotamos $\boldsymbol{\alpha} \wedge_{\rho_3} \boldsymbol{\varphi}$ por $\boldsymbol{\alpha} \dot{\wedge} \boldsymbol{\varphi}$.

Observação 10. Se $\rho = \operatorname{Ad}$, então $\alpha \dot{\varphi} = \alpha \wedge_{\rho_1} \varphi = [\alpha, \varphi]$, onde \wedge_{ρ_1} representa o ρ_1 -produto exterior do exemplo 1.

Teorema 8. Se $\varphi \in \Lambda^k_{\rho}(P, \mathcal{V})$, então

$$d^{\omega}\varphi = d\varphi + \omega \dot{\wedge} \varphi. \tag{4.2}$$

Demonstração. [Bl, pp. 44]

Corolário 1. Se $\varphi \in \Lambda_{\mathrm{Ad}}^k(P,\mathfrak{g})$, então

$$d^{\omega}\varphi = d\varphi + [\omega, \varphi]. \tag{4.3}$$

Observação 11. O corolário anterior não se aplica à conexão $\boldsymbol{\omega}$ pois $\boldsymbol{\omega}$ não é tensorial do tipo Ad. Contudo, podemos aplicar o corolário 1 à curvatura $\Omega^{\boldsymbol{\omega}} \in \Lambda^2_{\mathrm{Ad}}(P,\mathfrak{g})$ e obter $d^{\boldsymbol{\omega}}\Omega^{\boldsymbol{\omega}} = d\Omega^{\boldsymbol{\omega}} + [\boldsymbol{\omega},\Omega^{\boldsymbol{\omega}}] = 0$, pela identidade de Bianchi.

Observação 12. Se $\phi \in \Lambda^0_{\rho}(P, \mathcal{V})$ é um campo de matéria do tipo ρ , então

$$d^{\omega}\phi = d\phi + \omega \dot{\wedge} \phi \in \Lambda^{1}_{\rho}(P, \mathcal{V}), \tag{4.4}$$

ou mais explicitamente

$$(d^{\omega}\phi)(X) = d\phi(X) + \omega(X)\phi, \qquad \forall X \in \mathfrak{X}(P). \tag{4.5}$$

Capítulo 5

Teorias de Gauge Clássicas

Neste capítulo iremos utilizar as estruturas matemáticas introduzidas nos capítulos anteriores, para descrever, de uma forma geométrica, as teorias de gauge clássicas¹.

Começamos por introduzir um formalismo geral aplicável a qualquer teoria de gauge.

5.1 Formalismo geral

Os ingredientes matemáticos necessários para descrever, ao nível clássico, a interacção de um campo de matéria com um campo de gauge são:

1. Uma variedade orientável X, com orientação μ e equipada com uma métrica pseudo-Riemanniana ${\pmb g}.$

Observação 13. Como exemplos temos o espaço Euclideano \mathbb{R}^n , o espaço de Minkowski $\mathbb{R}^{1,3}$, as esferas S^n , etc. As partículas "vivem" em X.

2. Um espaço vectorial real \mathcal{V} equipado com um produto interno h.

Observação 14. O campo de matéria que descreve a partícula (de matéria) toma valores em V. A escolha de V depende da estrutura

¹Estamos a usar o adjectivo "clássico" no sentido "após a primeira quantização". Uma teoria de gauge clássica é uma teoria de campo clássica, onde há interacção entre campos de gauge (i.e. conexões em fibrados principais) e campos de matéria. Os campos descrevem fisicamente as partículas a eles associados.

interna da partícula em causa e por essa razão, V chama-se o **espaço** interno. Como exemplos típicos temos \mathbb{C} , \mathbb{C}^2 , \mathbb{C}^4 ou a álgebra de Lie de um grupo de Lie.

3. Um grupo de Lie G e uma representação $\rho \colon G \to GL(\mathcal{V})$, ortogonal relativamente ao produto interno h em \mathcal{V} , i.e.

$$h(q \cdot v, q \cdot w) = h(v, w),$$

para todo o $g \in G$ e todo o $v, w \in \mathcal{V}$, onde $g \cdot v \equiv \rho(g)v$.

4. Um G-fibrado principal sobre $X, G \hookrightarrow P \xrightarrow{\pi} X$, uma conexão ω em $G \hookrightarrow P \xrightarrow{\pi} X$ com curvatura Ω^{ω} e um campo de matéria do tipo ρ , $\phi \colon P \to \mathcal{V}$, em $G \hookrightarrow P \xrightarrow{\pi} X$.

Observação 15. Em cada $x \in X$, a fibra $\pi^{-1}(x)$ representa o conjunto de todos os referenciais do espaço interno \mathcal{V} . No referencial $p \in \pi^{-1}(x)$, o estado interno da partícula é dado por $\phi(p)$. Se usármos outro referencial $p \cdot g \in \pi^{-1}(x)$, $g \in G$, o estado interno da partícula passa a ser descrito por $\phi(p \cdot g) = g^{-1} \cdot \phi(p)$, pois $\phi \in \Lambda_{\rho}^{0}(P, \mathcal{V})$. Uma gauge local $s \colon V \to \pi^{-1}(V)$ representa uma escolha "suave" de referenciais do espaço interno \mathcal{V} num subconjunto aberto $V \subset X$, relativamente à qual é possível medir os valores do campo de matéria ϕ em todos os pontos $x \in V$.

A curvatura Ω^{ω} representa fisicamente o campo de gauge responsável pela interacção com a matéria, enquanto que a conexão ω é uma quantidade sem significado físico. Ambas estão ligadas pela equação de estrutura de Cartan. Além disso, a curvatura Ω^{ω} satisfaz um constrangimento adicional, dado pela identidade de Bianchi. Esta identidade tem um carácter cinemático e está associada à forma como se modela um campo de gauge em termos geométricos. Veremos que, no caso do Electromagnetismo ($G = U(1), X = \mathbb{R}^{1,3}$), a identidade de Bianchi é equivalente às equações de Maxwell

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0, \qquad \nabla \cdot \boldsymbol{B} = 0.$$

Os únicos campos de matéria que interagem com o campo de gauge são os campos correspondentes a partículas com carga. O campo de matéria

associado a uma partícula carregada com spin $s \in \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\}$, tem 2s+1 componentes complexas. O caso mais simples corresponde a s=0 (e.g. o mesão π^- na teoria do Electromagnetismo), onde $\phi\colon P\to\mathbb{C}$. Estudaremos este caso em mais detalhe na secção 5.8. Para s>0 a situação é mais delicada e é necessário introduzir outro fibrado principal sobre X. Por exemplo, o campo de matéria que descreve o electrão (s=1/2) é definido num certo $SL(2,\mathbb{C})$ -fibrado principal sobre X designado por fibrado spinorial. Para descrevermos a interacção do campo spinorial associado ao electrão com o campo de gauge, temos de "misturar", num certo sentido, o fibrado $G\hookrightarrow P\xrightarrow{\pi} X$ com o fibrado spinorial. Esta questão não será abordada neste texto. Para mais detalhes ver [Bl].

5. Um funcional $S[\phi, \omega]$, a acção, que contém toda a informação dinâmica da teoria e cujos pontos de estacionaridade descrevem as configurações (ϕ, ω) com significado físico.

Observação 16. A acção é um funcional da forma

$$S[\phi, \omega] = \int_X \mathcal{L}(\phi, \omega) \text{ vol},$$
 (5.1)

onde $\mathcal{L}(\phi, \omega) = \mathcal{L}_G(\omega) + \mathcal{L}_M(\phi) + \mathcal{L}_I(\phi, \omega) \in C^{\infty}(X)$ e vol é a forma de voluma canónica em X induzida pela orientação μ e pela métrica \mathbf{g} (ver secção 1.3). A função \mathcal{L}_G só depende de ω e está associada ao campo de gauge livre. Analogamente, \mathcal{L}_M só depende de ϕ e está associada ao campo de matéria livre. O termo \mathcal{L}_I descreve a interacção do campo de gauge com o campo de matéria e depende obviamente dos dois campos.

A construcção destas funções tem por base o **princípio de invariân**cia de gauge, ou seja, a função \mathcal{L} deve ser invariante sob transformações de gauge (ver secção 5.3).

O Cálculo de Variações fornece condições necessárias e suficientes (equações de Euler-Lagrange) para encontrármos os pontos de estacionaridade de S. As equações de Euler-Lagrange são as equações do movimento da teoria.

5.2 Transformações de gauge e espaço das conexões

Seja $G \hookrightarrow P \xrightarrow{\pi} X$ um G-fibrado principal sobre X.

Definição 10. Um automorfismo de $G \hookrightarrow P \xrightarrow{\pi} X$ é um difeomorfismo $f \colon P \to P$ tal que $f(p \cdot g) = f(p) \cdot g$ para todo o $p \in P$ e todo o $g \in G$. Notese que f induz um difeomorfismo $\overline{f} \colon X \to X$ dado por $\overline{f}(\pi(p)) = \pi(f(p))$. Uma transformação de gauge é um automorfismo de $G \hookrightarrow P \xrightarrow{\pi} X$ tal que $\overline{f} = \operatorname{id}_X$.

Denotamos por $\mathsf{GA}(P)$ o conjunto das transformações de gauge. $\mathsf{GA}(P)$ tem estrutura natural de grupo.

Proposição 10. Seja $C(P,G) = \{\tau \colon P \to G \mid \tau(p \cdot g) = g^{-1}\tau(p)g\}$ o grupo com composição $(\tau \circ \tau')(p) = \tau(p)\tau'(p)$. Então existe um isomorfismo natural $C(P,G) \simeq GA(P)$.

Demonstração. Para $\tau \in \mathsf{C}(P,G)$, defina-se $f \colon P \to P$ por $f(p) = p \cdot \tau(p)$. Então $f(p \cdot g) = (p \cdot g) \cdot \tau(p \cdot g) = (p \cdot g) \cdot (g^{-1}\tau(p)g) = (p \cdot \tau(p)) \cdot g = f(p) \cdot g$ e $\overline{f}(\pi(p)) = \pi(p \cdot \tau(p)) = \pi(p)$, logo $\overline{f} = \mathrm{id}_X$ e portanto $f \in \mathsf{GA}(P)$.

Reciprocamente, seja $f \in \mathsf{GA}(P)$ e defina-se $\tau \colon P \to G$ pela relação $f(p) = p \cdot \tau(p)$. Então $(p \cdot g) \cdot \tau(p \cdot g) = f(p \cdot g) = f(p) \cdot g = p \cdot \tau(p)g \Rightarrow \tau(p \cdot g) = g^{-1}\tau(p)g \Rightarrow \tau \in \mathsf{C}(P,G)$.

Finalmente, se $f, f' \in \mathsf{GA}(P)$, temos $(f \circ f')(p) = f(p \cdot \tau'(p)) = f(p) \cdot \tau'(p) = p \cdot \tau(p)\tau'(p) = p \cdot (\tau \circ \tau')(p)$.

Proposição 11. Se $f \in GA(P)$ e ω é uma conexão em $G \hookrightarrow P \xrightarrow{\pi} X$, então $f^*\omega$ também é uma conexão em $G \hookrightarrow P \xrightarrow{\pi} X$.

