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Preface

These are lecture notes for the courses “Differentiable Manifolds I” and
“Differentiable Manifolds II”, that I am lecturing at UIUC. This course is
usually taken by graduate students in Mathematics in their first or second
year of studies. The background for this course is a basic knowledge of
analysis, algebra and topology.

My main aim in writing up these lectures notes is to offer a written version
of the lectures. This should give a chance to students to concentrate more
on the class, without worrying about taking notes. It offers also a guide
for what material was covered in class. These notes do not replace the
recommended texts for this course, quite the contrary: I hope they will be
a stimulus for the students to consult those works. In fact, some of these
notes follow the material in theses texts.

These notes are organized into sections, each of these should correspond
to lectures of approximately to 1 hour and 30 minutes of classroom time.
However, some sections do include more material than others, which corre-
spond to different rhythms in class. The exercises at the end of each section
are a very important part of the course, since one learns a good deal about
mathematics by solving exercises. Moreover, sometimes the exercises con-
tain results that were mentioned in class, but not proved, and which are used
in later sections. The students should also keep in mind that the exercises
are not homogeneous: this is in line with the fact that in mathematics when
one faces for the first time a problem, one usually does not know if it has
an easy solution, a hard solution or if it is an open problem.

These notes are a modified version of similar lectures notes in Portuguese
that I have used at IST-Lisbon. For the Portuguese version I have profited
from comments from Ana Rita Pires, Georgios Kydonakis, Miguel Negrão,
Miguel Olmos, Ricardo Inglês, Ricardo Joel, José Natário and Roger Picken.
A special thanks goes to my colleague from IST Silvia Anjos, who has
pointed out many typos and mistakes, and has suggested several corrections.
I continue to update these notes and I will be grateful for any corrections
and suggestions for improvement that are sent to me.

Rui Loja Fernandes
ruiloja@illinois.edu

Department of Mathematics, UIUC
Urbana IL, USA
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Part 1. Basic Concepts

The notion of a smooth manifold of dimension d makes precise the con-
cept of a space which locally looks like the usual euclidean space Rd. Hence,
it generalizes the usual notions of curve (locally looks like R1) and surface
(locally looks like R2). This course consists of a precise study of this fun-
damental concept of Mathematics and some of the constructions associated
with it. We will see that many constructions familiar in infinitesimal anal-
ysis (i.e., calculus) extend from euclidean space to smooth manifolds. On
the other hand, the global analysis of manifolds requires new techniques and
methods, and often elementary questions lead to open problems.

In this first part of the lectures we will introduce the most basic concepts of
Differential Geometry, starting with the precise notion of a smooth manifold.
The main concepts and ideas to keep in mind from these first part are:

• Section 0: A manifold as a subset of Euclidean space, and the various
categories of manifolds: topological, smooth and analytic manifolds.
• Section 1: The abstract notion of smooth manifold (our objects) and
smooth map (our morphisms).
• Section 2: A technique of gluing called partitions of unity.
• Section 3: Manifolds with boundary and smooth maps between man-
ifolds with boundary.
• Section 4: Tangent vector, tangent space (our infinitesimal objects).
• Section 5: The differential of a smooth map (our infinitesimal mor-
phisms).
• Section 6: Important classes of smooth maps: immersions, submer-
sions and local difeomorphisms. Submanifolds (our sub-objects).
• Section 7: Embedded sub manifolds and theWhitney Embedding The-
orem, showing that any smooth manifold can be embedded in some
Euclidean space Rn.
• Section 8 Foliations, which are certain partitions of a manifold into
submanifolds, a very useful generalization of the notion of manifold.
• Section 9: Quotients of manifolds, i.e., smooth manifolds obtained
from other smooth manifolds by taking equivalence relations.
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0. Manifolds as subsets of Euclidean space

Recall that the Euclidean space of dimension n is:

Rn :=
{
(x1, . . . , xn) : x1, . . . , xn ∈ R

}

We will also denote by xi : Rn → R the i-th coordinate function in Rn. If
U ⊂ Rn is an open set, a map f : U → Rm is called a smooth map if all
its partials derivatives of every order:

∂rf j

∂xi1 · · · ∂xir (x),

exist and are continuous functions in U . More generally, given any subset
X ⊂ Rn and a map f : X → Rm, where X is not necessarily an open set, we
say that f is a smooth map if for each x ∈ X there is an open neighborhood
U ⊂ Rn and a smooth map F : U → Rm such that f |X∩U = F |X∩U .

A very basic property which we leave as an exercise is that:

Proposition 0.1. Let X ⊂ Rn, Y ⊂ Rm and Z ⊂ Rp. If f : X → Y and
g : Y → Z are smooth maps, then g ◦ f : X → Z is also a smooth map.

A bijection f : X → Y , where X ⊂ Rn and Y ⊂ Rm, with inverse
map f−1 : Y → X, such that both f and f−1 are smooth, is called a
diffeomorphism and we say that X and Y are diffeomorphic subsets.

X

Yf

Rn
Rm

One would like to study properties of sets which are invariant under dif-
feomorphisms, characterize classes of sets invariant under diffeomorphisms,
etc. However, in this definition, the sets X and Y are just too general, and
it is hopeless to try to say anything interesting about classes of such diffeo-
morphic subsets. One must consider nicer subsets of Euclidean space: for
example, it is desirable that the subset has at each point a tangent space
and that the tangent spaces vary smoothly.

Recall that a subset X ⊂ Rn has an induced topology, called the relative
topology, where the relative open sets are just the sets of the form X ∩ U ,
where U ⊂ Rn is an open set.

Definition 0.2. A subset M ⊂ Rn is called a smooth manifold of di-

mension d if each p ∈M has a neighborhood M ∩U which is diffeomorphic
to an open set V ⊂ Rd.

7



The diffeomorphism φ : M ∩ U → V , in this definition, is called a coor-
dinate system. The inverse map φ−1 : V →M ∩ U , which by assumption
is smooth, is called a parameterization.

M
U

U ∩M

V

Rd

Rn

φ

We have the category of smooth manifolds where:

• the objects are smooth manifolds;
• the morphisms are smooth maps.

The reason they form a category is because the composition of smooth maps
is a smooth map and the identity is also a smooth map.

Examples 0.3.

1. Any open subset U ⊂ Rd is itself a smooth manifold of dimension d: the
inclusion i : U →֒ Rd gives a global defined coordinate chart.

2. If f : Rd → Rm is any smooth map, its graph:

Graph(f) := {(x, f(x)) : x ∈ Rd} ⊂ Rd+m

is a smooth manifold of dimension d: the map x 7→ (x, f(x)) is a diffeomor-
phism Rd → Graph(M), so gives a global parametrization of Graph(f).

(x, f(x))

R
d

Rm
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3. The unit d-sphere is the subset of Rd+1 formed by all vectors of length 1:

Sd := {x ∈ Rd+1 : ||x|| = 1}.
This is a d-dimensional manifold which does not admit a global parametriza-
tion. However we can cover the sphere by two coordinate systems: if we let
N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) denote the north and south poles,
then stereographic projection relative to N and S give two coordinate systems
πN : Sd − {N} → Rd and πS : Sd − {S} → Rd.
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4. The only connected manifolds of dimension 1 are the line R and the circle
S1. What this statement means is that any connected manifold of dimension 1
is diffeomorphic to R or to S1.

5. The manifolds of dimension 2 include the compact surfaces of genus g. For
g = 0 this is the sphere S2. For g = 1 this is the torus:

For g > 1, the compact surface of genus g is a g-holed torus:
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You should note, however, that a compact surface of genus g can be embedded
in R3 in many forms. Here is one example (can you figure out what is the genus
of this surface?):

You should note that in the definitions we have adopted so far in this sec-
tion we have chosen the smooth category, where differentiable maps have all
partial derivatives of all orders. We could have chosen other classes, such as
continuous maps, Ck-maps, or analytic maps(1). This would lead us to the
categories of topological manifolds, Ck manifolds or analytic mani-
folds. Note that in each such category we have an appropriate notion of
equivalence: for example, two topological manifolds X and Y are equivalent
if and only if there exists a homeomorphism between them, i.e., a continuous
bijection f : X → Y such that the inverse is also continuous.

Examples 0.4.

1. Let I = [−1, 1]. The unit cube d-dimensional cube is the set:

Id = {(x1, . . . , xd) ∈ Rd+1 : xi ∈ I, for all i = 1, . . . , n}.
The boundary of the cube

∂Id = {(x1, . . . , xd) ∈ Id : xi = −1 or 1, for some i = 1, . . . , n}.
is a topological manifold of dimension d− 1, which is not a smooth manifold.

1We shall also use the term Ck-map, k = 1, 2, ...,+∞, for a map whose partial derivatives
of all orders up to k exist and are continuous, and we make the conventions that a C0-

map is simply a continuous map and a Cω-map means an analytic map. A Ck-map
which is invertible and whose inverse is also a Ck-map is called a Ck-equivalence or a
Ck-isomorphism.
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2. If f : Rd → Rl is any map of class Ck, its graph:

Graph(f) := {(x, f(x)) : x ∈ Rd} ⊂ Rd+l

is a Ck-manifold of dimension d. Similarly, if f is any analytic map then
Graph(f) is an analytic manifold.

Most of the times we will be working with smooth manifolds. However,
there are many situations where it is desirable to consider other categories
of manifolds, so you should keep them in mind.

You may wonder if the dimension d that appears in the definition of a
manifold is a well defined integer, in other words if a manifold M ⊂ Rn

could be of dimension d and d′, for distinct integers d 6= d′. The reason that
this cannot happen is due to the following important result:

Theorem 0.5 (Invariance of Domain). Let U ⊂ Rn be an open set and let
φ : U → Rn be a 1:1, continuous map. Then φ(U) is open.

The reason for calling this result “invariance of domain” is that a domain
is a connected open set of Rn, so the result says that the property of being
a domain remains invariant under a continuous, 1:1 map. The proof of this
result requires some methods from algebraic topology and so we will not give
it here. We leave it as an exercise to show that the invariance of domain
implies that the dimension of a manifold is a well defined integer.

Homework.

1. Let X ⊂ Rn, Y ⊂ Rm and Z ⊂ Rp. If f : X → Y and g : Y → Z are
smooth maps, show that g ◦ f : X → Z is also a smooth map.

2. Let f : Rd → Rm be a map of class Ck, k = 0, . . . , ω. Show that φ : Rd →
Graph(f), x 7→ (x, f(x)), is a Ck-equivalence.

3. Show that the sphere Sd and the boundary of the cube ∂Id+1 are equivalent
topological manifolds.

4. Consider the set SL(2,R) formed by all 2× 2 matrices with real entries and
determinant 1:

SL(2,R) =

{[
a b
c d

]
: ad− bc = 1

}
⊂ R4.

Show that SL(2,R) is a 3-dimensional smooth manifold.

5. Use invariance of domain to show that the notion of dimension of a topo-
logical manifold is well defined.

11



1. Abstract Manifolds

In many situations manifolds do not arise naturally as subsets of Eu-
clidean space. We will see several examples of this later. For that reason,
the definition of manifold that we have seen in the previous section is often
not the most useful one. We need a different definition of a manifold, where
M is not assumed a priori to be a subset of some Rn. For this more abstract
definition of manifold we need the set M to have a notion of proximity, in
other words, we need M to be furnished with a topology. At this point, it
maybe useful to remind yourself of the basics of point set topology.

In this more general context, the definition of a topological manifold is
very simple:

Definition 1.1. A topological space M is called a topological manifold

of dimension d if every p ∈M has a neighborhood U ⊂M homeomorphic
to some open subset V ⊂ Rd.
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Some times one also calls a topological manifold a locally Euclidean
space. In this more general context we still use the same notation as be-
fore: we call φ : U → Rd a system of coordinates or a chart, and the
functions φi = xi ◦ φ are called coordinate functions. We shall denote
a system of coordinates by (U, φ). Often we write xi instead of φi for the
coordinate functions, in which case we may denote the system of coordinates
by (U, x1, . . . , xd). We say that a system of coordinates (U, φ) is centered at
a point p ∈M if φ(p) = 0.

Example 1.2.
On R3 − {0} consider the equivalence relation ∼, where v ∼ w if and only if
v = λw for some real number λ 6= 0. The set of equivalence classes

RP2 := (R3 − {0})/ ∼
12



can be identified with the set of straight lines in R3 that pass through the origin
and it is called the projective plane. Denoting by [x : y : z] the equivalence
class of (x, y, z) ∈ R3 − {0}, we have the quotient map:

π : R3 − {0} → RP2, (x, y, z) 7→ [x : y : z].

On RP2 we consider the quotient topology, so U ⊂ RP2 is open if and only
if π−1(U) ⊂ R2 − {0} is open. The maps given by:

φ1 : U1 → R2, [x : y : z] 7→
(y
x
,
z

x

)
, U1 := {[x : y : z] ∈ RP2 : x 6= 0},

φ2 : U2 → R2, [x : y : z] 7→
(
x

y
,
z

y

)
, U2 := {[x : y : z] ∈ RP2 : y 6= 0},

φ3 : U3 → R2, [x : y : z] 7→
(x
z
,
y

z

)
, U3 := {[x : y : z] ∈ RP2 : z 6= 0}.

are homeomorphisms onto R2. Since {U1, U2, U3} is an open cover of RP2, we
conclude that the projective plane is a topological manifold of dimension 2.

There is a tacit assumption about the underlying topology of a mani-
fold, that we will also adopt here, and which is the following:

Manifolds are assumed to be Hausdorff and second countable

This assumption has significant implications, as we shall see shortly, which
are very useful in the study of manifolds (e.g., existence of partitions of
unity or of Riemannian metrics). On the other hand, it means that in any
construction of a manifold we have to show that the underlying topology
satisfies these assumptions. This is often easy since, for example, any metric
space satisfies these assumptions.

It should be noted, however, that non-Hausdorff manifolds do appear
sometimes, for example when one forms quotients of (Hausdorff) manifolds
(see Section 9). Manifolds which are not second countable can also appear
(e.g., in sheaf theory), although we will not meet them in the course of these
sections. We limit ourselves here to give two such examples.

Examples 1.3.

1. On R2 − {0} consider the horizontal lines y = c. This defines a partition
of R2 − {0} and so defines an equivalence relation ∼. The quotient space
M = R2−{0}/ ∼ (with the quotient topology) is a topological one-dimensional
manifold: we can cover M by two open sets:

U+ = {[(1, y)] : y ∈ R}, U− = {[(−1, y)] : y ∈ R},
for which we have homeomorphisms:

φ± : U± → R, [(±1, y)] 7→ y.

However, M is not a Hausdorff topological space since the points [(1, 0)] and
[(−1, 0)] cannot be separated. One calls M the line with 2 origins.

2. Consider on M = R2 the topology generated by sets of the form U × {y}
where U ⊂ R is open and y ∈ R. This topology does not have a countable basis.

13



However, M is a topological one-dimensional manifold with charts (U×{y}, φy)
given by φy(x, y) = x. In this example, M is basically the disjoint, uncountable,
union of copies of the real line, and it is not connected. It is possible to give
examples of connected, Hausdorff, manifoldsM which are not second countable,
such as the long line.

Of course we are interested in smooth manifolds. The definition is slightly
more involved:

Definition 1.4. A smooth structure on a topological d-manifold M is a
collection of coordinate systems C = {(Uα, φα) : α ∈ A} which satisfies the
following properties:

(i) The collection C covers M :
⋃
α∈A Uα =M ;

(ii) For all α, β ∈ A, the transition function φα ◦ φ−1
β is a smooth map;

(iii) The collection C is maximal: if (U, φ) is a coordinate system such that
for all α ∈ A the maps φ◦φ−1

α and φα◦φ−1 are smooth, then (U, φ) ∈ C.
The pair (M, C) is called a smooth manifold of dimension d.

MMM

Uα
Uβ

φβ

φβ ◦ φ−1
α

φα

φα ◦ φ−1
β

Rd Rd

Given a topological manifold, a collection of coordinate systems which
satisfies (i) and (ii) in the previous definition is called an atlas. Given an
atlas C0 = {(Uα, φα) : α ∈ A} there exists a unique maximal atlas C which
contains C0: it is enough to define C to be the collection of all smooth
coordinate systems relative to C, i.e., all coordinate systems (U, φ) such
that φ ◦ φ−1

α and φα ◦ φ−1 are both smooth, for all (Uα, φα) ∈ C0. For this
reason, one often defines a smooth structure by specifying some atlas, and
it is then implicit that the smooth structure is the one associated with the
corresponding maximal atlas.

14



It should be clear from this definition that one can define in a similar
fashion manifolds of class Ck for any k = 1, . . . ,+∞, ω, by requiring the
transition functions to be of class Ck. In these sections, we shall concentrate
on the case k = +∞.

Examples 1.5.

1. The standard differential structure on Euclidean space Rd is the
maximal atlas that contains the coordinate system (Rd, i), where i : Rd → Rd

is the identity map. It is a non-trivial fact that the Euclidean space R4 has
an infinite number of smooth structures, with the same underlying topology,
but which are not equivalent to this one (in a sense to be made precise later).
These are called exotic smooth structures. It is also known that Rd, for
d 6= 4, has no exotic smooth structures.

2. If M ⊂ Rn is a d-dimensional manifold in the sense of Definition 0.2, then
M carries a natural smooth structure: the coordinate systems in Definition 0.2
form a maximal atlas (exercise) for the topology on M induced from the usual
topology on Rn. We shall see later in Section 7, that the Whitney Embedding
Theorem shows that, conversely, any smooth manifold M arises in this way.
Henceforth, we shall refer to a manifold M ⊂ Rn in the sense of Definition
0.2 as an embedded manifold in Rn.

3. If M is a d-dimensional smooth manifold with smooth structure C and U ⊂
M is an open subset, then U with the relative topology is also a smooth d-
dimensional manifold with smooth structure given by:

CU = {(Uα ∩ U, φα|Uα∩U ) : (U, φα) ∈ C} .
4. IfM and N are smooth manifolds then the Cartesian productM×N , with
the product topology, is a smooth manifold: in M×N we consider the maximal
atlas that contains all coordinate systems of the form (Uα×Vβ , φα×ψβ), where
(Uα, φα) and (Vβ , ψβ) are smooth coordinate systems of M and N , respectively.
It should be clear that dimM × N = dimM + dimN . More generally, if
M1, . . . ,Mk are smooth manifolds then M1× · · · ×Mk is a smooth manifold of
dimension dimM1+ · · ·+dimMk. For example, the d-torus Td = S1×· · ·×S1

and the cylinders Rn×Sm are smooth manifolds of dimensions d and n+m,
respectively.

5. Generalizing the projective plane, one defines the real projective space as
the set

RPd :=
{
L ⊂ Rd+1 : L is a straight line through the origin

}
,

which we can think of as the quotient space of Rd+1−{0} / ∼ by the equivalence
relation:

(x0, . . . , xd) ∼ (y0, . . . , yd) if and only if (x0, . . . , xd) = λ(y0, . . . , yd),

for some λ ∈ R − 0. On RPd we take the quotient topology, so it becomes
a topological manifold of dimension d: if we denote by [x0 : · · · : xd] the
equivalence class of (x0, . . . , xd) ∈ Rd+1 − {0}, then for each α = 0, . . . , n we

15



have the coordinate system (Uα, φα) where:

Uα =
{
[x0 : · · · : xd] : xα 6= 0

}
,

φα : Uα → Rd, [x0 : · · · : xd] 7→ (
x0

xα
, . . . ,

x̂α

xα
, . . . ,

xd

xα
)

(the symbol â means that we omit the term a). We leave it as an exercise
to check that the transition functions between these coordinate functions are
smooth, so they form an atlas on RPd. Note that RPd does not arise naturally
as a subset of some Euclidean space.

We have established what are our objects. Now we turn to the morphisms.

Definition 1.6. Let M and N be smooth manifolds.

(i) A function f : M → R is called a smooth function if f ◦ φ−1 is
smooth for all smooth coordinate systems (U, φ) of M .

(ii) A map Ψ : M → N is called a smooth map if τ ◦ Ψ ◦ φ−1 is smooth
for all smooth coordinate systems (U, φ) of M and (V, τ) of N .

A smooth map Ψ :M → N which is invertible and whose inverse is smooth
is called a diffeomorphism. In this case we say that M and N are dif-

feomorphic manifolds.

Note that to check that a map Ψ : M → N is smooth, it is enough to
verify that for each p ∈ M , there exist a smooth chart (U, φ) of M with
p ∈ U and a smooth chart (V, τ) of N with Ψ(p) ∈ V , such that τ ◦Ψ ◦ φ−1

is a smooth map. Also, a smooth function f :M → R is just a smooth map
where R has its standard smooth structure.

Clearly, the composition of two smooth maps, whenever defined, is a
smooth map. The identity map is also a smooth map. So we have the
category of smooth manifolds, whose objects are the smooth manifolds
and whose morphisms are the smooth maps.

Just as we did for maps between subsets of Euclidean space, when X ⊂
M and Y ⊂ N are arbitrary subsets of some smooth manifolds, we will
say that Ψ : X → Y is a smooth map if for each p ∈ X there is an
open neighborhood U ⊂ M and a smooth map F : U → N such that
F |U∩X = Ψ|U∩X .

The set of smooth maps from X to Y will be denoted C∞(X;Y ). When
Y = R, we use C∞(X) instead of C∞(X;R).

16



Examples 1.7.

1. If M ⊂ Rn is an embedded manifold, any smooth function F : U → R
defined on an open Rn ⊃ U ⊃ M induces, by restriction, a smooth function
f : M → R. Conversely, every smooth function f : M → R is the restriction
of some smooth function F : U → R defined on some open set Rn ⊃ U ⊃ M .
To see this we will need the partitions of unity to be introduced in Section 3.

You should also check that if M ⊂ Rn and N ⊂ Rm are embedded manifolds
then Ψ : M → N is a smooth map if and only if for every p ∈ M there exists
an open neighborhood U ⊂ Rn of p and a smooth map F : U → Rm such that
Ψ|U∩M = F |U∩M . This shows that the notion of smooth map in Definition 1.6
extends the notion we have introduced in the previous section.

2. The map π : Sd → RPd defined by:

π(x0, . . . , xd) = [x0 : · · · : xd],

is a smooth map. Moreover, any smooth function F : Sd → R which is invariant
under inversion (i.e., F (−x) = F (x)), induces a smooth function f : RPd → R:
the function f is the unique one that makes the following diagram commutative:

Sd

π
��

F // R

RPd
f

>>⑤
⑤

⑤
⑤

Conversely, every smooth function in C∞(RPd) arises in this way.

If we are given two smooth structures C1 and C2 on the same manifold M
we say that they are equivalent smooth structures if there is a diffeo-
morphism Ψ : (M, C1)→ (M, C2).

Example 1.8.
On the line R the identity map R → R, x 7→ x, gives a chart which defines
a smooth structure C1. We can also consider the chart R → R, x 7→ x3, and
this defines a distinct smooth structure C2 on R (why?). However, these two
smooth structures are equivalent since the map x 7→ x3 gives a diffeomorphism
from (M, C2) to (M, C1).

It is known that every topological manifold of dimension less or equal
than 3 has a unique smooth structure. For dimension greater than 3 the
situation is much more complicated, and not much is known. However, as
we have mentioned before, the smooth structures on Rd, compatible with
the usual topology, are all equivalent if d 6= 4, and there are uncountably
many inequivalent exotic smooth structures on R4. On the other hand,
for the sphere Sd there are no exotic smooth structures for d ≤ 6 but Milnor
found that S7 has 27 inequivalent smooth structures. Its known, e.g., that
S31 has more than 16 million inequivalent smooth structures!
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Homework.

1. Let M be a topological manifold. Show that M is locally compact, i.e.,
every point of M has a compact neighborhood.

2. The Urysohn’s Metrization Theorem states that a Hausdorff, regular, topo-
logical space with a countable basis is metrizable. Use this to show that every
topological manifold M is metrizable.
Hint: A topological space X is called regular if given a closed set A ⊂ X and
a point x 6∈ A, there exist disjoint open sets U and V with x ∈ U and A ⊂ V .

3. LetM be a connected topological manifold. Show thatM is path connected.
If, additionally,M is a smooth manifold, show that for any p, q ∈M there exists
a smooth path c : [0, 1]→M with c(0) = p and c(1) = q.
Hint: Given any smooth path c : [0, 1] → Rn there is a smooth function
τ : R → R, with τ(t) = 0 if t ≤ 0, τ(t) = 1 if t ≥ 1, and τ ′(t) > 0 if t ∈]0, 1[,
so that cτ := c ◦ τ : [0, 1]→ Rn is a new smooth path with the same image as
c and c′τ (0) = c′τ (1) = 0.

4. Let φ : Rm → Rn be a diffeomorphism. Use the chain rule to deduce that
one must have m = n. Use this result to conclude that if M and N are
diffeomorphic smooth manifolds then dimM = dimN , without appealing to
invariance of domain.

5. Compute the transition functions for the atlas of real projective space RPd

and show that they are smooth. Show also that:
(a) RP1 is diffeomorphic to S1;
(b) RPd−RPd−1 is diffeomorphic to the open ball Bn = {x ∈ Rd : ||x|| < 1} ,

where we identify RPd−1 with the subset {[x0 : · · · : xd] : xd = 0} ⊂ RPd.

6. The complex projective d-dimensional space is the set

CPd =
{
L ⊂ Cd+1 : L is a complex line through the origin

}
.

Construct a smooth structure of 2d-dimensional manifold on CPd similar to
the construction of a smooth structure on real projective space RPd.
Note: One identifies C ≃ R2 by setting (x+ iy) 7→ (x, y).

7. Show that if M ⊂ Rn is a d-dimensional manifold in the sense of Definition
0.2, then M carries a natural smooth structure.
Note: One sometimes says that M is an embedded manifold in Rn or a d-
surface in Rn. When d = 1, one says that M is a curve, when d = 2 one says
thatM is a surface, and when k = n−1 one says thatM is an hypersurface.

8. Let M ⊂ Rn be a subset with the following property: for each p ∈M , there
exists an open set U ⊂ Rn containing p and diffeomorphism Φ : U → V onto
an open set V ⊂ Rn, such that:

Φ(U ∩M) =
{
q ∈ V : qd+1 = · · · = qn = 0

}
.

Show that M is a smooth manifold of dimension d (in fact, M is an embedded
manifold or a d-surface in Rn; see the previous exercise).
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9. LetM be a set and assume that one has a collection C = {(Uα, φα) : α ∈ A},
where Uα ⊂M and φα : Uα → Rd, satisfy the following properties:
(a) For each α ∈ A, φα(Uα) ⊂ Rn is open and φα : Uα → φα(Uα) is a

bijection
(b) For each α, β ∈ A, the sets φα(Uα ∩ Uβ) ⊂ Rn are open.
(c) For each α, β ∈ A, with Uα ∩ Uβ 6= ∅ the map φβ ◦ φ−1

α : φα(Uα ∩ Uβ)→
φβ(Uα ∩ Uβ) is smooth.

(d) There is a countable set of Uα that cover M .
(e) For any p, q ∈M , with p 6= q, either there exists a Uα such that p, q ∈ Uα,

or there exists Uα and Uβ , with p ∈ Uα, q ∈ Uβ and Uα ∩ Uβ = ∅.
Show that there exists a unique smooth structure onM such that the collection
C is an atlas.

10. Let M = C ∪ {∞}. Let U := M − {∞} = C and φU : U → C be the
identity map and let V :=M −{0} and φV : V → C be the map φV (z) = 1/z,
with the convention that φ(∞) = 0. Use the previous exercise to show that M
has a unique smooth structure with atlas C := {(U, φU ), (V, φV )}. Show that
M is diffeomorphic to S2.
Hint: Be careful with item (e)!

11. Let M and N be smooth manifolds and let Ψ : M → N be a map. Show
that the following statements are equivalent:
(i) Ψ :M → N is smooth.
(ii) For every p ∈M there are smooth coordinate systems (U, φ) of M and

(V, τ) of N , with p ∈ U and Ψ(p) ∈ V , such that τ ◦Ψ ◦ φ−1 is smooth.
(iii) There exist atlases {(Uα, φα) : α ∈ A} and {(Uβ , ψβ) : β ∈ B} of M and

N , such that for each α ∈ A and β ∈ B, ψβ ◦Ψ ◦ φ−1
α is smooth.

12. Let M and N be smooth manifolds and let Φ : M → N be a map. Show
that:
(i) If Φ is smooth, then for every open set U ⊂M the restriction Φ|U : U →

N is a smooth map.
(ii) if every p ∈ M has an open neighborhood U such that the restriction

Φ|U : U → N is a smooth map, then Φ : M → N is smooth.

2. Manifolds with Boundary

There are many spaces, such as the closed unit disk, a solid donought
or the Möbius strip, which just fail to be a manifold because they have a
“boundary”. One can remedy this situation by trying to enlarge the notion
of manifold so that it includes this possibility. The clue to be able to include
boundary points is to understand what is the local model around points in
the “boundary” and this turns out to be the closed half-space Hd:

Hd := {(x1, . . . , xd) ∈ Rd : xd ≥ 0}.
We will denote the open half-space by:

IntHd =: {(x1, . . . , xd) ∈ Rd : xd > 0}.
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and the boundary of the closed half-space by:

∂Hd =: {(x1, . . . , xd) ∈ Rd : xd = 0}.
When n = 0, we have H0 = R0 = {0}, so IntH0 = R0 and ∂H0 = ∅.
Definition 2.1. A topological manifold with boundary of dimension

d is a topological space M such that every p ∈ M has a neighborhood U
which is homeomorphic to some open set V ⊂ Hd.

M
U

U

V
V

HdHd

φ
φ

Just as we do for manifolds without boundary, we shall assume that all
manifolds with boundary are Hausdorff and have a countable basis of open
sets.

We shall use the same notations as before, so we call a homeomorphism
φ : U → V as in the definition a system of coordinates or a coordinate chart.
Note that there are two types of open sets in Hd according to whether they
intersect ∂Hd or not. These give rise to two types of coordinate systems
φ : U → V , according to whether V intersects ∂Hd or not. In the first case,
when V ∩ ∂Hd = ∅, we just have a coordinate system of the same sort as
for manifolds without boundary, and we call it an interior chart. In the
second case, when V ∩ ∂Hd 6= ∅, we call it a boundary chart.

Using Invariance of Domain (Theorem 0.5), one shows that:

Lemma 2.2. Let M be a topological manifold with boundary of dimension
d. If for some chart (U, φ) we have φ(p) ∈ ∂Hd, then this is also true for
every other chart.

Proof. Exercise. �

This justifies the following definition:

Definition 2.3. LetM be a topological manifold with boundary of dimension
d. A point p ∈ M is called a boundary point if there exists some chart
(U, φ) with p ∈ U , such that φ(p) ∈ ∂Hd. Otherwise, p is called an interior

point.
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The set of boundary points of M will be denoted by ∂M and is called
the boundary of M and the set of interior points of M will be denoted
by IntM and is called the interior of M. If on both sets we consider the
topology induced from M , we have:

Proposition 2.4. Let M be a topological manifold with boundary of di-
mension d > 0. Then IntM and ∂ M are topological manifolds without
boundary of dimension d and d − 1, respectively. If N is another manifold
with boundary and Ψ : M → N is a homeomorphism then Ψ restricts to
homeomorphisms Ψ|∂M : ∂ M → ∂ N and Ψ|IntM : IntM → IntN .

Proof. Let p ∈ IntM and let φ : U → V be a chart with p ∈ U and
V ⊂ H. Then if we set V0 := V − ∂H and U0 := φ−1(V0), we have that U0

is an open neighborhood of M , V0 is open in Rd, and φ|U0 : U0 → V0 is a
homeomorphism. This shows that IntM is a topological manifold without
boundary of dimension d.

On the other hand, let p ∈ ∂ M and let φ : U → V be a chart with
p ∈ U and φ(p) ∈ ∂H. Then if we set V0 := V ∩ ∂H and U0 := φ−1(V0),
we have that U0 = U ∩ ∂M is an open neighborhood of ∂M , V0 is open in
∂H ≃ Rd−1, and φ|U0 : U0 → V0 is a homeomorphism. This shows that ∂M
is a topological manifold without boundary of dimension d− 1. �

It is important not to confuse the notions of interior and boundary point
for manifolds with boundary with the usual notions of interior and boundary
point of a subset of a topological space. If M happens to be a manifold
with boundary embedded in some Rn then the two notions may or may not
coincide, as shown by the following examples.

