ANÁLISE MATEMÁTICA I

8^a Ficha de Auto-avaliação

(Eng^a Biológica, Eng^a Química, Química)

Cálculo Diferencial em \mathbb{R} . Derivadas.

1. Discuta a existência de derivada em a = 0 para

$$f(x) = \begin{cases} \sin x, & \text{se } x \ge 0 \\ x, & \text{se } x < 0 \end{cases}; \qquad g(x) = \begin{cases} \frac{x}{1 + e^{1/x}}, & \text{se } x \ne 0 \\ 0, & \text{se } x = 0 \end{cases};$$
$$h(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & \text{se } x \ne 0, \\ 0, & \text{se } x = 0 \end{cases}; \qquad p(x) = x^{\beta} \chi_{\mathbb{Q}}(x);$$

onde α e β são constantes reais e, para cada conjunto $A \subset \mathbb{R}$, χ_A representa a função característica de A (consultar ficha 7).

- 2. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = 4x^3 3x^2 6x 6$.
 - a) Determine os pontos do plano onde a recta tangente ao gráfico de f é horizontal.
 - b) Determine os pontos do plano onde a tangente ao gráfico de f tem declive -6.
 - c) Mostre que a recta y = 12x 17 é tangente ao gráfico de f e determine o ponto de tangência.
- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável e $f': \mathbb{R} \to \mathbb{R}$ a respectiva função derivada. Determine a função derivada de cada uma das seguintes funções: $x \mapsto f(-x), \qquad x \mapsto f(e^x), \qquad x \mapsto f(\log(x^2 + 1)), \qquad x \mapsto f(f(x)).$
- 4. Determine, indicando para cada caso o domínio de diferenciabilidade respectivo, as derivadas das funções seguintes:
 - a) x^x , b) $(x^x)^x$, c) x^x , d) $\log \log \log x$,
 - $\begin{array}{ll} \text{f) } (1+3x+3x^2)\sqrt[3]{\frac{3-x^2}{x^2+1}}, & \text{g) } e^{\frac{2x^5}{\sqrt{x^2+1}}} & \text{h) } \log|x^2-\sqrt{x^4-1}| \; , \\ \text{i) } \log_{10}(3x+1), & \text{j) } \left(\sqrt[5]{x-1}\right)^{3x\log x}, & \text{k) } \sec(x^2)\tan\sqrt{x+1}, \\ \text{l) } \sin\tan\sqrt{x+1}, & \text{m) } \arctan\frac{x^3}{x^2+1}, & \text{n) } \arcsin\frac{1}{\sqrt{x^2+1}}. \end{array}$
- 5. Para cada uma das seguintes funções f, calcule $f^{(n)}$ para alguns valores $n \in \mathbb{N}_1$, por forma a sugerir uma expressão geral para $f^n(x)$. Em seguida, usando o método de indução finita, demonstre essa expressão.
 - a) $f(x) = \log(1+x)$;
 - b) $f(x) = \sin x$, (sugestão: $\cos x = \sin(x + \frac{\pi}{2})$) c) $f(x) = (1 + x)^{\alpha}$, $\cos \alpha \in \mathbb{R} \setminus \mathbb{N}$.

Em c), o que sucede quando $\alpha \in \mathbb{N}$?

6. Mostre que as seguintes funções têm um máximo e um mínimo nos pontos indicados e, no entanto, não são diferenciáveis nesses pontos:

a)
$$f: \mathbb{R} \mapsto \mathbb{R}$$
 definida por $f(x) = \begin{cases} 3x, & \text{se } x > 0 \\ -x, & \text{se } x \leq 0 \end{cases}$;

- b) $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \sqrt[3]{x^2(x-3)^2}$, nos pontos x=3 e x=0.
- 7. Prove que um polinómio da forma $p(x) = x^3 3x + b$ não pode ter mais do que uma raiz no intervalo [-1,1] (sug.: use o teorema de Rolle).
- 8. Use o teorema de Rolle para provar que o polinómio $x^{102}+ax+b$, com $a,b\in\mathbb{R}$ tem no máximo duas raizes reais enquanto que $x^{101}+ax+b$ tem no máximo três raizes reais.
- 9. Seja $f(x) = 1 x^{2/3}$. Verifique que f(1) = f(-1) = 0, mas que f'(x) nunca se anula no intervalo [-1,1]. Explique porque só aparentemente este resultado contradiz o teorema de Rolle.
- 10. Use o teorema de Lagrange para mostrar que:
 - a) $\log(x+1) \log x < \frac{1}{x}$, para $x \in]0, +\infty[$;
 - b) $|\sin x \sin y| \le |x y|$, para quaisquer $x, y \in \mathbb{R}$;
 - c) $\frac{x}{1+x^2} \le \arctan x \le x$, para $x \in [0, +\infty[$;
 - d) $8 + \frac{1}{9} < \sqrt{66} < 8 + \frac{1}{8}$.
- 11. Seja f uma função duas vezes diferenciável em]0,1[e contínua em [0,1]. Justifique que se o gráfico de f intersectar uma recta nos pontos de abcissa 0, 1 e a, com $a \in]0,1[$, então existe $c \in]0,1[$ tal que f''(c)=0.