Demonstração. Seja $A^{\#}$ o campo vectorial fundamental em P induzido por $A\in \mathfrak{g}.$ Então

$$(f^*\omega)_p(A_p^\#) = \omega_{f(p)}(f_{*p}A_p^\#)$$

$$= \omega_{f(p)}(f_{*p}\frac{d}{dt}p \cdot \exp(tA) \mid_{t=0})$$

$$= \omega_{f(p)}(\frac{d}{dt}f(p \cdot \exp(tA)) \mid_{t=0})$$

$$= \omega_{f(p)}(\frac{d}{dt}f(p) \cdot \exp(tA) \mid_{t=0})$$

$$= \omega_{f(p)}(A_{f(p)}^\#)$$

$$= A.$$

Além disso,

$$(\sigma_g)^*(f^*\boldsymbol{\omega}) = (f \circ \sigma_g)^*\boldsymbol{\omega}$$

$$= (\sigma_g \circ f)^*\boldsymbol{\omega}$$

$$= f^*(\sigma_g)^*\boldsymbol{\omega}$$

$$= f^*(\operatorname{Ad}_{g^{-1}} \circ \boldsymbol{\omega})$$

$$= \operatorname{Ad}_{g^{-1}} \circ (f^*\boldsymbol{\omega}).$$

Proposição 12. Se $f \in GA(P)$ e $\rho: G \to GL(V)$ é uma representação, então $f^*: \Lambda_{\rho}^k(P, V) \to \Lambda_{\rho}^k(P, V)$ é um isomorfismo linear para todo o $k = 0, 1, \ldots, \dim P$.

Demonstração. Seja $\varphi \in \Lambda_{\rho}^{k}(P, \mathcal{V})$. Pela proposição 11, $f_{*}A^{\#} = A^{\#}$, logo

$$(f^*\varphi)(A^\#,\ldots) = \varphi(f_*A^\#,\ldots) = \varphi(A^\#,\ldots) = 0.$$

Além disso,

$$(\sigma_g)^*(f^*\boldsymbol{\varphi}) = f^*(\sigma_g^*\boldsymbol{\varphi}) = f^*(g^{-1} \cdot \boldsymbol{\varphi}) = g^{-1} \cdot (f^*\boldsymbol{\varphi}),$$

e portanto $f^*\varphi\in\Lambda^k_\rho(P,\mathcal{V})$. Como $f\colon P\to P$ é um dife
omorfismo, f^* é um isomorfismo linear.

Seja \mathcal{C} o conjunto das conexões em $G \hookrightarrow P \xrightarrow{\pi} X$. Claramente $\mathcal{C} \neq \Lambda^1_{\mathrm{Ad}}(P,\mathfrak{g})$. Contudo, \mathcal{C} está relacionado com $\Lambda^1_{\mathrm{Ad}}(P,\mathfrak{g})$ através da seguinte

Proposição 13. Se $\omega \in \mathcal{C}$, então a aplicação

$$\Lambda^{1}_{\mathrm{Ad}}(P,\mathfrak{g}) \to \mathcal{C} \\
\varphi \mapsto \varphi + \boldsymbol{\omega}$$

é uma bijecção.

Demonstração. Para $A \in \mathfrak{g}$, $(\varphi + \omega)(A^{\#}) = \varphi(A^{\#}) + \omega(A^{\#}) = A$. Além disso, $(\sigma_g)^*(\varphi + \omega) = (\sigma_g)^*\varphi + (\sigma_g)^*(\omega) = \operatorname{Ad}_{g^{-1}} \circ (\varphi + \omega)$, logo $\varphi + \omega \in \mathcal{C}$. Reciprocamente, se $\omega' \in \mathcal{C}$, $\omega - \omega' \in \Lambda^1_{\operatorname{Ad}}(P, \mathfrak{g})$.

Observação 17. Se $\varphi \in \Lambda^1_{Ad}(P, \mathfrak{g})$, a curva $\gamma \colon \mathbb{R} \to \mathcal{C}$, $\gamma(t) = \omega + t\varphi$ verifica $\dot{\gamma}(0) = \varphi$, logo podemos pensar em $\Lambda^1_{Ad}(P, \mathfrak{g})$ como o "espaço tangente $T_{\omega}(\mathcal{C})$ " à "variedade" \mathcal{C} em ω .

As proposições 11 e 12 dizem-nos que o grupo de transformações de gauge $\mathsf{GA}(P)$ age em \mathcal{C} e em $\Lambda^k_\rho(P,\mathcal{V})$. Vamos reescrever esta acção em termos de $\mathsf{C}(P,G) \simeq \mathsf{GA}(P)$.

Lema 5. Sejam $f \in GA(P)$, $\tau \in C(P,G)$, tais que $f(p) = p \cdot \tau(p)$, $\forall p \in P$. Se $X \in T_p(P)$, então

$$f_{*p}(X) = (\sigma_{\tau(p)})_{*p}(X) + ((L_{\tau(p)^{-1}})_{*\tau(p)} \circ \tau_{*p}(X))_{f(p)}^{\#}.$$
 (5.2)

Demonstração. Seja $\gamma\colon (-\varepsilon,\varepsilon)\to P$ uma curva tal que $\gamma(0)=p,\,\dot{\gamma}(0)=X.$ Então

$$f_{*p}(X) = \frac{d}{dt} f(\gamma(t)) |_{t=0}$$

$$= \frac{d}{dt} \gamma(t) \cdot \tau(\gamma(t)) |_{t=0}$$

$$= \frac{d}{dt} p \cdot \tau(\gamma(t)) |_{t=0} + \frac{d}{dt} \gamma(t) \cdot \tau(p) |_{t=0}$$

$$= \frac{d}{dt} p \cdot \tau(p) \tau(p)^{-1} \tau(\gamma(t)) |_{t=0} + \frac{d}{dt} \sigma_{\tau(p)}(\gamma(t)) |_{t=0}$$

$$= \frac{d}{dt} f(p) \cdot \tau(p)^{-1} \tau(\gamma(t)) |_{t=0} + (\sigma_{\tau(p)})_{*p}(X)$$

$$= ((L_{\tau(p)^{-1}})_{*\tau(p)} \circ \tau_{*p}(X))_{f(p)}^{\#} + (\sigma_{\tau(p)})_{*p}(X).$$

Corolário 2. Se $\omega \in \mathcal{C}$, $f \in GA(P)$ e $\tau \in C(P,G)$ tais que $f(p) = p \cdot \tau(p)$, $\forall p \in P$, então

$$(f^*\omega)_p = (L_{\tau(p)^{-1}})_{*p} \circ \tau_{*p} + \mathrm{Ad}_{\tau(p)^{-1}} \circ \omega_p.$$
 (5.3)

Demonstração. Aplicando $\omega_{f(p)}$ a ambos os membros da equação (5.2),

$$(f^*\omega)_p(X) = \omega_{f(p)}(f_{*p}(X))$$

$$= (L_{\tau(p)^{-1}})_{*p} \circ \tau_{*p}(X) + (\sigma_{\tau(p)}^*\omega)_p(X)$$

$$= (L_{\tau(p)^{-1}})_{*p} \circ \tau_{*p}(X) + \operatorname{Ad}_{\tau(p)^{-1}} \circ \omega_p(X).$$

Corolário 3. Se $\varphi \in \Lambda_{\rho}^{k}(P, \mathcal{V})$, $f \in GA(P)$ e $\tau \in C(P, G)$ tais que $f(p) = p \cdot \tau(p)$, $\forall p \in P$, então

$$(f^*\boldsymbol{\varphi})_p = \tau(p)^{-1} \cdot \boldsymbol{\varphi}_p. \tag{5.4}$$

Demonstração. Aplicando $\varphi_{f(p)}$ a ambos os membros da equação (5.2),

$$(f^*\varphi)_p(X,\ldots) = \varphi_{f(p)}(f_{*p}(X),\ldots)$$

$$= (\sigma^*_{\tau(p)}\varphi)_p(X,\ldots)$$

$$= \tau(p)^{-1} \cdot \varphi_p(X,\ldots).$$

5.3 Lagrangeanos e invariância de gauge

Seja $G \hookrightarrow P \xrightarrow{\pi} X$ um G-fibrado principal sobre X e $\rho: G \to GL(\mathcal{V})$ uma representação de G no espaço vectorial real \mathcal{V} . Consideremos o conjunto

$$J(P, \mathcal{V}) = \{(p, v, \boldsymbol{\theta}_p) \mid p \in P, v \in \mathcal{V}, \boldsymbol{\theta}_p : T_p(P) \to \mathcal{V} \text{ linear}\}$$

É fácil ver que $J(P, \mathcal{V})$ tem estrutura natural de variedade.

Definição 11. Um Lagrangeano é uma aplicação $L: J(P, V) \to \mathbb{R}$ tal que

$$L(p \cdot g, g^{-1} \cdot v, g^{-1} \cdot \boldsymbol{\theta}_p \circ (\sigma_{g^{-1}})_{*p \cdot g}) = L(p, v, \boldsymbol{\theta}_p)$$

para todo o $g \in G$ e todo o $(p, v, \boldsymbol{\theta}_p) \in J(P, \mathcal{V})$.

Teorema 9. Um Lagrangeano $L: J(P, \mathcal{V}) \to \mathbb{R}$ induz uma única aplicação $\mathcal{L}_M: \Lambda^0_\rho(P, \mathcal{V}) \to C^\infty(X)$ dada por

$$\mathcal{L}_M(\phi)(x) = L(p, \phi(p), d\phi_p),$$

onde $\phi \in \Lambda^0_{\rho}(P, \mathcal{V}), x \in X, p \in \pi^{-1}(x)$. A função $\mathcal{L}_M(\phi)$ chama-se o **Lagrangeano do campo de matéria** ϕ .

Demonstração. Basta mostrar que $L(p,\phi(p),d\phi_p)$ é independente da escolha de $p \in \pi^{-1}(x)$. Como $\phi \circ \sigma_g = g^{-1} \cdot \phi$ temos $\phi_{*p\cdot g} \circ (\sigma_g)_{*p} = g^{-1} \cdot \phi_{*p}$, ou seja $d\phi_{p\cdot g} = g^{-1} \cdot d\phi_p \circ (\sigma_{g^{-1}})_{*p\cdot g}$. Então $L(p\cdot g,\phi(p\cdot g),d\phi_{p\cdot g}) = L(p\cdot g,g^{-1}\cdot \phi(p),g^{-1}\cdot d\phi_p \circ (\sigma_{g^{-1}})_{*p\cdot g}) = L(p,\phi(p),d\phi_p)$, onde se usou o facto de L ser um Lagrangeano.

Definição 12. Um Lagrangeano $L: J(P, V) \to \mathbb{R}$ diz-se G-invariante se satisfaz

$$L(p, g \cdot v, g \cdot \boldsymbol{\theta}_p) = L(p, v, \boldsymbol{\theta}_p),$$

para todo o $g \in G$ e todo o $(p, v, \theta_p) \in J(P, V)$.

Teorema 10. Se $L: J(P, \mathcal{V}) \to \mathbb{R}$ é um Lagrangeano G-invariante, então $\mathcal{L}_M(\phi)$ não é necessariamente invariante de gauge.