Examples 2.5.

1. M = Hd is itself a topological manifold with boundary of dimension d, where
IntM = IntHd and ∂M = ∂Hd, so our notations are consistent. If we think
of Hd ⊂ Rd, then these notions coincide with the usual notions of boundary
and interior of Hd as a topological subspace of Rd.

2. The closed unit disk:

Dk = Bd := {x ∈ Rd : ||x|| ≤ 1},

is a topological manifold with boundary of dimension d with interior the open
unit ball Bd and boundary the unit sphere Sd−1. If we think of Dd ⊂ Rd, then
these notions coincide with the usual notions of boundary and interior of Dd

as a topological subspace of Rd.

3. The cube Id is a topological manifold with boundary of dimension d. Id and
Dd are homeomorphic topological manifolds with boundary.

4. The Möbius stripM ⊂ R3 is a topological manifold with boundary ∂M = S1.
Note that, as a topological subspace of R3, all points of M are boundary points!
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Now that we have the notion of chart for a topological manifold with
boundary, we can define a smooth structure on a topological d-manifold
with boundary M by exactly the same procedure as we did for manifolds
without boundary: it is a collection of charts C = {(Uα, φα) : α ∈ A} which
satisfies the following properties:

(i) The collection C is an open cover of M :
⋃
α∈A Uα =M ;

(ii) For all α, β ∈ A, the transition function φα ◦ φ−1
β is a smooth map;

(iii) The collection C is maximal: if (U, φ) any coordinate system such that
φ ◦ φ−1

α and φα ◦ φ−1 are smooth maps for all α ∈ A, then (U, φ) ∈ C.
The pair (M, C) is called a smooth d-manifold with boundary.

Again, given an atlas C0 = {(Uα, φα) : α ∈ A} (i.e., a collection satisfying
(i) and (ii)), there exists a unique maximal atlas C which contains C0: it is
enough to define C to be the collection of all smooth charts relative to C,
i.e., all coordinate systems (U, φ) such that φ ◦ φ−1

α and φα ◦ φ−1 are both
smooth, for all (Uα, φα) ∈ C0.

The notion of smooth map Ψ : M → N between two manifolds with
boundary is also defined in exactly the same way as in the case of manifolds
without boundary.

Proposition 2.6. Let M be a smooth manifold with boundary of dimen-
sion d > 0. Then IntM and ∂M are smooth manifolds without boundary
of dimension d and d − 1, respectively. If N is another smooth manifold
with boundary and Ψ : M → N is a diffeomorphism then Ψ restricts to
diffeomorphisms Ψ|∂ M : ∂ M → ∂ N and Ψ|IntM : IntM → IntN .

Proof. Exercise. �

You should check that the half space Hd, the closed disk Dd or the Möbius
strip, are all smooth manifolds with boundary, while the cube Id is not.

Although often one can work with manifolds with boundary much the
same way as one can work with manifolds without boundary, some care
must be taken. For example, the Cartesian product of two half-spaces is not
a manifold with boundary (it is rather a manifold with corners, a notion we
will not discuss). So the cartesian product of manifolds with boundary may
not be a manifold with boundary. However, we do have the following result:

Proposition 2.7. If M is a smooth manifold without boundary and N is
a smooth manifold with boundary, then M × N is a smooth manifold with
∂ (M ×N) =M × ∂ N and Int(M ×N) =M × IntN .

Proof. Exercise. �

Example 2.8.
If M is a manifold without boundary and I = [0, 1] then M × I is a manifold
with boundary for which:

Int(M × I) =M×]0, 1[, ∂(M × I) =M × {0} ∪M × {1}.
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It is very cumbersome to write always “manifold without boundary”, so
we agree to refer to these simply as “manifolds”, and add the qualitative
“with boundary”, whenever that is the case. You should be aware that in the
literature it is common to use non-bounded manifold for a manifold in
our sense, and to call a closed manifold a compact non-bounded manifold
and open manifold a non-bounded manifold with no compact component.

From now on we will be dealing almost exclusively with smooth manifolds.
Hence, for a smooth manifold, we will use the term “chart” (or “coordinate
system”) to mean “smooth chart” (or “smooth coordinate system”).

Homework.

1. Use Invariance of Domain to show that if for a chart (U, φ) of a topological
manifold with boundary one has φ(p) ∈ ∂Hd, then this also holds for every
other chart.

2. Let M ⊂ Rd have the induced topology. Show that if M is a closed subset
and a d-dimensional manifold with boundary then the topological boundary
of M coincides with ∂ M . Give a counterexample to this statement when M
is not a closed subset.

3. Give the details of the proofs of Propositions 2.6 and 2.7

4. Let M = D2×S1 be the solid torus (a 3-manifold with boundary). What is
the boundary of the solid torus? How does this generalize to dimension > 3?

3. Partitions of Unity

When M is a smooth manifold and f ∈ C∞(M), we define the support
of f to be the closed set:

supp f ≡ {p ∈M : f(p) 6= 0}.
Also, given a collection C = {Uα : α ∈ A} of subsets of M we say that

• C is locally finite if, for all p ∈ M , there exists a neighborhood
p ∈ O ⊂M such that O ∩Uα 6= ∅ for only a finite number of α ∈ A.
• C is a cover of M if

⋃
α∈A Uα =M .

• C0 = {Uβ : β ∈ B} is a subcover if C0 ⊂ C and C0 still covers M .
• C′ = {Vi : i ∈ I} is a refinement of a cover C if it is itself a cover
and for each i ∈ I there exists αi = α(i) ∈ A such that Vi ⊂ Uαi .

Definition 3.1. A partition of unity in a smooth manifold M is a col-
lection {φi : i ∈ I} ⊂ C∞(M) such that:

(i) the collection of supports {suppφi : i ∈ I} is locally finite;
(ii) φi(p) ≥ 0 and

∑
i∈I φi(p) = 1 for every p ∈M .

A partition of unity {φi : i ∈ I} is called subordinated to a cover {Uα : α ∈ A}
of M if for each i ∈ I there exists αi ∈ A such that suppφi ⊂ Uαi .
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Notice that the sum in (ii) is actually finite: by (i), for each p ∈M there
is only a finite number of functions φi with φi(p) 6= 0.

The existence of partitions of unity is not obvious, but we will see in this
section that there are many partitions of unity on a manifold.

Theorem 3.2 (Existence of Partitions of Unity). Let M be a smooth man-
ifold and let {Uα : α ∈ A} be an open cover of M . Then there exists a
countable partition of unity {φi : i = 1, 2, . . . }, subordinated to the cover
{Uα : α ∈ A} and with suppφi compact for all i.

If we do not care about compact supports, for any open cover we can get
partitions of unity with the same set of indices:

Corollary 3.3. Let M be a smooth manifold and let {Uα : α ∈ A} be an
open cover of M . Then there exists a partition of unity {φα : α ∈ A} such
that suppφα ⊂ Uα for each α ∈ A.
Proof. By Theorem 3.2 there exists a countable partition of unity

{ψi : i = 1, 2, . . . }
subordinated to the cover {Uα : α ∈ A}. For each i we can choose a α = α(i)
such that suppψi ⊂ Uα(i). Then the functions

φα =





∑
α(i)=α ψi, if {i : α(i) = α} 6= ∅,

0 otherwise,

form a partition of unity with suppφα ⊂ Uα, for all α ∈ A. �

Example 3.4.
For the sphere Sd, consider the cover with the two opens sets UN := Sd − N
and US := Sd−S. Then the corollary says that there exists a partition of unity
subordinated to this cover with the same indices, i.e., a pair of non-negative
smooth functions φN , φS ∈ C∞(Sd) with suppφN ⊂ UN and suppφS ⊂ US,
such that φN (p) + φS(p) = 1, for all p ∈ Sd.

Corollary 3.5. Let A ⊂ O ⊂ M , where O is an open subset and A is
a closed subset of a smooth manifold M . There exists a smooth function
φ ∈ C∞(M) such that:

(i) 0 ≤ φ(p) ≤ 1 for each p ∈M ;
(ii) φ(p) = 1 if p ∈ A;
(iii) suppφ ⊂ O.

Proof. The open sets {O,M −A} give an open cover of M . Therefore, by
the previous corollary, there is a partition of unity {φ,ψ} with supφ ⊂ O
and supψ ⊂M −A. The function φ satisfies (i)-(iii). �

Roughly speaking, partitions of unity are used to “glue” local properties
(i.e., properties that hold on domains of local coordinates), giving rise to
global properties of a manifold, as shown in the proof of the following result.
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Corollary 3.6 (Extension Lemma for smooth maps). Let M be a smooth
manifold, A ⊂ M a closed subset and Ψ : A → Rn a smooth map. For any

open set A ⊂ U ⊂ M there exists a smooth map Ψ̃ : M → Rn such that

Ψ̃|A = Ψ and supp Ψ̃ ⊂ U .

Proof. For each p ∈ A we can find an open neighborhood Up ⊂M , such that

we can extend Ψ|Up∩A to a smooth function Ψ̃p : Up → Rn. By replacing Up
by Up ∩ U we can assume that Up ⊂ U . The sets {Up,M −A; p ∈ A} form
an open cover of M so we can find a partition of unit {φp : p ∈ A} ∪ {φ0},
subordinated to this cover with suppφp ⊂ Up. Now define Ψ̃ : M → Rn by
setting

Ψ̃ :=
∑

p∈A
φpΨ̃p.

Clearly Ψ̃ has the required properties. �

We now turn to the proof of Theorem 3.2. There are two main ingredients
in the proof. The first one is that topological manifolds are paracompact,
i.e., every open cover has an open locally finite refinement. This is in fact
a consequence of our assumption that manifolds are Hausdorff and second
countable, and we will use the following more precise versions:

(a) Every open cover of a topological manifoldM has a countable subcover.
(b) Every open cover of a topological manifold M has a countable, locally

finite refinement consisting of open sets with compact closures.

The proofs are left to the exercises. The second ingredient is the existence
of “very flexible” smooth functions, some times called bump functions:

(c) for any ε > δ > 0, there exists a function φ ∈ C∞(Rd) such that

φ(x) = 1, if x ∈ Bδ(0), and φ(x) = 0, if x ∈ Bε(0)c.
This can be proved by observing that:

• The function f : R→ R defined by:

f(x) =





exp(− 1
x2
), x 6= 0,

0, x = 0.

is a smooth function.
• If δ > 0, the function g : R→ R defined by:

g(x) = f(x)f(δ − x),
is smooth, g(x) > 0 if x ∈]0, δ[ and g(x) = 0 otherwise.
• The function h : R→ R defined by:

h(x) :=

∫ x
0 g(t) dt∫ δ
0 g(t) dt

,

is smooth, non-decreasing, h(x) = 0 if x ≤ 0 and h(x) = 1 if x ≥ δ.
Using these functions you should now be able to show that (c) holds.
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Proof of Theorem 3.2. By (b) above, we can assume that the open cover
{Uα : α ∈ A} is countable, locally finite, and the sets Uα are compact. If
p ∈ Uα, we can choose a smooth chart (Vp, τ), centered in p, with Vp ⊂ Uα,

and such that Bε(0) ⊂ τ(Vp) for some ε > 0. Now if φ is the function defined
in (c) above, we set:

ψp :=





φ ◦ τ, in Vp,

0, in M − Vp.
Then ψp ∈ C∞(M) is a non-negative function, taking the value 1 in an open
set Wp ⊂ Vp which contains p. Since {Wp : p ∈M} is an open cover of M ,
by (a) above, there exists a countable subcover {Wp1 ,Wp2 , . . . } of M . Then
the open cover {Vp1 , Vp2 , . . . } is locally finite and subordinated to the cover

{Uα : α ∈ A}. Moreover, the closures V pi are compact.
The sum

∑
i ψpi may not be equal to 1. To fix this we observe that

ψ =

+∞∑

i=1

ψpi ,

is well defined, of class C∞ and ψ(p) > 0 for every p ∈M . If we define:

φi =
ψpi
ψ
,

then the functions {φ1, φ2, . . . } give a partition of unity, subordinated to the
cover {Uα : α ∈ A}, with suppφi compact for each i = 1, 2, . . . .

This completes the proof of Theorem 3.2. �

Homework.

1. Show that f : R→ R, defined by f(x) = exp(−1/x2) is a smooth function.

2. Given any ε > δ > 0, show that there exists a function φ ∈ C∞(Rd) such
that 0 ≤ φ(x) ≤ 1, φ(x) = 1 if |x| ≤ δ and φ(x) = 0 if |x| > ε.

Rd
−δ δ ε−ε

φ

3. Show that for a second countable topological space X , every open cover of
X has a countable subcover.
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Hint: If {Uα : α ∈ A} is an open cover of X and B = {Vj ∈ J} is a countable
basis of the topology of X , show that the collection B′ formed by Vj ∈ B such
that Vj ⊂ Uα for some α, is also a basis. Now, for each Vj ∈ B′ choose some
Uαj

containing Vj , and show that {Uαj
} is a countable subcover.

4. Show that a topological manifold is paracompact, in fact, show that every
open cover of a topological manifold M has a countable, locally finite refine-
ment consisting of open sets with compact closures.

Hint: Show first thatM can be covered by open sets O1, O2, . . . , with compact
closures and Oi ⊂ Oi+1. Then given an arbitrary open cover {Uα : α ∈ A} of
M , choose for each i ≥ 3 a finite subcover of the cover {Uα ∩ (Oi+1 − Oi−2 :
α ∈ A} of the compact set Oi − Oi−1, and a finite subcover of the cover
{Uα∩O3 : α ∈ A} of the compact set O2. The collection of such open sets will
do it.

5. Show that if M ⊂ Rn is an embedded manifold then a function f :M → R
is smooth if and only if there exists an open set M ⊂ U ⊂ Rn and a smooth
function F : U → R such that F |M = f .

6. Show that the conclusion of the Extension Lemma for Smooth Maps may
fail if A ⊂M is not assumed to be closed.

7. Show that Theorem 3.2 still holds for manifolds with boundary.

4. The Tangent Space

The tangent space to Rd at p ∈ Rd is by definition the set:

TpR
d :=

{
(p,~v) : ~v ∈ Rd

}
.
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Note that this tangent space is a vector space over R where addition is
defined by:

(p,~v1) + (p,~v2) ≡ (p,~v1 + ~v2),

while multiplication is given by:

a(p,~v) ≡ (p, a~v).
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Of course there is a natural isomorphism TpRd ≃ Rd, but in many situations

it is better to think of TpRd as the set of vectors with origin at p.
This distinction is even more clear in the case of embedded manifolds, or

d-surfaces, S ⊂ Rn. In this case, we can define the tangent space to S at
p ∈ S to be the subspace TpS ⊂ TpRn consisting of those tangent vectors
(p,~v), for which there exists a smooth curve c : (−ε, ε)→ Rn, with c(t) ∈ S,
c(0) = p and c′(0) = ~v.
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A tangent vector (p,~v) ∈ TpS acts on smooth functions defined in a
neighborhood of p: if f : U → R is a smooth function defined on a open set
U containing p then we can choose a smooth curve c : (−ε, ε) → U , with
c(0) = p and c′(0) = ~v, and set:

(p,~v)(f) :=
d

dt
f ◦ c(0).

This operation does not depend on the choice of smooth curve c (exercise).
In fact, this is just the usual notion of directional derivative of f at p in
the direction ~v.

We will now define the tangent space to an abstract manifoldM at p ∈M .
There are several different approaches to define the tangent space at p ∈M ,
which correspond to different points of view, all of them very useful. We
shall give here three distinct descriptions and we leave it to the exercises to
show that they are actually equivalent.

Description 1. Let M be a smooth d-dimensional manifold with an atlas
C = {(Uα, φα) : α ∈ A}. To each point p ∈ M we would like to associate a
copy of Rd, so that each element ~v ∈ Rd should represent a tangent vector.
Of course if p ∈ Uα, the system of coordinates φα gives an identification
of an open neighborhood of p with Rd. Distinct smooth charts will give
different identifications, but they are all related by the transition functions.

This suggests one should consider triples (p, α,~v) ∈ M × A × Rd, with
p ∈ Uα, and that two such triples should be declared to be equivalent if

[p, α,~v] = [q, β, ~w] iff p = q and (φα ◦ φ−1
β )′(φβ(p)) · ~w = ~v.
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M

Uα
Uβ

φβ

φβ ◦ φ−1
α

φα

φα ◦ φ−1
β

Rd Rd

p

~v~w

Hence, we define a tangent vector to M at a point p ∈ M to be an
equivalence class [p, α,~v], and the tangent space at p to be the set of all
such equivalence classes:

TpM ≡
{
[p, α,~v] : α ∈ A,~v ∈ Rd

}
.

We leave it as an exercise to check that the operations:

[p, α,~v1] + [p, α,~v2] := [p, α,~v1 + ~v2], a[p, α,~v] := [p, α, a~v],

are well defined and give TpM the structure of vector space over R. Notice
that we still have an isomorphism TpM ≃ Rd, but this isomorphism now
depends on the choice of a chart.

Description 2. Again, fix p ∈M . For this second description we will consider
all smooth curves c : (−ε, ε) →M , with c(0) = p. Two such smooth curves
c1 and c2 will be declared equivalent if there exists some smooth chart (U, φ)
with p ∈ U , such that

d

dt
(φ ◦ c1)(0) =

d

dt
(φ ◦ c2)(0).

It should be clear that if this condition holds for some smooth chart around
p, then it also holds for every other smooth chart around p belonging to the
smooth structure.

We call a tangent vector at p ∈ M an equivalence class of smooth
curves [c], and the set of all such classes is called the tangent space TpM
at the point p. Again, you should check that this tangent space has the
structure of vector space over R and that TpM is isomorphic to Rd, through
an isomorphism that depends on a choice of smooth chart.
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Description 3. The two previous descriptions use smooth charts. Our third
description has the advantage of not using charts, and it will be our final
description of tangent vectors and tangent space.

Again we fix p ∈M and we look at the set of all smooth functions defined
in some open neighborhood of p. Given two smooth functions f : U → R
and g : V → R, where U and V are open sets that contain p, we say that
f and g define the same germ at p if there is an open set W ⊂ U ∩ V
containing p and such that

f |W = g|W .
We denote by Gp the set of all germs at p. This set has the structure of an
R-algebra, where addition, product and multiplication by scalars are defined
in the obvious way:

[f ] + [g] ≡ [f + g],

[f ][g] ≡ [fg],

a[f ] ≡ [af ].

Notice also that it makes sense to talk of the value of a germ [f ] ∈ Gp at
the point p, which is f(p). On the other hand, the value of [f ] ∈ Gp at any
other point q 6= p is not defined.

Definition 4.1. A tangent vector at a point p ∈M is a linear derivation
of Gp, i.e., a map v : Gp → R satisfying:

(i) v(a[f ] + b[g]) = av([f ]) + bv([g]), a, b ∈ R;
(ii) v([f ][g]) = v([f ])g(p) + f(p)v([g]);

The tangent space at a point p ∈M is the set of all such tangent vectors
and is denoted by TpM .
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Since linear derivations can be added and multiplied by real numbers, it
is clear that the tangent space TpM has the structure of a real vector space.

Example 4.2.
Let (U, φ) = (U, x1, . . . , xd) be a coordinate system in M with p ∈ U . We
define the tangent vectors ∂

∂xi

∣∣
p
∈ TpM , i = 1, . . . , d, to be the derivations

∂

∂xi

∣∣∣∣
p

([f ]) =
∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

.

Notice that the tangent vector ∂
∂xi

∣∣
p
corresponds to the direction one obtains

by freezing all coordinates but the i-th coordinate.

In order to check that TpM is a vector space with dimension equal to
dimM , consider the set of all germs that vanish at p:

Mp = {[f ] ∈ Gp : f(p) = 0} ,
It is immediate to check thatMp ⊂ Gp is a maximal ideal in Gp. The k-th
power of this ideal

Mk
p =Mp · · ·Mp︸ ︷︷ ︸

k

,

consists of germs that vanish to order k at p: if [f ] ∈ Mk
p and (U, φ) is

a coordinate system centered at p, then the smooth function f ◦ φ−1 has
vanishing partial derivatives at φ(p) up to order k − 1. These powers form
a tower of ideals

Gp ⊃Mp ⊃M2
p ⊃ · · · ⊃ Mk

p ⊃ . . .
Theorem 4.3. The tangent space TpM is naturally isomorphic to (Mp/M2

p)
∗

and has dimension dimM .

Proof. First we check that if [c] ∈ Gp is the germ of the constant function
f(x) = c then v([c]) = 0, for any tangent vector v ∈ TpM . In fact, we have
that

v([c]) = cv([1]),

and that
v([1]) = v([1][1]) = 1v([1]) + 1v([1]) = 2v([1]),

hence v([1]) = 0.
Now if [f ] ∈ Gp and c = f(p), we remark that

v([f ]) = v([f ]− [c]),

so the derivation v is completely determined by its effect on Mp. On the
other hand, any derivation vanishes on M2

p, because if f(p) = g(p) = 0,
then

v([f ][g]) = v([f ])g(p) + f(p)v([g]) = 0.

We conclude that every tangent vector v ∈ TpM determines a unique
linear transformation Mp → R, which vanishes on M2

p. Conversely, if
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L ∈ (Mp/M2
p)

∗ is a linear transformation, we can define a linear trans-
formation v : Gp → R by setting

v([f ]) ≡ L([f ]− [f(p)]).

This is actually a derivation (exercise), so we conclude that TpM ≃ (Mp/M2
p)

∗.
In order to verify the dimension of TpM , we choose some system of coor-

dinates (U, x1, . . . , xd) centered at p, and we show that the tangent vector

∂

∂xi

∣∣∣∣
p

∈ TpM, i = 1, . . . , d,

form a basis for TpM . If f : U → R is any smooth function, then f ◦ φ−1 :

Rd → R is smooth in a neighborhood of the origin. This function can be
expanded as:

f ◦ φ−1(x) = f ◦ φ−1(0) +

d∑

i=1

∂(f ◦ φ−1)

∂xi
(0)xi +

∑

i,j

gij(x)x
ixj ,

where the gij are some smooth functions in a neighborhood of the origin. It
follows that we have the expansion:

f(q) = f(p) +

d∑

i=1

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

xi(q) +
∑

i,j

hij(q)x
i(q)xj(q),

where hij ∈ C∞(U), valid for any q ∈ U . We conclude that for any tangent
vector v ∈ TpM :

v([f ]) =

d∑

i=1

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

v([xi]).

In other words, we have:

v =

d∑

i=1

ai
∂

∂xi

∣∣∣∣
p

,

where ai = v([xi]). This shows that the vectors (∂/∂xi)|p ∈ TpM , i =
1, . . . ,dimM form a generating set. We leave it as an exercise to show that
they are linearly independent. �

From now on, given v ∈ TpM and a smooth function f defined in some
neighborhood of p ∈M we set:

v(f) ≡ v([f ]).

Note that v(f) = v(g) if f and g coincide in a neighborhood of p and that:

v(af + bg) = av(f) + bv(g), (a, b ∈ R),

v(fg) = f(p)v(g) + v(f)g(p),

where af + bg and fg are only defined in the intersection of the domains of
f and g.
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The proof of Theorem 4.3 shows that if (U, φ) = (U, x1, . . . , xd) is a coor-
dinate system around p, then any tangent vector v ∈ TpM can be written
as:

v =
d∑

i=1

ai
∂

∂xi

∣∣∣∣
p

.

The numbers ai = v(xi) are called the components of tangent vector v
in the coordinate system (U, x1, . . . , xd). If we introduce the notation

∂f

∂xi

∣∣∣∣
p

≡ ∂f ◦ φ−1

∂xi

∣∣∣∣
φ(p)

,

then:

v(f) =

d∑

i=1

ai
∂f

∂xi

∣∣∣∣
p

.

On the other hand, given another coordinate system (V, y1, . . . , yd) we
find that

∂

∂yj

∣∣∣∣
p

=
d∑

i=1

∂xi

∂yj

∣∣∣∣
p

∂

∂xi

∣∣∣∣
p

.

Hence, in this new coordinate system we have

v =
d∑

j=1

bj
∂

∂yj

∣∣∣∣
p

, with bj = v(yj),

where the new components bj are related to the old components ai by the
transformation formula:

(4.1) ai =
d∑

j=1

∂xi

∂yj

∣∣∣∣
p

bj.

Let us turn now to the question of how the tangent spaces vary from point
to point. We define the tangent bundle to M as:

TM ≡
⋃

p∈M
TpM.

Notice that we have a natural projection π : TM → M which associates to
a tangent vector v ∈ TpM the corresponding base point π(v) = p. The term
“bundle” comes from the fact that we can picture TM as a set of fibers (the
spaces TpM), juxtaposed with each other, forming a manifold:

Proposition 4.4. TM has a natural smooth structure of manifolds of di-
mension 2 dimM such that the projection in the base is a smooth map.
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Proof. Let {(Uα, φα) : α ∈ A} be an atlas for M . For each smooth chart

(Uα, φα) = (Uα, x
1, . . . , xn), we define φ̃α : π−1(Uα)→ R2d by setting:

φ̃α(v) = (x1(π(v)), . . . , xd(π(v)),v(x1), . . . ,v(xd)).

One checks easily that the collection:
{
φ̃−1
α (O) : O ⊂ R2d open, α ∈ A

}

is a basis for a topology of TM , which is Hausdorff and second countable.
Now, we have that:

(a) TM is a topological manifold with local charts (π−1(Uα), φ̃α).

(b) For any pair of charts (π−1(Uα), φ̃α) and (π−1(Uβ), φ̃β), the transition

functions φ̃β ◦ φ̃−1
α are smooth.

We conclude that the collection
{
(π−1(Uα), φ̃α) : α ∈ A

}
is an atlas, and so

defines on TM the structure of a smooth manifold of dimension dimTM =
2dimM . Finally, the map π : TM → M is smooth because for each α
we have that φα ◦ π ◦ φ̃−1

α : R2d → Rd is just the projection in the first d
components. �

We say that a d-dimensional manifoldM has trivial tangent bundle if there
is a diffeomorphism Ψ : TM →M × Rd commuting with the projections:

TM
Ψ //

π ""❉
❉❉

❉❉
❉❉

❉ M ×Rn

pr1zz✉✉
✉✉
✉✉
✉✉
✉

M

whose restriction to each fiber is linear isomorphism Φ|TpM : TpM → Rd.
For example, Rd and Td have both trivial tangent bundles. However, we
will see later that Sd has trivial tangent bundle if and only if d = 1, 3.
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Homework.

1. Show that the 3 descriptions of tangent vectors given in this section are
indeed equivalent.

2. In R3 consider the usual Cartesian coordinates (x, y, z). One defines spher-
ical coordinates in R3 to be the smooth chart (U, φ), where U = R3 −
{(x, 0, z) : x ≥ 0} and φ = (r, θ, ϕ) is defined as usual by

• r(x, y, z) :=
√
x2 + y2 + z2 is the distance to the origin;

• θ(x, y, z) is the longitude, i.e., the angle in ]0, 2π[ between the vector
(x, y, 0) and the x-axis;
• ϕ(x, y, z) is the co-latitude, i.e., the angle in ]0, π[ between the vector
(x, y, z) and the z-axis.

Compute:
(a) The components of the tangent vectors to R3 ∂

∂r ,
∂
∂θ ,

∂
∂ϕ in Cartesian

coordinates;
(b) The components of the tangent vectors to R3 ∂

∂x ,
∂
∂y ,

∂
∂z in spherical

coordinates.

3. Let M ⊂ Rn be an embedded d-manifold. Show that if ψ : V → M ∩ U is
a parameterization of a neighborhood of p ∈ M , then the tangent space TpM
can be identified with the subspace ψ′(q)(Rd) ⊂ Rn, where p = ψ(q).

4. Let (U, x1, . . . , xd) be a local coordinate system in a manifoldM . Show that
the tangent vectors

∂

∂xi

∣∣∣∣
p

∈ TpM, i = 1, . . . , d,

are linearly independent.

5. Show that there is a canonical identification T (M1 ×M2) ≃ TM1 × TM2

and use this to show that the torus Td has a trivial tangent bundle.

5. The Differential

A smooth map between two smooth manifolds determines a linear trans-
formation between the corresponding tangent spaces:

Definition 5.1. Let Ψ :M → N be a smooth map. The differential of Ψ
at p ∈M is the linear transformation dpΨ : TpM → TΨ(p)N defined by

dpΨ(v)(f) ≡ v(f ◦Ψ),

where f is any smooth function defined in a neighborhood of Ψ(p).

If (U, φ) = (U, x1, . . . , xd) is a coordinate system around p and (V, ψ) =
(V, y1, . . . , ye) is a coordinate system around Ψ(p), we obtain

dpΨ ·
∂

∂xi

∣∣∣∣
p

=
e∑

j=1

∂(ψ ◦Ψ ◦ φ−1)j

∂xi

∣∣∣∣
φ(p)

∂

∂yj

∣∣∣∣
Ψ(p)

.

35



The matrix formed by the partial derivatives ∂(ψ◦Ψ◦φ−1)j

∂xi
is often abbreviated

to ∂(yj◦Ψ)
∂xi

and is called the Jacobian matrix of the smooth map Ψ relative
to the specified system of coordinates.

The following result is an immediate consequence of the definitions and
the usual chain rule for smooth maps between euclidean space:

Proposition 5.2 (Chain Rule). Let Ψ :M → N and Φ : N → P be smooth
maps. Then the composition Φ ◦Ψ is smooth and we have that:

dp(Φ ◦Ψ) = dΨ(p)Φ ◦ dpΨ.
Similarly, it is easy to prove the following proposition that generalizes a

well known result:

Proposition 5.3. If a smooth map Ψ : M → N has zero differential on a
connected open set U ⊂M , then Ψ is constant in U .

A very important special case occurs when taking the differential of real
valued smooth functions f : M → R, thought as smooth maps between M
and the manifold R, with its canonical smooth structure. In this case, the
differential at p is a linear transformation dpf : TpM → Tf(p)R. Since we
have a canonical identification TxR ≃ R, the differential dpf is an element
in the dual vector space to TpM . Explicitly, it is given by:

dpf(v) := v(f).

Definition 5.4. The cotangent space to M at a point p is the vector space
T ∗
pM dual to the tangent space TpM :

T ∗
pM ≡ {ω : TpM → R, with ω linear} .

Of course we can define dpf ∈ T ∗
pM even if f is a smooth function defined

only in a neighborhood of p. In particular, if choose a coordinate system
(U, x1, . . . , xd) around p, we obtain elements

{
dpx

1, . . . ,dpx
d
}
⊂ T ∗

pM.

It is then easy to check that

dpx
i · ∂

∂xj

∣∣∣∣
p

=





1 if i = j,

0 if i 6= j.

Hence:

Lemma 5.5. For a coordinate system (U, xi) ofM around p, {dpx1, . . . ,dpxd}
is the basis of T ∗

pM dual to the basis { ∂
∂x1

∣∣
p
, . . . , ∂

∂xd

∣∣
p
} of TpM .

Therefore, once we have fixed a coordinate system (U, x1, . . . , xd) around
p, every element ω ∈ T ∗

pM can be written in the basis
{
dpx

1, . . . ,dpx
d
}
:

ω =
d∑

i=1

aidpx
i, with ai = ω(∂/∂xi

∣∣
p
).
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If (V, y1, . . . , yd) is another coordinate system, we find

ω =

d∑

j=1

bjdpy
j, with bj = ω(∂/∂yj

∣∣
p
),

and one checks easily that:

(5.1) ai =
d∑

j=1

∂yj

∂xi

∣∣∣∣
p

bj.

This transformation formula for the components of elements of T ∗
pM should

be compared with the corresponding transformation formula (4.1) for the
components of elements of TpM .

Similarly to what we did for the tangent bundle, we can define the cotan-
gent bundle to M as:

T ∗M ≡
⋃

p∈M
T ∗
pM,

with a natural projection π : T ∗M → M which associate to a tangent
covector ω ∈ T ∗

pM the corresponding base point π(ω) = p. Again, T ∗M has
a natural smooth structure of manifold of dimension 2 dimM , such that the
projection is a smooth map. The proof is entirely similar to the case of TM ,
so it is left as an exercise.

Let Ψ :M → N be a smooth map. We we will denote by dΨ : TM → TN
the induced map on the tangent bundle which is defined by:

dΨ(v) ≡ dπ(v)Ψ(v).

