Consider the spherically symmetric Lorentzian metric given by
\[g = -(A(t,r))^2 dt^2 + (B(t,r))^2 dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2, \]
where \(A\) and \(B\) are positive smooth functions.

1. Use the condition of compatibility with the metric and Cartan’s first structure equations,
\[
\begin{align*}
\omega_{\mu\nu} &= -\omega_{\nu\mu} \\
d\omega^{\mu} + \omega^{\mu}_{\nu} \wedge \omega^{\nu} &= 0
\end{align*}
\]

to show that the nonvanishing connection forms for the orthonormal frame dual to
\[
\omega^0 = Adt, \quad \omega^r = Bdr, \quad \omega^\theta = r d\theta, \quad \omega^\varphi = r \sin \theta d\varphi
\]
are (using the notation \(\dot{\ } = \frac{\partial}{\partial t}\) and \(\prime = \frac{\partial}{\partial r}\))
\[
\begin{align*}
\omega^0_{\ r} &= \omega^r_{\ 0} = \frac{A'}{B} dt + \frac{\dot{B}}{A} dr; \\
\omega^\theta_{\ r} &= -\omega^r_{\ \theta} = \frac{1}{B} d\theta; \\
\omega^\varphi_{\ r} &= -\omega^r_{\ \varphi} = \frac{\sin \theta}{B} d\varphi; \\
\omega^\varphi_{\ \theta} &= -\omega^\theta_{\ \varphi} = \cos \theta d\varphi.
\end{align*}
\]

2. Use Cartan’s second structure equations
\[
\Omega^{\mu}_{\ \nu} = d\omega^{\mu}_{\ \nu} + \omega^\alpha_{\ \mu} \wedge \omega^{\alpha}_{\ \nu},
\]
to show that the curvature forms on this frame are
\[
\begin{align*}
\Omega^0_{\ r} &= \Omega^r_{\ 0} = \left(\frac{A''B - A'B'}{AB^3} + \frac{\dot{A}\dot{B} - \ddot{A}B}{A^3B} \right) \omega^r \wedge \omega^0; \\
\Omega^0_{\ \theta} &= \Omega^\theta_{\ 0} = \frac{A'}{rAB^2} \omega^\theta \wedge \omega^0 + \frac{\dot{B}}{rAB^2} \omega^\theta \wedge \omega^r; \\
\Omega^0_{\ \varphi} &= \Omega^\varphi_{\ 0} = \frac{A'}{rAB^2} \omega^\varphi \wedge \omega^0 + \frac{B}{rAB^2} \omega^\varphi \wedge \omega^r; \\
\Omega^\theta_{\ r} &= -\Omega^r_{\ \theta} = \frac{B'}{rB^3} \omega^\theta \wedge \omega^r + \frac{\dot{B}}{rAB^2} \omega^\theta \wedge \omega^0; \\
\Omega^\varphi_{\ r} &= -\Omega^r_{\ \varphi} = \frac{B'}{rB^3} \omega^\varphi \wedge \omega^r + \frac{\dot{B}}{rAB^2} \omega^\varphi \wedge \omega^0; \\
\Omega^\varphi_{\ \theta} &= -\Omega^\theta_{\ \varphi} = \frac{B^2 - 1}{r^2B^2} \omega^\varphi \wedge \omega^\theta.
\end{align*}
\]
3. Using
\[\Omega^\mu_{\nu} = \sum_{\alpha<\beta} R_{\alpha\beta}^\mu \omega^\alpha \wedge \omega^\beta \]
determine the components \(R_{\alpha\beta}^\mu \) of the curvature tensor on this orthonormal frame, and show that the nonvanishing components of the Ricci tensor on this frame are
\[R_{00} = \frac{A'' B - A'B'}{AB^3} + \frac{\dot{A} \dot{B} - A \ddot{B}}{A^3 B} + \frac{2A'}{rAB^2}; \]
\[R_{0r} = R_{r0} = \frac{2\dot{B}}{rAB^2}; \]
\[R_{rr} = \frac{A'B' - A''B}{AB^3} + \frac{A\ddot{B} - A\dddot{B}}{A^3 B} + \frac{2B'}{rB^3}; \]
\[R_{\theta\theta} = R_{\varphi\varphi} = -\frac{A'}{rAB^2} + \frac{B'}{rB^3} + \frac{B^2 - 1}{r^2B^2}. \]

Conclude that the nonvanishing components of the Einstein tensor on this frame are
\[G_{00} = 2\frac{B'}{rB^3} + \frac{B^2 - 1}{r^2B^2}; \]
\[G_{0r} = G_{r0} = \frac{2\dot{B}}{rAB^2}; \]
\[G_{rr} = 2\frac{A'}{rAB^2} - \frac{B^2 - 1}{r^2B^2}; \]
\[G_{\theta\theta} = G_{\varphi\varphi} = \frac{A''B - A'B'}{AB^3} + \frac{\dot{A} \dot{B} - A \ddot{B}}{A^3 B} + \frac{A'}{rAB^2} - \frac{B'}{rB^3}. \]

4. Show that if we write
\[B(t, r) = \left(1 - \frac{2m(t, r)}{r}\right)^{-\frac{1}{2}} \]
for some smooth function \(m \) then
\[G_{00} = \frac{2m'}{r^2}. \]

Conclude that the vacuum Einstein equations \(G_{00} = G_{0r} = 0 \) are equivalent to
\[B = \left(1 - \frac{2M}{r}\right)^{-\frac{1}{2}}, \]
where \(M \in \mathbb{R} \) is an integration constant.

5. Show that the vacuum equation \(G_{00} + G_{rr} = 0 \) is equivalent to \(A = \frac{\alpha(t)}{B} \) for some positive smooth function \(\alpha(t) \).

6. Check that if \(A \) and \(B \) are as above then the remaining vacuum equation \(G_{\theta\theta} = G_{\varphi\varphi} = 0 \) is automatically satisfied.

7. Argue that it is always possible to rescale the coordinate \(t \) so that the any metric of the given form satisfying the vacuum Einstein field equations is written
\[g = -\left(1 - \frac{2M}{r}\right) dt^2 + \left(1 - \frac{2M}{r}\right)^{-1} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2. \]