Demonstração. Sejam $f \in \mathsf{GA}(P), \ \tau \in \mathsf{C}(P,G)$ tais que $f(p) = p \cdot \tau(p), \ \forall p \in P \ \mathrm{e} \ \gamma \colon (-\varepsilon,\varepsilon) \to P$ uma curva tal que $\gamma(0) = p, \ \dot{\gamma}(0) = X$. Então

$$d(f^*\phi)_p(X) = d(\tau^{-1} \cdot \phi)_p(X)$$

$$= \frac{d}{dt} \tau(\gamma(t))^{-1} \cdot \phi(\gamma(t)) \mid_{t=0}$$

$$= \frac{d}{dt} \tau(p)^{-1} \cdot \phi(\gamma(t)) \mid_{t=0} + \frac{d}{dt} \tau(\gamma(t))^{-1} \cdot \phi(p) \mid_{t=0}$$

$$= \tau(p)^{-1} \cdot d\phi_p(X) + \frac{d}{dt} \tau(\gamma(t))^{-1} \tau(p)^{-1} \tau(p) \cdot \phi(p) \mid_{t=0}$$

$$= \tau(p)^{-1} \cdot d\phi_p(X) + (R_{\tau(p)})_{*\tau(p)^{-1}} \circ i_{*\tau(p)} \circ \tau_{*p}(X) \cdot \phi(p),$$

onde $i: G \to G$ denota a operação inversão no grupo G. Então

$$\mathcal{L}_{M}(f^{*}\phi)(x) = L(p, (f^{*}\phi)(p), d(f^{*}\phi)_{p})$$

$$= L(p, \tau(p)^{-1} \cdot \phi(p), \tau(p)^{-1} \cdot d\phi_{p} + (R_{\tau(p)})_{*\tau(p)^{-1}} \circ i_{*\tau(p)} \circ \tau_{*p}(.) \cdot (f^{*}\phi)(p))$$

e o segundo termo na terceira entrada de L quebra a invariância de gauge de \mathcal{L}_M .

O teorema anterior mostra que não é possível implementar o princípio de invariância de gauge quando só existe um campo de matéria. Este problema pode ser resolvido se adicionármos um campo de gauge, ou seja, introduzindo uma conexão ω em $G \hookrightarrow P \xrightarrow{\pi} X$.

Teorema 11. Se $L \colon J(P, \mathcal{V}) \to \mathbb{R}$ é um Lagrangeano G-invariante, então a aplicação

$$\mathcal{L}_M + \mathcal{L}_I : \Lambda^0_\rho(P, \mathcal{V}) \times \mathcal{C} \to C^\infty(X)$$

definida por

$$(\mathcal{L}_M + \mathcal{L}_I)(\phi, \boldsymbol{\omega})(x) = L(p, \phi(p), (d^{\boldsymbol{\omega}}\phi)_p),$$
 (5.5)

está bem definida e é invariante de gauge.

Demonstração. Para mostrármos que $\mathcal{L}_M + \mathcal{L}_I$ está bem definida basta mostrar que L é independente da escolha de $p \in \pi^{-1}(x)$. Mas $(d^{\omega}\phi)_{p\cdot g} \circ (\sigma_g)_{*p} = (\sigma_g)_{*p}^* (d^{\omega}\phi)_{p\cdot g} = g^{-1} \cdot (d^{\omega}\phi)_p$, logo $(d^{\omega}\phi)_{p\cdot g} = g^{-1} \cdot (d^{\omega}\phi)_p \circ (\sigma_{g^{-1}})_{*p\cdot g}$. Então

 $L(p \cdot g, \phi(p \cdot g), (d^{\boldsymbol{\omega}}\phi)_{p \cdot g}) = L(p \cdot g, g^{-1} \cdot \phi(p), g^{-1} \cdot (d^{\boldsymbol{\omega}}\phi)_p \circ (\sigma_{g^{-1}})_{*p \cdot g}) = L(p, \phi(p), (d^{\boldsymbol{\omega}}\phi)_p)$, e portanto $\mathcal{L}_M + \mathcal{L}_I$ está bem definida. Note-se que só usámos o facto de L ser um Lagrangeano. Mostremos agora que $\mathcal{L}_M + \mathcal{L}_I$ é invariante de gauge. Para $f \in \mathsf{GA}(P)$,

$$(\mathcal{L}_{M} + \mathcal{L}_{I})(f^{*}\phi, f^{*}\boldsymbol{\omega})(x) = L(p, (f^{*}\phi)(p), (d^{f^{*}\boldsymbol{\omega}}f^{*}\phi)_{p})$$

$$= L(p, \tau(p)^{-1} \cdot \phi(p), d(f^{*}\phi)_{p} + (f^{*}\boldsymbol{\omega}\dot{\wedge}f^{*}\phi)_{p})$$

$$= L(p, \tau(p)^{-1} \cdot \phi(p), (f^{*}d\phi)_{p} + (f^{*}(\boldsymbol{\omega}\dot{\wedge}\phi))_{p})$$

$$= L(p, \tau(p)^{-1} \cdot \phi(p), (f^{*}d^{\boldsymbol{\omega}}\phi)_{p})$$

$$= L(p, \tau(p)^{-1} \cdot \phi(p), \tau(p)^{-1} \cdot (d^{\boldsymbol{\omega}}\phi)_{p})$$

$$= L(p, \phi(p), (d^{\boldsymbol{\omega}}\phi)_{p})$$

$$= (\mathcal{L}_{M} + \mathcal{L}_{I})(\phi, \boldsymbol{\omega})(x),$$

e portanto $\mathcal{L}_M + \mathcal{L}_I$ é invariante de gauge. Note-se que usámos o facto de L ser G-invariante.

5.4 Princípio da acção mínima

A formulação moderna de qualquer teoria de campo clássica tem como ponto de partida um funcional S, a acção, que depende dos campos clássicos presentes na teoria. Em particular, uma teoria de gauge clássica tem uma acção da forma

$$S[\phi, \boldsymbol{\omega}] = \int_X \mathcal{L}(\phi, \boldsymbol{\omega}) \text{ vol},$$
 (5.6)

onde $\mathcal{L}(\phi, \omega) = \mathcal{L}_G(\omega) + \mathcal{L}_M(\phi) + \mathcal{L}_I(\phi, \omega)$ é o Lagrangeano total.

Na secção anterior construimos a função $(\mathcal{L}_M + \mathcal{L}_I)(\phi, \boldsymbol{\omega})$, correspondente ao campo de matéria e à sua interacção com o campo de gauge, impondo invariância sob transformações de gauge. A invariância de gauge no Lagrangeano total $\mathcal{L}(\phi, \boldsymbol{\omega})$ é então assegurada sse o termo $\mathcal{L}_G(\boldsymbol{\omega})$, correspondente ao campo de gauge livre, for também invariante de gauge. Para construirmos a função $\mathcal{L}_G(\boldsymbol{\omega})$ teremos de introduzir algumas estruturas geométricas adicionais no fibrado principal $G \hookrightarrow P \xrightarrow{\pi} X$ (ver secção 5.7).

Note-se que a equação (5.6) não está necessariamente bem definida pois se X for uma variedade não compacta, o integral pode divergir. De forma a ultrapassar esta questão de carácter técnico, introduzimos o conceito de acção sobre um conjunto aberto com fecho compacto.

Seja $V\subset X$ um conjunto aberto tal que \overline{V} é compacto. Define-se a **acção** sobre V por

 $S_V[\phi, \boldsymbol{\omega}] = \int_V \mathcal{L}(\phi, \boldsymbol{\omega}) \text{ vol } \in \mathbb{R}.$

Para $\sigma \in \Lambda_{\rho}^{0}(P, \mathcal{V})$ (respectivamente $\boldsymbol{\tau} \in \Lambda_{\mathrm{Ad}}^{1}(P, \mathfrak{g})$) define-se o **suporte projectado de** σ (respectivamente $\boldsymbol{\tau}$) como o fecho do conjunto $\{\pi(p) \in X \mid \sigma(p) \neq 0\}$ (respectivamente $\{\pi(p) \in X \mid \boldsymbol{\tau}_p \neq 0\}$).

Definição 13. O par (ϕ, ω) é estacionário relativamente a \mathcal{L} se para todos os conjuntos abertos $V \subset X$ com fecho compacto e $\sigma \in \Lambda^0_{\rho}(P, \mathcal{V})$, $\tau \in \Lambda^1_{\mathrm{Ad}}(P, \mathfrak{g})$ com suportes projectados contidos em V, temos

$$\frac{d}{dt} \int_{V} \mathcal{L}(\phi + t\sigma, \boldsymbol{\omega} + t\boldsymbol{\tau}) \text{ vol } |_{t=0} = 0.$$
 (5.7)

Equivalentemente, dizemos que (ϕ, ω) satisfaz o **princípio da acção mínima**.

Nas secções seguintes mostraremos que o par (ϕ, ω) satisfaz o princípio da acção mínima sse obedece a um conjunto de equações diferenciais em P (equações de Euler-Lagrange).

5.5 Digressão geométrica

Seja \mathcal{V} um espaço vectorial real com produto interno h, X uma variedade n-dimensional orientável, com orientação μ e equipada com uma métrica pseudo-Riemanniana \boldsymbol{g} , vol a forma de volume canónica em X induzida por μ e \boldsymbol{g} e $G \hookrightarrow P \xrightarrow{\pi} X$ um G-fibrado principal sobre X.

O produto interno \mathbf{g}_x em $T_x(X)$ induz um produto interno \mathbf{g}_p no subespaço horizontal $H_p(P) \subset T_p(P), \ p \in \pi^{-1}(x)$, através do isomorfismo linear $\pi_{*p} \mid_{H_p(P)} \colon H_p(P) \to T_x(X)$. Analogamente, induzimos uma forma de volume $\mathbf{vol}_p \in \Lambda^n(H_p(P))$ a partir da forma de volume $\mathbf{vol}_x \in \Lambda^n(T_x(X))$. Temos então um operador de Hodge

$$\tilde{*}_p: \Lambda^k(\mathcal{H}_p(P)) \to \Lambda^{n-k}(\mathcal{H}_p(P)), \qquad k = 0, 1, \dots, n,$$

definido por

$$oldsymbol{lpha}_p \wedge {}^{ ilde{st}_p} oldsymbol{eta}_p = oldsymbol{g}(oldsymbol{lpha}_p, oldsymbol{eta}_p) \,\, ext{vol}_p$$

para $\alpha_p, \beta_p \in \Lambda^k(H_p(P))$, ou equivalentemente $\tilde{*}_p \circ (\pi_{*p})^* = (\pi_{*p})^* \circ *_x$.

Usando a definição anterior, podemos introduzir um operador de Hodge $\overline{}$ na variedade P da seguinte forma: para $\varphi \in \Lambda_{\rho}^{k}(P, \mathcal{V})$ e $p \in P$, define-se $(\overline{}\varphi)_{p}$ como a única extensão de $\tilde{}_{p}(\varphi_{p}|_{\mathrm{H}_{p}(P)})$ a uma (n-k)-forma em $T_{p}(P)$ com valores em \mathcal{V} que se anula nos vectores verticais. Por outras palavras, $\overline{}\varphi$ é a única forma diferencial em $\Lambda_{\rho}^{n-k}(P, \mathcal{V})$ tal que $(\overline{}\varphi)_{p}|_{\mathrm{H}_{p}(P)} = \tilde{}_{p}(\varphi_{p}|_{\mathrm{H}_{p}(P)})$.

Proposição 14. Se $\varphi \in \Lambda_{\rho}^{k}(P, V)$ e $s: V \to \pi^{-1}(V)$ é uma secção local, então $s^{*}(\overline{}^{*}\varphi) = {}^{*}s^{*}(\varphi)$.

$$Demonstração.$$
 [Bl, pp. 56].

