Geometria Diferencial 2004/2005

Repescagem do 1º Teste - 21 de Janeiro de 2005 - 9h

Duração: 1 hora e 30 minutos. Apresente todos os cálculos e justificações relevantes.

- (5 val.) 1. Seja M uma variedade diferenciável de dimensão 2, $\alpha \in \Omega^1(M)$ e $p \in M$ tal que $\alpha_p \neq 0$. Mostre que existe um aberto $U \ni p$ e funções $f,g \in C^\infty(U)$ tais que $\alpha|_U = fdg$.
- (5 val.) **2.** Seja G um grupo de Lie com álgebra de Lie \mathfrak{g} , e $\omega:\mathfrak{g}\times\ldots\times\mathfrak{g}\to\mathbb{R}$ uma aplicação k-multilinear. Mostre que ω define um tensor-k invariante à esquerda em G. Mostre ainda que este tensor é bi-invariante (i.e., invariante à esquerda e à direita) *sse*

$$\omega(\mathrm{Ad}(g)X_1,\ldots,\mathrm{Ad}(g)X_k)=\omega(X_1,\ldots,X_k)$$

para todo o $X_1,\ldots,X_k\in\mathfrak{g}$ e $g\in G$, onde $\mathrm{Ad}:G\to GL(\mathfrak{g})$ designa a representação adjunta.

- (5 val.) **3.** Use o facto de qualquer grupo de Lie compacto ser unimodular para mostrar que qualquer grupo de Lie compacto possui uma métrica Riemanniana bi-invariante.
- (5 val.) **4.** Seja G um grupo de Lie compacto e conexo com álgebra de Lie $\mathfrak g$. Pode mostrar-se que $H^k(G)$ é isomorfo ao espaço das k-formas bi-invariantes. Use a aplicação $\omega:\mathfrak g\times\mathfrak g\times\mathfrak g\to\mathbb R$ dada por

$$\omega(X, Y, Z) = \langle [X, Y], Z \rangle,$$

onde $\langle,\cdot,\cdot\rangle$ determina uma métrica bi-invariante em G, para mostrar que se \mathfrak{g} é não abeliana então $H^3(G)\neq 0$. Deduza que as únicas esferas que são grupos de Lie são \mathbb{S}^0 , \mathbb{S}^1 e \mathbb{S}^3 .