We call this map the differential of Ψ. We leave it as an exercise to check
that dΨ : TM → TN is a smooth map between the smooth manifolds TM
and TN .

If f : M → R is a smooth function, then df : TM → TR. However,
TR = R×R so by projecting in the second factor, we consider df as a map:

df : TM → R, df(v) ≡ dπ(v)f(v) = v(f).

If (U, x1, . . . , xd) is a system of coordinates around p, then from the definition
we see that dpf ∈ T ∗

pM satisfies:

dpf ·
∂

∂xi

∣∣∣∣
p

=
∂f

∂xi

∣∣∣∣
p

.

It follows that the expression for df in local coordinates (x1, . . . , xd) is:

df |U =

d∑

i=1

∂f

∂xi
dxi.

Notice that in this formula all terms have been precisely defined, in contrast
with some formulas one often finds, where heuristic manipulations with df
are done without much justifications!
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Remark 5.6. The definitions of tangent space, tangent bundle and differen-
tial, extend to manifolds with boundary. One defines the tangent space to
a manifold with boundary of dimension d at some point p ∈M exactly
as in Definition 4.1. The tangent space at any point p ∈M , even at points of
the boundary, has dimension d. The tangent bundle TM is now a manifold
with boundary of dimension 2 dimM . Similarly, one defines the differential
of a smooth map Ψ : M → N between manifolds with boundary and this
gives a smooth map between their tangent bundles dΦ : TM → TN .

For a manifold with boundaryM of dimension d > 0, the boundary ∂M is
a smooth manifold of dimension d−1. Hence, if p ∈ ∂M we have two tangent
spaces: TpM , which has dimension d, and Tp(∂ M), which has dimension
d − 1. We leave it as an exercise to check that the inclusion i : ∂ M →֒ M
is a smooth map and its differential dpi : Tp(∂ M) → TpM is injective, at
any point p ∈ ∂ M . It follows that we can identify Tp(∂ M) with its image
in TpM , so inside the tangent space to M at points of the boundary we
have a well-defined subspace. It is common to denote this subspace also by
Tp(∂ M), a practice that we will also adopt.

Homework.

1. Show that the map Ψ : RP2 → R4 given by:

Ψ([x : y : z]) =
1

x2 + y2 + z2
(xy, xz, y2 − z2, 2yz),

is smooth, injective and has differential dpΨ injective for all p ∈ RP2.

2. Let Ψ : CPd → Rd+1 be the smooth map given by:

Ψ([z0 : · · · : zd]) =
( |z0|2
|z0|2 + · · ·+ |zd|2 , . . . ,

|zd|2
|z0|2 + · · ·+ |zd|2

)
.

Find the points p ∈ CPd where the differential dpΦ vanishes.

3. Let π : Sd → RPd be the map (x0, . . . , xd) 7→ [x0 : · · · : xd]. Show that the
differential dpπ is a linear isomorphism for all p ∈ S2.

4. Show that T ∗M has a smooth structure of manifold of dimension 2 dimM ,
for which the projection π : T ∗M →M is a smooth map.

5. Check that if M and N are smooth manifolds and Ψ :M → N is a smooth
map, then dΨ : TM → TN is also smooth.

6. Immersions, Submersions and Submanifolds

As we can expect from what we know from calculus in Euclidean space the
properties of the differential of a smooth map between two smooth manifolds
reflect the local behavior of the smooth map. In this section we will make
this precise.
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Definition 6.1. Let Ψ :M → N be a smooth map:

(a) Ψ is called an immersion if dpΨ : TpM → TΨ(p)N is injective, for all
p ∈M ;

(b) Ψ is called a submersion if dpΨ : TpM → TΨ(p)N is surjective, for all
p ∈M ;

(a) Ψ is called an étale2 if dpΨ : TpM → TΨ(p)N is an isomorphism, for
all p ∈M .

Immersions, submersions and étales have local canonical forms. They are
all consequences of the following general result:

Theorem 6.2 (Constant Rank Theorem). Let Ψ : M → N be a smooth
map and p ∈M . If dqΨ : TqM → TΨ(q)N has constant rank r, for all q in a

neighborhood of p, then there are local coordinates (U, φ) = (U, x1, . . . , xm)
for M centered at p and local coordinates (V, ψ) = (V, y1, . . . , yn) for N
centered at Ψ(p), such that:

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

Proof. Let (Ũ , φ̃) and (Ṽ , ψ̃) be local coordinates centered at p and Ψ(p),

respectively, with Ψ(Ũ) ⊂ Ṽ . Then

ψ̃ ◦Ψ ◦ φ̃−1 : φ̃(Ũ )→ ψ̃(Ṽ )

is a smooth map from a neighborhood of zero in Rm to a neighborhood of
zero in Rn, whose differential has constant rank. Therefore, it is enough to
consider the case where Ψ : Rm → Rn is a smooth map

(x1, . . . , xm) 7→ (Ψ1(x), . . . ,Ψn(x)),

whose differential has constant rank in a neighborhood of the origin.
Let r be the rank of dΨ. Eventually after some reordering of the coordi-

nates, we can assume that

det

[
∂Ψj

∂xi

]r

i,j=1

(0) 6= 0.

It follows immediately from the Inverse Function Theorem, that the smooth
map φ : Rm → Rm defined by

(x1, . . . , xm)→ (Ψ1(x), . . . ,Ψr(x), xr+1, . . . , xm),

is a diffeomorphism from a neighborhood of the origin. We conclude that:

Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr,Ψr+1 ◦ φ−1(x), . . . ,Ψn ◦ φ−1(x)).

Let q be any point in the domain of Ψ ◦φ−1. We can compute the Jacobian
matrix of Ψ ◦ φ−1 as: [

Ir 0

* ∂(Ψj◦φ−1)
∂xi

(q)

]
,

2We use this term provisionally. We shall see later in Corollary 6.5 that an étale map is
the same thing as a local diffeomorphism.
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where Ir is the r × r identity matrix and where in the lower right corner
i, j > r. Since this matrix has exactly rank r, we conclude that:

∂(Ψj ◦ φ−1)

∂xi
(q) = 0, if i, j > r.

In other words, the components of Ψj ◦ φ−1, for j > r, do not depend on
the coordinates xr+1, . . . , xm:

Ψj ◦ φ−1(x) = Ψj ◦ φ−1(x1, . . . , xr), if j > r.

Let us consider now the map ψ : Rn → Rn given by

ψ(y1, . . . , yn) = (y1, . . . , yr, yr+1 −Ψr+1 ◦ φ−1(y), . . . , yn −Ψn ◦ φ−1(y)).

We see that ψ is a diffeomorphism since its Jacobian matrix at the origin is
given by: [

Ir 0
* Ie−r

]
,

which is non-singular. But now we compute:

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

�

An immediate corollary of this result is that an immersion of am-manifold
into a n-manifold, where necessarily m ≤ n, locally looks like the inclusion
Rm →֒ Rn:

Corollary 6.3. Let Ψ : M → N be an immersion. Then for each p ∈ M ,
there are local coordinates (U, φ) = (U, x1, . . . , xm) for M centered at p and
local coordinates (V, ψ) = (V, y1, . . . , yn) for N centered at Ψ(p), such that:

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Similarly, we conclude that a submersion of am-manifold into a n-manifold,
where necessarily m ≥ n, locally looks like the projection Rm ։ Rn:

Corollary 6.4. Let Ψ : M → N be a submersion. Then for each p ∈ M ,
there are local coordinates (U, φ) = (U, x1, . . . , xm) for M centered at p and
local coordinates (V, ψ) = (V, y1, . . . , yn) for N centered at Ψ(p), such that:

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xn).

Since an étale is a smooth map which is simultaneously an immersion and
a submersion, we conclude that an étale is just a local diffeomorphism:

Corollary 6.5. Let Ψ : M → N be an étale. Then for each p ∈ M , there
are local coordinates (U, φ) = (U, x1, . . . , xd) for M centered at p and local
coordinates (V, ψ) = (V, y1, . . . , yd) for N centered at Ψ(p), such that:

ψ ◦Ψ ◦ φ−1(x1, . . . , xd) = (x1, . . . , xd).

Let us now turn to the study of subobjects in the category of smooth
manifolds:
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Definition 6.6. A submanifold of a manifold M is a pair (N,Φ) where
N is a manifold and Φ : N → M is an injective immersion. When Φ :
N → Φ(N) is a homeomorphism, where on Φ(N) one takes the relative
topology, one calls the pair (N,Φ) an embedded submanifold and Φ an
embedding.

One sometimes uses the term immersed submanifold to emphasize
that Φ : N → M is only an immersion and reserves the term submanifold
for embedded submanifolds. However, in these notes we will use the term
submanifold to denote immersed submanifolds that may fail to be embedded.

Examples 6.7.

1. The next picture illustrates various immersions of N = R in M = R2.
Notice that (R,Φ1) is an embedded submanifold of R2, while (R,Φ2) is only an
immersed submanifold of R2. On the other hand, Φ3 is an immersion but it is
not injective, so (R,Φ3) is not a submanifold of R2.
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2. According to a problem in the previous section, the map Ψ : RP2 → R4 given
by:

Ψ([x : y : z]) =
1

x2 + y2 + z2
(xy, xz, y2 − z2, 2yz),

is smooth, injective and has differential dpΨ injective for all p ∈ RP2. Since

RP2 is compact, this map is an embedding (see the problems at the end of this
section). It follows that RP2 can be realized as an embedded submanifold of R4.

If (N,Φ) is a submanifold of M , then for each p ∈ N , the linear map
dpΦ : TpN → TΦ(p)M is injective. Hence, we can always identify the tangent
space TpN with its image dpΦ(TpN), which is a subspace of TΦ(p)M . From
now on, we will use this identification, so that TpN will always be interpreted
as a subspace of TΦ(p)M .

The local canonical form (Corollary 6.3) yields the following:

Proposition 6.8 (Local normal form for immersed submanifolds). Let (N,Φ)
be a submanifold of dimension d of a manifold M . Then for all p ∈ N , there
exists a neighborhood U of p and a coordinate system (V, x1, . . . , xm) for M
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centered at Φ(p) such that:

Φ(U) =
{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

M

N

φ **

U

V

Rd

Rm−d

ψΦ

Proof. By Corollary 6.3, for any p ∈ N we can choose coordinates (U, φ) for
N centered at p and coordinates (V, ψ) = (V, x1, . . . , xm) for M centered at
Φ(p), such that ψ ◦ Φ ◦ φ−1 : Rd → Rm is the inclusion. But then ψ ◦ Φ(U)
is exactly the set of points in ψ(V ) ⊂ Rm with the last m − d coordinates
equal to 0. �

You should notice (using the same notation as in the proposition) that,
in general, Φ(N)∩V 6= Φ(U), so there could exist points in Φ(N)∩V which
do not belong to the slice

{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

However, whenever (N,Φ) is an embedded submanifold we find:

Corollary 6.9 (Local normal form for embedded submanifolds). Let (N,Φ)
be an embedded submanifold of dimension d of a manifold M . For each
p ∈ N , there exists a chart (V, x1, . . . , xm) of M centered at Φ(p), such that:

Φ(N) ∩ V =
{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

Proof. Fix p ∈ N and choose a neighborhood U of p and a chart (V ′, x1, . . . , xm)
centered at Φ(p), as in the proposition. Since (N,Φ) is assumed to be embed-
ded, Φ(U) is an open subset of Φ(N) for the relative topology: there exists
an open set V ′′ ⊂ M such that Φ(U) = V ′′ ∩ Φ(N). If we set V = V ′ ∩ V ′′

the restrictions of the xi to V , yield a coordinate system (V, x1, . . . , xm) such
that:

Φ(N) ∩ V =
{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

�

We would like to think of submanifolds of a manifoldM simply as subsets
ofM . However, this in general is not possible, as illustrated by the following
example.
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Example 6.10.
There are two injective immersions Φi : R → R2, i = 1, 2, whose images in
R2 coincide with the infinite symbol:
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The example of the infinity symbol shows that one must be careful when
we think of a submanifold of M as a subset. In order to see what can go
wrong, we introduce the following equivalence relation:

Definition 6.11. We say that (N1,Φ1) and (N2,Φ2) are equivalent sub-

manifolds of M if there exists a diffeomorphism Ψ : N1 → N2 such that
the following diagram commutes:

N1
Φ1 //

Ψ !!❇
❇

❇
❇

M

N2

Φ2

OO

If (N,Φ) is a submanifold of M we can consider the image Φ(N) ⊂ M

with the unique smooth structure for which Φ̂ : N → Φ(N) is a diffeomor-
phism. Obviously, if we take this smooth structure on Φ(N), the inclusion
i : Φ(N) →֒ M is an injective immersion and the following diagram com-
mutes:

N
Φ //

Φ̂ ""❊
❊❊

❊❊
❊❊

❊ M

Φ(N)

i

OO

Therefore, every submanifold (N,Φ) has a unique representative (A, i),
where A ⊂ M is a subset and i : A →֒ M is the inclusion. We then
say that A ⊂M is a submanifold.

Example 6.12.
If A ⊂M is an arbitrary subset, in general, there will be no smooth structure
on A for which the inclusion i : A →֒ M is an immersion. For example, the
subset A = {(x, |x|) : x ∈ R} ⊂ R2 does not admit such a smooth structure
(exercise).
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On the other hand, if A admits a smooth structure such that the inclusion
i : A →֒ M is an immersion, this smooth structure may not be unique: this is
exactly what we saw Example 6.10.

Still, we have the following result:

Theorem 6.13. Let A ⊂ M be some subset of a smooth manifold and
i : A →֒M the inclusion. Then:

(i) For each choice of a topology in A there exists at most one smooth
structure compatible with this topology and such that (A, i) is a sub-
manifold of M .

(ii) If for the relative topology in A there exists a compatible smooth struc-
ture such that (A, i) is a submanifold of M , then this is the only topol-
ogy in A for which there exists a compatible smooth structure such that
(A, i) is a submanifold of M .

Example 6.14.
The sphere S7 ⊂ R8 is an embedded submanifold. We have mentioned before
that the sphere S7 has smooth structures compatible with the usual topology but
which are not equivalent to the standard smooth structure on the sphere. It
follows that for these exotic smooth structures, S7 is not a submanifold of R8.

In order to prove Theorem 6.13, we observe that if (N,Φ) is a submanifold
of M and Ψ : P → M is a smooth map such that Ψ(P ) ⊂ Φ(N), the fact

that Φ is 1:1 implies that Ψ factors through a map Ψ̂ : P → N , i.e., we have
a commutative diagram:

P
Ψ //

Ψ̂   ❆
❆

❆
❆ M

N

Φ

OO

However, the problem is that, in general, the map Ψ̂ is not smooth, as shown
by the example of the infinite symbol.

Example 6.15.
Let Φi : R→ R2, i = 1, 2, be the two injective immersions whose images in R2

coincide with the infinite symbol, as in Example 6.10. Since Φ1(R) = Φ2(R),
we have unique maps Φ̂1 : R→ R and Φ̂2 : R→ R such that Φ2 ◦ Φ̂1 = Φ1 and
Φ1 ◦ Φ̂2 = Φ2. It is easy to check that Φ̂1 and Φ̂2 are not continuous, hence
they are not smooth.

The next result shows that what may fail is precisely the continuity of
the map Ψ̂:
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Proposition 6.16. Let (N,Φ) be a submanifold ofM , Ψ : P →M a smooth

map such that Ψ(P ) ⊂ Φ(N) and Ψ̂ : P → N the induced map.

(i) If Ψ̂ is continuous, then it is smooth.

(ii) If Φ is an embedding, then Ψ̂ is continuous (hence smooth).

Proof. Assume first that Ψ̂ is continuous. For each p ∈ N , choose U ⊂ N
and (V, φ) = (V, x1, . . . , xm) as in Proposition 6.8, and consider the smooth
map

ψ = π ◦ φ ◦Φ : U → Rd,

where π : Rm → Rd is the projection (x1, . . . , xm) 7→ (x1, . . . , xd). The pair
(U,ψ) is a smooth coordinate system for N centered at p. On the other
hand, we see that

ψ ◦ Ψ̂ = π ◦ φ ◦Φ ◦ Ψ̂ = π ◦ φ ◦Ψ,
is smooth in the open set Ψ̂−1(U). Since the collection of all such open sets

Ψ̂−1(U) covers P , we conclude that Ψ̂ is smooth, so (i) holds.
Now if Φ is an embedding, then every open set U ⊂ N is of the form

Φ−1(V ), where V ⊂M is open. Hence, Ψ̂−1(U) = Ψ̂−1(Φ−1(V )) = Ψ−1(V )

is also open. We conclude that Ψ̂ is continuous, so (ii) also holds. �

Proof of Theorem 6.13. (i) follows immediately from Proposition 6.16 (i).
On the other hand, to prove (ii), let (N,Φ) be a submanifold with Φ(N) =

A and consider the following diagram:

N
Φ //

Φ̂   ❇
❇❇

❇❇
❇❇

❇ M

A

i

OO

Since A is assume to have the relative topology, by Proposition 6.16 (ii), Φ̂

is smooth. Hence, Φ̂ is an invertible immersion so it is a diffeomorphism
(exercise). We conclude that (N,Φ) is equivalent to (A, i), so (ii) holds.

�

The previous discussion justifies considering the following class of sub-
manifolds, which lies inbetween the classes of immersed submanifolds and
embedded submanifolds:

Definition 6.17. A initial submanifold of M is a submanifold (N,Φ)
such that every smooth map Ψ : P →M with Ψ(P ) ⊂ Φ(N) factors through

a smooth map Ψ̂ : P → N :

P
Ψ //

Ψ̂   ❆
❆

❆
❆ M

N

Φ

OO
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Sometimes initial submanifolds are also called regular immersed sub-
manifolds or weakly embedded submanifolds. The two different im-
mersions of the infinity symbol that we saw above are not initial submanifols.
On the other hand, Proposition 6.16 (ii) shows that embedded submanifolds
are initial submanifolds. But be aware that there are many examples of
initial submanifolds which are not embedded.

Example 6.18.
In the 2-torus T2 = S1×S1 we have a family of submanifolds (R,Φa), depend-
ing on the parameter a ∈ R, defined by:

Φa(t) = (eit, eiat).

If a = m/n is rational, this is a closed curve, which turns m times in one
torus direction and n times in the other torus direction, so this is an embedding.

If a 6∈ Q then the curve is dense in the 2-torus, so this is only an immersed
submanifold. However, if Ψ̂ : P → R is a map such that the composition
Φa ◦ Ψ̂ is smooth, then we see immediately that Ψ̂ : P → R is continuous. By
Proposition 6.16, we conclude that Ψ̂ is smooth. Hence, (N,Φa) is a initial
submanifold.

Homework.

1. Show that {(x, |x|) : x ∈ R} is not the image of an immersion Φ : R→ R2.

2. Show that S3 has trivial tangent bundle, i.e., there exists a diffeomorphism
Ψ : TS3 → S3 × R3, which makes the following diagram commutative:

TS3

π
!!❈

❈❈
❈❈

❈❈
❈

Ψ // S3 × R3

pr
S3{{✇✇

✇✇
✇✇
✇✇
✇

S3

and where the restriction Ψ : TpS3 → R3 is linear for every p ∈ S3.
Hint: The 3-sphere is the set of quaternions of norm 1.

3. Let
{
y1, . . . , ye

}
be some set of smooth functions on a manifold M . Show

that:
(a) If

{
dpy

1, . . . , dpy
e
}
⊂ T ∗

pM is a linearly independent set, then the func-

tions
{
y1, . . . , ye

}
is a part of a coordinate system around p.

(b) If
{
dpy

1, . . . , dpy
e
}
⊂ T ∗

pM is a generating set, then a subset of
{
y1, . . . , ye

}

is a coordinate system around p.
(c) If

{
dpy

1, . . . , dpy
e
}
⊂ T ∗

pM is a basis, then the functions
{
y1, . . . , ye

}

form a coordinate system around p.

4. Show that a submersion is an open map. What can you say about an
immersion?
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5. Let Φ : RP2 → R3 be the map defined by

Φ([x, y, z]) =
1

x2 + y2 + z2
(yz, xz, xy).

Show that Φ is smooth and show that it only fails to be an immersion at 6
points. Make a sketch of the image of Φ.

6. Let M be a manifold, A ⊂ M , and i : A →֒ M the inclusion. Show that
(A, i) is a an embedded submanifold of M of dimension d, if and only if for
each p ∈ A there exists a coordinate system (U, x1, . . . , xm) centered at p such
that

A ∩ U =
{
p ∈ U : xd+1(p) = · · · = xm(p) = 0

}
.

7. Show that a subset M ⊂ Rn is a d-surface (i.e., satisfies Definition 0.2)
if and only it is an embedded submanifold (so this justifies us calling M an
embedded manifold in Rn).

8. One says that a subset S of a manifold M has zero measure if for every
coordinate system (U, φ) of M , the set φ(S ∩U) ⊂ Rd has zero measure. Show
that:
(a) A smooth map Φ :M → N maps zero measure sets to zero measure sets;
(b) If Φ : N →M is an immersion and dimN < dimM , then Φ(N) has zero

measure.

9. Show that for a submanifold (N,Φ) of a smooth manifold M the following
are equivalent:
(a) Φ(N) ⊂M is a closed subset and (N,Φ) is embedded.
(b) Φ : N → M is a closed map (i.e, Φ(A) is closed whenever A ⊂ N is a

closed subset).
(c) Φ : N → M is a proper map (i.e., Φ−1(K) ⊂ N is compact, whenever

K ⊂M is compact).
Use this to conclude that a submanifold (N,Φ) with N compact, is always an
embedded submanifold.

10. Show that an invertible immersion Φ : N →M is a diffeomorphism. Give
a counterexample to this statement if N does not have a countable basis.

11. Let π : M̃ →M be a covering space of a smooth manifoldM , where M̃ is a

second countable topological space. Show that M̃ has unique smooth structure
for which the covering map π is a local diffeomorphism.

7. Embeddings and Whitney’s Theorem

Definition 7.1. Let Ψ :M → N be a smooth map

(i) One calls p ∈ M a regular point of Ψ if dpΨ : TpM → TΨ(p)N is
surjective. Otherwise one calls p a singular point of Ψ;

(ii) One calls q ∈ N a regular value of Ψ if every p ∈ Ψ−1(q) is a regular
point. Otherwise one calls q a singular value of Ψ.
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The following example gives some evidence for the use of the terms “reg-
ular” and “singular”.

Example 7.2.
Let Ψ : R3 → R be the map defined by

Ψ(x, y, z) = x2 + y2 − z2.
This map has Jacobian matrix [2x 2y −2z]. Therefore, every (x, y, z) 6= (0, 0, 0)
is a regular point of Ψ and (0, 0, 0) is a singular point of Ψ. On the other hand,
0 is a singular value of Ψ, while every other value is a regular value of Ψ.

If we consider a regular value c, the level set Ψ−1(c) is a submanifold of R2

(either a 1 sheet or a 2 sheets hyperboloid). On the other hand, for the singular
value 0, we see that Ψ−1(0) is a cone, which is not a manifold at the origin.

In fact, the level sets of regular values are always submanifolds:

Theorem 7.3. Let Ψ :M → N be a smooth map and let q ∈ N be a regular
value of Ψ. Then Ψ−1(q) ⊂ M is an embedded submanifold of dimension
dimM − dimN and for all p ∈ Ψ−1(q) we have:

Tp(Ψ
−1(q)) = Ker dpΨ.

Proof. If q ∈ N is a regular value of Ψ there exists an open set Ψ−1(q) ⊂
O ⊂M such that Ψ|O is a submersion. Therefore, for any p ∈ Ψ−1(q) we can
choose coordinates (U, x1, . . . , xm) around p and coordinates (V, y1, . . . , yn)
around q, such that Ψ is represented in these local coordinates by the pro-
jection

Rm → Rn : (x1, . . . , xm) 7→ (x1, . . . , xn).

Therefore, we see that

Ψ−1(q) ∩ U =
{
p ∈ U : x1(p) = · · · = xn(p) = 0

}
.

It follows that Ψ−1(q) is an embedded submanifold of dimension m − n =
dimM − dimN (see Exercise 6 in the previous section). The statement
about the tangent space to Ψ−1(q) is left as an exercise.

�
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Example 7.4.
Let M = Rd+1 and let Ψ : Rd+1 → R be the smooth map:

Ψ(x) = ||x||2.
The Jacobian matrix of Ψ at x is given by:

Ψ′(x) = [2x1, . . . , 2xd+1].

Since Ψ′(x) has rank one if ||x|| > 0, it follows that any c = R2 > 0 is a regular
value of Ψ. The theorem above then asserts that the spheres SdR = Ψ−1(R2) are
embedded submanifolds of Rd+1 of codimension 1. Note that for the differential
structure on Sd that we have defined before, Sd is also an embedded submanifold
of Rd+1. Hence, that differential structure coincides with this one.

Not every embedded submanifold S ⊂M is of the form Ψ−1(q), for a reg-
ular value of some smooth map Ψ :M → N . There are global obstructions
that we will study later. Also, what happens at singular values can be very
wild: using a partition of unity argument it is possible to show that for any
closed subset A ⊂ M of a smooth manifold, there exists a smooth function
f :M → R such that f−1(0) = A.

If N ⊂ M is a submanifold we call the codimension of N in M the
integer dimM − dimN . Since a set with a single point is a manifold
of dimension 0, the previous result can be restated as saying that if q
is a regular value of Ψ, then Ψ−1(q) is an embedded submanifold with
codimΨ−1(q) = codim {q}. In this form, the previous result can be gen-
eralized in the following very useful way:

Theorem 7.5. Let Ψ : M → N be a smooth map and let Q ⊂ N be an
embedded submanifold. Assume that for all p ∈ Ψ−1(Q) one has:

(7.1) ImdpΨ+ TΨ(p)Q = TΨ(p)N.

Then Ψ−1(Q) ⊂M is an embedded submanifold with

codimΨ−1(Q) = codimQ

and for all p ∈ Ψ−1(Q) we have:

Tp(Ψ
−1(Q)) = (dpΨ)−1(TΨ(p)Q).

Proof. Choose p0 ∈ Ψ−1(Q) and set q0 = Ψ(p0). Since Q ⊂ N is assumed to
be an embedded submanifold, we can choose a coordinate system (V, φ) =
(V, y1, . . . , yn) for N around q0, such that

Q ∩ V =
{
q ∈ V : yl+1(q) = · · · = yn(q) = 0

}
,

where l = dimQ. Define a smooth map Φ : Ψ−1(V )→ Rn−l by

Φ = (yl+1 ◦Ψ, . . . , yn ◦Ψ).

Then we see that U = Ψ−1(V ) is an open subset ofM which contains p0 and
such that Ψ−1(Q)∩U = Φ−1(0). If we can show that 0 is a regular value of
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Φ, then by Theorem 7.3 it follows that for all p0 ∈ Ψ−1(Q), there exists an
open set U ⊂ M such that Ψ−1(Q) ∩ U is an embedded submanifold of M
of codimension n− l = codimQ. This implies that Ψ−1(Q) is an embedded
submanifold of M , as claimed.

To check that 0 is a regular value of Φ note that Φ = π ◦ φ ◦ Ψ, where
π : Rn → Rn−l is the projection in the last n − l components. Since π
is a submersion, φ is a diffeomorphism and ker dq(π ◦ φ) = TqQ, for all
q ∈ Q ∩ V , it follows from (7.1), that dpΦ = dΨ(p)(π ◦ φ) · dpΨ is surjective,

for all p ∈ Ψ−1(Q) ∩ U = Φ−1(0), i.e., 0 is a regular value of Φ.
The statement about the tangent space to Ψ−1(Q) is left as an exercise.

�

The condition (7.1) appearing in the statement of the theorem is so im-
portant that one has a special name for it.

Definition 7.6. Let Ψ : M → N be a smooth map. We say that Ψ is
transversal to a submanifold Q ⊂ N , and we write Ψ ⋔ Q, if:

ImdpΨ+ TΨ(p)Q = TΨ(p)N, ∀p ∈ Ψ−1(Q).

Notice that submersions Ψ : M → N are specially nice: they are trans-
verse to every submanifold Q ⊂ N ! So for a submersion the theorem shows
that the inverse image of any submanifold is a submanifold.

A special case that justifies the use of the term “transversal” is when
M ⊂ N is a submanifold and Ψ : M →֒ N is the inclusion. In this case,
Ψ−1(Q) =M ∩Q and the transversality condition reduces to:

TqM + TqQ = TqN, ∀q ∈M ∩Q.
Note that this condition is symmetric inM and Q. So in this case we simply
say that M and Q intersect transversely and we write M ⋔ Q.

Corollary 7.7. If M,Q ⊂ N are embedded submanifolds such that M ⋔ Q.
Then M ∩Q is an embedded submanifold of N with:

dimM ∩Q = dimM + dimQ− dimN,

and for all q ∈M ∩Q we have:

Tq(M ∩Q) = TqM ∩ TqQ.
Although Theorem 7.5 and its corollary were stated for embedded sub-

manifolds, you are asked in an exercise in this Section to check that these
results still hold for immersed submanifolds.

Transversality plays an important role because of the following properties:

• Transversality is a stable property: If Φ :M → N is transverse to Q
then any map Ψ :M → N close enough to Φ is also transverse to Q.
• Transversality is a generic property: Any smooth map Φ : M → N

can be approximated by Φ̃ :M → N transverse to Q.
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We shall not attempt to make precise these two statements, since we would
need to introduce and study appropriate topologies on the space of smooth
maps C∞(M,N). In fact, transversality is an important topic studied in
Differential Topology.

On the other hand, when two submanifolds do not intersect transversally,
in general, the intersection is not a manifold as illustrated by the following
figure.
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Examples 7.8.

1. Let M = S1×R be a cylinder. We can embed M in R3 as follows: we define
a smooth map Φ : M → R3 by:

Φ(θ, t) = (R cos θ,R sen θ, t),

where we identify S1 = [0, 2π]/2πZ. This map is injective and its Jacobian
matrix Φ′(θ, t) has rank 2, hence Φ is an injective immersion.

The image of Φ is the subset of R3:
{
(x, y, z) ∈ R3 : x2 + y2 = R2

}
= Ψ−1(c),

where c = R2 and Ψ : R3 → R is the smooth map

Ψ(x, y, z) = x2 + y2.

Since Ψ′(x, y, z) = [2x, 2y, 0] 6= 0 if x2 + y2 = c 6= 0, we conclude that any
c 6= 0 is a regular value of Ψ, so we have an embedding of of S1 × R in R3.

2. The 2-torus M = S1×S1 can also be embedded in R3 as follows. First, we
can think of the the two torus as S1 × S1 = [0, 2π]/2πZ × [0, 2π]/2πZ. Note
that this amounts to think of the torus as a square of side 2π where we identify
the sides of the square, as in the following figure:
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Now define Φ :M → R3 by:

Φ(θ, φ) = ((R + r cosφ) cos θ, (R + r cosφ) sen θ, r senφ).

It is easy to check that if R > r > 0, then Φ is an injective immersion whose
image is the subset of R3:
{
(x, y, z) ∈ R3 : (x2 + y2 + z2 − R2 − r2)2 + 4R2z2 = 4R2r2

}
= Ψ−1(c),

where c = 4R2r2 and Ψ : R3 → R is the smooth map

Ψ(x, y, z) = (x2 + y2 + z2 −R2 − r2)2 + 4R2z2.

We leave it as an exercise to check that every c 6= 0 is a regular value of Ψ, so
this gives an embedding of S1 × S1 in R3.

3. The Klein bottle is the subset K ⊂ R4 defined as follows: Let Ox, Oy,
Oz, and Ow, be the coordinate axes in R4 and denote by C a circle of radius
R in the plane xOy. Let θ be the angle coordinate on this circle (say, measured
from the Ox-axis).
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If S1 is a circle of radius r in the plane xOz, with centre at q ∈ C, then K
is the figure obtained by rotating this circle around the Oz axis so that when its
center q ∈ C is rotated an angle θ, the plane where S1 lies has rotated an angle
θ/2 around the Oq-axis in the 3-space OqOzOw. Let φ be the angle coordinate
in the circle S1 (say, measured from the Oq-axis).

Note that the points of K with θ 6= 0 and φ 6= 0 can be parameterized by:
Φ1 :]0, 2π[×]0, 2π[→ R4:

Φ1(θ, φ) = ((R+ r cosφ) cos θ, (R + r cosφ) sen θ, r senφ cos θ/2, r senφ sen θ/2).