Usando os produtos internos \boldsymbol{g}_p em $H_p(P)$ e h em \mathcal{V} podemos definir um produto interno $(\boldsymbol{g}_p h)$ em $\Lambda^k(H_p(P), \mathcal{V}), k = 0, 1, \ldots, n$, tal como no apêndice (ver equação (A.13)) .

Teorema 12. A aplicação

$$(\boldsymbol{g}h) \colon \Lambda^k_{\rho}(P, \mathcal{V}) \times \Lambda^k_{\rho}(P, \mathcal{V}) \to C^{\infty}(X)$$

dada por

$$(\boldsymbol{g}h)(\boldsymbol{\alpha},\boldsymbol{\beta})(x) = (\boldsymbol{g}_{p}h)(\boldsymbol{\alpha}_{p}\mid_{\mathbf{H}_{p}(P)},\boldsymbol{\beta}_{p}\mid_{\mathbf{H}_{p}(P)}), \qquad p \in \pi^{-1}(x),$$
 (5.8)

está bem definida.

$$Demonstração.$$
 [Bl, pp. 57].

Observação 18. Note-se que existe também uma função

$$(gh): \Lambda^k(X, \mathcal{V}) \times \Lambda^k(X, \mathcal{V}) \to C^{\infty}(X)$$

dada por

$$(\boldsymbol{g}h)(\boldsymbol{\alpha},\boldsymbol{\beta})(x) = (\boldsymbol{g}_x h)(\boldsymbol{\alpha}_x,\boldsymbol{\beta}_x), \qquad x \in X.$$
 (5.9)

Definição 14. Se $\varphi \in \Lambda^k_{\rho}(P, \mathcal{V})$, define-se a coderivada covariante de φ por

$$\delta^{\omega} \varphi = (-1)^{n(k+1)+s+1} \overline{*} d^{\omega} \overline{*} \varphi \in \Lambda_{\rho}^{k-1}(P, \mathcal{V}), \tag{5.10}$$

onde s é o índice da métrica g em X.

Observação 19. Se X é um espaço-tempo, então n=4 e s é impar, logo $\delta^{\omega} = \overline{} d^{\omega} \overline{}$.

Teorema 13. Sejam $V \subset X$ um conjunto aberto com fecho compacto, $\alpha \in \Lambda_{\rho}^{k}(P, \mathcal{V})$ com suporte projectado contido em $V \in \beta \in \Lambda_{\rho}^{k+1}(P, \mathcal{V})$. Então

$$\int_{V} (\boldsymbol{g}h)(d^{\boldsymbol{\omega}}\boldsymbol{\alpha},\boldsymbol{\beta}) \text{ vol} = \int_{V} (\boldsymbol{g}h)(\boldsymbol{\alpha},\delta^{\boldsymbol{\omega}}\boldsymbol{\beta}) \text{ vol}.$$
 (5.11)

Demonstração. [Bl, pp. 58].

5.6 A corrente

Seja $L\colon J(P,\mathcal{V})\to\mathbb{R}$ um Lagrangeano. Para $(p,v,\pmb{\theta}_p)\in J(P,\mathcal{V})$ define-se $\nabla_3 L(p,v,\pmb{\theta}_p)\in\Lambda^1(T_p(P),\mathcal{V})^{\mathrm{H}}$ pela equação

$$(\boldsymbol{g}_p h)(\nabla_3 L(p, v, \boldsymbol{\theta}_p), \boldsymbol{\beta}_p) = \frac{d}{dt} L(p, v, \boldsymbol{\theta}_p + t\boldsymbol{\beta}_p) \mid_{t=0},$$
 (5.12)

onde $\beta_p \in \Lambda^1_{\rho}(T_p(P), \mathcal{V})$. Se $\phi \in \Lambda^0_{\rho}(P, \mathcal{V})$ definimos $\partial L/\partial (d^{\omega}\phi) \in \Lambda^1(P, \mathcal{V})$ por

$$\left(\frac{\partial L}{\partial (d^{\omega}\phi)}\right)_{p} = \nabla_{3}L(p,\phi(p),(d^{\omega}\phi)_{p}).$$
(5.13)

Teorema 14. $\frac{\partial L}{\partial (d^{\omega}\phi)} \in \Lambda^1_{\rho}(P, \mathcal{V}).$

Demonstração. $\left(\frac{\partial L}{\partial (d^\omega \phi)}\right)_p$ anula-se em $\mathbf{V}_p(P)$ por definição. Basta mostrar

que $\partial L/\partial (d^{\omega}\phi)$ é pseudotensorial do tipo ρ . Se $\beta \in \Lambda^1_{\rho}(P, \mathcal{V})$, então

$$(\boldsymbol{g}_{p}h)\left(g \cdot \left(\frac{\partial L}{\partial(d^{\boldsymbol{\omega}}\phi)}\right)_{p \cdot g} \circ (\sigma_{g})_{*p}, \boldsymbol{\beta}_{p}\right) =$$

$$= (\boldsymbol{g}_{p \cdot g}h)\left(\left(\frac{\partial L}{\partial(d^{\boldsymbol{\omega}}\phi)}\right)_{p \cdot g}, g^{-1} \cdot \boldsymbol{\beta}_{p} \circ (\sigma_{g^{-1}})_{*p \cdot g}\right)$$

$$= (\boldsymbol{g}_{p \cdot g}h)\left(\left(\frac{\partial L}{\partial(d^{\boldsymbol{\omega}}\phi)}\right)_{p \cdot g}, \boldsymbol{\beta}_{p \cdot g}\right)$$

$$= (\boldsymbol{g}_{p \cdot g}h)(\nabla_{3}L(p \cdot g, \phi(p \cdot g), (d^{\boldsymbol{\omega}}\phi)_{p \cdot g}), \boldsymbol{\beta}_{p \cdot g})$$

$$= \frac{d}{dt}L(p \cdot g, \phi(p \cdot g), (d^{\boldsymbol{\omega}}\phi + t\boldsymbol{\beta})_{p \cdot g}) \mid_{t=0}$$

$$= \frac{d}{dt}L(p \cdot g, g^{-1} \cdot \phi(p), g^{-1} \cdot (d^{\boldsymbol{\omega}}\phi + t\boldsymbol{\beta})_{p} \circ (\sigma_{g^{-1}})_{*p \cdot g}) \mid_{t=0}$$

$$= \frac{d}{dt}L(p, \phi(p), (d^{\boldsymbol{\omega}}\phi + t\boldsymbol{\beta})_{p}) \mid_{t=0}$$

$$= (\boldsymbol{g}_{p}h)\left(\left(\frac{\partial L}{\partial(d^{\boldsymbol{\omega}}\phi)}\right)_{p}, \boldsymbol{\beta}_{p}\right),$$

onde se usaram os factos de $(\sigma_g)_{*p}$: $H_p(P) \to H_{p\cdot g}(P)$ ser uma isometria relativamente a $(\boldsymbol{g}_p h)$, $\rho \colon G \to GL(\mathcal{V})$ ser ortogonal relativamente a h e portanto a $(\boldsymbol{g}_p h)$ e L ser um Lagrangeano.

Para $(p, v, \theta_p) \in J(P, V)$ define-se $\nabla_2 L(p, v, \theta_p) \in V$ pela equação

$$h(\nabla_2 L(p, v, \boldsymbol{\theta}_p), w) = \frac{d}{dt} L(p, v + tw, \boldsymbol{\theta}_p) \mid_{t=0},$$
 (5.14)

onde $w \in \mathcal{V}$. Se $\phi \in \Lambda^0_{\rho}(P, \mathcal{V})$ definimos $\partial L/\partial \phi \in \Lambda^0(P, \mathcal{V})$ por

$$\left(\frac{\partial L}{\partial \phi}\right)_p = \nabla_2 L(p, \phi(p), (d^{\omega}\phi)_p). \tag{5.15}$$

Teorema 15. $\frac{\partial L}{\partial \phi} \in \Lambda^0_{\rho}(P, \mathcal{V})$.

Demonstração.

$$h\left(\left(\frac{\partial L}{\partial \phi}\right)_{p \cdot g}, w\right) =$$

$$= h(\nabla_2 L(p \cdot g, \phi(p \cdot g), (d^{\omega}\phi)_{p \cdot g}), w)$$

$$= \frac{d}{dt} L(p \cdot g, g^{-1} \cdot \phi(p) + tw, (d^{\omega}\phi)_{p \cdot g}) |_{t=0}$$

$$= \frac{d}{dt} L(p \cdot g, g^{-1} \cdot (\phi(p) + tg \cdot w), g^{-1} \cdot (d^{\omega}\phi)_p \circ (\sigma_{g^{-1}})_{*p \cdot g}) |_{t=0}$$

$$= \frac{d}{dt} L(p, \phi(p) + tg \cdot w, (d^{\omega}\phi)_p) |_{t=0}$$

$$= h\left(\left(\frac{\partial L}{\partial \phi}\right)_p, g \cdot w\right)$$

$$= h\left(g^{-1} \cdot \left(\frac{\partial L}{\partial \phi}\right)_p, w\right).$$

Seja $\kappa \colon \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ um produto interno ortogonal relativamente à representação adjunta Ad: $G \to GL(\mathfrak{g})$. Como caso particular do teorema 12 temos a aplicação

$$(\boldsymbol{g}\kappa) \colon \Lambda^k_{\mathrm{Ad}}(P,\mathfrak{g}) \times \Lambda^k_{\mathrm{Ad}}(P,\mathfrak{g}) \to C^{\infty}(X).$$
 (5.16)

Definição 15. Se $\boldsymbol{\omega} \in \mathcal{C}$, $\phi \in \Lambda^0_{\rho}(P, \mathcal{V})$, define-se a **corrente** $J^{\boldsymbol{\omega}}(\phi) \in \Lambda^1(P, \mathfrak{g})^{\mathrm{H}}$ pela equação

$$(\boldsymbol{g}_p h) \left(\left(\frac{\partial L}{\partial (d^{\boldsymbol{\omega}} \phi)} \right)_p, (\boldsymbol{\tau} \dot{\wedge} \phi)_p \right) = (\boldsymbol{g} \kappa) (\boldsymbol{J}^{\boldsymbol{\omega}} (\phi)_p, \boldsymbol{\tau}_p),$$
 (5.17)

onde $\tau \in \Lambda^1_{\mathrm{Ad}}(P,\mathfrak{g})$.

Observação 20. Pode mostrar-se que $J^{\omega}(\phi) \in \Lambda^1_{Ad}(P, \mathfrak{g})$ (ver [Bl, pp. 66]) Teorema 16. Seja $\{e_1, \ldots, e_l\}$ uma base de \mathfrak{g} e (κ^{ij}) a matriz inversa de $(\kappa_{ij}) = (\kappa(e_i, e_j))$. Então

$$\boldsymbol{J}^{\boldsymbol{\omega}}(\phi)_{p}(X) = \kappa^{ij} h\left(\left(\frac{\partial L}{\partial (d^{\boldsymbol{\omega}}\phi)_{p}}\right)(X), e_{i} \cdot \phi(p)\right) e_{j}, \tag{5.18}$$

para $X \in T_p(P)$.

