ANÁLISE MATEMÁTICA I

4ª Ficha de Auto-avaliação

(Engª Biológica, Engª Química, Química)

Sucessões (continuação)

10. Determine se existirem os limites em $\tilde{\mathbb{R}}$ das seguintes sucessões:

a)
$$x_n = \frac{n^{5/2}}{n!}$$
, b) $x_n = \frac{n! + 2^n}{n^n}$, c) $x_n = \frac{2^n}{n^{100}}$

d)
$$x_n = \sqrt[n]{1 + \frac{1}{n}}$$
, e) $x_n = \sqrt[n]{\frac{n^2 + n - 1}{n - 3}}$, f) $x_n = \sqrt[n]{(n + 1)! - n!}$.

11. Estude a convergência e determine os limites das seguintes sucessões:

a)
$$x_n = \left(1 + \frac{1}{2n}\right)^2$$
, b) $x_n = \left(1 + \frac{1}{2n}\right)^n$, c) $x_n = \left(1 + \frac{1}{n^2}\right)^{\frac{n^3 + 1}{n}}$,

d)
$$x_n = \left(1 + \frac{a}{n^2}\right)^{n^2}$$
, onde $a \in \mathbb{R}$, e) $x_n = \left(\frac{2n+1}{2n}\right)^{\sqrt{n}}$.

12. Justifique que as seguintes proposicões são verdadeiras:

- a) Se $x_{2n} \to a$ e $x_{2n+1} \to b$, então a e b são os únicos sublimites de (x_n) .
- b) Se (x_n) é não limitada, então possui uma subsucessão (x_{n_k}) tal que $1/x_{n_k} \to 0$.
- c) Se (x_n) é monótona e o conjunto dos seus sublimites é não vazio então (x_n) é convergente.

13. Considere a sucessão de termo geral

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2}$$

a) Mostre que, se $m, n \in \mathbb{N}$ são tais que $m \ge n \ge 2$, então,

$$0 \le u_m - u_n \le \frac{1}{n} - \frac{1}{m} \,.$$

Sugestão: observe que, para cada natural $k \geq 2, \ \frac{1}{k^2} \leq \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}.$

b) Conclua que (u_n) é uma sucessão de Cauchy. Que pode dizer quanto à convergência de (u_n) ?