We can change the origin of θ and φ, obtaining new parameterizations, which
all together cover K. We leave it as an exercise to show that 3 parameteriza-
tions Φ1, Φ2 and Φ3 are enough to cover K. Since for these parameterizations
the transitions Φi ◦Φ−1

j are C∞, we see that K is a 2-surface in R4. Also, we
remark that these parameterizations amount to think of K as a square of side
2π where we identify the sides of the square, as in the following figure:
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Just like for the 2-torus, one checks that K is given by:

K = Ψ−1(c, 0),

where c = 4R2r2 and Ψ : R4 → R2 is the smooth map

Ψ(x, y, z) = ((x2 + y2 + z2 + w2 −R2 − r2)2 + 4R2(z2 + w2), y(z2 − w2)− 2xzw).

For c 6= 0, one checks that (c, 0) is a regular value of Ψ, so we conclude that
K is an embedded submanifold of R4.

Actually, any manifold can always be embedded in a Euclidean space of
large enough dimension.

Theorem 7.9 (Whitney). Let M be a compact manifold. There exists an
embedding Φ :M → Rm, for some integer m.

Proof. Since M is compact, we can find a finite collection of coordinate
systems {(Ui, φi) : i = 1, . . . , N} such that:

(a) B1(0) ⊂ φi(Ui);
(b)

⋃N
i=1 φ

−1
i (B1(0)) =M .

Let λi :M → R, i = 1, . . . , N , be smooth functions such that

λi(p) =





1 if p ∈ φ−1
i (B1(0)),

0 if p 6∈ Ui.

Also, let ψi :M → Rd, i = 1, . . . , N , be smooth maps defined by:

ψi(p) =





λiφi(p) if p ∈ Ui,

0 if p 6∈ Ui.

We claim that the smooth map Φ :M → RNd+N defined by:

Φ(p) = (ψ1(p), λ1(p), . . . , ψN (p), λN (p))

is the desired embedding. In fact, we have that

(i) Φ is an immersion: if p ∈ M then p ∈ φ−1
i (B1(0)), for some i. Hence,

we have that ψi = φi in a neighborhood p. We conclude that dpψi =
dpφi is injective. This shows that dpΦ is injective.
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(ii) Φ is injective: Let p, q ∈M , p 6= q, and choose i such that p ∈ λ−1
i (1).

If q 6∈ λ−1
i (1), then λi(p) 6= λi(q) so that Φ(p) 6= Φ(q). On the other

hand, if q ∈ λ−1
i (1), then ψi(p) = φi(p) 6= φi(q) = ψi(q), since φi is

injective. In any case, Φ(p) 6= Φ(q), so Φ is injective.

Since M is compact, we conclude that Φ is an embedding.
�

The previous result also holds for non-compact manifolds (see the exer-
cises in this section) and is valid also for manifolds with boundary. It is a
weaker version of the following result:

• (Whitney) Any smooth manifold (compact or not) of dimension d
can be embedded in R2d.

As the example of the Klein bottle shows, there are smooth manifolds of
dimension d which cannot be embedded in R2d−1. On the other hand, for d >
1, Whitney also showed that any manifold of dimension d can be immersed
in R2d−1.

These results are not the best possible: Ralph Cohen in 1985 showed
that a compact manifold of dimension d can be immersed in R2d−a(d) where
a(d) is the number of 1’s in the binary expression of d, and this is the best
possible!! (e.g., every compact 5-manifold can immersed in R8, but there are
compact 5-manifolds which cannot be immersed in R7). On the other hand,
the best optimal embedding dimension is only known for a few dimensions.

Homework.

1. Consider the following sets of n× n matrices:
• O(n) =

{
A : AAT = I

}
(orthogonal matrices);

• S(n) =
{
A : A = AT

}
(symmetric matrices).

Show that O(n) and S(n) are embedded submanifolds of the space Rn
2

of all
n × n matrices and check that they intersect transversely at I. Use this to
conclude that there is a neighborhood of I where the only n× n-matrix which
is both orthogonal and symmetric is I itself.

2. Furnish the details of the example of the Klein bottle K and show that K
is a 2-surface in R4.

3. Let Ψ : M → N be a smooth map and let q ∈ N be a regular value of Ψ.
Show that

TpΨ
−1(q) = {v ∈ TpM : dpΨ · v = 0} .

4. Let Ψ : M → N be a smooth map which is transversal to a submanifold
Q ⊂ N (not necessarily embedded). Show that Ψ−1(Q) is a submanifold of M
(not necessarily embedded) and that

TpΨ
−1(Q) =

{
v ∈ TpM : dpΨ · v ∈ TΨ(p)Q

}
.
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5. Let M and N be smooth manifolds and let S ⊂ M ×N be a submanifold.
Denote by πM : M ×N → M and πN : M ×N → N the projections on each
factor. Show that the following are equivalent:
(a) S is the graph of a smooth map Φ : M → N ;
(b) πM |S is a diffeomorphism from S onto M ;
(c) For each p ∈ M , the submanifolds S and {p} × N = π−1

M (p) intersect
transversely and the intersection consists of a single point.

Moreover, if any of these hold then S is an embedded submanifold.

6. Extend Theorem 7.5 to the case where Ψ :M → N is a smooth map between
manifolds with boundary such that Ψ(∂M) = ∂N . Show that the conclusion
of the theorem may fail if this last condition is omitted.

The next sequence of exercises give a sketch of the proof of the weak Whitney’s
Embedding Theorem for non-compact manifolds. It uses the following result
which we will not discuss in these lectures:

Sard’s Theorem: The set of singular values of any smooth map Ψ :M → N
has zero measure.

7. Using Sard’s Theorem, show that if Φ : M → N is a smooth map between
smooth manifolds and dimM < dimN then Φ(M) has zero measure.

8. LetM ⊂ Rn be a smooth submanifold of dimension d. Given v ∈ Rn−Rn−1

denote by πv : Rn → Rn−1 the linear projection with kernel Rv. Show that if
n > 2d+ 1 there is a dense set of vectors v ∈ Rn −Rn−1 for which πv|M is an
injective immersion of M in Rn−1. Conclude that any compact manifold with
boundary of dimension d can be embedded in R2d+1.

Hint: Check that the proof given in the text of Whitney’s embedding theorem
is valid for compact manifolds with boundary. Then apply Sard’s theorem in
a clever way.

9. Using a smooth exhaustion function, show that any smooth manifold M of
dimension d can be embedded in R2d+1.

Hint: If f :M → R is a smooth exhaustion function, then by Sard’s Theorem,
in each interval [i, i+ 1[, the function f has a regular value ai. It follows that
the sets E0 = f−1(] − ∞, a2], Ei = f−1([ai−1, ai+1] (i = 1, 2, . . . ), are all
compact submanifolds of M of dimension d to which the previous result can
be applied. Now use a partition of unity to build an embedding ofM in R2d+1.

8. Foliations

A foliation is a nice decomposition of a manifold into submanifolds:

Definition 8.1. Let M be a manifold of dimension d. A foliation of
dimension k of M is a decomposition {Lα : α ∈ A} of M into disjoint path-
connected subsets satisfying the following property: for any p ∈ M there
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exists a smooth chart φ = (x1, . . . , xk, y1, . . . , yd−k) : U → Rd = Rk × Rd−k,
such the connected components of Lα ∩ U are the sets of

{p ∈ U : y1(p) = const., . . . , yd−k(p) = const.}.
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We will denote a foliation by F = {Lα : α ∈ A}. The connected sets
Lα are called leaves of F and a chart (U, φ) as in the definition is called
a foliated coordinate chart. The connected components of U ∩ Lα are
called plaques.

A path of plaques is a collection of plaques P1, . . . , Pl such that Pi ∩
Pi+1 6= ∅, for all i = 1, . . . , l − 1. The integer l is called the length of the
path of plaques. Two points p, q ∈M belong to the same leaf if and only
if there exists a path of plaques P1, . . . , Pl, with p ∈ P1 and q ∈ Pl.

Each leaf of a k-dimensional foliation of M is a submanifold of M of
dimension k. In general, these are only immersed submanifolds: a leaf
can intersect a foliated coordinate chart an infinite number of times and
accumulate overt itself. Before we check that leaves are submanifolds, let us
look at some examples.

Examples 8.2.

1. Let Φ :M → N be a submersion. By the local normal form for submersions,
the connected components of the fibers Φ−1(q), where q ∈ N , form a foliation
of M of codimension equal to the dimension of N . In this case, all leaves are
actually embedded submanifolds.

2. In R2, take the foliation by straight lines with a fixed slope a ∈ R. This is
just a special case of the previous example, where Φ : R2 → R, is given by:

Φ(x, y) = y − ax.

Now let T2 = R2/Z2 be the torus. Then we have an induced foliation on T2,
and there are two possibilities. If a ∈ Q, the leaves are closed curves, hence
they are embedded submanifolds. However, if a 6∈ Q, then the leaves are dense
in the torus, so they are only immersed submanifolds.
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3. Let Φ : R3 → R be the smooth map defined by

Φ(x, y, z) = f(x2 + y2)e−z,

where f ∈ C∞(R) is a smooth function with f(0) = 1, f(1) = 0 and f ′(t) < 0.
It is easy to check that Φ is a submersion and so determines a foliation F of
R3 whose leaves are the pre-images {Φ−1(c)}c∈R. When c = 0 we obtain as
leaf the cylinder C = {(x, y, z) : x2 + y2 = 1}. This cylinder splits the leaves
into two classes:
• The leaves with c > 0 lying in the interior of the cylinder C, which are
all diffeomorphic to R2;
• The leaves with c < 0 lying in the exterior of the cylinder C which are all
diffeomorphic to C;

An explicit parameterization of the leaves with c 6= 0 is given by:

(x, y) 7→ (x, y, log(c/f(x2 + y2)).

For the first type of leaves, c > 0 and x2 + y2 < 1, while for the second type of
leaves c < 0 and x2 + y2 > 1.
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4. The foliation in the previous example is invariant under translations in the
Oz-axis direction. If we identify R3 = R2 × R, we obtain a foliation in the
quotient R2 × S1 = R2 × R/Z. If we restrict this foliation to IntD2 × S1,
where D2 = {(x, y) : x2 + y2 ≤ 1}, we obtain a foliation of the solid 2-
torus. This example suggests that foliations of manifolds with boundary are
also interesting. We will not pursue this topic, but you should be aware of the
existence of foliations on manifolds with boundary.
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5. The 3-sphere S3 can be obtained by “gluing” two solid 2-torus along its
boundary:

S3 = T1 ∪Φ T2,
where Φ : ∂T1 → ∂T2 is a diffeomorphism that takes the meridians of ∂T1 in
the circles of latitude of ∂T2, and vice-versa. Explicitly, if S3 = {(x, y, z, w) :
x2 + y2 + z2 + w2 = 1}, then we can take:

T1 = {(x, y, z, w) ∈ S3 : x2 + y2 ≤ 1/2},
T2 = {(x, y, z, w) ∈ S3 : x2 + y2 ≥ 1/2}.

Each of these solid 2-torus admits a 2-dimensional foliation as in the previous
example. One then obtains a famous 2-dimensional foliation of the sphere S3,
called the Reeb foliation of S3.

Proposition 8.3. Let F be a k-dimensional foliation of a smooth manifold
M . Every leaf L ∈ F is a initial submanifold of dimension k.

Proof. Let L be a leaf of F . On each plaque of L we consider the relative
topology, and we furnish L with the topology generated by the open sets
in the plaques of L. For each plaque P , associated with a foliated chart
(U, φ) = (U, x1, . . . , xk, y1, . . . , yd−k), we consider the map ψ : P → Rk

obtain by choosing the first k-components:

ψ(p) = (x1(p), . . . , xk(p)).

The pairs (P,ψ) give charts for L, which turn L into a Hausdorff topological
manifold. The transition functions for these charts are clearly smooth, so
we can consider the maximal atlas that contains all the charts (U,ψ). To
check that L is a manifold, we only need to check that the topology admits
a countable basis. For that we apply the following lemma:

Lemma 8.4. Let L be a leaf of F and {Un : n ∈ Z} a covering of M by
domains of foliated charts. The number of plaques of L in this covering,
i.e., the number of connected components of L ∩ Un, n ∈ Z, is countable.
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Fix a plaque P0 of L in the covering {Un : n ∈ Z}. If a plaque P ′ belongs
to L then there exists a path of plaques P1, . . . , Pl in the covering, with
Pi ∩Pi+1 6= ∅ which connects P ′ to P0. Therefore it is enough to check that
the collection of such paths is countable.

For each path of plaques P1, . . . , Pl let us call l the length of the path.
Using induction on n, we show that the collection of paths of length less or
equal to n is countable:

• The collection of paths of length 1 has only one element hence is
countable.
• Assume that the collection of paths of length n−1 is countable. Let
P1, . . . , Pn−1 be a path of length n− 1, corresponding to domains of
foliated charts U1, . . . , Un−1. In order to obtain a path of plaques of
length n, we choose a domain of a foliated chart Un 6= Un−1 and we
consider the plaques P ′, which are connected components of L∩Un,
such that the intersection with Pn−1 is non-empty. Now observe
that:

(L ∩ Un) ∩ Pn−1 = Un ∩ Pn−1,

intersections form an open cover of the plaque Pn−1. This cover has
a countable subcover, so the collection of all such P ′ is countable. It
follows that the collection of paths of length less or equal than n is
countable.

We leave it as an exercise to check that the leaves are actually initial
submanifolds. �

Corollary 8.5. Each leaf of a foliation intersects the domain of a foliated
chart at most a countable number of times.

There are few constructions which allows one to obtain new foliations
out of other foliations. The details of these constructions are left for the
exercises.

Product of foliations. Let F1 and F2 be foliations of M1 and M2, respec-
tively. Then the product foliation F1×F2 is a foliation ofM1×M2 defined

as follows: if F1 = {L(1)
α }α∈A and F2 = {L(2)

β }β∈B , then

F1 ×F2 = {L(1)
α × L(2)

β }(α,β)∈A×B .

It should be clear that dim(F1 × F2) = dimF1 + dimF2 and, hence, that
codim (F1 ×F2) = codimF1 + codimF2

Pull-back of a foliation. Let Φ :M → N be a smooth map between smooth
manifolds. If F is a foliation of N we will say that Φ is transversal to F
and write Φ ⋔ F if Φ is transversal to every leaf L of F :

dpΦ(TpM) + TΦ(p)L = TΦ(p)N, ∀p ∈M.
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Whenever Φ ⋔ F one defines the pull-back foliation Φ∗(F) to be the
foliation of M whose leaves are the connected components of Φ−1(L), where
L ∈ F . It should be clear that codimΦ∗(F) = codimF .

Suspension of a difeomorphism. The manifold R ×M has a foliation F of
codimension 1: the leaves are the sets {t}×M , where t ∈ R (or if your prefer,
the fibers of the projection π : R×M → R). A difeomorphism Φ :M →M
induces an action of Z on R×M by setting

n · (t, p) = (t+ n,Φn(p)).

This action takes leaves of F into leaves. The quotient N = (R ×M)/Z
is a manifold called the suspension or mapping cylinder of the diffeo-
morphism Φ. It carries a codimension 1 foliation F̃ whose leaves are the
equivalence classes [L] in N , where L ∈ F .

It is convenient to have alternative characterizations of foliations.

Foliations via smooth Gkd -structures. Let F = {Lα : α ∈ A} be a k-dimensional
foliation of M . If (U, φ) and (V, ψ) are foliated charts then the change of
coordinates ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is of the form:

Rk ×Rd−k ∋ (x, y) 7→ (h1(x, y), h2(y)) ∈ Rk × Rd−k.

In other words, we have that the transition functions satisfy:

(8.1)
∂(ψ ◦ φ−1)j

∂xi
= 0, (i = 1, . . . , k, j = k + 1, . . . , d).

U
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Conversely, denote by Gkd the diffeomorphisms Rd → Rd defined on some
open set, that satisfy this condition. We can refine the notion of smooth
structure by requiring that in Definition 1.4 the transition functions be-
long to Gkd , and we then speak of a smooth Gkd -structure. An ordinary
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smooth structure on M is just a Gdd -structure: the leaves are the connected
components of M .

We have the following alternative description of a foliation:

Proposition 8.6. Let M be a smooth d-dimensional manifold. Given a
foliation F = {Lα : α ∈ A} of M of dimension k the collection of all foliated
charts C = {(U, φ)} defines a smooth Gkd -structure. Conversely, for every

smooth Gkd -structure C on a topological space M , there is smooth structure
that makes M into a d-dimensional manifold and there exists a foliation F
of M of dimension k, for which the foliated charts are the elements of C.

Proof. We have shown above that every k-dimensional foliation of a d-
dimensional manifold determines a smooth Gkd -structure. We will show that,

conversely, given a smooth Gkd -structure C = {(U, φ)} we can associate to it
a smooth structure on M of dimension d and a k-dimensional foliation F of
M .

It should be clear that a smooth Gkd -structure C = {(U, φ)} determines a
smooth structure on M of dimension d, since it is in particular an atlas. In
order to build F , we first observe that we can choose an atlas defining C
with the property that the slices φ−1(Rk×{c}), for c ∈ Rd−k, are connected.
We call these slices plaques and note that M is covered by all such plaques.
Hence, we can define an equivalence relation in M by:

• p ∼ q if there exists a path of plaques P1, . . . , Pl with p ∈ P1 and
q ∈ Pl.

Let F be the set of equivalence classes of ∼. We will show that F is a
foliation of M .

Let p0 ∈M and consider a plaque P0 which contains p0. Then,

P0 = φ−1(Rk × {c0}),

for some smooth chart (U, φ) ∈ C with φ(p0) = (a0, c0) ∈ Rk × Rd−k. We
claim that (U, φ) is a foliated chart: let L ∈ F be an equivalence class that
intersects U . If p ∈ U ∩ L, then φ(p) = (a, c) ∈ Rk × Rd−k, so we see that
that the plaque

P = φ−1(Rk × {c}),
is contained in L. Since P is connected, it is clear that P is contained in the
connected component of L∩U that contains p. We claim that this connected
component is actually P , from which it will follow that (U, φ) is a foliated
chart.

Let q ∈ L ∩ U be some point in the connected component of L ∩ U
containing p. We claim that q ∈ P . By the definition of ∼, there exists a
path of plaques P1, . . . , Pl, with p ∈ P1 and q ∈ Pl, and such that Pi ⊂ U .
Each plaque Pi is associated to a smooth chart (Ui, φi) ∈ C such that

Pi = φ−1
i (Rk × {ci}).
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We can assume also that U1 = U , φ1 = φ, P1 = P and c1 = c. Since
φ2 ◦ φ−1 ∈ Gkd , we have that:

φ−1
2 (Rk × {c2}) ⊂ φ−1

2 ◦ φ2 ◦ φ−1 ◦ (Rk × {c̄2}) = φ−1(Rk × {c̄2}),
for some c̄2 ∈ Rd−k. Since P2 ∩P1 6= ∅ and the plaques φ−1 ◦ (Rk ×{c}) are
disjoint, we conclude that c̄2 = c1 and P2 ⊂ P1 = P . By induction, Pi ⊂ P
so q ∈ P , as claimed. �

Foliations via Haefliger cocycles. We saw before that the connected compo-
nents of the fibers of a submersion is an example of a foliation. Actually,
every foliation is locally of this form: if F = {Lα}α∈A is a foliation of M of
dimension k, for any foliated chart:

φ = (x1, . . . , xk, y1, . . . , yd−k) : U → Rd,

the projection in the last (d− k)-components gives a submersion:

ψ = (y1, . . . , yd−k) : U → Rd−k,

whose fibers are the connected components of Lα∩U . Given another foliated
chart:

φ̄ = (x̄1, . . . , x̄k, ȳ1, . . . , ȳd−k) : Ū → Rd,

with U ∩ Ū 6= ∅, for the corresponding submersion

ψ̄ = (ȳ1, . . . , ȳd−k) : Ū → Rd−k,

we have a change of coordinates of the form

φ̄ ◦ φ−1(x, y) = (h1(x, y), h2(y)),

where h2 has Jacobian matrix
[
∂hj2
∂yi

]d−k

i,j=1

with rank d−k. We conclude that the submersions ψ and ψ̄ differ by a local
diffeomorphism: for every p ∈ U ∩ Ū there exists an open neighborhood
p ∈ Up ⊂ U ∩ Ū and a local diffeomorphism Ψ : Rd−k → Rd−k, such that:

ψ̄|Up = Ψ ◦ ψ|Up .

This suggests another way of defining foliations:

Proposition 8.7. LetM be a d-dimensional manifold. Every k-dimensional
foliation F of M determines a maximal collection {ψi}i∈I of submersions
ψi : Ui → Rd−k, where {Ui}i∈I is an open cover of M , and which satisfies
the following property: for every i, j ∈ I and p ∈ Ui∩Uj, there exists a local

diffeomorphism ψpji of R
d−k, such that:

ψj = ψpji ◦ ψi,
in an open neighborhood Up of p. Conversely, every such collection deter-
mines a foliation of M .
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We have already seen how to a foliation we can associate a collection of
submersions. We leave it as an exercise to prove the converse.

Given a collection of submersions {ψi}i∈I , as in the proposition, we con-
sider for each pair i, j ∈ I, the map

ψij : Ui ∩ Uj → Diff loc(R
d−k), p 7−→ ψpij .

This map satisfies:

(8.2) (ψji)
−1 = ψji in Ui ∩ Uj,

and the cocycle condition:

(8.3) ψij ◦ ψjk ◦ ψki = 1 in Ui ∩ Uj ∩ Uk.
We will see later, in Part IV of these notes, when we study the theory of
fiber bundles, that these cocycles, called Haefliger cocycles, play a very
important role.

Foliations appear naturally in many problems in differential geometry,
and we shall see many other examples of foliations during the course of
these sections.

Homework.

1. Show that the leaves of a foliation are initial submanifolds.

2. Let F be the Reeb foliation of S3 and let Φ : S3 → N be a continuous map
whose restriction to each leaf of F is constant. Show that Φ is constant.

3. Proof Proposition 8.7.

4. Let F1 = {L(1)
α }α∈A and F2 = {L(2)

β }β∈B be foliations. Using your favorite
definition of a foliation, show that the product F1 ×F2 is a foliation:

F1 ×F2 := {L(1)
α × L(2)

β }(α,β)∈A×B.

5. Let Φ : M → N be a smooth map and F = {Lα}α∈A a foliation of N
such that Φ ⋔ F . Using your favorite definition of a foliation, show that the
pull-back Φ∗(F) is a foliation:

Φ∗(F) := {connected components of Φ−1(Lα)}α∈A.

6. Let F1 and F2 be two foliations of a smooth manifoldM such that F1 ⋔ F2,
i.e., such that

TpM = TpL
(1) + TpL

(2), ∀p ∈M,

where L(1) and L(2) are the leaves of F1 and F2 through p. Show that there
exists a foliation F1 ∩ F2 of M whose leaves are the connected components of

L
(1)
α ∩ L(2)

β , and which satisfies codimF = codimF1 + codimF2.

7. Given a foliation F of M , one denotes by M/F the space of leaves of F
with the quotient topology. Try to describe for each of the examples given in
the text their space of leaves.
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9. Quotients

We have seen before several constructions that produce new manifolds
out of old manifolds, such as the product of manifolds or the pullback of sub
manifolds under transversal maps. We will now study another important,
but more delicate, construction: forming quotients of manifolds.

Let X be a topological space. If ∼ is an equivalence relation on X, we will
denote by X/ ∼ the set of equivalence classes of ∼ and by π : X → X/ ∼ the
quotient map which associates to each x ∈ X its equivalence class π(x) = [x].
In X/ ∼ we consider the quotient topology : a subset V ⊂ X/ ∼ is open if
and only if π−1(V ) is open. This is the largest topology in X/ ∼ for which
the quotient map π :M →M/ ∼ is continuous. We have the following basic
result about the quotient topology which we leave as an exercise:

Lemma 9.1. Let X be a Hausdorff topological space and let ∼ be an equiv-
alence relation on X such that π : X → X/ ∼ is an open map. Then X/ ∼
is Hausdorff if and only if the graph of ∼:

R = {(x, y) ∈ X ×X : x ∼ y},
is a closed subset of X ×X.

Let M be a smooth manifold and let ∼ be an equivalence relation on M .
We would like to known when there exists a smooth structure on M/ ∼,
compatible with the quotient topology, such that π : M → M/ ∼ becomes
a submersion. Before we can state a result that gives a complete answer to
this question, we need one definition.

Recall that a continuous map Φ : X → Y , between two Hausdorff topo-
logical spaces is called a proper map if Φ−1(K) ⊂ X is compact whenever
K ⊂ Y is compact. A proper map is always a closed map.

Definition 9.2. A proper submanifold of M is a submanifold (N,Φ)
such that Φ : N →M is a proper map.

By an exercise in Section 6, any proper submanifold is an embedded
submanifold. Also, if Φ : N →M is proper, then its image Φ(N) is a closed
subset of M . Conversely, every embedded closed submanifold of M is a
proper submanifold.

Theorem 9.3 (Godement’s Criterion). Let M be a smooth manifold and let
∼ be an equivalence relation on M . The following statements are equivalent:

(i) There exists a smooth structure on M/ ∼, compatible with the quotient
topology, such that π :M →M/ ∼ is a submersion.

(ii) The graph R of ∼ is a proper submanifold of M×M and the restriction
of the projection p1 :M ×M →M to R is a submersion.

R �

� // M ×M
p2

$$■
■■

■■
■■

■■
p1

zz✉✉
✉✉
✉✉
✉✉
✉

M M
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Proof. We must show both implications:
(i) ⇒ (ii). The graph of the quotient map, as for every smooth map, is a

closed embedded submanifold:

G(π) = {(p, π(p)) : p ∈M} ⊂M ×M/ ∼,
Since I × π :M ×M →M ×M/ ∼ is a submersion and

R = (Id× π)−1(G(π)),
we conclude that R ⊂M ×M is an embedded closed submanifold, i.e., is a
proper submanifold.

On the other hand, the map (I × π)|R : R→ G(π) is a submersion while
G(π)→M , (p, π(p)) 7→ p is a diffeomorphism, hence their composition p1|R
is a submersion.

(ii) ⇒ (i). We split the proof into several lemmas. The first of these
lemmas states that we can ”straighten out” ∼:
Lemma 9.4. For every p ∈ M , there exists a local chart (U, (x1, . . . , xd))
centered at p, such that

∀q, q′ ∈ U, q ∼ q′ if and only if xk+1(q) = xk+1(q′), . . . , xd(q) = xd(q′),

where k is an integer independent of p.

To prove this lemma, let ∆ ⊂M×M be the diagonal. Note that ∆ ⊂ R ⊂
M ×M , and since ∆ and R are both embedded submanifolds of M ×M ,
we have that ∆ is an embedded submanifold of R. Therefore, for each
p ∈M , there exists a neighborhood O of (p, p) in M ×M and a submersion
Φ : O → Rd−k, where d− k = codimR, such that:

(q, q′) ∈ O ∩R if and only if Φ(q, q′) = 0.

We have that k ≥ 0, since ∆ ⊂ R and codim∆ = d.
Next we observe that the differential of the map q 7→ Φ(q, p) has maximal

rank at q = p: in fact, after identifying T(p,p)(M ×M) = TpM × TpM , we
see that d(p,p)Φ is zero precisely in the subspace formed by pairs (v,v) ∈
TpM × TpM , and this subspace is complementary to the subspace formed
by elements of the form (v, 0) ∈ TpM ×TpM . We conclude that there exists
a neighborhood V ′ of p such that V ′×V ′ ⊂ O, and the map q 7→ Φ(q, p) is a
submersion in V ′. By the local canonical form for submersions, there exist
a chart (V, φ) = (V, (u1, . . . , uk, v1, . . . , vd−k)) centered at p, with V ⊂ V ′,
such that

Φ ◦ (φ−1 × φ−1)(u1, . . . , uk, v1, . . . , vd−k, 0, . . . , 0) = (v1, . . . , vd−k).

In the domain of this chart, the points q ∈ V such that q ∼ p are precisely
the points satisfying v1(q) = 0, . . . , vd−k(q) = 0.

Now set Φ̂ = Φ ◦ (φ−1 × φ−1). The smooth map

Rd × Rd−k → Rd−k, (u, v, w) 7→ Φ̂((u, v), (0, w)),
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satisfies

Φ̂((u, v), (0, 0)) = v.

so the matrix of partial derivatives ∂Φ̂i/∂vj , (i, j = 1, . . . , d − k) is non-
degenerate. We can apply the Implicit Function Theorem to conclude that
there exists a local defined smooth function Rk × Rd−k → Rd−k, (u,w) 7→
v(u,w), such that:

Φ̂((u, v), (0, w)) = 0 if and only if v = v(u,w).

Since v(0, w) = w is a solution, uniqueness implies that:

φ−1(0, w) ∼ φ−1(0, w′) if and only if w = w′.

This shows that the map (u,w) 7→ (u, v(u,w)) is a local diffeomorphism.
Hence, there exists an open set U where

(x1, . . . , xd) = (u1, . . . , uk, w1, . . . , wd−k)

are local coordinates and in these coordinates:

∀q, q′ ∈ U, q ∼ q′ if and only if xk+1(q) = xk+1(q′), . . . , xd(q) = xd(q′),

so the lemma follows.

Since the functions xk+1, . . . , xd given by this lemma induce well-defined
functions x̄k+1, . . . , x̄d on the quotient M/ ∼, we consider the pairs of the
form (π(U), x̄k+1, . . . , x̄d):

Lemma 9.5. The collection C = {(π(U), x̄k+1, . . . , x̄d)} gives M/ ∼, with
the quotient topology, the structure of a topological manifold of dimension
d− k.

First note that π : M → M/ ∼ is an open map: in fact, for any V ⊂M ,
we have that

π−1(π(V )) = p1|R((p2|R)−1(V )).

By assumption, p1|R is a submersion hence is an open map. Therefore, if
V ⊂M is open then π−1(π(V )) is also open, so π(V ) ⊂M/ ∼ is open.

This shows that π(U) is open. Since the map

(xk+1, . . . , xd) : U → Rd−k

is both continuous and open, it follows that the induced map

(x̄k+1, . . . , x̄d) : π(U)→ Rd−k

is continuous, open and injective, i.e., is a homeomorphism onto its image.

Now we show that:

Lemma 9.6. The family C = {(π(U), x̄k+1, . . . , x̄d)} is an atlas generating
a smooth structure for M/ ∼ such that π :M →M/ ∼ is a submersion.
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Take two pairs in C:
(π(U), φ̄) = (π(U), x̄k+1, . . . , x̄d),

(π(V ), ψ̄) = (π(V ), ȳk+1, . . . , ȳd),

which correspond to two charts in M :

(U, φ) = (U, x1, . . . , xd),

(V, ψ) = (V, y1, . . . , yd).

The corresponding transition function:

ψ̄ ◦ φ̄−1 : Rd−k → Rd−k,

composed with the projection p : Rd → Rd−k in the last d − k components
is given by:

ψ̄ ◦ φ̄−1 ◦ p = p ◦ ψ ◦ φ−1.

Since the right-hand side is a smooth map Rd → Rd−k it follows that ψ̄◦ φ̄−1

is smooth.
In order to check that π : M → M/ ∼ is a submersion, it is enough to

observe that in the charts (U, x1, . . . , xd) for M and (π(U), x̄k+1, . . . , x̄d) for
M/ ∼, this map corresponds to the projection p : Rd → Rd−k.

To finish the proof of Theorem 9.3, we check that

Lemma 9.7. The quotient topology M/ ∼ is Hausdorff and second count-
able.

It is obvious that if M has a countable basis, then the quotient topology
also has a countable basis. Since the graph R of ∼ is closed in M ×M , M
is Hausdorff and π is an open map, it follows from Lemma 9.1 that M/ ∼
is Hausdorff.

�

Remark 9.8. The proof shows that if we assume that R is embedded, not
closed, and p1|R : R → M is a submersion, then the quotient M/ ∼ is a
smooth manifold, second countable, but not Hausdorff (see Exercise 4 for
an example).

We will now study two important examples of quotients.

Leaf spaces of foliations. Let F be a foliation of a smooth manifold M .
Since F is a partition of M , it determines an equivalence relation on M ,
namely:

p ∼ q if and only if p and q belong to same leaf.

