Mathematical Relativity

Homework 13

Due on May 25

1. (a) Check that the Klein-Gordon equation in Minkowski spacetime, \(\Box \phi - m^2 \phi = 0 \), can be derived from the Lagrangian density
\[
L = -\frac{1}{2} \left(\partial_{\mu} \phi \partial^{\mu} \phi + m^2 \phi^2 \right).
\]

(b) Show that the corresponding Hamiltonian is
\[
H = \int_{\mathbb{R}^n} \frac{1}{2} \left((\partial_0 \phi)^2 + \ldots + (\partial_n \phi)^2 + m^2 \phi^2 \right) \, dx^1 \wedge \ldots \wedge dx^n.
\]

(c) Starting with the Einstein-Hilbert-Klein-Gordon action
\[
S = \int_{M} \left[R - 8\pi \left(g^{\mu \nu} \partial_\mu \phi \partial_\nu \phi + m^2 \phi^2 \right) \right] \, dV_{n+1}
\]

obtain the energy-momentum tensor for \(\phi \):
\[
T_{\mu \nu} = \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} g_{\mu \nu} \left(\partial_\alpha \phi \partial^\alpha \phi + m^2 \phi^2 \right).
\]

(d) Check that \(T_{00} \) coincides with the Hamiltonian density \(H \) (i.e. the integrand in the expression for the Hamiltonian \(H \)).

2. Let \(\gamma \) be the spherically symmetric Riemannian metric defined in \(\mathbb{R}^3 \) by
\[
\gamma = \frac{d r^2}{1 - \frac{2m(r)}{r}} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right),
\]
where \(m \) is a smooth function whose derivative has compact support.

(a) Check that in Cartesian coordinates we have
\[
\gamma_{ij} = \delta_{ij} + \frac{2m(r)}{r^2} \frac{r \, x_i \, x_j}{1 - \frac{2m(r)}{r}}.
\]

(b) Show that if the limit
\[
M = \lim_{r \to \infty} m(r)
\]
exists then \(\gamma \) is asymptotically flat with ADM mass \(M \) (which in particular coincides with the Komar mass when appropriate).
(c) Check that γ has scalar curvature

$$R = \frac{4}{r^2} \frac{dm}{dr},$$

and use this to prove the Riemannian Positive Mass Theorem for γ.

(d) Show that $r = r_0$ is a minimal surface if and only if $m(r_0) = \frac{r_0}{2}$ (in which case r is a well-defined coordinate only for $r > r_0$), and use this to prove the Riemannian Penrose Conjecture for γ.