Demonstração. Seja $\boldsymbol{\tau}_p = \boldsymbol{\tau}_p^k \otimes e_k \in \Lambda^1_{\mathrm{Ad}}(T_p(P),\mathfrak{g})$. Então

$$(\boldsymbol{g}_{p}\kappa)\left(\kappa^{ij}h\left(\left(\frac{\partial L}{\partial(d^{\omega}\phi)}\right)_{p}(X),e_{i}\cdot\phi(p)\right)e_{j},\boldsymbol{\tau}_{p}^{k}(X)e_{k}\right) =$$

$$= h\left(\left(\frac{\partial L}{\partial(d^{\omega}\phi)}\right)_{p}(X),e_{i}\cdot\phi(p)\right)\boldsymbol{\tau}_{p}^{i}(X)$$

$$= h\left(\left(\frac{\partial L}{\partial(d^{\omega}\phi)}\right)_{p}(X),\boldsymbol{\tau}_{p}(X)\cdot\phi(p)\right)$$

$$= (\boldsymbol{g}_{p}h)\left(\left(\frac{\partial L}{\partial(d^{\omega}\phi)}\right)_{p}(X),(\boldsymbol{\tau}\dot{\wedge}\phi)_{p}(X)\right)$$

$$= (\boldsymbol{g}_{p}\kappa)(\boldsymbol{J}^{\omega}(\phi)_{p}(X),\boldsymbol{\tau}_{p}(X)).$$

Teorema 17. A corrente $J^{\omega}(\phi)$ associada ao par (ϕ, ω) satisfaz

$$\frac{d}{dt} (\mathcal{L}_M + \mathcal{L}_I)(\phi, \boldsymbol{\omega} + t\boldsymbol{\tau}) \mid_{t=0} = (\boldsymbol{g}\kappa)(\boldsymbol{J}^{\boldsymbol{\omega}}(\phi), \boldsymbol{\tau}),$$
 (5.19)

para todo o $\tau \in \Lambda^1_{\mathrm{Ad}}(P,\mathfrak{g})$.

Demonstração. Para $p \in \pi^{-1}(x)$ temos

$$\frac{d}{dt} (\mathcal{L}_{M} + \mathcal{L}_{I})(\phi, \boldsymbol{\omega} + t\boldsymbol{\tau})(x) \mid_{t=0} =
= \frac{d}{dt} L(p, \phi(p), (d^{\boldsymbol{\omega}+t\boldsymbol{\tau}}\phi)_{p}) \mid_{t=0}
= \frac{d}{dt} L(p, \phi(p), (d\phi + \boldsymbol{\omega}\dot{\wedge}\phi + t\boldsymbol{\tau}\dot{\wedge}\phi)_{p}) \mid_{t=0}
= (\boldsymbol{g}_{p}h)(\nabla_{3}L(p, \phi(p), (d^{\boldsymbol{\omega}}\phi)_{p}), (\boldsymbol{\tau}\dot{\wedge}\phi)_{p})
= (\boldsymbol{g}_{p}h) \left(\left(\frac{\partial L}{\partial (d^{\boldsymbol{\omega}}\phi)} \right)_{p}, (\boldsymbol{\tau}\dot{\wedge}\phi)_{p} \right)
= (\boldsymbol{g}_{p}\kappa)(\boldsymbol{J}^{\boldsymbol{\omega}}(\phi)_{p}, \boldsymbol{\tau}_{p})
= (\boldsymbol{g}\kappa)(\boldsymbol{J}^{\boldsymbol{\omega}}(\phi), \boldsymbol{\tau})(x).$$

5.7 Equações do movimento

Antes de estabelecermos as equações do movimento, vamos introduzir o Lagrangeano \mathcal{L}_G associado ao campo de gauge livre. A definição é a seguinte:

$$\mathcal{L}_G: \quad \mathcal{C} \quad \to \quad C^{\infty}(X) \\ \boldsymbol{\omega} \quad \mapsto \quad \mathcal{L}_G(\boldsymbol{\omega}) = -\frac{1}{2} \; (\boldsymbol{g}\kappa)(\boldsymbol{\Omega}^{\boldsymbol{\omega}}, \boldsymbol{\Omega}^{\boldsymbol{\omega}}), \tag{5.20}$$

onde $(\boldsymbol{g}\kappa)$ é a aplicação (5.16) definida na secção anterior. O Lagrangeano total é então a aplicação

$$\mathcal{L} \colon \Lambda^0_{\rho}(P, \mathcal{V}) \times \mathcal{C} \to C^{\infty}(X)$$

dada por

$$\mathcal{L}(\phi, \boldsymbol{\omega}) = -\frac{1}{2} \left(\boldsymbol{g} \kappa \right) (\Omega^{\boldsymbol{\omega}}, \Omega^{\boldsymbol{\omega}}) + (\mathcal{L}_M + \mathcal{L}_I)(\phi, \boldsymbol{\omega}). \tag{5.21}$$

Teorema 18. O par (ϕ, ω) satisfaz o princípio da acção mínima sse são satisfeitas as equações

$$\delta^{\omega} \frac{\partial L}{\partial (d^{\omega}\phi)} + \frac{\partial L}{\partial \phi} = 0, \tag{5.22}$$

$$\delta^{\omega} \Omega^{\omega} = J^{\omega}(\phi). \tag{5.23}$$

Demonstração. Seja $V \subset X$ um conjunto aberto com fecho compacto, $\sigma \in \Lambda^0_{\rho}(P, \mathcal{V}), \ \boldsymbol{\tau} \in \Lambda^1_{\mathrm{Ad}}(P, \mathfrak{g})$ com suportes projectados contidos em $V \in \Omega_t \equiv \Omega^{\omega + t\boldsymbol{\tau}}$. Então

$$\frac{d}{dt}\Omega_t\mid_{t=0}=d\boldsymbol{\tau}+[\boldsymbol{\omega},\boldsymbol{\tau}]=d^{\boldsymbol{\omega}}\boldsymbol{\tau},$$

e portanto

$$\frac{d}{dt} \int_{V} \mathcal{L}(\phi + t\sigma, \omega + t\tau) \operatorname{vol}|_{t=0} =$$

$$= -\frac{1}{2} \frac{d}{dt} \int_{V} (g\kappa)(\Omega_{t}, \Omega_{t}) \operatorname{vol}|_{t=0}$$

$$+ \frac{d}{dt} \int_{V} (\mathcal{L}_{M} + \mathcal{L}_{I})(\phi + t\sigma, \omega + t\tau) \operatorname{vol}|_{t=0}$$

$$= -\int_{V} (g\kappa)(\Omega^{\omega}, d^{\omega}\tau) \operatorname{vol} + \frac{d}{dt} \int_{V} (\mathcal{L}_{M} + \mathcal{L}_{I})(\phi + t\sigma, \omega) \operatorname{vol}|_{t=0}$$

$$+ \frac{d}{dt} \int_{V} (\mathcal{L}_{M} + \mathcal{L}_{I})(\phi, \omega + t\tau) \operatorname{vol}|_{t=0}$$

$$= -\int_{V} (g\kappa)(\delta^{\omega}\Omega^{\omega}, \tau) \operatorname{vol} + \frac{d}{dt} \int_{V} (\mathcal{L}_{M} + \mathcal{L}_{I})(\phi + t\sigma, \omega) \operatorname{vol}|_{t=0}$$

$$+ \int_{V} (g\kappa)(J^{\omega}(\phi), \tau) \operatorname{vol}.$$

onde usámos os teoremas 13 e 17. Analisemos o segundo termo da equação acima. Para $\pi(p) = x$,

$$\frac{d}{dt} (\mathcal{L}_{M} + \mathcal{L}_{I})(\phi + t\sigma, \boldsymbol{\omega})(x) =
= \frac{d}{dt} L(p, \phi(p) + t\sigma(p), (d^{\boldsymbol{\omega}}\phi + td^{\boldsymbol{\omega}}\sigma)_{p}) |_{t=0}
= \frac{d}{dt} L(p, \phi(p), (d^{\boldsymbol{\omega}}\phi + td^{\boldsymbol{\omega}}\sigma)_{p}) |_{t=0} + \frac{d}{dt} L(p, \phi(p) + t\sigma(p), (d^{\boldsymbol{\omega}}\phi)_{p}) |_{t=0}
= (\boldsymbol{g}_{p}h) \left(\left(\frac{\partial L}{\partial (d^{\boldsymbol{\omega}}\sigma)} \right)_{p}, (d^{\boldsymbol{\omega}}\phi)_{p} \right) + h \left(\left(\frac{\partial L}{\partial \phi} \right)_{p}, \sigma(p) \right).$$

Substituindo no integral vem

$$\begin{split} &\int_{V} (\boldsymbol{g}h) \left(\frac{\partial L}{\partial (d^{\boldsymbol{\omega}} \phi)}, d^{\boldsymbol{\omega}} \sigma \right) \, \mathbf{vol} + \int_{V} h \left(\frac{\partial L}{\partial \phi}, \sigma \right) \, \mathbf{vol} = \\ &= \int_{V} h \left(\delta^{\boldsymbol{\omega}} \frac{\partial L}{\partial (d^{\boldsymbol{\omega}} \phi)} + \frac{\partial L}{\partial \phi}, \sigma \right) \, \mathbf{vol} \,. \end{split}$$

Temos então

$$\begin{split} \frac{d}{dt} \int_{V} \mathcal{L}(\phi + t\sigma, \boldsymbol{\omega} + t\boldsymbol{\tau}) \ \mathbf{vol} \mid_{t=0} = \\ \int_{V} h\left(\delta^{\boldsymbol{\omega}} \frac{\partial L}{\partial (d^{\omega}\phi)} + \frac{\partial L}{\partial \phi}, \sigma\right) \ \mathbf{vol} + \int_{V} (\boldsymbol{g}\kappa) (\boldsymbol{J}^{\boldsymbol{\omega}}(\phi) - \delta^{\boldsymbol{\omega}} \boldsymbol{\Omega}^{\boldsymbol{\omega}}, \boldsymbol{\tau}) \ \mathbf{vol} \,. \end{split}$$

Uma consequência da equação do movimento (5.23) é a "equação da continuidade generalizada". Para mostramos este resultado necessitamos de alguns lemas auxiliares.

Lema 6. Se $\varphi \in \Lambda^k_{\rho}(P, \mathcal{V})$ e $\omega \in \mathcal{C}$, então

$$d^{\omega}(d^{\omega}\varphi) = \Omega^{\omega}\dot{\wedge}\varphi.$$

Demonstração.

$$d^{\omega}(d^{\omega}\varphi) = d(d\varphi + \omega \dot{\wedge} \varphi) + \omega \dot{\wedge} (d\varphi + \omega \dot{\wedge} \varphi)$$
$$= d\omega \dot{\wedge} \varphi + \omega \dot{\wedge} (\omega \dot{\wedge} \varphi).$$

Usando as definições de $\dot{\wedge}$ e [,] é fácil mostrar que

$$\omega\dot{\wedge}(\omega\dot{\wedge}\varphi)=rac{1}{2}\left[\omega,\omega
ight]\dot{\wedge}\varphi.$$

Lema 7. Se $\varphi, \tau \in \Lambda_{\mathrm{Ad}}^k(P, \mathfrak{g})$, então $[\tau, \overline{{}^*\varphi}] = -[\varphi, \overline{{}^*\tau}]$.