The set of equivalence classes:

M/F :=M/ ∼
is the collection of all leaves of F and hence is called the leaf space of the
foliation.
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In general, the leaf space of a foliation does not carry a smooth structure
compatible with the quotient topology, but we can use Godement’s Criterion
to find an answer to this question:

Corollary 9.9. Let F be a foliation of a smooth manifold M . The following
statements are equivalent:

(i) There exists a smooth structure on M/F , compatible with the quotient
topology, such that π :M →M/F is a submersion.

(ii) The leaf space M/F is Hausdorff and there is a cover of M by foliated
charts with the property that each leaf of F intersects each chart at
most once.

A foliation satisfying either of the equivalent conditions in this corollary
is called a a simple foliation. We leave the proof as an exercise.

You may notice that the proof that Godement’s Criterion yields a smooth
quotient manifold actually amounts to show that the equivalence classes of
R form a simple foliation of M .

Orbit spaces of discrete group actions. A very important class of equiv-
alence relations on manifolds is given by actions of groups of diffeomor-
phisms. If G is a group, we recall that an action of G on a setM is a group

homomorphism Ψ̂ from G to the group of bijections of M . One can also
view an action as a map Ψ : G×M →M , which we write as (g, p) 7→ g · p,
if one sets:

g · p ≡ Ψ̂(g)(p).

Since Ψ̂ is a group homomorphism, it follows that:

(a) e · p = p, for all p ∈M ;
(b) g · (h · p) = (gh) · p, for all g, h ∈ G and p ∈M .

Conversely, any map Ψ : G ×M → M satisfying (a) and (b), determines a

homomorphism Ψ̂. From now on, we will denote an action by Ψ : G×M →
M , and for each g ∈ G we denote by Ψg the bijection:

Ψg :M →M, p 7→ g · p
Assume now that M is a manifold. We say that that a group G acts on

M by diffeomorphims if, for each g ∈ G, Ψg :M →M is a diffeomorphism.

This means that we have a group homomorfismo Ψ̂ : G → Diff(M), where
Diff(M) is the group of all diffeomorphisms of M . We can also express this
condition by saying that the map Ψ : G ×M → M is smooth, where G is
viewed as a smooth 0-dimensional manifold with the discrete topology. So
we will also say in this case that the discrete group G acts smoothly on M .

Given any action of G on M the quotient G\M is, by definition, the set
of equivalence classes determined by the orbit equivalence relation:

p ∼ q ⇐⇒ ∃g ∈ G : q = g · p.
Let us see conditions on an action by diffeomorphisms for the quotient G\M
to be a manifold.
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We recall that a free action is an action G ×M → M such that each
g ∈ G− {e} acts without fixed points, i.e.,

g · p = p for some p ∈M =⇒ g = e.

Denoting by Gp the isotropy subgroup of p ∈M , i.e.,

Gp = {g ∈ G : g · p = p},

an action is free if and only if Gp = {e}, for all p ∈M .

Definition 9.10. A smooth action Ψ : G×M → M of a discrete group G
on a smooth manifold M is said to be proper if the map:

G×M →M ×M, (g, p) 7→ (g · p, p),

is a proper map.

Examples 9.11.

1. Actions of finite groups are always proper (exercise). For example, the Z2-
action on M = Sd, defined by:

±1 · (x1, . . . , xd+1) := ±(x1, . . . , xd+1).

is a free and proper action.

2. Let Zd act on Rd by translations:

(n1, . . . , nd) · (x1, . . . , xd) := (x1 + n1, . . . , x
d + nd).

It is easy to see that his action is also free and proper. So there are proper
actions of discrete groups G, where G is not finite.

3. A proper smooth action G ×M → M of a discrete group must have finite
isotropy groups (exercise). So, for example, the orthogonal group O(d) consist-
ing of orthogonal matrices of size d acts smoothly on the sphere Sd by matrix
multiplication:

A · x := Ax.

The isotropy group of x0 consists of those orthogonal matrices fixing x0 and
contains, e.g., the rotations with axis the line through x0 and the origin. Since
there are infinite isotropy groups the action is not proper (note that O(d) is
considered here as a discrete group).

Godement’s Criterion allows us to find conditions for an orbit space to be
smooth:

Corollary 9.12. Let Ψ : G×M →M be a free and proper smooth action of
a discrete group G on M . There exists a unique smooth structure on G\M
such that π :M → G\M is a local diffeomorphism.

Proof. We check that condition (ii) of Theorem 9.3 holds.
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We claim that R ⊂ M ×M is a proper submanifold. Since the action
if free and proper, one has (see Exercise 7) for each p0 ∈ M an open set
p0 ∈ U , such that:

g · U ∩ U = ∅, ∀g ∈ G− {e}.
For such an open set, if g0 ∈ G, we have:

(U × g0 · U) ∩R = {(q, g0 · q) : q ∈ U}.
so the map

U → (U × g0 · U) ∩R, q 7→ (q, g0 · q),
is a parameterization of O ∩ R, with O ⊂ M ×M open. It follows that R
can be covered by open sets O ∩ R embedded in M ×M , so that R is an
embedded submanifold. Also, the action being proper, the inclusion

R = {(p, g · p) : p ∈M,g ∈ G} →֒M ×M
is a proper map.

Now we observe that the projection p1 : M ×M → M restricted to R is
an inverse to the parameterizations of R constructed above, hence p1|R is a
local diffeomorphism. �

Under the conditions of this corollary, it is easy to check that the projec-
tion π : M → G\M is in fact a covering map. Therefore, if M is simply
connected, then M is the universal covering space of G\M and we conclude
that π1(G\M) ≃ G.

Examples 9.13.

1. The action Z2×Sd → Sd defined in Example 9.11.1 is free and proper so the
orbit space Z2\Sd is a manifold. We claim that this manifold is diffeomorphic

to RPd: the map Sd → RPd given by (x1, . . . , xd) 7→ [x1 : · · · : xd] induces a

diffeomorphism Z2\Sd → RPd such that the following diagram commutes:

Sd

�� ##❋
❋❋

❋❋
❋❋

❋❋

Z2\Sd // RPd

For d > 1, Sd is simply connected, so we conclude also that the quotient map
is a covering map and that π1(RP

d) = Z2.

2. The action Zd×Rd → Rd defined in Example 9.11.2 is also free and proper,
so the orbit space Zd\Rd is a smooth manifold. This manifold is diffeomorphic

to d-torus Td: the map Rd → Td given by (x1, . . . , xd) → (e2πix
1

, . . . , e2πix
1

)
induces a diffeomorphism Zd\Rd → Td such that the following diagram com-
mutes:

Rd

�� ""❊
❊❊

❊❊
❊❊

❊❊

Zd\Rd // Td
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Since Rd is simply connected, we conclude also that the quotient map is a
covering map and that π1(Td) = Zn.

3. Let (R,+) act on R2 by translations in the x-direction:

λ · (x1, x2) = (x1 + λ, x2).

This is a free but non-proper action of a discrete group. However, the orbits
of this action form a simple foliation of R2 so that R\R2 inherits a smooth
structure. The quotient R\R2 is diffeomorphic to R.

The issue in the last example is that one should consider on the group
(R,+) the usual topology, instead of the discrete topology. Later we will
study Lie groups, which are groups carrying a compatible smooth struc-
ture (of positive dimension). Their smooth actions give rise to many other
examples of quotients.

Homework.

1. Let X be a Hausdorff topological space and ∼ an equivalence relation in X
such that π : X → X/ ∼ is an open map, for the quotient topology. Show that
X/ ∼ with the quotient topology is Hausdorff if and only if the graph of ∼ is
closed in X ×X .

2. Let π :M → Q be a surjective submersion, Φ :M → N and Ψ : Q→ N any
maps into a smooth manifold N such that the following diagram commutes:

M

π

��

Φ

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

Q
Ψ

// N

Show that Φ is smooth if and only if Ψ is smooth. Use this to conclude that if
M is a manifold, ∼ is an equivalence relation satisfying any of the conditions
of Theorem 9.3, and Φ : M → N is a smooth map such that Φ(x) = Φ(y)
whenever x ∼ y, then there is an induced smooth map Φ : M/ ∼→ N such
that the following diagram commutes:

M

π

��

Φ

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

M/ ∼
Φ

//❴❴❴❴❴❴ N

3. Use Godement’s Criterion to prove Corollary 9.9 characterizing simple foli-
ations.

4. Let F be the foliation of M = R2 − {0} whose leaves are the connected
components of the horizontal lines y = const. Show that the leaf spaceM/F has
a non-Hausdorff smooth structure (this non-Hausdorff manifold is sometimes
called the line with two origins).
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5. Let (R,+) act on R2 by translations in the x-direction:

λ · (x1, x2) = (x1 + λ, x2).

Show that:
(a) The action is not proper when one considers the discrete topology on R.
(b) The orbits of the action give a simple foliation of R2 and R\R2 is diffeo-

morphic to R with its usual smooth structure.

6. Show that any smooth action G×M →M of a finite group G on a manifold
M is proper.

7. A smooth action Ψ : G × M → M of a discrete group G is said to be
properly discontinuous if the following two conditions are satisfied:
(a) For every p ∈M , there exists a neighborhood U of p, such that:

g · U ∩ U = ∅, ∀g ∈ G−Gp.
(b) If p, q ∈ M do not belong to the same orbit, then there are open neigh-

borhoods U of p and V of q, such that

g · U ∩ V = ∅, ∀g ∈ G.
Show that a free action of a discrete group is proper if and only if it is properly
discontinuous.

8. Show that for a proper and free action of a discrete group G×M →M , the
projection π :M → G\M is a covering map.
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Part 2. Lie Theory

In the first part of these sections we have introduced and study some
elementary concepts about manifolds. We will now initiate the study of
the local differential geometry of smooth manifolds. The main concept and
ideas that we will introduce in this second part are the following:

• Section 10: the notion of vector field and the related concepts of
integral curve and flow of a vector field.
• Section 11: the Lie bracket of vector fields and the Lie derivative,
which allows to differentiate along vector fields.
• Section 12: an important generalization of vector fields, called distri-
butions. The Frobenius Theorem says that foliations are the global
objects associated with involutive distributions.
• Section 13: Lie groups and their infinitesimal versions called Lie
algebras.
• Section 14: how to integrate Lie algebras to Lie groups.
• Section 15: the exponential map from the Lie algebra to the Lie
group, generalizing the exponential of matrices.
• Section 16: groups of transformations which are concrete realizations
of Lie groups.
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10. Vector Fields and Flows

Definition 10.1. A vector field on a manifold M is a section of the tan-
gent bundle π : TM → M , i.e., a map X : M → TM such that π ◦X = I.
We say that the vector field X is smooth or C∞, if the map X : M → TM
is smooth. We will denote by X(M) the set of smooth vector fields on a
manifold M .

If X is a vector field on M , we denote by Xp, rather than X(p), the value
of X at p ∈ M . For each p ∈ M , Xp is a derivation, hence, given any
f ∈ C∞(M) we can define a new function X(f) :M → R by setting

X(f)(p) ≡ Xp(f).

If you recall the definition of the differential of a function, you see immedi-
ately that this definition is equivalent to:

X(f) = df(X).

Also, from the definition of a tangent vector as a derivation, we see that
f 7→ X(f) satisfies:

(i) X(af + bg) = aX(f) + bX(g);
(ii) X(fg) = X(f)g + fX(g);

for any a, b ∈ R and smooth functions f, g.
Let (U, x1, . . . , xd) be a coordinate system onM . Then we have the vector

fields ∂
∂xi
∈ X(U) defined by:

∂

∂xi
(p) ≡ ∂

∂xi

∣∣∣∣
p

, (i = 1, . . . , d).

At each p ∈ U these vector fields yield a basis of TpM , so if X ∈ X(M) is
any vector field on M , its restriction to the open set U , denoted by X|U ,
can be written in the form:

X|U =

d∑

i=1

Xi ∂

∂xi
,

where Xi : U → R are certain functions which we call the components of
the vector field X with respect to the chart (x1, . . . , xd).

Lemma 10.2. Let X be a vector field on M . The following statements are
equivalent:

(i) The vector field X is C∞;
(ii) For any chart (U, x1, . . . , xd), the components Xi of X with respect to

this chart are C∞;
(iii) For any f ∈ C∞(M), the function X(f) is C∞.

Proof. We show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
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To show that (i) ⇒ (ii), note that if X is C∞ and U is an open set, the
restriction X|U is also C∞. Hence, if (U, x1, . . . , xd) is any chart, we have
that dxi(X|U ) := dxi ◦X|U is C∞. But:

dxi(X|U ) = dxi(

d∑

j=1

Xj ∂

∂xj
) = Xi.

To show that (ii) ⇒ (iii), note that f ∈ C∞(M) if and only if f |U ∈
C∞(U), for every domain U of a chart. But:

X(f)|U =
d∑

i=1

Xi ∂f

∂xi
∈ C∞(U).

To show that (iii) ⇒ (i), it is enough to show that X|U is C∞, for every
domain U of a chart. Recall that if (U, x1, . . . , xd) is a chart then

(π−1(U), (x1 ◦ π, . . . , xd ◦ π,dx1, . . . ,dxd))
is a coordinate systems in TM . Since:

xi ◦ π ◦X|U = xi ∈ C∞(U),

dxi ◦X|U = X(xi) ∈ C∞(U),

we conclude that X|U is C∞. �

We conclude from this lemma, that a vector field X ∈ X(M) defines a
linear derivation DX : C∞(M)→ C∞(M), f 7→ X(f). Conversely, we have:

Lemma 10.3. Every linear derivation D : C∞(M) → C∞(M) determines
a vector field X ∈ X(M) through the formula:

Xp(f) = D(f)(p).

Proof. We only need to show that Xp(f) only depends on the germ [f ] ∈ Gp,
i.e., if f, g ∈ C∞(M) are two function which agree in some neighborhood U
of p, then D(f)(p) = D(g)(p). This follows from the fact that derivations
are local: if D is a derivation and f ∈ C∞(M) is zero on some open set
U ⊂ M , then D(f) is also zero in U . To see this, let p ∈ U and choose
g ∈ C∞(M) such that g(p) > 0 and supp g ⊂ U . Since gf ≡ 0, we have
that:

0 = D(gf) = D(g)f + gD(f).

If we evaluate both sides at p, we obtain D(f)(p) = 0. Hence, D(f)|U = 0
as claimed. �

From now on we will not distinguish between a vector field and the asso-
ciated derivation of C∞(M), so we will use the same letter to denote them.

Recall that a path in a manifold M is a continuous map γ : I → M ,
where I ⊂ R is an interval. A smooth path is a path for which γ is C∞.
Note that if ∂I 6= ∅, i.e., is not an open interval, then γ is smooth if and only
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if it has a smooth extension to a smooth path defined in an open interval
J ⊃ I. If γ : I →M is a smooth path, its derivative is:

dγ

dt
(t) ≡ dγ · ∂

∂t

∣∣∣∣
t

∈ Tγ(t)M, (t ∈ I)

We often abbreviate writing γ̇(t) instead of dγ
dt (t). The derivative t 7→ γ̇(t)

is a smooth path in the manifold TM .

Definition 10.4. Let X ∈ X(M) be a vector field. A smooth path γ : I →M
is called an integral curve of X if

(10.1) γ̇(t) = Xγ(t), ∀t ∈ I.

In a chart (U, (x1, . . . , xd)), a path γ(t) is determined by its components
γi(t) = xi(γ(t)). Its derivative is then given by

γ̇(t) = dγ · ∂
∂t

=
d∑

i=1

dγi

dt

∂

∂xi
.

It follows that the integral curves of a vector field X, which has components
Xi in the local chart (x1, . . . , xd), are the solutions of the system of o.d.e.’s:

(10.2)
dγi

dt
= Xi(γ1(t), . . . , γd(t)), (i = 1, . . . , d).

This system is the local form of the equation (10.1). Note that it is common
to write xi(t) for the components γi(t) = xi(γ(t)) so that this system of
equations becomes:

dxi

dt
= Xi(x1(t), . . . , xd(t)), (i = 1, . . . , d).

Example 10.5.
In R2 consider the vector field X = x ∂

∂y − y ∂
∂x . The equations for the integral

curves (10.2) are: {
ẋ(t) = −y(t),
ẏ(t) = x(t).

Hence, the curves γ(t) = (R cos t, R sin t) are integral curves of this vector field.
This vector field is tangent to the submanifold S1 = {(x, y) : x2 + y2 = 1},

so defines a vector field on the circle: Y = X |S1 . If we consider the angle
coordinate θ on the circle, the smooth functions C∞(S1) can be identified with
the 2π-periodic smooth functions f(θ) = f(θ + 2π). It is easy to see that the
vector field Y as a derivation is given by:

Y (f)(θ) = f ′(θ).

Hence we will write this vector field as:

Y =
∂

∂θ
,

although the function θ is not a globally defined smooth coordinate on S1.
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Now consider the cylinder M = S1 × R, with coordinates (θ, x). We have a
well defined vector field:

Z =
∂

∂θ
+ x

∂

∂x
.

You should try to plot this vector field on a cylinder and verify that the integral
curve of Z through a point (θ0, x0) is given by

γ(t) = (θ0 + t, x0e
t).

If x0 = 0, this is just a circle around the cylinder. If x0 6= 0 this is a spiral
that approaches the circle when t→ −∞ and goes to infinity when t→ +∞.

Standard results about existence, uniqueness and maximal interval of def-
inition of solutions a system of o.d.e.’s lead to the following proposition:

Proposition 10.6. Let X ∈ X(M) be a vector field. For each p ∈M , there
exist real numbers ap, bp ∈ R ∪ {±∞} and a smooth path γp :]ap, bp[→ M ,
such that:

(i) 0 ∈]ap, bp[ and γp(0) = p;
(ii) γp is an integral curve of X;
(iii) If η :]c, d[→ M is any integral curve of X with η(0) = p, then ]c, d[⊂

]ap, bp[ and γp|]c,d[ = η.

We call the integral curve γp given by this proposition the maximal
integral curve of X through p. For each t ∈ R, we define the domain
Dt(X) consisting of those points for which the integral curve through p
exists at least until time t:

Dt(X) = {p ∈M : t ∈]ap, bp[}.
If it is clear the vector field we are referring to, we will write Dt instead of
Dt(X). The flow of the vector field X ∈ X(M) is the map φtX : Dt →M
given by

φtX(p) ≡ γp(t).
Proposition 10.7. Let X ∈ X(M) be a vector field with flow φtX . Then:

(i) For each p ∈ M , there exists a neighborhood U of p and ε > 0, such
that the map (−ε, ε) × U →M given by:

(t, q) 7→ φtX(q),

is well defined and smooth;
(ii) For each t ∈ R, Dt is open and

⋃
t>0Dt =M ;

(iii) For each t ∈ R, φtX : Dt → D−t is a diffeomorphism and:

(φtX)
−1 = φ−tX ;

(iv) For each s, t ∈ R, the domain of φtX ◦ φsX is contained in Dt+s and:

φt+sX = φtX ◦ φsX .
Proof. Exercise. �
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One calls a vector field X complete if Dt(X) = M , for every t ∈ R,
i.e., if the maximal integral curve through any p ∈ M is defined for all
t ∈]−∞,+∞[. In this case the flow of X is a map:

R×M →M, (t, p) 7→ φtX(p).

The properties above then say that this map gives an action of the group
(R,+) in M . In other words, the map

R→ Diff(M), t 7→ φtX ,

is a group homomorphism from (R,+) to the group (Diff(M), ◦) of dif-
feomorphisms of M . One often says that φtX is a 1-parameter group of
transformations of M . In the non-complete case, one also says that φtX is a
1-parameter group of local transformations of M .

Examples 10.8.

1. The vector field X = x ∂
∂y − y ∂

∂x in R2 is complete (see Example 10.5) and

is flow is given by:

φtX(x, y) = (x cos t− y sin t, x sin t+ y cos t).

2. The vector field Y = −x2 ∂
∂x − y ∂

∂y in R2 is not complete: the integral curve

through a point (x0, y0) is the solution to the system of odes:
{
ẋ(t) = −x2, x(0) = x0,
ẏ(t) = −y, y(0) = y0.

After solving this system, ones obtains the flow of Y :

φtX(x, y) =

(
x

xt+ 1
, ye−t

)
.

It follows that the flow through points (0, y) exist for all t. But for points
(x, y), with x 6= 0, the flow exists only for t ∈] − 1/x,+∞[ if x > 0 and for
t ∈]−∞,−1/x[ if x > 0. The domain of the flow is then given by:

Dt(Y ) =





{(x, y) ∈ R2 : x > −1/t} if t > 0,

R, if t = 0,

{(x, y) ∈ R2 : x < −1/t} if t < 0

Let Φ : M → N be a smooth map. In general, given a vector field X in
M , it is not possible to use Φ to map X to obtain a vector field Y in N .
However, given two vector fields, one in M and one in N , we can say when
they are related by this map:

Definition 10.9. Let Φ : M → N be a smooth map. A vector field X ∈
X(M) is said to be Φ-related to a vector field Y ∈ X(N) if

YΦ(p) = dΦ(Xp), ∀p ∈M.
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If X and Y are Φ-related vector fields then, as derivations of C∞(M):

Y (f) ◦ Φ = X(f ◦ Φ), ∀f ∈ C∞(N).

When Y is determined from X via Φ we write Y = Φ∗(X), and call Φ∗(X)
the push forward of X by Φ. This is the case, for example, when Φ is a
diffeomorphism, in which case:

Φ∗(X)(f) = X(f ◦ Φ) ◦Φ−1, ∀f ∈ C∞(N).

The integral curves of vector fields which are Φ-related are also Φ-related.
The proof is a simple exercise applying the chain rule:

Proposition 10.10. Let Φ : M → N be a smooth map and let X ∈ X(M)
and Y ∈ X(N) be Φ-related vector fields. If γ : I → M is an integral curve
of X, then Φ ◦ γ : I → N is an integral curve of Y . In particular, we have
that Φ(Dt(X)) ⊂ Dt(Y ) and that the flows of X and Y are related by:

Dt(X)
Φ //

φtX
��

Dt(Y )

φtY
��

D−t(X)
Φ // D−t(Y )

If X ∈ X(M) is a vector field and f ∈ C∞(M), we already know that
X(f) ∈ C∞(M). The expression for X(f) is local coordinates show that X
is a first order differential operator. If we iterate, we obtain the powers Xk,
which are kth-order differential operators:

Xk+1(f) ≡ X(Xk(f)).

Proposition 10.11 (Taylor Formula). Let X ∈ X(M) be a vector field and
f ∈ C∞(M). For each positive integer k, one has the expansion

f ◦ φtX = f + tX(f) +
t2

2!
X2(f) + · · · + tk

k!
Xk(f) + 0(tk+1),

where for each p ∈M , t 7→ 0(tk+1)(p) denotes a real smooth function defined
in a neighborhood of t = 0 whose derivatives of order ≤ k all vanish at t = 0.

Proof. By the usual Taylor formula for real functions applied to t 7→ f(φtX(p)),
it is enough to show that:

dk

dtk
f(φtX(p))

∣∣∣∣
t=0

= Xk(f)(p).

To prove this, we show by induction that:

dk

dtk
f(φtX(p)) = Xk(f)(φtX(p)).

When k = 1, this follows because:

d

dt
f(φtX(p)) = dpf ·XφtX(p)

= XφtX(p)(f) = X(f)(φtX(p)).
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On the other hand, if we assume that the formula is valid for k − 1, we
obtain:

dk

dtk
f(φtX(p)) =

d

dt

(
dk−1

dtk−1
f(φtX(p))

)

=
d

dt
Xk−1(f)(φtX(p))

= X(Xk−1(f))(φtX (p)) = Xk(f)(φtX(p)).

�

Another common notation for the flow of a vector field, which is justified
by the previous result, is the exponential notation:

exp(tX) ≡ φtX .

In this notation, the properties of the flow are written as:

exp(tX)−1 = exp(−tX), exp((t+ s)X) = exp(tX) ◦ exp(sX),

while the Taylor expansion takes the following suggestive form:

f(exp(tX)) = f + tX(f) +
t2

2!
X2(f) + · · ·+ tk

k!
Xk(f) + 0(tk+1).

We will not use this notation in these sections.

If X ∈ X(M) is a vector field, a point p ∈M is called a singular point
or an equilibrium point of X if Xp = 0. It should be obvious that the
integral curve through a singular point ofX is the constant path: φtX(p) = p,
for all t ∈ R. On the other hand, for non-singular points we have a unique
local canonical form X:

Theorem 10.12 (Flow Box Theorem). Let X ∈ X(M) be a vector field
and p ∈ M a non-singular point: Xp 6= 0. There are local coordinates

(U, (x1, . . . , xd)) centered at p, such that:

X|U =
∂

∂x1
.

Proof. First we choose a chart (V, (y1, . . . , yd)) = (V, ψ), centered at p, such
that:

X|p =
∂

∂y1

∣∣∣∣
p

.

The map σ : Rd →M given by

σ(t1, . . . , td) = φt1X(ψ
−1(0, t2, . . . , td)),
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is well defined and C∞ in a neighborhood of the origin. Its differential at
the origin is given by:

d0σ ·
∂

∂t1

∣∣∣∣
0

=
d

dt1
φt1X(ψ

−1(0, 0, . . . , 0))

∣∣∣∣
t1=0

= Xp =
∂

∂y1

∣∣∣∣
p

,

d0σ ·
∂

∂ti

∣∣∣∣
0

=
∂

∂ti
ψ−1(0, t2, . . . , td))

∣∣∣∣
0

=
∂

∂yi

∣∣∣∣
p

.

We conclude that σ is a local diffeomorphism in a neighborhood of the origin.
Hence, there exists an open set U containing p such that φ = σ−1 : U → Rd

is a chart. If we write (U, φ) = (U, (x1, . . . , xd)), we have:

∂

∂x1

∣∣∣∣
σ(t1 ,...,td)

= dσ · ∂

∂t1

∣∣∣∣
(t1,...,td)

=
d

dt
φtX(ψ

−1(0, t2, . . . , td))

∣∣∣∣
t=t1

= X(φt1X(ψ
−1(0, t2, . . . , td))) = Xσ(t1,...,td).

�

Homework.

1. Let M be a connected manifold. Show that for any pair of points p, q ∈M ,
with p 6= q, there exists a smooth path γ : [0, 1]→M such that
(a) γ(0) = p and γ(1) = q;

(b) dγ
dt (t) 6= 0, for every t ∈ [0, 1];

(c) γ is simple (i.e., γ is injective).
Use this to prove that any connected manifold of dimension 1 is diffeomorphic
to either R or S1.

2. Let X ∈ X(M) be a vector field and f ∈ C∞(M) a nowhere vanishing
function. What is the relationship between the integral curves of X and the
integral curves of fX?

3. Verify the properties of the flow of a vector field given by Proposition 10.7.

4. Determine the flow of the vector field X = y∂/∂x − x∂/∂y in R3 with
coordinates (x, y, z).

5. Give an example of a manifoldM and two vector fields X1 and X2 which are
complete but for which their sum X1+X2 is not complete. On the other hand,
show that if M is compact then every vector field X ∈ X(M) is complete.
Hint: Show that if K ⊂M is a compact set then there exists a > 0 such that
for every x ∈ K the maximal integral curve through x exists for t ∈ [−a, a].

6. Let A ⊂ M . Call a map X : A → TM a vector field along A if Xp ∈ TpM
for all p ∈ A. Show that if A ⊂ O ⊂M , with A closed and O open, then every
smooth vector field X along A can be extended to a smooth vector field in M
such that Xp = 0 for p 6∈ O.
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7. Let X ∈ X(M) be a vector field without singular points. Show that the
integral curves of X form a foliation F of M of dimension 1. Conversely, show
that locally the leaves of a foliation of dimension 1 are the orbits of a vector
field. What about globally?

8. A Riemannian structure on a manifold M is a smooth choice of an inner
product 〈 , 〉p in each tangent space TpM . Here by smooth we mean that for
any vector fields X,Y ∈ X(M), the function p 7→ 〈X(p), Y (p)〉p is C∞. Show
that every smooth manifold admits a Riemannian structure M .

11. Lie Bracket and Lie Derivative

Definition 11.1. Let X,Y ∈ X(M) be smooth vector fields. The Lie

bracket of X and Y is the vector field [X,Y ] ∈ X(M) given by:

[X,Y ](f) = X(Y (f))− Y (X(f)), ∀f ∈ C∞(M).

Note that the formula for the Lie bracket [X,Y ] shows that it is a differ-
ential operator of order ≤ 2. A simple computation shows that [X,Y ] is a
linear derivation of C∞(M):

[X,Y ](fg) = [X,Y ](f)g + f [X,Y ](g), ∀f, g ∈ C∞(M).

In order words, the terms of 2nd order cancel each other and we have in fact
that [X,Y ] ∈ X(M).

In a local chart we can compute the Lie bracket in a straightforward way
if we think of vector fields as differential operators. This is illustrated in the
next example.

Example 11.2.
Let M = R3 with coordinates (x, y, z), and consider the vector fields:

X = z
∂

∂y
− y ∂

∂z
,

Y = x
∂

∂z
− z ∂

∂x
,

Z = y
∂

∂x
− x ∂

∂y
.

Then we compute:

[X,Y ] =

(
z
∂

∂y
− y ∂

∂z

)(
x
∂

∂z
− z ∂

∂x

)
−
(
x
∂

∂z
− z ∂

∂x

)(
z
∂

∂y
− y ∂

∂z

)

= y
∂

∂x
− x ∂

∂y
= Z.

We leave it as an exercise the computation of the other Lie brackets:

[Y, Z] = X, [Z,X ] = Y.
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Our next result shows that the Lie bracket [X,Y ] measures the failure in
the commutativity of the flows of X and Y .

Proposition 11.3. Let X,Y ∈ X(M) be vector fields. For each p ∈M , the
commutator

γp(ε) ≡ φ−
√
ε

Y ◦ φ−
√
ε

X ◦ φ
√
ε

Y ◦ φ
√
ε

X (p)

is well defined for a small enough ε ≥ 0, and we have:

[X,Y ]p =
d

dε
γp(ε)

∣∣∣∣
ε=0+

.

Proof. Fix a local chart (U, x1, . . . , xd), centered at p, and write:

X =

d∑

i=1

Xi ∂

∂xi
, Y =

d∑

i=1

Y i ∂

∂xi
.

The Lie bracket of X and Y is given by:

[X,Y ](xi) = X(Y i)− Y (Xi).

Consider the points p1, p2 and p3 defined by (see figure above):

p1 = φ
√
ε

X (p), p2 = φ
√
ε

Y (p1), p3 = φ
−√

ε
X (p2),

Then γp(ε) = φ
−√

ε
Y (p3), and Taylor’s formula (see Proposition 10.11), ap-

plied to each coordinate xi, yields:

xi(p1) = xi(p) +
√
εXi(p) +

1

2
εX2(xi)(p) +O(ε

3
2 )
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Similarly, we have:

xi(p2) = xi(p1) +
√
εY i(p1) +

1

2
εY 2(xi)(p1) +O(ε

3
2 ) =

= xi(p) +
√
εXi(p) +

1

2
εX2(xi)(p)+

+
√
εY i(p1) +

1

2
εY 2(xi)(p1) +O(ε

3
2 )

The last two terms can also be estimated using again Taylor’s formula:

Y i(p1) = Y i(φ
√
ε

X (p)) = Y i(p) +
√
εX(Y i)(p) +O(ε)

Y 2(xi)(p1) = Y 2(xi)(φ
√
ε

X (p)) = Y 2(xi)(p) +
√
εX(Y 2(xi))(p) +O(ε)

hence, we have:

xi(p2) =x
i(p) +

√
ε(Y i(p) +Xi(p))+

+ ε

(
1

2
Y 2(xi)(p) +X(Y i)(p) +

1

2
X2(xi)(p)

)
+O(ε

3
2 )

Proceeding in a similar fashion, we can estimate xi(p3) and xi(γp(ε)), ob-
taining:

xi(p3) = xi(p2)−
√
εXi(p2) +

1

2
εX2(xi)(p2) +O(ε

3
2 )

= xi(p) +
√
εY i(p) + ε

(
X(Y i)(p)− Y (Xi)(p) +

1

2
Y 2(xi)(p)

)
+O(ε

3
2 )

xi(γp(ε)) = xi(p3)−
√
εY i(p3) +

1

2
εY 2(xi)(p3) +O(ε

3
2 )

= xi(p) + ε
(
X(Y i)(p)− Y (Xi)(p)

)
+O(ε

3
2 )

Therefore:

lim
ε→0+

xi(γp(ε)) − xi(p)
ε

= X(Y i)(p)− Y (Xi)(p) = [X,Y ]p(x
i).

�

The following proposition gives the most basic properties of the Lie bracket
of vector fields. The proof is elementary and is left as an exercise.

Proposition 11.4. The Lie bracket satisfies the following properties:

(i) Skew-symmetry: [X,Y ] = −[Y,X];
(ii) Bi-linearity: [aX + bY, Z] = a[X,Z] + b[Y,Z], ∀a, b ∈ R;
(iii) Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0;
(iv) Leibniz identity: [X, fY ] = X(f)Y + f [X,Y ], ∀f ∈ C∞(M).

Moreover, if Φ :M → N is a smooth map, X and Y ∈ X(M) are Φ-related
with, respectively, Z and W ∈ X(N), then [X,Y ] is Φ-related with [Z,W ].
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The geometric interpretation of the Lie bracket given by Proposition 11.3
shows that the Lie bracket and the flow of vector fields are intimately related.
There is another form of this relationship which we now explain. For that,
we need the following definition:

Definition 11.5. Let X ∈ X(M) be a vector field.

(i) The Lie derivative of a function f ∈ C∞(M) along X is the smooth
function LXf given by:

(LXf)(p) = lim
t→0

1

t

(
f(φtX(p))− f(p)

)
.

(ii) The Lie derivative of a vector field Y ∈ X(M) along X is the
smooth vector field LXY given by:

(LXY )p = lim
t→0

1

t

(
dφ−tX · YφtX(p) − Yp

)
.

One can “unify” these two definitions observing that a diffeomorphism
Φ :M →M acts on functions C∞(M) by:

(Φ∗f)(p) = f(Φ(p)),

and it acts on vector fields Y ∈ X(M):

(Φ∗Y )p = dΦ−1 · YΦ(p).

Note that Φ∗Y = (Φ−1)∗Y , so the two operations are related by:

Φ∗Y (f) = Y ((Φ−1)∗f).

It follows that the Lie derivative of an object P (a function or a vector field)
is given by:

(11.1) LXP =
d

dt
(φtX)

∗P

∣∣∣∣
t=0

= lim
t→0

1

t

(
(φtX)

∗P − P
)
.

We will see later that one can take Lie derivatives of other objects using
precisely this definition.

Theorem 11.6. Let X ∈ X(M) be a vector field.

(i) For any functions f ∈ C∞(M): LXf = X(f).
(ii) For any vector field Y ∈ X(M): LXY = [X,Y ].

Proof. To prove (i), we simply observe that:

LXf =
d

dt
f ◦ φtX

∣∣∣∣
t=0

= df ·X = X(f).

To prove (ii), we note first that:

(LXY )(f)(p) = lim
t→0

1

t

(
dφ−tX · YφtX(p) − Yp

)
(f)

= lim
t→0

1

t

(
YφtX(p)(f ◦ φ−tX )− Yp(f)

)
.
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On the other hand, Taylor’s formula gives::

f ◦ φ−tX = f − tX(f) +O(t2),

hence, using also (i), we find:

(LXY )(f)(p) = lim
t→0

1

t

(
YφtX(p)(f)− tYφtX(p)(X(f))− Yp(f)

)

= lim
t→0

1

t

(
YφtX(p)(f)− Yp(f)

)
− Yp(X(f))

= Xp(Y (f))− Yp(X(f)) = [X,Y ](f)(p).

�

Homework.

1. Complete the computation of the Lie brackets in Example 11.2 and show
that all 3 vector fields X ,Y and Z are tangent to the sphere S2 ⊂ R3. Show
that there are unique vector fields X̃, Ỹ and Z̃ on RP2 such that π∗X = X̃,
π∗Y = Ỹ and π∗Z = Z̃ where π : S2 → RP2 is the projection. What are the
Lie brackets between X̃, Ỹ and Z̃?

2. Find 3 everywhere linearly independent vector fields X ,Y and Z on the
sphere S3 such that [X,Y ] = Z, [Y, Z] = X and [Z,X ] = Y .

Hint: Recall that S3 can be identified with the unit quaternions.

3. Check the properties of the Lie bracket given in Proposition 11.4.

4. In R2 consider the vector fields X = ∂
∂x and Y = x ∂

∂y . Compute the Lie

bracket [X,Y ] in two distinct ways: (i) using the definition and (ii) using the
flows of X and Y , as in Proposition 11.3.

5. Let X,Y ∈ X(M) be complete vector fields with flows φtX and φsY . Show
that [X,Y ] = 0 if and only if φtX ◦ φsY = φsY ◦ φtX for all s and t.

Note: If the vector fields are not assumed complete then this still holds if the
last condition is replaced by φtX ◦ φsY (p) = φsY ◦ φtX(p) for all p ∈M and all s
and t sufficiently small (which may depend on p).

6. Let X1, . . . , Xk ∈ X(M) be vector fields such that:
(a) {X1|p, . . . , Xk|p} are linearly independent, for all p ∈M ;
(b) [Xi, Xj ] = 0, for all i, j = 1, . . . , k.
Show that for each p ∈ M there exists a neighborhood U of p and a unique
k-dimensional foliation F of U such that:

TqL = 〈X1|q , . . . , Xk|q〉, ∀q ∈ U,
where L ∈ F is the leaf containing q.

Hint: Use the previous exercise to show that the leaf L is obtained by flowing
from q along the flows of the vector fields X1, . . . , Xk.
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12. Distributions and the Frobenius Theorem

A vector field X ∈ X(M) which is nowhere vanishing determines a parti-
tion of M into 1 dimensional submanifolds:

F = {γ(I) : γ : I →M a maximal integral curve of X}.
By the Flow Box Theorem, this is a 1-dimensional foliation of M . Notice
that if Y ∈ X(M) is another vector field such that Y = fX, for some
nowhere vanishing smooth function f ∈ C∞(M), then Y determines the
same foliation of M . So this foliation only depends on the family of 1-
dimensional subspaces

M ∋ p 7→ 〈Xp〉 ⊂ TpM.

We will now generalize all this to higher dimensions.

Definition 12.1. Let M be a smooth manifold of dimension d and let 1 ≤
k ≤ d be an integer. A k-dimensional distribution D in M is a map

M ∋ p 7→ Dp ⊂ TpM,

which associates to each p ∈M a subspace Dp ⊂ TpM of dimension k. We
say that a distribution D is of class C∞ if for each p ∈ M there exists a
neighborhood U of p and smooth vector fields X1, . . . ,Xk ∈ X(U), such that:

Dq = 〈X1|q, . . . ,Xk|q〉, ∀q ∈ U.

If D is a distribution in M we consider the set of vector fields tangent
to D:

X(D) := {X ∈ X(M) : Xp ∈ Dp,∀p ∈M}.
Note that X(D) is a module over the ring C∞(M): if f ∈ C∞(M) and
X ∈ X(D) then fX ∈ X(D).

Examples 12.2.

1. Every nowhere vanishing smooth vector field X defines a 1-dimensional
smooth distribution by:

Dp := 〈Xp〉 = {λXp : λ ∈ R}.
We have that Y ∈ X(D) if and only Y = fX for some uniquely defined smooth
function f ∈ C∞(M).

2. A set of smooth vector fields X1, . . . , Xk which at each p ∈ M are linearly
independent define a k-dimensional smooth distribution by:

Dp := 〈X1|p, . . . , Xk|p〉.
We have that a vector field X ∈ X(D) if and only if

X = f1X1 + · · ·+ fkXk,

for uniquely defined functions fi ∈ C∞(M).
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For example, in M = R3, we have the 2-dimensional smooth distribution
D = 〈X1, X2〉 generated by the vector fields:

X1 =
∂

∂x
+ z2

∂

∂y
,

X2 =
∂

∂y
+ z2

∂

∂z
.

and every vector field X ∈ X(D) is a linear combination aX1+ bX2, where the
smooth functions a = a(x, y) and b = b(x, y) are uniquely determined.

3. More generally, a set of smooth vector fields X1, . . . , Xs which at each p ∈M
span a k-dimensional subspace define a k-dimensional smooth distribution by:

Dp := 〈X1|p, . . . , Xs|p〉.
We have that X ∈ X(D) if and only if

X = f1X1 + · · ·+ fsXs,

for some smooth functions fi ∈ C∞(M). The difference from the previous
example is that the functions fi are not uniquely defined. Moreover, we may
not be able to find k vector fields tangent to D which globally generate D.

For example, in M = R3−{0} consider the vector fields X, Y and Z defined
in Example 11.2. The matrix whose columns are the components of the vector
fields X, Y and Z relative to the usual coordinates (x, y, z) of R3 is:




0 −z y
z 0 −x
−y x 0




and has rank 2 everywhere. Hence, we have the 2-dimensional distribution
D = 〈X,Y, Z〉. We leave it as an exercise to check that this distribution is not
globally generated by only 2 vector fields.

We can think of a distribution as a generalization of the notion of a
vector field. In this sense, the concept of an integral curve of a vector field
is replaced by the following:

Definition 12.3. Let D be a distribution in M . A connected submanifold
(N,Φ) of M is called an integral manifold of D if:

dpΦ(TpN) = DΦ(p),∀p ∈ N.
Note that if D is a k-dimensional distribution, its integral manifolds, if

they exist, are k-dimensional manifolds.

Examples 12.4.

1. Consider the 2-distribution of R3 given in Example 12.2.2. The plane N =
{z = 0} is an integral manifold of this distribution, since it is a connected
submanifold and

D(x,y,0) =

〈
∂

∂x

∣∣∣∣
(x,y,0)

,
∂

∂y

∣∣∣∣
(x,y,0)

〉
= T(x,y,0)N.
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2. Consider the 2-distribution D of R3−{0} defined by the vector fields X, Y
and Z in Example 12.2.3. The spheres

Sc = {(x, y, z) ∈ R3 − 0 : x2 + y2 + z2 = c},
are integral manifolds of D: each sphere is a connected submanifold, has di-
mension 2 and:

Xp, Yp.Zp ∈ TpSc, ∀p ∈ Sc.
Since D has dimension 2, we have TpSc = Dp, for all p ∈ Sc.

As suggested by the last example, given a smooth k-dimensional foliation
F of a manifoldM , we associate to it a k-dimensional distribution d defined
by:

Dp := TpL,

where L ∈ F denotes the leaf containing the point p ∈ M . Henceforth, we
will denote this distribution by TF and we will write TpF instead of (TF)p.
The existence of foliated charts shows that TF is a smooth distribution. A
vector field is tangent to TF if and only if it is tangent to each leaf of the
foliation.

Definition 12.5. A smooth distribution D in M is called integrable if
there exists a foliation F in M such that D = TF .

A distribution D in M may fail to be integrable. In fact, there may
not even exist integral manifolds through each point of M . The following
proposition gives a necessary condition for this to happen:

Proposition 12.6. Let D be a smooth distribution in M . If there exists an
integral manifold of D through p ∈ M , then for any X,Y ∈ X(D) we must
have that [X,Y ]p ∈ Dp.

Proof. Let X,Y ∈ X(D) and fix p ∈ M . Assume there exists an integral
manifold (N,Φ) of D through p and choose q ∈ N , such that Φ(q) = p.
For any q′ ∈ N , the map dq′Φ : Tq′N → TΦ(q′)M is injective and its image
is DΦ(q′). By the local normal form for submanifolds, there exist smooth

vector fields X̃, Ỹ ∈ X(N) which are Φ-related with X and Y , respectively.

It follows that [X̃, Ỹ ] is also Φ-related with [X,Y ] and we must have

[X,Y ]p = dq0Φ([X̃, Ỹ ]q) ∈ dqΦ(TqN) = Dp.

�

Example 12.7.
For the smooth distribution D = 〈X1, X2〉 of R3 given in Example 12.2.2, we
saw that the plane z = 0 is an integral manifold. On the other hand, we find
that:

[X1, X2] = −2z3
∂

∂y
.
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If z 6= 0 this vector field is not tangent to the distrubution. Hence, the only
points through which there exist integral manifolds are the points in the plane
z = 0.

For an integrable distribution D = TF we have an integral manifold
through every point. Hence, for any pair of vector fields X,Y ∈ X(TF) we
must have [X,Y ] ∈ X(TF). This suggests:

Definition 12.8. A smooth distribution D in M is called involutive if for
any X,Y ∈ X(D) one has [X,Y ] ∈ X(D).

The following important result says that the lack of involutivity is the
only obstruction to integrability of a distribution:

Theorem 12.9 (Frobenius). A smooth distribution D is integrable if and
only if it is involutive. In this case, the integral foliation tangent to D is
unique.

Proof. Proposition 12.6 show that one of the implications hold. To check
the other implication we assume that D is an involutive distribution.

We claim that, for each p ∈ M , there exist vector fields X1, . . . ,Xk ∈
X(U), defined in an open neighborhood U of p, such that:

(a) D|U = 〈X1, . . . ,Xk〉;
(b) [Xi,Xj ] = 0, for every i, j = 1, . . . , k.

Then, by Exercise 6 in Section 11, we obtain an open cover {Ui}i∈I of M ,
such that for each i ∈ I there exists a unique foliation Fi in Ui which
satisfies TFi = D|Ui . By uniqueness, whenever Ui ∩ Uj 6= 0, we obtain
Fi|Ui∩Uj = Fj |Ui∩Uj . Hence, there exists a unique foliation F of M such
that F|Ui = Fi.

To prove the claim, fix p ∈ M . Since D is smooth, there exist vector
fields Y1, . . . , Yk defined in some neighborhood V of p, such that D|V =
〈Y1, . . . , Yk〉. We can also assume that V is the domain of some coordinate
system (x1, . . . , xd) of M , so that

Yi =

d∑

l=1

ail
∂

∂xl
, (i = 1, . . . , k),

where ail ∈ C∞(V ). The matrix A(q) = [ail(q)]
k,d
i,l=1 has rank k at p and

we can assume, eventually after some relabeling of the the coordinates, that
the k× k minor formed by the first k rows and k columns of A has non-zero
determinant in a smaller open neighborhood U of p. Let B be the k × k
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inverse matrix of this minor, and define vector fields X1, . . . ,Xk ∈ X(U) by:

Xi =

k,d∑

j,l=1

bijajl
∂

∂xl

=
∂

∂xi
+

d∑

l=k+1

cil
∂

∂xl
, (i = 1, . . . , k),

where cil ∈ C∞(U). On the one hand, we have that

D|U = 〈Y1, . . . , Yk〉 = 〈X1, . . . ,Xk〉,
so (a) is satisfied. On the other hand, a simple computation shows that:

[Xi,Xj ] =

d∑

l=k+1

dijl
∂

∂xl
, (i, j = 1, . . . , k),

for certain functions dijl ∈ C∞(U). Since D is involutive, this commuta-
tor must be a C∞(M)-linear combination of X1, . . . ,Xk. Therefore, the

functions dijl must be identically zero, so (b) also holds. �

The Frobenius Theorem establishes a one-to-one correspondence:
{
involutive distributions D

on M

}
←→

{
foliations F

on M

}

This is an example of an integrability theorem: a distribution D is an infin-
itesimal object on M while a foliation F is a global object on M and the
integrability condition is the involutivity of D.

Homework.

1. Give an example of a smooth distribution D of dimension 1 on the cylinder
S1 × R which is not globally generated by a vector field.

2. Show that the 2-dimensional distributionD in Example 12.2.3 is not globally
generated by only 2 vector fields.

3. Show that the 2-dimensional distribution in R3 defined by the vector fields

X1 =
∂

∂x
, X2 = e−x

∂

∂y
+

∂

∂z
,

has no integral manifolds.

4. Consider the distribution D in R3 generated by the vector fields:

∂

∂x
+ cosx cos y

∂

∂z
,

∂

∂y
− sinx sin y

∂

∂z
.

Check that D is involutive and determine the foliation F that integrates it.
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5. Consider the 3-sphere:

S3 = {(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 1}.
Check that the vector field in R3 given by:

X = −y ∂
∂x

+ x
∂

∂y
− w ∂

∂z
+ z

∂

∂w
,

restricts to a nowhere vanishing vector field on S3, so determines a 1-dimensional
distribution D. Find the foliation F integrating this distribution.

13. Lie Groups and Lie Algebras

The next definition axiomatizes some of the properties of the Lie bracket
of vector fields (see Proposition 11.4).

Definition 13.1. A Lie algebra is a vector space g with a binary operation
[ , ] : g× g→ g, called the Lie bracket, which satisfies:

(i) Skew-symmetry: [X,Y ] = −[Y,X];
(ii) Bilinearity: [aX + bY, Z] = a[X,Z] + b[Y,Z], ∀a, b ∈ R;
(iii) Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

We can also define Lie algebras over the complex numbers (g is a complex
vector space) or over other fields. Note also, that g can have infinite dimen-
sion, but we will be mainly interested in finite dimensional Lie algebras.

Examples 13.2.

1. Rd with the zero Lie bracket [ , ] ≡ 0 is a Lie algebra, called the abelian

Lie algebra of dimension d.

2. In R3, we can define a Lie algebra structure where the Lie bracket is the
vector product:

[~v, ~w] = ~v × ~w.

3. If V is any vector space, the vector space of all linear transformations T :
V → V is a Lie algebra with Lie bracket the commutator:

[T, S] = T ◦ S − S ◦ T.
This Lie algebra is called the general linear Lie algebra and denoted gl(V ).
When V = Rn, we denote it by gl(n). After fixing a basis, we can identitify
gl(n) with the space of all n × n matrices, and the Lie bracket becomes the
commutator of matrices.

4. If g1, . . . , gk are Lie algebras, their cartesian product g1 × · · · × gk is a Lie
algebra with Lie bracket:

[(X1, . . . , Xk), (Y1, . . . , Yk)] = ([X1, Y1]g1
, . . . , [Xk, Yk]gk

).

We shall see shortly that Lie algebras are the “infinitesimal versions” of
groups with a smooth structure:
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Definition 13.3. A Lie group is a group G with a smooth structure such
that its structure maps are smooth:

µ : G×G→ G, (g, h) 7→ gh (multiplication),

ι : G→ G, g 7→ g−1 (inverse).

One can also define topological groups, analytic groups, etc.

Examples 13.4.

1. Any countable group with the discrete topology is a Lie group of dimension
0 (we need it to be countable so that the discrete topology is second countable).

2. Rd with the usual addition of vectors is an abelian Lie group. The groups of
all non-zero real numbers R∗ and all non-zero complex numbers C∗, with the
usual multiplication operations, are also abelian Lie groups. Note that C∗ is
also a complex Lie group (thinking of C∗ as a complex manifold), but we will
restrict ourselves always to real Lie groups.

3. The circle S1 = {z ∈ C : ||z|| = 1} ⊂ C∗ with the usual complex multiplica-
tion is also an abelian Lie group. The unit quaternions S3, with quaternionic
multiplication, is a non-abelian Lie group. It can be shown that the only spheres
Sd that admit Lie group structures are d = 0, 1, 3.

4. If V is a finite dimensional vector space, the set of all invertible linear
transformations T : V → V is a Lie group with multiplication composition of
transformations. It is called the general linear group and denoted by GL(V ).
If V = Rn we can identify GL(V ) with the group of all invertible n×n matrices
with matrix multiplication and we denote it by GL(n).

5. If G1, . . . , Gk are Lie groups their cartesian product G× · · · ×Gk is also a
Lie group. For example, the torus Td = S1 × · · · × S1 is a (abelian) Lie group.

6. If G is a Lie group, its connected component of the identity, is a Lie group
denoted by G0. For example, the connected component of the identity of the
Lie group (R∗,×) is the group of positive real numbers (R+,×).

In a Lie group G, a left invariant vector field is a vector field X such
that:

(Lg)∗X = X, ∀g ∈ G,
where Lg : G→ G, h 7→ gh denotes the left translation by g. One defines
analogously a right invariant vector field using the right translation
Rg : G → G, h 7→ hg. As a matter of choice, we use left invariant vector
fields, and we denote the set of all smooth left invariant vector fields by:

XL-inv(G) = {X ∈ X(G) : (Lg)∗X = X, ∀g ∈ G}.
Proposition 13.5. Let G be a Lie group.

(i) Every left invariant vector field if smooth;
(ii) If X,Y ∈ XL-inv(G) then [X,Y ] ∈ XL-inv(G);
(iii) XL-inv(G) ⊂ X(G) is a finite dimensional subspace of dimension dimG.
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Proof. We leave the proof of (i) as an exercise. To check (ii), it is enough to
observe that if X,Y ∈ XL-inv(G) then:

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ], ∀g ∈ G.
Hence, [X,Y ] ∈ XL-inv(G).

Now to see that (iii) holds, it is clear from the definition of a left invariant
vector field that XL-inv(G) ⊂ X(G) is a linear subspace. On the other hand,
the restriction map

XL-inv(G)→ TeG, X 7→ Xe,

is a linear isomorphism: if v ∈ TeG we can define a left invariant vector field
X in G with Xe = v by setting

Xg = dLg · v.
Hence, the restriction XL-inv(G)→ TeG is invertible. We conclude that:

dimXL-inv(G) = dimTeG = dimG.

�

This proposition show that for a Lie group G the set XL-inv(G) forms a
Lie algebra. We call it the Lie algebra of the Lie group G and denote it
by g. The proof also shows that g can be identified with TeG.

Examples 13.6. .

1. The Lie algebra of a discrete Lie group G is the zero dimensional vector
space g = R0 = {0}.

2. Let G = (Rd,+). A vector field in Rd is left invariant if and only if it is

constant: X =
∑d

i=1 ai
∂
∂xi , with ai ∈ R. The Lie bracket of any two such

constant vector fields is zero, hence the Lie algebra of G is the abelian Lie
algebra of dimension d.

3. The Lie algebra of the cartesian product G × H of two Lie groups, is the
cartesian product g × h of their Lie algebras. For example, the Lie algebra of
S1 has dimension 1, hence it is abelian. It follows that the Lie algebra of the
torus Td is also the abelian Lie algebra of dimension d.

4. The tangent space at the identity to the general linear group G = GL(n) can
be identified with gl(n). The restriction map g→ gl(n), maps the commutator
of left invariant vector fields to the commutator of matrices (exercise). Hence,
we can identify the Lie algebra of GL(n) with gl(n).

Remark 13.7. The space X(M) formed by all vector fields in a manifoldM
is a Lie algebra. One may wonder if the Lie algebra X(M) is associated with
some Lie group. Since this Lie algebra is infinite dimensional (if dimM >
0), this Lie group must be infinite dimension: it is the group Diff(M) of
all diffeomorphisms of M under composition. The study of such infinite
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dimensional Lie groups is an important topic which is beyond the scope of
this course.

We have seen that to each Lie group there is associated a Lie algebra.
Similarly, to each homomorphism of Lie groups there is associated a homo-
morphism of their Lie algebras.

Definition 13.8.

(i) A homomorphism of Lie algebras is a linear map φ : g → h

between two Lie algebras which preserves the Lie brackets:

φ([X,Y ]g) = [φ(X), φ(Y )]h, ∀X,Y ∈ g.

(ii) A homomorphism of Lie groups is a smooth map Φ : G → H
between two Lie groups which is also a group homomorphism:

Φ(gh−1) = Φ(g)Φ(h)−1, ∀g, h ∈ G.
If Φ : G→ H is a homomorphism of Lie groups we have an induced map

Φ∗ : g → h: if X ∈ g, then Φ∗(X) ∈ h is the unique left invariant vector
field such that Φ∗(X)|e = deΦ ·Xe.

Proposition 13.9. If Φ : G→ H is a Lie group homomorphism, then:

(i) For all X ∈ g, Φ∗X is Φ-related with X;
(ii) Φ∗ : g→ h is a Lie algebra homomorphism.

Proof. Part (ii) follows from (i), since the Lie bracket of Φ-related vector
fields is preserved. In order to show that (i) holds, we observe that since Φ
is a group homomorphism, Φ ◦ Lg = LΦ(g) ◦Φ. Hence:

Φ∗(X)Φ(g) = deLΦ(g) · deΦ ·Xe

= de(LΦ(g) ◦ Φ) ·Xe

= de(Φ ◦ Lg) ·Xe

= dgΦ · deLg ·Xe = dgΦ ·Xg.

�

Examples 13.10.

1. Let T 2 = S1 × S1. For each a ∈ R we have the Lie group homomorphism
Φa : R→ T2 given by:

Φa(t) = (eit, eiat).

If a is rational, the image Φa is a closed curve, while if a is irrational the
image is dense curve in the torus. The induced Lie algebra homomorphism
(Φa)∗ : R→ R2 is given by:

(Φa)∗(X) = (X, aX).

2. The determinant defines a Lie group homomorphim det : GL(n)→ R∗. The
induced Lie algebra homomorphism is the trace tr = (det)∗ : gl(n)→ R.
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3. Each invertible matrix A ∈ GL(n) determines a Lie group automorphism
ΦA : GL(n)→ GL(n) given by conjugation:

ΦA(B) = ABA−1.

Since this map is linear, the associated Lie algebra automorphism (ΦA)∗ :
gl(n)→ gl(n) is also given by:

(ΦA)∗(X) = AXA−1.

4. More generally, for any Lie group G we can consider conjugation by a fix
g ∈ G: ig : G → G, h 7→ ghg−1. This is a Lie group automorphism and the
induced Lie algebra automorphism is denoted by Adg : g→ g:

Adg(X) = (ig)∗X.

Let us continue our study of the Lie group/algebra correspondence. We
show now that to each subgroup of a Lie group G corresponds a Lie sub
algebra of the Lie algebra g of G.

Definition 13.11. A subspace h ⊂ g is called a Lie subalgebra if, for all
X,Y ∈ h, we have [X,Y ] ∈ h.

Examples 13.12.

1. Any subspace of the abelian Lie algebra Rd is a Lie subalgebra.

2. In the Lie algebra gl(n) we have the Lie subalgebra formed by all matrices
of zero trace:

sl(n) = {X ∈ gl(n) : trX = 0},
and also the Lie subalgebra formed by all skew-symmetric matrices:

o(n) = {X ∈ gl(n) : X +XT = 0}.
3. The complex n× n matrices, denoted by gl(n,C), can be seen as a real Lie
algebra. It has the Lie subalgebra of all skew-Hermitean matrices:

u(n) = {X ∈ gl(n,C) : X + X̄T = 0},
and the Lie subalgebra of all skew-Hermitean matrices of trace zero:

su(n) = {X ∈ gl(n,C) : X + X̄T = 0, trX = 0}.
4. If φ : g → h is a homomorphism of Lie algebras, then its kernel is a Lie
subalgebra of g and its image is a Lie subalgebra of h.

A notion of a Lie subgroup is defined similarly:

Definition 13.13. A Lie subgroup of G is a submanifold (H,Φ) of G such
that:

(i) H is Lie group;
(ii) Φ : H → G is a Lie group homomorphism.
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As we discussed in Section 6, we can always replace the submanifold
(H,Φ) by the subset Φ(H) ⊂ G, and the immersion Φ by the inclusion i.
Since Φ(H) is a subgroup of G, in the definition of a Lie subgroup we can
assume that H ⊂ G is a a subgroup and that Φ is the inclusion. On the
other hand, since the induced map Φ∗ : h → g is injective, we can assume
that the Lie algebra of a Lie subgroup H ⊂ G is a Lie subalgebra h ⊂ g.

Examples 13.14.

1. In Example 13.10.1, for each a ∈ R we have a Lie subgroup Φa(R) of T2.
If a is rational, this Lie subgroup is embedded, while if a is irrational this Lie
subgroup is only immersed.

2. The general linear group GL(n) has the following (embedded) subgroups:
(i) The special linear group of all matrices of determinant 1:

SL(n) = {A ∈ GL(n) : detA = 1}.
To this subgroup corresponds the Lie subalgebra sl(n).

(ii) The orthogonal group of all orthogonal matrices:

O(n) = {A ∈ GL(n) : AAT = I}.
To this subgroup corresponds the Lie subalgebra o(n).

(iii) The special orthogonal group of all orthogonal matrices of positive
determinant:

SO(n) = {A ∈ O(n) : detA = 1}.
To this subgroup corresponds the Lie subalgebra so(n) = o(n).

3. The (real) Lie group GL(n,C) has the following (embedded) subgroups:
(i) The unitary group of all unitary matrices:

U(n) = {A ∈ GL(n,C) : AĀT = I}.
To this subgroup corresponds the Lie subalgebra u(n).

(ii) The special unitary group of all unitary matrices of determinant 1:

SU(n) = {A ∈ U(n) : detA = 1}.
To this subgroup corresponds the Lie subalgebra su(n).

4. Let Φ : G → H is a Lie group homomorphism and let (Φ)∗ : g → h the
induced Lie algebra homomorphism. Then KerΦ ⊂ G and ImΦ ⊂ H are Lie
subgroups whose Lie algebras coincide with Ker(Φ)∗ ⊂ g and Im (Φ)∗ ⊂ h,
respectively.

Homework.

1. Show that in the definition of a Lie group, it is enough to assume that:
(a) The inverse map G→ G, g 7→ g−1 is smooth, or that
(b) The map G×G→ G, (g, h) 7→ gh−1, is smooth.

2. Show that every left invariant vector field in a Lie group G is smooth and
complete.
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3. Show that the tangent space at the identity of GL(n) can be identified
with gl(n). Show also that, under this identification, the linear isomorphism
g→ gl(n) takes the Lie bracket of left invariant vector fields to the commutator
of matrices.

4. Show that the tangent bundle TG of a Lie group G is trivial, i.e., there exist
vector fields X1, . . . , Xd ∈ X(G) which at each g ∈ G give a basis for TgG.
Conclude that an even dimension sphere S2n does not admit the structure of
a Lie group.

5. Show that the Lie algebra homomorphism induced by the determinant det :
GL(n)→ R∗ is the trace: tr = (det)∗ : gl(n)→ R.

6. Consider S3 ⊂ H as the set of quaternions of norm 1. Show that S3, with
the product of quaternions, is a Lie group and determine its Lie algebra.

7. Show that S3 and SU(2) are isomorphic Lie groups.

Hint: For any pair of complex numbers z, w ∈ C with |z|2 + |w|2 = 1, the
matrix:

(
z w

−w̄ z̄

)

is an element in SU(2).

8. Identify the vectors v ∈ R3 with the purely imaginary quaternions. For
each quaternion q ∈ S3 of norm 1 define a linear map Tq : R3 → R3 by
v 7→ qvq−1. Show that Tq is a special orthogonal transformation and that
the map S3 → SO(3), q 7→ Tq, is a Lie group homomorphism. Is this map
surjective? Injective?

9. Let G be a Lie group. Show that the connected component of the identity
is a Lie group G0 whose Lie algebra is isomorphic to the Lie algebra of G.

10. Let G be a connected Lie group with Lie algebra g. Show that G is abelian
if and only if g is abelian. What can you say if G is not connected?

11. Show that a compact connected abelian Lie group G is isomorphic to a
torus Td.

12. Let (H,Φ) be a Lie subgroup of G. Show that Φ is an embedding if and
only if Φ(H) is closed in G.

13. Let A ⊂ G be a subgroup of a Lie group G. Show that if (A, i) has a
smooth structure making it into a submanifold ofG, then this smooth structure
is unique and that for that smooth structure A is a Lie group and (A, i) a Lie
subgroup.

Hint: Show that (A, i) is an initial submanifold.
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14. Integrations of Lie Algebras

We saw in the previous section that:

• To each Lie group corresponds a Lie algebra;
• To each Lie group homomorphism corresponds a Lie algebra homo-
morphism;
• To each Lie subgroup corresponds a Lie subalgebra.

It is natural to wonder about the inverse to these correspondences. We
have seen that two distinct Lie groups can have isomorphic Lie algebras
(e.g., Rn and Tn, O(n) and SO(n), or SU(2) and SO(3)). There are indeed
topological issues that one must take care of when studying the inverse
correspondences.

We start with the following result that shows that a connected Lie group
is determined by a neighborhood of the identity:

Proposition 14.1. Let G be a connected Lie group and U a neighborhood
of the identity e ∈ G. Then,

G =

∞⋃

n=1

Un,

where Un = {g1 · · · gn : gi ∈ U, i = 1, . . . , n}.
Proof. If U−1 = {g−1 : g ∈ U} and V = U ∩U−1, then V is a neighborhood
of the origin such that V = V −1. Let:

H =

∞⋃

n=1

V n ⊂
∞⋃

n=1

Un.