Demonstração. Seja $\varphi = \varphi^i \otimes T_i$, $\tau = \tau^j \otimes T_j$, onde $\{T_i\}$ é uma base de \mathfrak{g} . Então

$$\begin{aligned} [\boldsymbol{\tau}, \overline{{}^{\ast}} \boldsymbol{\varphi}] &= \boldsymbol{\tau}^{j} \wedge \overline{{}^{\ast}} \boldsymbol{\varphi}^{i} \otimes [T_{j}, T_{i}] \\ &= \boldsymbol{g}(\boldsymbol{\tau}^{j}, \boldsymbol{\varphi}^{i}) \operatorname{vol} \otimes [T_{j}, T_{i}] \\ &= -\boldsymbol{g}(\boldsymbol{\varphi}^{i}, \boldsymbol{\tau}^{j}) \operatorname{vol} \otimes [T_{i}, T_{j}] \\ &= -\boldsymbol{\varphi}^{i} \wedge \overline{{}^{\ast}} \boldsymbol{\tau}^{j} \otimes [T_{i}, T_{j}] \\ &= -[\boldsymbol{\varphi}, \overline{{}^{\ast}} \boldsymbol{\tau}]. \end{aligned}$$

Lema 8. $\delta^{\omega}(\delta^{\omega}\Omega^{\omega}) = 0$.

Demonstração.

$$\delta^{\boldsymbol{\omega}}(\delta^{\boldsymbol{\omega}}\Omega^{\boldsymbol{\omega}}) = \pm^{\overline{*}}d^{\boldsymbol{\omega}\,\overline{*}\,\overline{*}}d^{\boldsymbol{\omega}\,\overline{*}}\Omega^{\boldsymbol{\omega}}$$
$$= \pm^{\overline{*}}d^{\boldsymbol{\omega}}(d^{\boldsymbol{\omega}\,\overline{*}}\Omega^{\boldsymbol{\omega}})$$
$$= \pm^{\overline{*}}([\Omega^{\boldsymbol{\omega}},\overline{*}\Omega^{\boldsymbol{\omega}}])$$
$$= 0,$$

onde usámos os dois lemas anteriores.

Corolário 4 (Equação da continuidade generalizada). Se $\delta^{\omega}\Omega^{\omega}=J^{\omega}(\phi),\ ent\tilde{a}o$

$$\delta^{\omega}(J^{\omega}(\phi)) = 0. \tag{5.24}$$

5.8 Exemplos

Vimos que as **equações do movimento** para os campos (ϕ, ω) numa teoria de gauge são dadas por

$$\delta^{\omega} \frac{\partial L}{\partial (d^{\omega}\phi)} + \frac{\partial L}{\partial \phi} = 0, \qquad (5.25)$$

$$\delta^{\omega} \Omega^{\omega} = J^{\omega}(\phi). \tag{5.26}$$

O campo ω obedece ainda à identidade de Bianchi

$$d^{\omega}\Omega^{\omega} = 0, \tag{5.27}$$

e a corrente $J^{\omega}(\phi)$ satisfaz a equação da continuidade generalizada

$$\delta^{\omega} J^{\omega}(\phi) = 0. \tag{5.28}$$

Nesta secção iremos escrever as equações (5.25), (5.26), (5.27) e (5.28) em três teorias de gauge particulares. Todos os exemplos serão formulados no espaço de Minkowski $X = \mathbb{R}^{1,3}$ com métrica $(\eta_{\mu\nu}) = \text{diag}(1 - 1 - 1 - 1)$ e coordenadas $(x^{\mu}) = (x^0, x^1, x^2, x^3) \equiv (t, x, y, z)$.

5.8.1 Teoria de Yang-Mills sem matéria

Seja G um grupo de Lie não abeliano (e.g. SU(2)) e $G \hookrightarrow P \xrightarrow{\pi} X$ um G-fibrado principal sobre X.

A ausência de matéria implica que $L=\boldsymbol{J}^{\boldsymbol{\omega}}(\phi)=0,$ logo as únicas equações que restam são

$$\begin{cases} \delta^{\omega} \Omega^{\omega} = 0, \\ d^{\omega} \Omega^{\omega} = 0. \end{cases}$$
 (5.29)

Seja $s\colon V\to \pi^{-1}(V)$ uma secção local de $G\hookrightarrow P\stackrel{\pi}{\to} X$. Usando a proposição 14 e a observação 19, a equação do movimento escreve-se

$$s^{*}(\delta^{\omega}\Omega^{\omega}) = 0 \Leftrightarrow s^{*}(\overline{} d^{\omega} \overline{} \Omega^{\omega}) = 0$$

$$\Leftrightarrow (s^{*}d^{\omega} \overline{} \Omega^{\omega}) = 0$$

$$\Leftrightarrow d^{*}\mathcal{F} + [\mathcal{A}, {}^{*}\mathcal{F}] = 0,$$
 (5.30)

onde $\mathcal{F} = s^* \Omega^{\omega}$, $\mathcal{A} = s^* \omega$ são as expressões locais para a curvatura e a conexão, respectivamente.

A identidade de Bianchi é dada por

$$s^*(d^{\omega}\Omega^{\omega}) = 0 \Leftrightarrow *(d\mathcal{F} + [\mathcal{A}, \mathcal{F}]) = 0$$

 $\Leftrightarrow d\mathcal{F} + [\mathcal{A}, \mathcal{F}] = 0.$ (5.31)

5.8.2 Electromagnetismo puro

Seja G=U(1) e $G\hookrightarrow P\stackrel{\pi}{\to} X$ um G-fibrado principal sobre X. Tal como no exemplo anterior, $L={\bf J}^{\boldsymbol \omega}(\phi)=0$, logo as únicas equações que restam são as equações (5.29). Localmente, como G é abeliano, as equações (5.30) e (5.31) escrevem-se

$$\begin{cases} d^* \mathcal{F} = 0, \\ d\mathcal{F} = 0. \end{cases}$$
 (5.32)

Como

$$\mathcal{F} = \frac{1}{2} \mathcal{F}_{\mu\nu} dx^{\mu} \wedge dx^{\nu} = -iF = -\frac{i}{2} F_{\mu\nu} dx^{\mu} \wedge dx^{\nu},$$

temos

$$\begin{cases} \partial_{\mu} F^{\mu\nu} = 0, \\ \partial_{[\mu} F_{\alpha\beta]} = 0. \end{cases}$$
 (5.33)

O contacto com o Electromagnetismo faz-se definindo o campo eléctrico $\mathbf{E} = E^i \partial_i$ e o campo magnético $\mathbf{B} = B^i \partial_i$ por

$$F_{i0} = E^i,$$

$$F_{ij} = \varepsilon_{ijk} B^k,$$

onde i, j, k = 1, 2, 3. Então

$$(F_{\mu\nu}) = \begin{pmatrix} 0 & -E^1 & -E^2 & -E^3 \\ E^1 & 0 & B^3 & -B^2 \\ E^2 & -B^3 & 0 & B^1 \\ E^3 & B^2 & -B^1 & 0 \end{pmatrix}$$

е

$$\partial_{\mu}F^{\mu\nu} = 0 \Leftrightarrow \begin{cases} \nabla \times \boldsymbol{B} - \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{0}, \\ \nabla \cdot \boldsymbol{E} = 0, \end{cases}$$
(5.34)

$$\partial_{[\mu} F_{\alpha\beta]} = 0 \Leftrightarrow \begin{cases} \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}, \\ \nabla \cdot \mathbf{B} = 0. \end{cases}$$
(5.35)

5.8.3 Electromagnetismo com matéria de spin 0

Sejam $G = U(1) = \{e^{i\alpha} \mid \alpha \in \mathbb{R}\} \text{ e } G \hookrightarrow P \xrightarrow{\pi} X \text{ um } G\text{-fibrado principal sobre } X, \mathcal{V} = \mathbb{C} \text{ com produto interno } h \colon \mathbb{C} \times \mathbb{C} \to \mathbb{R} \text{ dado por }$

$$h(z, w) = \frac{1}{2}(z\overline{w} + \overline{z}w),$$

e $\rho\colon U(1)\to GL(\mathbb{C})$ a representação de U(1) em \mathbb{C} dada por $\rho(e^{i\alpha})z\equiv e^{i\alpha}\cdot z=e^{i\alpha}z$. O campo de matéria de spin 0 é descrito por uma função $\phi\colon P\to\mathbb{C}$ tensorial do tipo ρ . Para

$$J(P, \mathbb{C}) = \{(p, z, \boldsymbol{\theta}_p) \mid p \in P, z \in \mathbb{C}, \boldsymbol{\theta}_p \colon T_p(P) \to \mathbb{C} \text{ linear}\}$$

constrói-se o Lagrangeano G-invariante

$$L(p, z, \boldsymbol{\theta}_p) = \frac{1}{2} (\eta_p h) (\boldsymbol{\theta}_p, \boldsymbol{\theta}_p) - \frac{1}{2} m^2 z \overline{z},$$

onde $\theta_p \in \Lambda^1_{\rho}(T_p(P), \mathbb{C})$. Aplicando (5.12), (5.13), (5.14), (5.15) mostra-se que

$$\frac{\partial L}{\partial (d^{\omega}\phi)} = d^{\omega}\phi, \qquad \frac{\partial L}{\partial \phi} = -m^2\phi,$$

e portanto a equação (5.25) escreve-se

$$\delta^{\omega}(d^{\omega}\phi) - m^2\phi = 0. \tag{5.36}$$

Seja $\mathfrak{u}(1) = \{i\alpha \mid \alpha \in \mathbb{R}\}$ a álgebra de Lie de U(1), com base $\{i\}$ e $\kappa \colon \mathfrak{u}(1) \times \mathfrak{u}(1) \to \mathbb{R}$ um produto interno Ad-invariante definido por $\kappa(i) = 1$. Então $(\kappa_{ij}) = (\kappa^{ij}) = 1$ e usando o teorema 16 mostra-se que

$$\boldsymbol{J}^{\boldsymbol{\omega}}(\phi) = h(d^{\boldsymbol{\omega}}\phi, i\phi)i \in \Lambda^{1}_{\mathrm{Ad}}(P, \mathbb{C}), \tag{5.37}$$

logo a equação (5.26) escreve-se

$$\delta^{\omega} \Omega^{\omega} = h(d^{\omega} \phi, i\phi)i. \tag{5.38}$$

Seja $s\colon V\to \pi^{-1}(V)$ uma secção local de $G\hookrightarrow P\stackrel{\pi}{\to} X,\;\phi^{'}\equiv s^{*}\phi\in\Lambda^{0}(V,\mathbb{C})$ e

$$-i\mathbf{A} \equiv \mathbf{A} = s^* \boldsymbol{\omega} \in \Lambda^1(V, \mathfrak{u}(1)),$$

$$-i\mathbf{F} \equiv \mathbf{F} = s^* \boldsymbol{\Omega}^{\boldsymbol{\omega}} \in \Lambda^2(V, \mathfrak{u}(1)),$$

$$-i\mathbf{J} \equiv \mathbf{J} = s^* \mathbf{J}^{\boldsymbol{\omega}}(\phi) \in \Lambda^1(V, \mathfrak{u}(1))$$

Usando a proposição 14 e a observação 19 é fácil escrever a equação (5.36) como

$$^{*}d^{*}d\phi' - i^{*}d^{*}(\mathbf{A}\phi') + i\eta(\mathbf{A}, d\phi') + \eta(\mathbf{A}, \mathbf{A}\phi') - m^{2}\phi' = 0.$$