To complete the proof it is enough to show that H = G. For that we note:

(i) H is a subgroup: if g, h ∈ H, then g = g1 . . . gn and h = h1 . . . hm,
with gi, hj ∈ V . Hence,

gh−1 = g1 . . . gnh
−1
m . . . h−1

1 ∈ V n+m ⊂ H.
(ii) H is open: if g ∈ H then gV ⊂ gH = H is an open set containing g.
(iii) H is closed: for each g ∈ G, gH is an open set and we have

Hc =
⋃

g 6∈H
gH.

Since G is connected and H 6= ∅ is open and closed, we conclude that
H = G. �

We can now prove:

Theorem 14.2. Let G be a Lie group with Lie algebra g. Given a Lie
subalgebra h ⊂ g, there exists a unique connected Lie subgroup H ⊂ G with
Lie algebra h.
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Proof. A Lie subalgebra h defines a distribution in G by setting:

D : g 7→ Dg ≡ {Xg : X ∈ h}.
This distribution is smooth and involutive: if X1, . . . ,Xk is a basis for h,
then these vector fields are smooth and generate D everywhere, hence D is
smooth C∞. On the other hand, if Y,Z ∈ X(D), then

Y =

k∑

i=1

aiXi, Z =

k∑

j=1

bjXj .

so using that h is a Lie subalgebra it follows that:

[Y,Z] =

k∑

i,j=1

aibj [Xi,Xj ] + aiXi(bj)Xj − bjXj(ai)Xi ∈ X(D),

proving that D is involutive.
Let (H, i) be the leaf of this distribution that contains the identity e ∈ G,

where i : H →֒ G denotes the inclusion. We claim that (H, i) is the desired
Lie subgroup.

If g ∈ H, then (H,Lg−1◦i) is also an integral manifold of D which contains
e, since:

dh(Lg−1 ◦ i)(ThH) = dhLg−1(Dh) = Dg−1h.

Hence, Lg−1 ◦ i(H) ⊂ i(H), so we conclude that for all g, h ∈ H, we have

g−1h ∈ H, proving that H is a subgroup of G.
To verify that (H, i) is a Lie subgroup, it remains to prove that the map

ν̂ : H × H → H, (g, h) 7→ g−1h, is smooth. For this we observe that the
map ν : H ×H → G, (g, h) 7→ i(g)−1i(h) is smooth, being the composition
of smooth maps, so that the following diagram is commutative:

H ×H ν //

ν̂ ##●
●●

●●
●●

●●
G

H

i

OO

Since the leaves of any foliation are initial submanifolds, we conclude that
ν̂ : H ×H → H is smooth.

Uniqueness follows from Proposition 14.1 (exercise). �

The question of deciding if every finite dimensional Lie algebra g is asso-
ciated with some Lie group G is a much harder question which is beyond
these notes. There are several ways to proceed to prove that this is indeed
true. One way, is to first show that any finite dimensional Lie algebra is
isomorphic to a matrix Lie algebra. This requires developing the structure
theory of Lie algebras and can be stated as follows:

Theorem 14.3 (Ado). Let g be a finite dimensional Lie algebra. There
exists an integer n and an injective Lie algebra homomorphism φ : g→ gl(n).
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Remark 14.4. A representation of a Lie algebra g in a vector space
V is a Lie algebra homomorphism ρ : g→ gl(V ). A representation (V, ρ) is
called faithful if ρ is injective. In this language, Ado’s Theorem states that
every finite dimensional Lie algebra has a faithful representation.

Since gl(n) is the Lie algebra of GL(n), as a corollary of Ado’s Theorem
and Theorem 14.2 we obtain:

Theorem 14.5. For any finite dimensional Lie algebra g there exists a Lie
group G with Lie algebra isomorphic to g.

The previous theorem gives a matrix group integrating any finite dimen-
sional Lie algebra. Note however, in spite of what Ado’s Theorem may
suggest, that there are Lie groups which are not isomorphic to any matrix
group. This happens because, as we know, there can be several Lie groups
integrating the same Lie algebra.

In order to clarify the issue of multiple Lie groups integrating the same
Lie algebra, recall that if π : N → M is a covering of a manifold M ,
then there is a unique differentiable structure on N for which the covering
map is a local diffeomorphism. In particular, if M is connected then the
universal covering space of M , which is characterized as the 1-connected
(i.e., connected and simply connected) covering of M , is a manifold. For Lie
groups this leads to:

Proposition 14.6. Given a connected Lie group G its universal covering

space G̃ has a unique Lie group structure for which the covering map π :

G̃ → G is a Lie group homomorphism. Moreover, the Lie algebras of G

and G̃ are isomorphic and kerπ ⊂ G̃ is a discrete, normal, subgroup of the

center of G̃. In particular, π1(G) ≃ kerπ is abelian.

Proof. Recall that we can identify the universal covering space as:

G̃ = {[γ] | γ : [0, 1]→ G, γ(0) = e},
π : G̃→ G, [γ] 7→ γ(1),

where [γ] denotes the homotopy class of the path γ relative to end points.

We define a group structure in G̃ as follows:

(a) The product [γ][η] in G̃ is the homotopy class of the path t 7→ γ(t)η(t).

(b) The Identity ẽ ∈ G̃ is homotopy class of the constant path based at the
identity γ(t) = e.

(c) The inverse map i : G̃ → G̃ associated to an element [γ] the homotopy
class of the path t 7→ γ(t)−1.

It is clear that we these choices the covering map π : G̃ → G is a group
homomorphism.

We consider on G̃ the unique smooth structure for which the covering

map is a local diffeomorphism. To check that G̃ is a Lie group, we observe
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that the map ν̃ : G̃ × G̃ → G̃, (g, h) → g−1h, is smooth since it fits into a
commutative diagram:

G̃× G̃ ν̃ //

π×π
��

G̃

π

��
G×G ν

// G

where the vertical arrows are local diffeomorphisms and ν is differentiable.

Since π : G̃ → G is a local diffeomorphism it induces an isomorphism be-

tween the Lie algebras of G̃ and G.

Uniqueness follows, because the condition that π : G̃ → G induces an

isomorphism between the Lie algebras of G̃ and G implies that π is a local
diffeomorphism, so both the smooth structure and the group structure are
uniquely determined.

We leave as an exercise the remaining statements in the theorem. �

Example 14.7.
The special unitary group SU(2) is formed by the matrices:

SU(2) =

{(
a b
−b̄ ā

)
, a, b ∈ C, |a|2 + |b|2 = 1

}
.

Therefore SU(2) is isomorphic as a manifold to S3, hence it is 1-connected.
In fact, by an exercise in the previous section, SU(2) is isomorphic, as a Lie
group, to the group S3 consisting of the quaternions of length 1.

The Lie algebra of SU(2) consists of the skew-hermitean matrices of trace
zero:

su(2) =

{(
iα β
−β̄ −iα

)
: α ∈ R, β ∈ C

}
.

Setting x = α√
2
, y = Re β√

2
, z = Imβ√

2
, we obtain identifications

(
iα β
−β̄ −iα

)
←→




0 −x y
x 0 −z
−y z 0


 ←→ (x, y, z),

gives Lie algebra isomorphisms su(2) ≃ so(3) ≃ R3, where on R3 the Lie
bracket is given by the vector product.

Let us consider on su(2) the inner product arising from this identification
with R3 with the standard euclidean inner product. Then for each g ∈ SU(2)
we have the linear transformation Adg : su(2)→ su(2) (see Example 13.10.3),
and we leave it as an exercise to check that:
(a) The linear transformation Adg preserves the inner product and the usual

orientation, hence determines an element in SO(3).
(b) Ad : SU(2)→ SO(3) is a surjective group homomorphism with kernel the

group Z2 = {±I}.
It follows that Ad : SU(2) → SO(3) is a covering map. Since SU(2) ≃
S3 is 1-connected, we conclude that SU(2) is the universal covering space of
SO(3). The covering map identifies the antipodal points in the sphere, so we
can identify SO(3) with the real projective space RP3 and π1(SO(3)) = Z2.
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Let us consider now the question of integrating homomorphisms of Lie
algebras to homomorphisms of Lie groups. Notice that again there are
topological obstructions. For example, the identity φ : R → R is a Lie
algebra isomorphism between the Lie algebras of the Lie groups S1 and
(R,+). However, the only Lie group homomorphisms Φ : S1 → R is the
trivial one because the image Φ(S1) is a compact subgroup of (R,+), and {0}
is the only such subgroup. Therefore, there is no Lie group homomorphism
Φ : S1 → R with Φ∗ = φ.

The problem in this example is that S1 is not simply connected. In fact,
we have:

Theorem 14.8. Let G and H be Lie groups with Lie algebras g and h. If
G is 1-connected then for every Lie algebra homomorphism φ : g→ h there
exists a unique Lie group homomorphism Φ : G→ H such that Φ∗ = φ.

Proof. Let k = {(X,φ(X)) : X ∈ g} ⊂ g × h be the graph of φ. Since φ is
a Lie algebra homomorphism, k is a Lie subalgebra of g × h. Hence, there
exists a unique connected Lie subgroup K ⊂ G×H with Lie algebra k. Let
us consider the restriction to K of the projections on each factor:

K ⊂ G×H
π1

yyrrr
rr
rr
rr
rr π2

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

G H

The restriction of the first projection π1|K : K → G gives a Lie group
homomorphism such that:

(π1)∗(X,φ(X)) = X.

Hence, the map (π1|K)∗ : k → g is a Lie algebra isomorphism and it fol-
lows that π1|K : K → G is a covering map (see the Exercises). Since G
is 1-connected, we conclude that π1|K is a Lie isomorphism. Then, the
composition

Φ = π2 ◦ (π1|K)−1 : G→ H

is a Lie group homomorphism and we have that:

(Φ)∗(X) = (π2)∗ ◦ (π1|K)−1
∗ (X)

= (π2)∗(X,φ(X)) = φ(X).

We leave the proof of uniqueness as an exercise. �

We summarize the previous results in the following statements, sometimes
known as Lie’s Theorems:

Theorem 14.9 (Lie I). If G is a connected Lie group with Lie algebra g,

there is a unique (up to isomorphism) 1-connected Lie group G̃ with Lie

algebra g and a surjective Lie group morphism Φ : G̃→ G.
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Theorem 14.10 (Lie II). Let G and H be two Lie groups, with Lie alge-
bras denoted g and h, respectively. If G is 1-connected, then a Lie algebra
morphism φ : g→ h integrates to a unique Lie group morphism Φ : G→ H.

Theorem 14.11 (Lie III). Any finite dimensional Lie algebra g is integrable.

Note also that, given a finite dimensional Lie algebra g, we can obtain
any connected Lie group G integrating it (up to isomorphism) as follows:

(i) Construct the 1-connected Lie group G̃ integrating g;

(ii) Find a discrete normal subgroup N of the center of G̃;

(iii) G = G̃/N is a connected Lie group integrating g.

If one drops the condition of G being connected this problem is not solvable
since it would include as a special case the classification of all finite groups,
a problem which is well-known not to have any reasonable solution.

Homework.

1. Let Φ : G → H be a Lie group homomorphism between connected Lie
groups G and H such that (Φ)∗ : g → h is an isomorphism. Show that Φ is a
covering map.

2. Complete the proof of Theorem 14.2 by showing that the integrating Lie
subgroup is unique.

3. Let G be a Lie group and let π : H → G be a covering map. Show that H
is a Lie group.

4. Let SL(2,C) be the group of complex 2 × 2 matrices with determinant 1.
Show that SL(2,C) is 1-connected.
(Hint: Show that a matrix in SL(2,C) can be written uniquely as a product
AB, where A ∈ SU(2) and B is upper triangular with determinant 1.)

5. Show that any homomorphism of Lie algebras φ : sl(2) → gl(n) integrates
to a unique homomorphism of Lie groups Φ : SL(2)→ GL(n).
(Hint: Consider the complexification φc : sl(2,C)→ gl(n,C) of φ and use the
previous exercise.)

6. Let G be a connected Lie group and let D ⊂ G be a discrete normal sub-
group. Show that D is contained in the center of G, so in particular it must be
abelian. Conclude that the any connected Lie group has abelian fundamental
group.

7. Find all (up to isomorphism) connected Lie groups integrating the abelian
Lie algebra g = Rd.

8. Find all (up to isomorphism) connected Lie groups integrating the Lie alge-
bra so(3).
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15. The Exponential Map

We will now construct the exponential map for Lie groups/algebras, which
generalizes the exponential of matrices.

Let G be a Lie group with Lie algebra g. Given a left invariant vector
field X ∈ g, the map

φX : R→ g, t 7→ tX,

is a Lie algebra homomorphism. Since R is 1-connected it follows that there
exists a unique Lie group homomorphism

ΦX : R→ G, with (ΦX)∗ = φX .

We note that

ΦX(0) = e

ΦX(t+ s) = ΦX(t)ΦX(s) = LΦX(t)ΦX(s),

d

dt
ΦX(t) =

d

ds
ΦX(t+ s)

∣∣∣∣
s=0

= deLΦX(t) ·
d

ds
ΦX(s)

∣∣∣∣
s=0

= deLΦX(t) ·Xe = XΦX(t).

This means that t 7→ ΦX(t) is actually the integral curve of X through
e ∈ G. Recalling that φtX denotes the flow of the vector field X, we have:

Definition 15.1. The exponential map exp : g→ G is the map

exp(X) = φ1X(e).

The following proposition lists the main properties of the exponential
map. Its proof is left for the exercises.

Proposition 15.2. The exponential map exp : g→ G satisfies:

(i) exp((t+ s)X) = exp(sX) exp(tX);
(ii) exp(−tX) = [exp(tX)]−1;
(iii) exp is a smooth map and d0 exp = I;
(iv) For any Lie group homomorphism Φ : G → H the following diagram

is commutative:

G
Φ // H

g

exp

OO

Φ∗

// h

exp

OO

Property (iii) implies that that the exponential is a diffeomorphism from a
neighborhood of 0 ∈ g to a neighborhood of e ∈ G. In geral, the exponential
exp : g → G is neither surjective, nor injective. Also, it may fail to be a
local diffeomorphism at other points of G. There are however examples of
Lie groups/algebras in which some of these properties do hold (see also the
exercises).
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Example 15.3.
Recall that the Lie algebra of G = GL(n) can be identified with gl(n). If
A ∈ gl(n), the left invariant vector field associated with the Lie algebra element
A = (aij) is:

XA =
∑

ijk

xikakj
∂

∂xij
.

Hence, the integral curves if this vector field are the solutions of the system of
ode’s:

ẋij =
∑

k

xikakj ,

These are given by:

xij(t) =
∑

k

xik(0)(e
tA)kj ,

where the matrix exponential is defined as usual by:

eA =
+∞∑

k=0

An

n!
.

We conclude that the exponential map exp : gl(n)→ GL(n) coincides with the
usual matrix exponential.

By item (iv) in Proposition 15.2, it follows from the previous example that
if h ⊂ gl(n) is a Lie subalgebra and H ⊂ GL(n) is the associated connected
Lie subgroup, then the exponential map exp : h → H also coincides with
the matrix exponential.

Note, however, although Ado’s Theorem states that every Lie algebra is
isomorphic to a Lie algebra of matrices, there are Lie groups which are not
isomorphic to any group of matrices. Hence one needs the abstract definition
of the exponential map. As an application of the integration of morphisms
we given an example of such Lie group.

Example 15.4.
Consider the special linear group

SL(2) =

{(
a b
c d

)
: ad− bc = 1

}
.

To exhibit its topological structure, it is convenient to perform the change of
variables (a, b, c, d) 7→ (p, q, r, s) defined by

a = p+ q, d = p− q, b = r + s, c = r − s.
Then

ad− bc = 1 ⇐⇒ p2 + s2 = q2 + r2 + 1.

Hence we see that we can also describe SL(2) as:

SL(2) = {(p, q, r, s) ∈ R4 : p2 + s2 = q2 + r2 + 1}
so we conclude that SL(2) is diffeomorphic to R2 × S1. In particular,

π1(SL(2)) = π1(S
1) = Z.
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Let S̃L(2) be the universal covering group of SL(2). We claim that S̃L(2)
is not isomorphic to any group of matrices. By an exercise in the previous
section, we have:
• Given a Lie algebra morphism φ : sl(2)→ gl(n), there exists a unique Lie
group morphism Φ : SL(2)→ GL(n) such that Φ∗ = φ.

Now assume that, for some n, there exists an injective Lie group homomor-
phism:

Φ̃ : S̃L(2)→ GL(n).

This leads to a contradiction. Indeed, Φ̃ induces a morphism of Lie algebras

φ := (Φ̃)∗ : sl(2) → gl(n), so there exists a unique Lie group homomorphism
Φ : SL(2)→ GL(n) such that Φ∗ = φ and we obtain a commutative diagram:

S̃L(2)
Φ̃ //

π

��

GL(n)

SL(2)

Φ

;;✇✇✇✇✇✇✇✇✇

In this diagram the morphism π is not injective, while the morphism Φ̃ is
injective, which is a contradiction.

The exponential map is very useful in the study of Lie groups and Lie
algebras since it provides a direct link between the Lie algebra (the infini-
tesimal object) and the Lie group (the global object). For example, we have
the following result whose proof is left as an exercise:

Proposition 15.5. Let H be a subgroup of a Lie group G and let h ⊂ g be
a subspace of the Lie algebra of G. If U ⊂ g is a neighborhood of 0 which is
diffeomorphic via the exponential map to a neighborhood V ⊂ G of e, and

exp(h ∩ U) = H ∩ V,
then, for the relative topology, H is a Lie subgroup of G with Lie algebra h.

Using this proposition one can then proof the following important result:

Theorem 15.6. Let G be a Lie group and H ⊂ G a closed subgroup. Then
H, with the relative topology, is a Lie subgroup.

Sketch of the proof. The idea of the proof is the consider the set:

h := {X ∈ g : exp(tX) ∈ H,∀t ∈ R}
and apply the previous proposition.

Clearly, the set h is closed under multiplication by scalars. On the other
hand, if X,Y ∈ g one shows that:

lim
n→+∞

(
exp(

t

n
X) exp(

t

n
Y )

)n
= exp(t(X + Y )),

and then it follows that h is also closed under addition, since H is a closed
subset. Hence, h is a linear subspace.
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Finally, arguing by contradiction using again that H is closed in G, one
shows that there exists neighborhoods U ⊂ g of 0 and V ⊂ G of e, such that
exp : U → V is a diffeomorphism and:

exp(h ∩ U) = H ∩ V.
�

Example 15.7.
The previous results allows one to check quickly if subgroups of GL(n) are
Lie subgroups and to determine their Lie algebras. For example, consider the
subgroup SL(n) ⊂ GL(n). It is a closed subgroup, so by Theorem 15.6 it is
a Lie subgroup. To find its Lie algebra, one observes first that the set sl(n)
of matrices of trace zero is a subspace of gl(n) and second that we have the
well-known formula:

det(eX) = etrX .

Hence, we see that exp(X) ∈ SL(n) if and only if trX = 0. By Proposition
15.5, we conclude that the Lie algebra of SL(n) is sl(n).

Homework.

1. Verify the properties of the exponential map given in Proposition 15.2.

2. Show that the exponential map exp : gl(2)→ GL(2) is not surjective.

3. Let N ⊂ GL(n) be the subgroup formed by all upper triangular matrices
with diagonal elements all equal to 1. Show that N is a Lie subgroup, find its
Lie algebra n and prove that the exponential map exp : n→ N is a bijection.

4. Let G be a compact Lie group. Show that exp : g→ G is surjective.
(Hint: Use the fact, to be proved later, that any compact Lie group has a bi-
invariant metric, i.e., a metric invariant under both right and left translations.)

5. Let G and H be Lie groups. Show that:
(a) Every continuous homomorphism Φ : R→ G is smooth;
(b) Every continuous homomorphism Φ : G→ H is smooth;
(c) If G and H are isomorphic as topological groups, then G and H are

isomorphic as Lie groups.

6. Let G be a Lie group with Lie algebra g and let H ⊂ G be a Lie subgroup
with Lie algebra h ⊂ g. Show that X ∈ g belongs to h if and only if exp(tX) ∈
H for all t ∈ R.

7. Prove Proposition 15.5.
(Hint: Show that H has a smooth structure compatible with the relative
topology making (H, i) a submanifold of G, by considering the charts:

{(H ∩ hV, exp−1 ◦Lh) : h ∈ H}.
Then check that multiplication in H is smooth and use the previous exercise
to complete the proof.)
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16. Groups of Transformations

Let G be a group. Recall (Section 9) that we denote an action of G on
a set M by a map Ψ : G ×M → M , which we write as (g, p) 7→ g · p, and
satisfies:

(a) e · p = p, for all p ∈M ;
(b) g · (h · p) = (gh) · p, for all g, h ∈ G and p ∈M .

An action can also be viewed as a group homomorphism Ψ̂ from G to the
group of bijections of M . For each g ∈ G we denote by Ψg the bijection:

Ψg :M →M, p 7→ g · p
When G is a Lie group, M is a smooth manifold and the map Ψ : G×M →
M is smooth, we say that we have a smooth action. In this case each
Ψg :M →M is a diffeomorphism of M , so one also says that G is a group
of transformations of M . Note that for a smooth action, for each p ∈M ,
the isotropy subgroup

Gp ≡ {g ∈ G : g · p = p}.
is a closed subgroup, hence it is an (embedded) Lie subgroup of G (see
Theorem 15.6).

The results in Section 9 concerning smooth structures on orbits spaces
of discrete group actions extend to arbitrary smooth actions of Lie groups.
First, we call a smooth action Ψ : G ×M → M a proper action if the
map:

G×M →M ×M, (g, p) 7→ (p, g · p),
is proper.

Examples 16.1.

1. The action by translations of a Lie group G on itself, G×G→ G, (g, h) 7→
gh, is always proper.

2. Smooth actions of compact Lie groups on manifolds are always proper. Also,
for any proper action G×M →M the isotropy groups Gp are all compact. So,
for example, the action of O(n) on Rn by matrix multiplication is proper (since
O(n) is compact), while the action of SL(n) on Rn by matrix multiplication is
not proper (since the isotropy group of 0 is SL(n) which is not compact).

3. Given a smooth proper action G×M →M and a closed subgroup H ⊂ G,
the restricted action H×M →M is still a smooth proper action. For example,
restricting the action by translations of (Rn,+) on itself, we obtain the smooth
proper action of (R,+) on Rn given by:

t · (x1, . . . , xn) := (x1 + t, x2, . . . , xn).

Next, recall that an action is free if the isotropy groups Gp are trivial,
for all p ∈M . We leave as an exercise to check that:
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Lemma 16.2. Given a smooth free action G ×M → M and p ∈ M the
map

Ψp : G→M, g 7→ g · p
is an injective immersion. In particular, the orbits of a smooth, free action
G×M →M are submanifolds of M diffeomorphic to G.

Note that, in general, the orbits are not embedded submanifolds: for
example, the irrational lines on the torus T2 are the orbits of a free, smooth,
action of (R,+). We will see later that the orbits of any action are immersed
submanifolds.

For proper actions the geometry of the orbits is much nicer. In particular,
for proper and free actions we have:

Theorem 16.3. Let Ψ : G ×M → M be a smooth action of a Lie group
G on a manifold M . If the action is free and proper, then G\M has a
unique smooth structure, compatible with the quotient topology, such that
π :M → G\M is a submersion. In particular,

dimG\M = dimM − dimG.

In particular, the orbits of a smooth, proper and free action of G are embed-
ded submanifolds diffeomorphic to G.

Proof. We apply Theorem 9.3 to the orbit equivalence relation defined by
the action. This means that we need to verify that its graph:

R = {(p, g · p) : p ∈M,g ∈ G} ⊂M ×M,

is a proper submanifold of M ×M and that the restriction of the projection
p1|R : R→M is a submersion.

Let us consider the map:

Φ : G×M →M ×M, (g, p) 7→ (p, g · p),
whose image is precisely R. Since the action is assumed to be free, we see
that Φ is injective. The differential d(g,p)Φ : TgG× TpM → TpM × Tg·pM is
given by:

(v,w) 7→ (w,dΨp · v+ dΨg ·w).

Since this differential is injective we conclude that Φ is an injective immer-
sion with image R. Since, by assumption, Φ is proper, it follows that R is a
proper submanifold of M ×M .

To verify that p1|R : R → M is a submersion, it is enough to show that
the composition p1 ◦Φ : G×M →M is a submersion. But this composition
is just the projection (g, p) 7→ p, which is obviously a submersion. �

Example 16.4.
Consider the action of S1 = {w ∈ C : |w| = 1} on the 3-sphere S3 = {(z1, z2) ∈
C2 : |z1|2 + |z2|2 = 1}, defined by:

w · (z1, z2) = (wz1, wz2).
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This action is free and proper. Hence, the orbits of this action are embedded
submanifolds of S3 diffeomorphic to S1. The orbit space S1\S3 is a smooth
manifold. We will see later that this manifold is diffeomorphic to S2.

Let G be a Lie group and consider the action of G on itself by left trans-
lations:

G×G→ G, (g, h) 7→ gh.

This action is free and proper. If H ⊂ G is a closed subgroup, then H is a
Lie subgroup and the action of H on G, by left translation is also free and
proper. The orbit space for this action consist of the right cosets:

H\G = {Hg : g ∈ G}.
From Theorem 16.3, we conclude that:

Corollary 16.5. Let G be a Lie group and let H ⊂ G be a closed subgroup.
Then H\G has a unique smooth structure, compatible with the quotient topol-
ogy, such that π : G→ H\G is a submersion. In particular,

dimH\G = dimG− dimH.

Remark 16.6. So far we have discussed left actions. We can also discuss
right actions M ×G→ M , (m, g) → m · g, where axioms (a) and (b) are
replaced by:

(a) p · e = p, for all p ∈M ;
(b) (p · h) · g = p · (hg), for all g, h ∈ G and p ∈M .

Given a left action (g,m) 7→ g · m one obtains a right action by setting
(m, g) 7→ g−1 · m, and conversely. Hence, every result about left actions
yields a result about right actions, and conversely. For example, if G is a
Lie group and H ⊂ G is a closed subgroup, the right action of H on G by
right translations is free and proper. Hence, the set of left cosets

G/H = {gH : g ∈ G},
also has a natural smooth structure.

Given two G-actions, G ×M → M and G × N → N , a G-equivariant
map is a map Φ :M → N such that:

Φ(g · p) = g · Φ(p), ∀g ∈ G, p ∈M.

We say that we have equivalent actions is there exists a G-equivariant
bijection between them.

Given any action Ψ : G×M →M , for each p ∈M the map

Ψp : G→M, g 7→ g · p,
induces a bijection Ψ̄p between G/Gp and the orbit through p. Notice that
G acts on the set of right cosets by left translations:

G×G/Gp → G/Gp, (h, gGp) 7→ (hg)Gp.
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The map Ψ̄p is a G-equivariant bijection between the set of right cosets
G/Gp and the orbit through p.

If we have a smooth action Ψ : G×M →M we can use the results above
with H = Gp to conclude that G/Gp has a smooth structure and that the
map:

Ψ̄p : G/Gp →M, gGp 7→ g · p,
is an injective immersion. Since the image of this map is the orbit through
p, we conclude that:

Theorem 16.7. Let Ψ : G×M →M be a smooth action of a Lie group G
on a manifold M . The orbits of the action are initial submanifolds of M .
Moreover, for every p ∈M , the map

Ψ̄p : G/Gp →M, gGp 7→ g · p,
is a G-equivariant diffeomorphism between G/Gp and the orbit through p.

Proof. Since Gp is a closed subgroup, by Corollary 16.5, G/Gp has a smooth
structure. The map:

Ψ̄p : G/Gp →M, gGp 7→ g · p,
is an injective immersion whose image is the orbit through p. This makes
the orbit an immersed submanifold and we leave it as an exercise to show
that it is initial.

This smooth structure on the orbit does not depend on the choice of
p ∈M : two points p, q ∈M which belong to the same orbit have conjugate
isotropy groups:

q = g · p =⇒ Gq = gGpg
−1.

It follows that Φ : G/Gp → G/Gq, hGp 7→ ghg−1Gq, is an equivariant
diffeomorphism which makes the following diagram commute:

G/Gp
Ψ̄p //

Φ
��

M

Ψg

��
G/Gq

Ψ̄q // M

Since Ψg :M →M , m 7→ g ·m, is a diffeomorphism, it is clear that the two
immersions give equivalent smooth structures on the orbit. �

A transitive action Ψ : G ×M → M is an action with only one orbit.
This means that for any pair of points p, q ∈ M , there exists g ∈ G such
that q = g ·p. In this case, fixing any point p ∈M , we obtain an equivariant
bijection G/Gp →M . When the action is smooth, this gives an equivariant
diffeomorphism between M and the quotient G/Gp. In this case, one also
calls M a homogeneous space.

The homogeneous G-spaces are just the manifolds of the form G/H where
H ⊂ G is a closed subgroup. In the homogenous space G/H we have the
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natural G-action, induced from the action of G on itself by left transla-
tions. Homogenous spaces are particularly nice examples of manifolds. The
next examples will show that a manifold can be a homogeneous G-space for
different choices of Lie groups.

Examples 16.8.

1. Let S3 be the unit quarternions. Identifying R3 with the purely imaginary
quaternions, we obtain an action of S3 on R3:

q · v = qvq−1.

It is easy to see that the orbits of this action are the spheres of radius r and
the origin. Let us restrict the action to S2, the sphere of radius 1. An easy
computation shows that the isotropy group of p = (1, 0, 0) is the subgroup S1 =
(S3)p ⊂ S3 formed by quaternions of the form q0+ iq1+0j+0k. It follows that
the sphere is diffeomorphic to the homogeneous space S3/S1. The surjective
submersion π : S3 → S2, q 7→ q · (1, 0, 0), whose fibers are diffeomorphic to S1,
is known as the Hopf fibration.

2. Let O(d+1)×Rd+1 → Rd+1 be the standard action by matrix multiplication:

(A,~v) 7→ A~v.

The orbits of this action are the spheres (x0)2+ · · ·+(xd)2 = r2 and the origin.
Again, we consider the sphere Sd of radius 1 and we let pN = (0, . . . , 0, 1) ∈ Sd,
the north pole. The isotropy group at pN consists of matrices of the form:




B 0

0 1


 ∈ O(d + 1),

so we can identify it with O(d). It follows that the map

O(d + 1)/O(d)→ Sd, A O(d) 7→ A · pN ,
is a diffeomorphism. A similar reasoning shows that Sd is also diffeomorphic
to the homogeneous space SO(d + 1)/SO(d).

3. Let RPd be the real projective space and denote by π : Rd+1 − {0} → RPd

the map

π(x0, . . . , xd) = [x0 : · · · : xd].
The action SO(d + 1) × Rd+1 → Rd+1 by matrix multiplication, induces a

smooth transitive action SO(d + 1) × RPd → RPd. The isotropy subgroup of
the point [0 : · · · : 0 : 1] consist of matrices of the form:




B 0

0 detB


 ∈ SO(d+ 1),

so we can identify it with O(d). We conclude that RPd is diffeomorphic to the
homogeneous space SO(d+ 1)/O(d).

A similar reasoning shows that the complex projective space CPd is diffeo-
morphic to the homogeneous space SU(d+ 1)/U(d).
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4. Let Gk(Rd) denote that set of all linear subspaces of Rd of dimension k.
The usual action of the orthogonal group O(d) on Rd by matrix multiplication
induces an action O(d) × Gk(Rd) → Gk(Rd): an invertible linear transfor-
mation takes linear subspaces of dimension k to linear subspaces of dimen-
sion k. It is easy to check that given any two k-dimensional linear subspaces
S1, S2 ⊂ Rd there exists A ∈ O(d) mapping S1 onto S2. This means that the
action O(d) ×Gk(Rd)→ Gk(Rd) is transitive.

We fix the point S0 ∈ Gk(Rd) to be the subspace Rk × {0} ⊂ Rd, then

O(d)S0
=

{(
A 0
0 B

)
∈ O(d) : A ∈ O(k), B ∈ O(d − k)

}
.

so we have a bijection

O(d)/O(k) ×O(d − k)→ Gk(V ).

On Gk(Rd) we can consider the unique smooth structure for which this bijection
becomes a diffeomorphism. This gives Gk(Rd) the structure of a manifold of
dimension k(d − k) = dimO(d) − (dimO(k) + dimO(d − k)). One can show
that this smooth structure is independent of the choice of base point S0. The
manifold Gk(Rd) is called the Grassmannian manifold of k-planes in Rd.