Como * $d^*d = \Box = \eta^{\mu\nu}\partial_{\mu}\partial_{\nu} e^*d^*(\mathbf{A}\phi') = -\eta^{\mu\nu}\partial_{\mu}(A_{\nu}\phi')$ temos

$$\Box \phi' - i\eta^{\mu\nu} \partial_{\mu} (A_{\nu}\phi') - i\eta^{\mu\nu} A_{\nu} \partial_{\mu}\phi' - \eta^{\mu\nu} A_{\mu} A_{\nu}\phi' + m^2 \phi' = 0$$

ou ainda

$$(\partial_{\mu} - iA_{\mu})(\partial^{\mu} - iA^{\mu})\phi' + m^{2}\phi' = 0.$$
 (5.39)

Note-se que se A = 0 obtemos a equação de Klein-Gordon

$$(\Box + m^2)\phi' = 0. (5.40)$$

Localmente, a corrente $\boldsymbol{J}^{\boldsymbol{\omega}}(\phi)$ escreve-se

$$\boldsymbol{\mathcal{J}} = \frac{1}{2}(\overline{\phi'}d\phi' - \phi'd\overline{\phi'}) + \boldsymbol{\mathcal{A}}\phi'\overline{\phi'}.$$

Como $\mathcal{J} = \mathcal{J}_{\mu} dx^{\mu} = -i J_{\mu} dx^{\mu}$, obtemos

$$J_{\mu} = \frac{i}{2} (\overline{\phi'} \partial_{\mu} \phi' - \phi' \partial_{\mu} \overline{\phi'}) + A_{\mu} \phi' \overline{\phi'}.$$

A equação (5.38) escreve-se então

$$\partial_{\mu}F^{\mu\nu} = J^{\nu}.\tag{5.41}$$

Finalmente, a equação da continuidade generalizada fica

$$s^{*}(\delta^{\omega}J^{\omega}(\phi)) = 0 \quad \Leftrightarrow \quad s^{*}(\overline{}^{*}d^{\omega}\overline{}^{*}J^{\omega}(\phi)) = 0$$

$$\Leftrightarrow \quad {}^{*}d^{*}\mathcal{J} = 0$$

$$\Leftrightarrow \quad d^{*}\mathcal{J} = 0$$

$$\Leftrightarrow \quad \partial_{\mu}J^{\mu} = 0. \tag{5.42}$$

Apêndice A

Digressão algébrica

A.1 Álgebra multilinear

Sejam \mathcal{E}, \mathcal{V} espaços vectoriais reais de dimensão n e m respectivamente, \mathcal{E}^* o espaço dual de \mathcal{E} e $r, k \in \mathbb{Z}_0^+$. Para r, k > 0 define-se o **espaço dos** (r, k)-tensores em \mathcal{E} com valores em \mathcal{V} por

$$\mathcal{T}_k^r(\mathcal{E},\mathcal{V}) = \{ t \colon \underbrace{\mathcal{E}^* \times \ldots \times \mathcal{E}^*}_r \times \underbrace{\mathcal{E} \times \ldots \times \mathcal{E}}_k \to \mathcal{V} \mid t \text{ multilinear} \}.$$

Para r = k = 0 definimos $\mathcal{T}_0^0 = \mathcal{V}$. O conjunto $\mathcal{T}_k^r(\mathcal{E}, \mathcal{V})$ tem estrutura natural de espaço vectorial real com as operações usuais de soma e multiplicação por escalares.

Existem subespaços vectoriais de $\mathcal{T}_k^r(\mathcal{E}, \mathcal{V})$ particularmente interessantes. Por exemplo, $\mathcal{T}_0^r(\mathcal{E}, \mathcal{V})$ designa o **espaço dos** r-tensores contravariantes **em** \mathcal{E} **com valores em** \mathcal{V} e $\mathcal{T}_k^0(\mathcal{E}, \mathcal{V})$ designa o **espaço dos** k-tensores covariantes **em** \mathcal{E} **com valores em** \mathcal{V} . $\mathcal{T}_k^0(\mathcal{E}, \mathcal{V})$ contém ainda um subespaço definido por

$$\Lambda^k(\mathcal{E}, \mathcal{V}) = \{ t \in \mathcal{T}_k^0(\mathcal{E}, \mathcal{V}) \mid t \text{ anti-simétrico} \},$$

a que chamamos o espaço das k-formas em \mathcal{E} com valores em \mathcal{V} . Por convenção, quando $\mathcal{V} = \mathbb{R}$ denotamos $\Lambda^k(\mathcal{E}, \mathbb{R})$ por $\Lambda^k(\mathcal{E})$, denominado o espaço das k-formas em \mathcal{E} .

Se $\alpha \in \Lambda^k(\mathcal{E})$ e $\beta \in \Lambda^l(\mathcal{E})$ define-se o **produto exterior** $\alpha \wedge \beta \in \Lambda^{k+l}(\mathcal{E})$

por

$$(\alpha \wedge \beta)(v_1, \dots, v_{k+l}) =$$

$$= \frac{1}{k!l!} \sum_{\sigma} (-1)^{\sigma} \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)}), \quad (A.1)$$

onde $v_1, \ldots, v_{k+l} \in \mathcal{E}$ e a soma é sobre as permutações $\sigma \in S_{k+l}$ de $\{1, \ldots, k+l\}$. Se $\alpha, \beta \in \Lambda^0(\mathcal{E})$ definimos $\alpha \wedge \beta = \alpha\beta$.

Seja $\{e_1, \ldots, e_n\}$ uma base de \mathcal{E} e $\{e^1, \ldots, e^n\}$ a correspondente base dual. Então, para cada $k = 1, \ldots, n$, $\{e^{i_1} \wedge \ldots \wedge e^{i_k} \mid 1 \leq i_1 < \ldots < i_k \leq n\}$ é uma base de $\Lambda^k(\mathcal{E})$. Além disso, qualquer $\alpha \in \Lambda^k(\mathcal{E})$ pode escrever-se de forma única como

$$\alpha = \sum_{i_1 < \dots < i_k} \alpha_{i_1 \dots i_k} e^{i_1} \wedge \dots \wedge e^{i_k} = \frac{1}{k!} \alpha_{i_1 \dots i_k} e^{i_1} \wedge \dots \wedge e^{i_k}, \tag{A.2}$$

onde $\alpha_{i_1...i_k} = \alpha(e_{i_1}, ..., e_{i_k})$. Em particular,

$$\dim \Lambda^k(\mathcal{E}) = \frac{n!}{k!(n-k)!}.$$
 (A.3)

O produto exterior de $\alpha \in \Lambda^k(\mathcal{E})$ e $\beta \in \Lambda^l(\mathcal{E})$ satisfaz

$$\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha. \tag{A.4}$$

Ao espaço vectorial

$$\Lambda^*(\mathcal{E}) := \Lambda^0(\mathcal{E}) \oplus \Lambda^1(\mathcal{E}) \oplus \ldots \oplus \Lambda^n(\mathcal{E})$$
(A.5)

equipado com o produto exterior \wedge chama-se a **álgebra exterior de** \mathcal{E}^* .

A.2 Orientabilidade de espaços vectoriais

Seja \mathcal{E} um espaço vectorial real de dimensão n. Se $\{e_1, \ldots, e_n\}$, $\{\hat{e}_1, \ldots, \hat{e}_n\}$ são bases ordenadas de \mathcal{E} , existe uma única matriz não-singular (A_j^i) tal que $\hat{e}_j = A_j^i e_i$, $j = 1, \ldots, n$. Como $\det(A_j^i) \neq 0$, podemos definir uma relação de equivalência no conjunto \mathcal{B} de todas as bases ordenadas de \mathcal{E} da seguinte forma:

$$\{\hat{e}_1, \dots, \hat{e}_n\} \sim \{e_1, \dots, e_n\} \text{ sse } \det(A_i^i) > 0.$$

É fácil ver que existem apenas duas classes de equivalência em \mathcal{B} . Cada uma delas chama-se uma **orientação em** \mathcal{E} .

Existe uma relação entre as (duas) orientações possíveis de \mathcal{E} e o espaço $\Lambda^n(\mathcal{E})$ das n-formas em \mathcal{E} .

Teorema 19. Seja α um elemento não nulo de $\Lambda^n(\mathcal{E})$. Então o conjunto

$$\mu = \{ \{e_1, \dots, e_n\} \in \mathcal{B} \mid \alpha(e_1, \dots, e_n) > 0 \}$$

é uma orientação em E.

Demonstração. Temos de mostrar que μ é uma classe de equivalência da relação \sim . Sejam $\{e_1,\ldots,e_n\},~\{\hat{e}_1,\ldots,\hat{e}_n\}$ bases ordenadas tais que $\hat{e}_j=A^i_j\,e_i,\,j=1,\ldots,n$. Então

$$\alpha(\hat{e}_1,\ldots,\hat{e}_n) = \alpha(Ae_1,\ldots,Ae_n) = \det(A_j^i) \alpha(e_1,\ldots,e_n),$$

logo $\alpha(\hat{e}_1, \dots, \hat{e}_n)$ e $\alpha(e_1, \dots, e_n)$ têm sinal positivo sse $\det(A_j^i) > 0$, ou seja, sse $\{\hat{e}_1, \dots, \hat{e}_n\}$ e $\{e_1, \dots, e_n\}$ pertencem à mesma classe de equivalência. \square

O teorema anterior garante que um elemento não nulo de $\Lambda^n(\mathcal{E})$ induz uma única orientação em \mathcal{E} . Porém, o recíproco é falso, pois uma orientação μ em \mathcal{E} não determina unicamente um elemento não nulo de $\Lambda^n(\mathcal{E})$. Na verdade, μ divide os elementos não nulos de $\Lambda^n(\mathcal{E})$ em dois subconjuntos disjuntos: os elementos $\alpha \in \Lambda^n(\mathcal{E})$ tais que $\alpha(e_1, \ldots, e_n) > 0$ para toda a base ordenada $\{e_1, \ldots, e_n\} \in \mu$ e os elementos $\alpha \in \Lambda^n(\mathcal{E})$ tais que $\alpha(e_1, \ldots, e_n) < 0$ para toda a base ordenada $\{e_1, \ldots, e_n\} \in \mu$.

Esta questão pode ser contornada se equipármos \mathcal{E} com um produto interno, i.e., uma forma bilinear, simétrica e não degenerada.

Suponhamos então que \mathcal{E} tem uma orientação μ e um produto interno g.

Definição 16. Uma base $\{e_1, \ldots, e_n\}$ de \mathcal{E} diz-se ortonormada relativamente a g se $g(e_i, e_j) = \pm \delta_{ij}$.

Observação 21. Se $\{e_1, \ldots, e_n\}$ e $\{\hat{e}_1, \ldots, \hat{e}_n\}$ são bases ortonormadas de \mathcal{E} relacionadas por $\hat{e}_j = A_j^i e_i, \ j = 1, \ldots, n, \ então \det(A_j^i) = \pm 1 \ e \ portanto$ $\alpha(\hat{e}_1, \ldots, \hat{e}_n) = \pm \alpha(e_1, \ldots, e_n)$ para qualquer $\alpha \in \Lambda^n(\mathcal{E})$.

Definição 17. Uma base ordenada $\{e_1, \ldots, e_n\}$ de \mathcal{E} diz-se orientada relativamente a μ se $\{e_1, \ldots, e_n\} \in \mu$.

Definição 18. Uma base $\{e_1, \ldots, e_n\}$ de \mathcal{E} diz-se ortonormada e orientada se $\{e_1, \ldots, e_n\}$ é uma base ordenada, orientada relativamente a μ e ortonormada relativamente a g.

Seja $\{e_1,\ldots,e_n\}$ uma base ortonormada e orientada de \mathcal{E} . Existe um único elemento não nulo vol $\in \Lambda^n(\mathcal{E})$ tal que vol $(e_1,\ldots,e_n)=1$ (mais precisamente vol $=e^1\wedge\ldots\wedge e^n$, onde $\{e^1,\ldots,e^n\}$ é a base dual de $\{e_1,\ldots,e_n\}$). Note-se que, se $\{\hat{e}_1,\ldots,\hat{e}_n\}$ é outra base ortonormada e orientada de \mathcal{E} , vol $(\hat{e}_1,\ldots,\hat{e}_n)=1$. Ou seja, vol transforma todas as bases ortonormadas e orientadas de \mathcal{E} em 1. A n-forma vol chama-se a forma de volume canónica em \mathcal{E} induzida por μ e g.

Observação 22. Se $\{\hat{e}_1, \ldots, \hat{e}_n\}$ é uma base orientada de \mathcal{E} (não necessariamente ortonormada) com base dual $\{\hat{e}^1, \ldots, \hat{e}^n\}$, então

$$vol = \sqrt{|\hat{g}|} \,\hat{e}^1 \wedge \ldots \wedge \hat{e}^n, \tag{A.6}$$

onde $\hat{g} := \det(\hat{g}_{ij}) \ e \ \hat{g}_{ij} := g(\hat{e}_i, \hat{e}_j).$

A.3 O operador de Hodge

Seja \mathcal{E} um espaço vectorial real n-dimensional e k um inteiro tal que $0 \le k \le n$. Pela equação (A.3), dim $\Lambda^k(\mathcal{E}) = \dim \Lambda^{n-k}(\mathcal{E})$ e portanto $\Lambda^k(\mathcal{E})$ é isomorfo a $\Lambda^{n-k}(\mathcal{E})$. Em geral, este isomorfismo não é canónico. Contudo, se equipármos \mathcal{E} com uma orientação e um produto interno, existe um isomorfismo canónico

*:
$$\Lambda^k(\mathcal{E}) \to \Lambda^{n-k}(\mathcal{E})$$

designado por **operador de Hodge**. Para construir este isomorfismo necessitamos de introduzir um produto interno em $\Lambda^k(\mathcal{E})$ para cada k = 0, 1, ..., n.

Consideremos então o espaço vectorial \mathcal{E} equipado com um produto interno g^1 . Seja $\{e_1, \ldots, e_n\}$ uma base de \mathcal{E} (não necessariamente ortonormada) com base dual $\{e^1, \ldots, e^n\}$. Seja ainda $g_{ij} = g(e_i, e_j), i, j = 1, \ldots, n$ e (g^{ij}) a matriz inversa de (g_{ij}) . Para $\alpha, \beta \in \Lambda^k(\mathcal{E}), k \geq 1$, podemos escrever

$$\alpha = \frac{1}{k!} \alpha_{i_1 \dots i_k} e^{i_1} \wedge \dots \wedge e^{i_k},$$

¹para introduzir um produto interno em $\Lambda^k(\mathcal{E})$ não necessitamos de qualquer orientação em \mathcal{E} .

$$\beta = \frac{1}{k!} \beta_{i_1 \dots i_k} e^{i_1} \wedge \dots \wedge e^{i_k}.$$

Definimos o produto interno g (denota-se pela mesma letra) em $\Lambda^k(\mathcal{E})$ por

$$g(\alpha, \beta) = \frac{1}{k!} g^{i_1 j_1} \dots g^{i_k j_k} \alpha_{i_1 \dots i_k} \beta_{j_1 \dots j_k}$$
 (A.7)

Observação 23. O produto interno g em $\Lambda^k(\mathcal{E})$ é independente da escolha de base para \mathcal{E} . Por convenção, se $\alpha, \beta \in \Lambda^0(\mathcal{E}) = \mathbb{R}$, $g(\alpha, \beta) = \alpha\beta$.

Teorema 20. Seja \mathcal{E} um espaço vectorial real de dimensão n, com orientação μ e produto interno g. Seja vol a forma de volume canónica induzida por μ e g e seja k um inteiro tal que $0 \le k \le n$. Então, existe um único isomorfismo linear

*:
$$\Lambda^k(\mathcal{E}) \to \Lambda^{n-k}(\mathcal{E})$$

tal que

$$\alpha \wedge {}^*\!\beta = g(\alpha, \beta) \text{ vol} \tag{A.8}$$

para todo o $\alpha, \beta \in \Lambda^k(\mathcal{E})$.

Observação 24. Se $\beta \in \Lambda^k(\mathcal{E})$, escrevemos $\|\beta\|^2 := g(\beta, \beta)$. Para $\alpha = \beta$ a equação (A.8) escreve-se $\beta \wedge *\beta = \|\beta\|^2$ vol. Note-se que $\|\beta\|^2$ não é necessariamente positivo pois o produto interno g em $\Lambda^k(\mathcal{E})$ não é necessariamente definido positivo.

Terminamos esta parte com uma fórmula explícita para o operador de Hodge. Necessitamos de usar o símbolo de Levi-Civita

$$\varepsilon_{j_1...j_n} = \begin{cases} 1 & \text{se } j_1, \dots j_n \text{ \'e uma permutação par de } 1 \dots n \\ -1 & \text{se } j_1 \dots j_n \text{ \'e uma permutação \'impar de } 1 \dots n \\ 0 & \text{caso contrário} \end{cases}$$

Seja $\{e_1, \ldots, e_n\}$ uma base ortonormada e orientada de \mathcal{E} com base dual $\{e^1 \ldots e^n\}$. Se $\{\hat{e}_1 \ldots, \hat{e}_n\}$ é outra base orientada (não necessariamente ortonormada) de \mathcal{E} com base dual $\{\hat{e}^1, \ldots, \hat{e}^n\}$, então $\hat{e}_j = A^i_j e_i$, $j = 1, \ldots, n$, para alguma matriz não singular (A^i_j) e $\hat{e}^j = B^j_i e^i$, $j = 1, \ldots, n$, onde (B^j_i) é a matriz inversa de (A^i_j) . Além disso, sejam $g_{ij} = g(e_i, e_j)$, $\hat{g}_{ij} = g(\hat{e}_i, \hat{e}_j)$, i, j =

 $1, \ldots, n$, e (g^{ij}) , (\hat{g}^{ij}) as matrizes inversas de (g_{ij}) , (\hat{g}_{ij}) , respectivamente. Para $\beta \in \Lambda^k(\mathcal{E})$ podemos escrever

$$\beta = \frac{1}{k!} \beta_{i_1 \dots i_k} e^{i_1} \wedge \dots \wedge e^{i_k} = \frac{1}{k!} \hat{\beta}_{i_1 \dots i_k} \hat{e}^{i_1} \wedge \dots \wedge \hat{e}^{i_k}.$$

Mostra-se que

$$*\beta = \frac{\sqrt{|\hat{g}|}}{k!(n-k)!} \varepsilon_{i_1\dots i_k j_1\dots j_{n-k}} \hat{\beta}^{i_1\dots i_k} \hat{e}^{j_1} \wedge \dots \wedge \hat{e}^{j_{n-k}}, \tag{A.9}$$

onde $\hat{\beta}^{i_1...i_k} = \hat{g}^{i_1l_1}...\hat{g}^{i_kl_k}\hat{\beta}_{l_1...l_k}$.

Observação 25. Relativamente à base ortonormada e orientada $\{e_1, \dots e_n\}$ temos que |g| = 1 e portanto

$${}^*\beta = \frac{1}{k!(n-k)!} \, \varepsilon_{i_1 \dots i_k j_1 \dots j_{n-k}} \beta^{i_1 \dots i_k} e^{j_1} \wedge \dots \wedge e^{j_{n-k}}. \tag{A.10}$$

Teorema 21. Seja \mathcal{E} um espaço vectorial real de dimensão n, com orientação μ e produto interno g com índice² s. Então, para todo o $\beta \in \Lambda^k(\mathcal{E})$ e $0 \le k \le n$, temos

$$^{**}\beta = (-1)^{k(n-k)+s}\beta. \tag{A.11}$$

Demonstração. [N2, pp. 228]

O operador de Hodge estende-se naturalmente ao espaço $\Lambda^k(\mathcal{E}, \mathcal{V})$ da seguinte forma: se $\{T_1, \ldots T_m\}$ é uma base de \mathcal{V} , qualquer $\alpha \in \Lambda^k(\mathcal{E}, \mathcal{V})$ escreve-se de forma única como

$$\alpha = \alpha^1 \otimes T_1 + \ldots + \alpha^m \otimes T_m, \qquad \alpha^i \in \Lambda^k(\mathcal{E}).$$

O operador *: $\Lambda^k(\mathcal{E}, \mathcal{V}) \to \Lambda^{n-k}(\mathcal{E}, \mathcal{V})$ é definido componente a componente, i.e.

$$^*\alpha = ^*\alpha^1 \otimes T_1 + \ldots + ^*\alpha^m \otimes T_m. \tag{A.12}$$

É fácil ver que esta definição não depende da escolha de base para $\mathcal{V}.$

Se \mathcal{V} tem um produto interno h, podemos usar os produtos internos g em \mathcal{E} e g em $\Lambda^k(\mathcal{E})$ para definir um produto interno (gh) em cada $\Lambda^k(\mathcal{E}, \mathcal{V})$. Para

 $g_{ij} = g(e_i, e_j)$ para $\{e_1, \ldots, e_n\}$ qualquer base ortonormada. Usando a observação 21 é fácil ver que o índice de g não depende da escolha de base ortonormada.

 $\alpha, \beta \in \Lambda^k(\mathcal{E}, \mathcal{V})$ escrevemos $\alpha = \alpha^i \otimes T_i$, $\beta = \beta^i \otimes T_i$ relativamente à base $\{T_1, \ldots, T_m\}$ de \mathcal{V} e denotamos $h_{ij} = h(T_i, T_j)$ para $i, j = 1, \ldots m$. Define-se o produto interno (gh) em $\Lambda^k(\mathcal{E}, \mathcal{V})$ por

$$(gh)(\alpha,\beta) = h_{ij} g(\alpha^i,\beta^i). \tag{A.13}$$

Observação 26. Esta definição não depende da escolha de base para \mathcal{V} . Além disso, se $\alpha, \beta \in \Lambda^0(\mathcal{E}, \mathcal{V}) = \mathcal{V}$, então (gh) = h. Se h é definido positivo e $\{T_1, \ldots T_m\}$ é uma base ortonormada relativamente a h, a equação (A.13) escreve-se

$$(gh)(\alpha,\beta) = g(\alpha^1,\beta^1) + \ldots + g(\alpha^m,\beta^m).$$

Em particular, denotando $|\alpha|^2 = (gh)(\alpha, \alpha)$ temos

$$|\alpha|^2 = ||\alpha^1||^2 + \ldots + ||\alpha^m||^2$$
.

Bibliografia

- [N1] Gregory L. Naber, Topology, Geometry, and Gauge Fields Foundations, Springer-Verlag, 1997.
- [N2] Gregory L. Naber, Topology, Geometry, and Gauge Fields Interactions, Springer-Verlag, 2000.
- [Bl] David Bleecker, Gauge Theory and Variational Principles, Addison-Wisley Publishing Company, Inc., 1981.