Since Lie groups have infinitesimal counterparts, it should come as no
surprise that Lie group actions also have an infinitesimal counterpart. Let
Ψ : G ×M → M be a smooth action, which we can view as “Lie group”
homomorphism:

Ψ̂ : G→ Diff(M).

We think of Diff(M) as a Lie group with Lie algebra X(M), then there must
exist a homomorphism of Lie algebras

ψ = (Ψ̂)∗ : g→ X(M).

In fact, if X ∈ g and p ∈M , the curve

t 7→ exp(tX) · p,
goes through p at t = 0, and it is defined and smooth for t ∈ R. We define
the vector field ψ(X) in M , by:

ψ(X)p ≡
d

dt
exp(tX) · p

∣∣∣∣
t=0

.

The proof of the following lemma is left as an exercise:

Lemma 16.9. For each X ∈ g, ψ(X) is a smooth vector field and the map
ψ : g→ X(M) is linear and satisfies:

ψ([X,Y ]g) = −[ψ(X), ψ(Y )], ∀X,Y ∈ g.

Remark 16.10. An anti-homomorphism of Lie algebras is a linear map
φ : g→ h which satisfies:

φ([X,Y ]) = −[φ(X), φ(Y )], ∀X,Y ∈ g.
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The appearance of a minus sign in the lemma is easy to explain: with
our conventions, where the Lie algebra of a Lie group is formed by the
left invariant vector fields, the Lie algebra of the group of diffeomorphisms
Diff(M) is formed by the vector fields X(M) with a Lie bracket which is
the simmetric of the usual Lie bracket of vector fields. One can see this,
for example, by determining the 1-parameter subgroups of the group of
diffeomorphims. We could have defined the Lie bracket of vector fields with
the opposite sign, but this would lead to the presence of negative signs in
other formulas.

The lemma above suggests the following definition:

Definition 16.11. An infinitesimal action of a Lie algebra g on a man-
ifold M is an anti-homomorphism of Lie algebras ψ : g→ X(M).

Example 16.12.
The Lie algebra so(3) has a basis consisting of the skew-symmetric matrices:

X =




0 0 0
0 0 1
0 −1 0


 , Y =




0 0 −1
0 0 0
1 0 0


 , Z =




0 1 0
−1 0 0
0 0 0


 .

In this basis, we have the following Lie bracket relations:

[X,Y ] = −Z, [Y, Z] = −X, [Z,X ] = −Y.
For the usual action of SO(3) on R3 by rotations, we can compute the infini-
tesimal action as follows. First, we compute the exponential

exp(tX) =




1 0 0
0 cos t sin t
0 − sin t cos t


 .

Then:

ψ(X)(x,y,z) =
d

dt
exp(tX) · (x, y, z)

∣∣∣∣
t=0

= z
∂

∂y
− y ∂

∂z
.

Similarly, we compute:

ψ(Y ) = x
∂

∂z
− z ∂

∂x
, ψ(Z) = y

∂

∂x
− x ∂

∂y
.

The vector fields {ψ(X), ψ(Y ), ψ(Z)} are called the infinitesimal generators

of the action. Using that ψ is an anti-homomorphism of Lie algebras, one
recovers the Lie brackets of Example 11.2.

A smooth action Ψ : G × M → M determines an infinitesimal action
ψ : g → X(M). The converse does not necessarily hold, as shown in the
next examples.

Examples 16.13.

1. Consider the infinitesimal Lie algebra action of so(3) on R3 given in Ex-
ample 16.12. We can restrict this action to M = R3 − {p0} by taking for each
X ∈ g, the restriction of ψ(X) to M . This defines an infinitesimal action of
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so(3) on M which, if p0 6= 0, is not induced from a Lie group action of SO(3)
in M .

2. Any non-zero vector field X on a manifold M determines an infinitesimal
action of the Lie algebra g = R onM by setting ψ(λ) := λX. This infinitesimal
action integrates to a Lie group action of G = (R,+) on M if and only if the
vector field X is complete. The Lie group S1 also has Lie algebra R, but even
if the vector field is complete, there will be no action Ψ : S1 ×M → M with
Ψ∗ = ψ, since the orbits of X may not be periodic.

Obviously, for any infinitesimal Lie algebra action ψ : g → X(M) which
is induced from a Lie group action G×M →M the infinitesimal generators
ψ(X) ∈ X(M) are all complete vector fields. If we assume that G is 1-
connected, the converse also holds but the proof is beyond the scope of
these notes:

Theorem 16.14. Let ψ : g→ X(M) be an infinitesimal Lie algebra action
such that ψ(X) is complete, for all X ∈ g. Then there exists a smooth action
Ψ : G → Diff(M) with Ψ∗ = ψ, where G is the 1-connected Lie group with
Lie algebra g.

For example, if M is a compact manifold then every infinitesimal Lie
algebra action ψ : g → X(M) integrates to a smooth Lie group action
Ψ : G×M →M , where G is the 1-connected Lie group with Lie algebra g.

Example 16.15.
A representation of a Lie group G in a vector space V is a Lie group

homomorphism Ψ̂ : G→ GL(V ). Since GL(V ) ⊂ Diff(V ), this is the same as
a smooth linear action Ψ : G× V → V .

A vector field X on a vector space V is called a linear vector field if for
any linear function l ∈ V ∗ the function X(l) is a also linear. A linear vector
field X determines a linear map X : V ∗ → V ∗, so its transpose is an element
of gl(V ). The converse also holds, so linear maps T : V → V are in 1:1
correspondence with linear vector fields XT ∈ X(V ) and one has:

XT (l) = l ◦ T,
for any linear function l : V → R. You should check that:

[XT1
, XT2

] = −X[T1,T2],

so the inclusion gl(V ) →֒ X(V ) reverses the sign of the Lie brackets.
A representation of a Lie algebra g is a Lie algebra homomorphism

ρ : g → gl(V ). Composing ρ with the natural inclusion gl(V ) →֒ X(V ), we
obtain an anti-Lie algebra homomorphism ψ : g→ X(V ), whose image consists
of linear vector fields. Conversely, every Lie algebra homomorphism ψ : g →
X(V ) whose image consists of linear vector fields arises from a Lie algebra
representation ρ : g→ gl(V ).

We conclude that a representation Ψ̂ : G → GL(V ) is the same thing as
a linear action of G. It yields by differentiation a Lie algebra representation
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Ψ̂∗ : g → gl(V ) which is the same thing as an infinitesimal Lie algebra action
ψ : g→ X(V ) by linear vector fields.

Conversely, since a linear vector field on a vector space is complete, any
Lie algebra representation g → gl(V ) integrates to a Lie group representation
G→ GL(V ) of the 1-connected Lie group G with Lie algebra G.

Homework.

1. Prove Lemma 16.2.

2. Let Ψ : G×M →M be a proper and free smooth action and denote by B =
G\M its orbit space. Show that the projection π : M → B is locally trivial,
i.e., for any b ∈ B there exists a neighborhood b ∈ U ⊂ B and diffeomorphism

σ : π−1(U)→ G× U, q 7→ (χ(q), π(q)),

such that:

σ(g · q) = (gχ(q), π(q)), ∀q ∈ π−1(U), g ∈ G.

3. Show that the orbits of a smooth action are initial submanifolds.

4. Let G be a connected Lie group and H ⊂ G a closed connected subgroup.
Show that:
(a) H is a normal subgroup of G if and only if its Lie algebra h ⊂ g is an

ideal, i.e.,

∀X ∈ g, Y ∈ h, [X,Y ] ∈ h.

(b) If H is normal in G, then G/H is a Lie group and π : G→ G/H is a Lie
group homomorphism.

5. Let G be a Lie group and let H ⊂ G be a closed subgroup. Show that if
G/H and H are both connected then G is connected. Conclude from this that
the groups SO(d), SU(d) and U(d) are all connected. Show that O(d) and
GL(d) have two connected components.

6. Let Ψ : G×M →M be a smooth transitive action withM connected. Show
that:
(a) The connected component of the identity G0 also acts transitively on M ;
(b) For all p ∈M , G/G0 is diffeomorphic to Gp/(Gp ∩G0);
(c) If Gp is connected for some p ∈M , then G is connected.

7. For any Lie group G, recall that its adjoint representation Ad : G →
GL(g), g 7→ Adg, is defined by Adg := deig, where ig : G → G is given by
ig(h) = ghg−1. Show that the induced Lie algebra representation ad : g →
gl(g) is given by:

adX(Y ) = [X,Y ], ∀X,Y ∈ g.

8. Find the orbits and the isotropy groups for the adjoint representations of
the 3 dimensional Lie groups SL(2), SO(3) and SU(2).
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9. For a vector space V of dimension d denote by Sk(V ) the set of all k-frames
of V :

Sk(V ) = {(v1, . . . ,vk) ∈ V × · · · × V : v1, . . . ,vk are linearly independent}.
Show that Sk(V ) is a homogenous space of dimension dk. Sk(V ) is called the
Stiefel manifold of k-frames of V .
(Hint: Fix a base of V and consider the action GL(d) in V by matrix multi-
plication.)

10. Give a proof of Lemma 16.9.
(Hint: If G is a Lie group with Lie algebra g, for each X ∈ g denoted by
X ∈ X(G) the right invariant vector field in G which takes the value Xe at
the identity. Show that:

[X,Y ] = −[X,Y ], ∀X,Y ∈ g,

and express the infinitesimal action φ : g → X(M) in terms of right invariant
vector fields.)

11. Let Ψ : G × M → M be a smooth action with associated infinitesimal
action ψ : g → X(M). If Gp is the isotropy group at p, show that its Lie
algebra is the isotropy subalgebra:

gp = {X ∈ g : ψ(X)p = 0}.

12. Let Ψ : G × M → M be a smooth action with associated infinitesimal
action ψ : g→ X(M). We call p0 ∈M a fixed point of the action if:

g · p0 = p0, ∀g ∈ G.
Show that if p0 is a fixed point of the action then:
(a) Ψ induces a representation Ξ : G→ GL(Tp0M);
(b) ψ induces a representation ξ : g→ gl(Tp0M);
(c) The representation Ξ of G integrates the representation ξ of g: (Ξ)∗ = ξ.
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Part 3. Differential Forms

Differential forms are the objects that can be integrated over a manifold.
For this reason, they play a crucial role when passing from local to global
aspects of manifolds. In this third part of the sections, we will introduce
differential forms and we will see how effective they are in the study of global
properties of manifolds.

The main concept and ideas that we will introduce in this round of sections
are the following:

• In Section 17: the notion of differential form and, more generally,
of tensor fields. The elementary operations with differential forms:
exterior product, inner product and pull-back.
• In Section 18: the differential and the Lie derivative of differential
forms, which give rise to the Cartan calculus on differential forms.
• In Section 19: the integration of differential forms on manifolds and
Stokes Theorem.
• In Section 20: the de Rham complex formed by the differential forms
and its cohomology, an important invariant of a differentiable mani-
fold.
• In Section 21: the relationship between de Rham cohomology and
singular cohomology, which shows that de Rham cohomology is a
topological invariant.
• In Section 22: the basic properties of de Rham cohomology: homo-
topy invariance and the Mayer-Vietoris sequence.
• In Section 23: applications of the Mayer-Vietoris sequence to de-
duce further properties of cohomology like finite dimensionality and
Poincaré duality. How to define and compute the Euler characteris-
tic of a manifold.
• In Section 24: the degree of a map and the index of a zero of a vector
field.
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17. Differential Forms and Tensor Fields

For a finite dimensional vector space V , we denote the dual vector space
by V ∗:

V ∗ = {α : α : V → R is a linear map}.
Its tensor algebra is:

⊗
V ∗ =

+∞⊕

k=0

⊗kV ∗,

and is furnished with the tensor product ⊗ : ⊗kV ∗ × ⊗lV ∗ → ⊗k+lV ∗.
Its exterior algebra is:

∧
V ∗ =

d⊕

k=0

∧kV ∗

and is furnished with the exterior product ∧ : ∧kV ∗ × ∧lV ∗ → ∧k+lV ∗.
If α1, . . . , αk ∈ V ∗ and v1, . . . ,vk ∈ V , our convention is that:

α1 ∧ · · · ∧ αk(v1, . . . ,vk) = det(αi(vj))
k
i,j=1.

It maybe worth to recall that one can identify ⊗kV ∗ (respectively, ∧kV ∗)
with the space of k-multilinear (respectively, k-multilinear and alternating)
maps V × · · · × V → R.

If T : V → W is a linear transformation between two finite dimensional
vector spaces, its transpose is the linear transformation T ∗ : W ∗ → V ∗

defined by:

T ∗α(v) = α(Tv).

Similarly, there exists an induced application T ∗ : ∧kW ∗ → ∧kV ∗ defined
by:

T ∗ω(v1, . . . ,vk) = ω(Tv1, . . . , Tvk).

This is the restriction of a similarly defined map T ∗ : ⊗kW ∗ → ⊗kV ∗.

Let now M be a smooth manifold. If (x1, . . . , xd) are local coordinates
around p ∈M , we know that the tangent vectors

∂

∂xi

∣∣∣∣
p

(i = 1, . . . , d),

form a base for TpM . Similarly, the forms

dpx
i (i = 1, . . . , d),

form a base for T ∗
pM . These basis are dual to each other. If we take tensor

products and exterior products of elements of these basis, we obtain basis
for ⊗kTpM , ∧kTpM , ⊗kT ∗

pM , ∧kT ∗
pM , etc. For example, the space ∧kT ∗

pM
has the base

dpx
i1 ∧ · · · ∧ dpx

ik (i1 < · · · < ik).
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As in the case of the tangent and cotangent spaces, we are interested
in the spaces ⊗kTpM , ∧kTpM , ⊗kT ∗

pM , ∧kT ∗
pM , etc., when p varies. For

example, we define

∧kT ∗M :=
⋃

p∈M
∧kT ∗

pM.

and we have a projection π : ∧kT ∗M →M . We call ∧kT ∗M the k-exterior
bundle of M . We leave as an exercise to check that, just like the case of
the tangent bundle, one has a smooth structure on this bundle.

Proposition 17.1. There exists a canonical smooth structure on ∧kT ∗M
such that the canonical projection in M is a submersion.

One has also smooth structures on the bundles ∧kTM , ⊗kT ∗M , ⊗kTM ,
⊗kTM ⊗s T ∗M , etc.

For any map π : E → M a section is a map s : M → E such that
π ◦ s(p) = p, for all p ∈M .

Definition 17.2. Let M be a manifold.

(i) A differential form of degree k is a section of π : ∧kT ∗M →M .
(ii) A multivector field of degree k is a section of π : ∧kTM →M .
(iii) A tensor field of degree (k, s) is a section of π : ⊗kTM ⊗s T ∗M →

M .

We will consider only smooth differential forms, smooth multivector fields
and smooth tensor fields, meaning that the corresponding sections are smooth
maps. Note that ∧kTM and ∧kT ∗M are submanifolds of ⊗kTM ⊗s T ∗M ,
so a multivector field of degree k and a differential form of degree k are
examples of tensor fields of degree (k, 0 and (0, k), respectively. Of course,
there are tensor fields of degree (k, 0 and (0, k) which are not alternating:
for example, a Riemannian metric is a tensor field of degree (0, 2) which is
symmetric, rather than alternating.

If (U, φ) = (U, x1, . . . , xd) is a chart then a tensor field θ of degree (k, s)
takes the local expression:

θ|U =
∑

i1,...,ik,j1,...,js

θi1,...,ikj1,...,js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xik
⊗ dxj1 ⊗ · · · ⊗ dxjk .

It should be clear that θ is smooth if and only if for any open cover by charts

the components θi1,...,ikj1,...,js
are smooth function in C∞(U).

On the other hand, a smooth differential form ω of degree k can be written
in a local chart in the forms:

ω|U =
∑

i1<···<ik
ωi1···ikdx

i1 ∧ · · · ∧ dxik

=
∑

i1···ik

1

k!
ωi1···ikdx

i1 ∧ · · · ∧ dxik ,
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where the components ωi1···ik ∈ C∞(U) are alternating: for every permuta-
tion σ ∈ Sk one has

ωσ(i1)···σ(ik) = (−1)sgn σωi1···ik .
Similarly, a smooth multivector field π of degree k can be written in a local
chart in the forms:

π|U =
∑

i1<···<ik
πi1···ik

∂

∂xi1
∧ · · · ∧ ∂

∂xik

=
∑

i1···ik

1

k!
πi1···ik

∂

∂xi1
∧ · · · ∧ ∂

∂xik
,

where the components πi1···ik ∈ C∞(U) are alternating.
If (U, φ) = (U, x1, . . . , xd) and (V, ψ) = (V, y1, . . . , yd) are two local charts,

then we have two local coordinate expressions for a differential form ω ∈
Ωk(M):

ω|U =
∑

i1<···<ik
ωi1···ikdx

i1 ∧ · · · ∧ dxik

ω|V =
∑

j1<···<jk
ωj1···jkdy

j1 ∧ · · · ∧ dyjk .

If U ∩ V 6= ∅, the transformation formulas that we obtain before;

∂

∂xi
=

d∑

j=1

∂yj

∂xi
∂

∂yi
, dxi =

d∑

j=1

∂xi

∂yj
dyj.

then lead to transformations for the components of the forms on the overlap
U ∩ V of the two charts:

ωj1···jk(y) =
∑

i1<···<ik
ωi1···ik(φ ◦ ψ−1(y))

∂(xi1 · · · xik)
∂(yj1 · · · yjk) (y).

The symbol in the right side of this expression is an abbreviation for the
minor consisting of the rows i1, . . . , ik and the columns j1, . . . , jk of the
Jacobian matrix of the change of coordinates φ◦ψ−1 : ψ(U∩V )→ φ(U∩V ).

We leave it as an exercise to determine the formulas of transformation of
variables for multivector fields and tensor fields.

Remark 17.3. One maybe intrigued with the relative positions of the in-
dices, as subscripts and superscripts, in the different objects. The convention
that we follow is such that an index is only summed if it appears in a formula
repeated both as a subscript and as a superscript. With this convention,
one can even omit the summation sign from the formula, with the agree-
ment that one sums over an index whenever that index is repeated. This
convention is called the Einstein convention sum.
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From now on we will concentrate on the study of differential forms. Al-
though other objects, such as multivector fields and tensor fields, are also
interesting, differential forms play a more fundamental role because they are
the objects one can integrate over a manifold.

We will denote the vector space of smooth differential forms of degree k
on a manifold M by Ωk(M). Given a differential form ω ∈ Ωk(M) its value
at a point ωp ∈ ∧kT ∗

pM can be seen as an alternating, multilinear map

ωp : TpM × · · · × TpM → R.

Hence, ifX1, . . . ,Xk ∈ X(M) are smooth vector fieldsM we obtain a smooth
function ω(X1, . . . ,Xk) ∈ C∞(M):

p 7→ ωp(X1|p, . . . ,Xk|p).
Therefore every differential form ω ∈ Ωk(M) can be seen as a map

ω : X(M)× · · · × X(M)→ C∞(M).

This map is C∞(M)-multilinear and alternating. Conversely, every C∞(M)-
multilinear, alternating, map X(M) × · · · × X(M) → C∞(M) defines a
smooth differential form. This is usually the simplest way to specify a
smooth differential form.

We consider now several basic operations with differential forms.

Exterior product of differential forms. The exterior (or wedge) product ∧
in the exterior algebra ∧T ∗

pM induces an exterior (or wedge) product of
differential forms

∧ : Ωk(M)× Ωs(M)→ Ωk+s(M), (ω ∧ η)p ≡ ωp ∧ ηp.
If we consider the space of all differential forms:

Ω(M) =

d⊕

k=0

Ωk(M).

where we convention that Ω0(M) = C∞(M) and fω = f ∧ ω, the exterior
product turns Ω(M) into a Grassmann algebra over the ring C∞(M),
i.e., the following properties hold:

(a) (fω + gη) ∧ θ = fω ∧ θ + gη ∧ θ.
(b) ω ∧ η = (−1)deg ω deg ηη ∧ ω.
(c) (ω ∧ η) ∧ θ = ω ∧ (η ∧ θ).

Moreover, if α1, . . . , αk ∈ Ω1(M) and X1, . . . ,Xk ∈ X(M), according to our
conventions we have:

(d) α1 ∧ · · · ∧ αk(X1, . . . ,Xk) = det [αi(Xj)]
k
i,j=1.

These 4 properties is all that we need to know to compute exterior products
in local coordinates, as we illustrate in the next example:
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Example 17.4.
In R4, with coordinates (x, y, z, w), consider the differential forms of degree 2:

ω = (x+ w2)dx ∧ dy + ezdx ∧ dw + cosxdy ∧ dz,

η = xdy ∧ dz − ezdz ∧ dw.

Then:

ω ∧ η = −(x+ w2)ezdx ∧ dy ∧ dz ∧ dw + xezdx ∧ dw ∧ dy ∧ dz

= −w2ezdx ∧ dy ∧ dz ∧ dw.

Also, if we would like to compute, e.g., η on the vector fields X = y ∂
∂z − ∂

∂y

and Y = ez ∂
∂w we proceed as follows:

η(X,Y ) = xdy ∧ dz(X,Y )− ezdz ∧ dw(X,Y )

= x

∣∣∣∣
dy(X) dy(Y )
dz(X) dz(Y )

∣∣∣∣− ez
∣∣∣∣
dz(X) dz(Y )
dw(X) dw(Y )

∣∣∣∣

= x

∣∣∣∣
−1 0
y 0

∣∣∣∣− ez
∣∣∣∣
y 0
0 ez

∣∣∣∣ = −ye2z

Pull-back of differential forms. Let Φ :M → N be a smooth map. For each
p ∈M , the transpose of the differential

(dpΦ)
∗ : T ∗

Φ(p)N → T ∗
pM.

induces a linear map

(dpΦ)
∗ : ∧kT ∗

Φ(p)N → ∧kT ∗
pM.

The pull-back of differential forms Φ∗ : Ωk(N)→ Ωk(M) is defined as:

(Φ∗ω)(X1, . . . ,Xk)p = ((dpΦ)
∗ω)(X1|p, . . . ,Xk|p)

= ωΦ(p)(dpΦ ·X1|p, . . . ,dpΦ ·Xk|p).
This defines a C∞(M)-multilinear, alternating, map X(M)× · · · ×X(M)→
C∞(M), hence Φ∗ω is a smooth differential form of degree k in M .

It is easy to check that for any smooth map Φ : M → N , the pull-back
Φ∗ : Ω(N) → Ω(M) is a homomorphism of Grassmann algebras, i.e., the
following properties hold:

(a) Φ∗(aω + bη) = aΦ∗ω + bΦ∗η, a, b ∈ R;
(b) Φ∗(ω ∧ η) = Φ∗ω ∧ Φ∗η;
(c) Φ∗(fω) = (f ◦ Φ)Φ∗ω, f ∈ C∞(M);

Note that if f : N → R is a smooth function then the differential df can be
viewed as a differential form of degree 1. The chain rule and the definition
above also gives:

(d) Φ∗(df) = d(f ◦Φ).
These properties is all that it is needed to compute pull-backs in local coor-
dinates, as we illustrate in the next example:
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Example 17.5.
Let Φ : R2 → R4 be the smooth map:

Φ(u, v) = (u+ v, u− v, v2, 1

1 + u2
).

In order to compute the pull-back under Φ of the form:

η = xdy ∧ dz − ezdz ∧ dw ∈ Ω2(R4),

we proceed as follows:

Φ∗η = (x ◦ Φ)d(y ◦ Φ) ∧ d(z ◦ Φ)− e(z◦Φ)d(z ◦ Φ) ∧ d(w ◦ Φ)

= (u+ v)d(u − v) ∧ d(v2)− ev2d(v2) ∧ d(
1

1 + u2
)

= (u+ v)du ∧ 2vdv − 2vev
2

dv ∧ −2udu
(1 + u2)2

=

(
2v(u+ v)− 4uvev

2

(1 + u2)2

)
du ∧ dv.

In other words, to compute the pull-back Φ∗η, one replaces in η, the coordinates
(x, y, z, w) by its expressions in terms of the coordinates (u, v).

Remark 17.6. When (N, i) is a submanifold of M the pull-back of a dif-
ferential form ω ∈ Ωk(M) by the inclusion map i : N →֒ M is called the
restriction of the differential form ω to N . Often one denotes the
restriction ω|N instead of i∗ω.

For example, for the sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},

we can write

ω = (xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)|S2 ,

meaning that ω is the pull-back by the inclusion i : S2 →֒ R3 of the differ-
ential form xdy ∧ dz + ydz ∧ dx+ zdx∧ dy ∈ Ω2(R3). Sometimes, one even
drops the restriction sign.

One should also notice that if Φ : M → N and Ψ : N → Q are smooth
maps, then Ψ ◦Φ :M → Q is a smooth map and we have:

(Ψ ◦ Φ)∗ω = Φ∗(Ψ∗ω).

In categorical language, we have a contravariant functor from the category of
smooth manifolds to the category of Grassmann algebras, which to a smooth
manifold M associates the algebra Ω(M) and to a smooth map Φ :M → N
associates a homomorphism Φ∗ : Ω(N)→ Ω(M).
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Interior Product. Given a vector field X ∈ X(M) and a differential form
ω ∈ Ωk(M), the interior product of ω by X, denoted iXω ∈ Ωk−1(M), is
the the differential form of degree (k − 1) defined by:

iXω(X1, . . . ,Xk−1) = ω(X,X1, . . . ,Xk−1).

Since iXω : X(M) × · · · × X(M) → C∞(M) is a C∞(M)-multilinear, alter-
nating, map, it is indeed a smooth differential form of degree k − 1.

It is easy to check that the following properties hold:

(a) iX(fω + gθ) = fiXω + giXθ;
(b) iX(ω ∧ θ) = (iXω) ∧ θ + (−1)deg ωω ∧ (iXθ);
(c) i(fX+gY )ω = fiXω + giY ω;
(d) iX(df) = X(f).

Again, these properties is all that it is needed to compute interior products
in local coordinates.

Example 17.7.
Let ω = exdx∧dy+ezdy∧dz ∈ Ω2(R3), and X = x ∂

∂y −y ∂
∂x ∈ X(R3). Then:

i ∂
∂x
(dx ∧ dy) = (i ∂

∂x
dx) ∧ dy − dx ∧ (i ∂

∂y
dy) = dy,

i ∂
∂y
(dx ∧ dy) = (i ∂

∂y
dx) ∧ dy − dx ∧ (i ∂

∂y
dy) = −dx,

i ∂
∂x
(dy ∧ dz) = (i ∂

∂x
dy) ∧ dz − dy ∧ (i ∂

∂x
dz) = 0,

i ∂
∂y
(dy ∧ dz) = (i ∂

∂y
dy) ∧ dz − dy ∧ (i ∂

∂y
dz) = dz.

Hence, we conclude that:

iXω = −xexdx− yexdy + xezdz.

Remark 17.8. One can extend the interior product in a more or less obvious
way to other objects (multivector fields, tensor fields, etc.). For these objects
it is frequent to use the designation contraction, instead of interior product.
For example, one can define the contraction of a differential form ω of degree
k by a multivector field π of degree l < k, to be a differential form iπω of
degree k − l. In a local chart (U, x1, . . . , xd), if

ω|U =
∑

i1···ik
ωi1···ikdx

i1 ∧ · · · ∧ dxik , π|U =
∑

j1···jl
πj1···jl

∂

∂xj1
∧ · · · ∧ ∂

∂xjl
,

then:
(iπω)|U =

∑

i1···ik
ωi1···ikπ

i1···ildxil+1 ∧ · · · ∧ dxik .

As a first application of differential forms, we are going to formalize the
notion of orientation of a manifold.

Recall that if V is a linear vector space of dimension d and µ ∈ ∧d(V ∗) is
a non-zero element, then for any base {v1, . . . ,vd} of V we have

µ(v1, . . . ,vd) 6= 0.
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This implies that µ splits the ordered basis of V into two classes: a base
{v1, . . . ,vd} has positive (respectively, negative) µ-orientation if this number
is positive (respectively, negative). Hence, µ determines a orientation for V .

Example 17.9.
Let V = Rd then we have a canonical element µ0 ∈ ∧d(Rd)∗, namely the
determinant:

µ0(v1, . . . ,vd) = det[vji ]
n
i,j=1.

The standard basis of Rd is positively oriented for this canonical choice. Note
also that |µ0(v1, . . . ,vd)| represents the usual volume of the parallelepiped span
by the vectors v1, . . . ,vd. For an arbitrary vector space V there is no such
canonical choice of orientation and one needs to choose an element µ ∈ ∧d(V ∗)
to orient its bases.

Definition 17.10. For a smooth manifold M of dimension d, we call a
differential form µ ∈ Ωd(M) a volume form if µp 6= 0, for all p ∈ M . A
manifold M is said to be orientable if it admits a volume form.

Notice that if µ ∈ Ωd(M) is a volume form then any other differential
form of degree d in M is of the form fµ for a smooth function f ∈ C∞(M).
In particular, if µ1, µ2 ∈ Ωd(M) are two volume forms then there exists a
unique smooth non-vanishing function f ∈ C∞(M) such that µ2 = fµ1.

Let M be an orientable manifold of dimension d. If µ1, µ2 ∈ Ωd(M) are
volumes forms we say that µ1 and µ2 define the same orientation if for all
p ∈M and any ordered base {v1, . . . ,vd} of TpM , one has:

µ1(v1, . . . ,vd)µ2(v1, . . . ,vd) > 0.

Note that if µ1 and µ2 define the same orientation, then a base is µ1-positive
if and only if it is µ2-positive. We leave the proof of the following lemma as
an exercise:

Lemma 17.11. Let M be manifold of dimension d. Two volume forms
µ1, µ2 ∈ Ωd(M) define the same orientation if and only if µ2 = fµ1 for a
smooth everywhere positive function f ∈ C∞(M).

The property “define the same orientation” is an equivalence relation on
the set of volume forms in an orientable manifold M .

Definition 17.12. An orientation for an orientable manifold M is a
choice of an equivalence class [µ]. A pair (M, [µ]) is called an oriented

manifold.

Notice that an orientation [µ] for a manifold M (if it exists!) amounts to
a choice of orientation for each tangent space TpM varying smoothly with
p. Note also that a connected orientable manifold has two orientations.
More generally, an orientable manifold with k connected components has 2k

orientations.
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Examples 17.13.

1. The euclidean space Rd is orientable. The canonical orientation of Rd is
the orientation defined by the volume form dx1 ∧ · · · ∧ dxd. For this canonical
orientation, the canonical base of TpRd ≃ Rd has positive orientation.

2. A Lie group G is always orientable. If {α1, . . . , αd} is a base of left invariant
1-forms then µ = α1 ∧ · · · ∧ αd a left invariant volume form.

3. The sphere Sd is an orientable manifold. A volume form is given by:

ω =
d+1∑

i=1

(−1)ixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1

∣∣∣∣∣
Sd

.

We leave it as an exercise to check that this form never vanishes.

4. The real projective space RP2 is not orientable. To see this let µ ∈ Ω2(RP2)

be any differential 2-form. If π : S2 → RP2 is the quotient map, then the pull-
back π∗µ is a differential 2-form in S2. It follows from the previous example
that

π∗µ = fω,

for some smooth function f ∈ C∞(S2).
Let Φ : S2 → S2 be the anti-podal map: p 7→ −p. Since π ◦ Φ = π, we have:

Φ∗(π∗µ) = (π ◦ Φ)∗µ = π∗µ.

On the other, it is easy to check that Φ∗ω = −ω. Hence:

fω = π∗µ = Φ∗(π∗µ)

= Φ∗(fω) = (f ◦ Φ)Φ∗(ω) = −(f ◦ Φ)ω.

We conclude that f(−p) = −f(p), for all p ∈ S2. But then we must have
f(p0) = 0, at some p0 ∈ S2. Hence, π∗µ vanishes at some point. Since π is
a local diffeomorphism, we conclude that every differential form µ ∈ Ω2(RP2)

vanishes at some point, so RP2 has no volume forms, and it is non-orientable.

Let (M, [µM ]) and (N, [µN ]) be oriented manifolds. We say that a diffeo-
morphism Φ : M → N preserves orientations or that it is positive, if
[Φ∗µN ] = [µM ].

Example 17.14.
Let [dx1∧· · ·∧dxd] be the standard orientation for Rd. Given a diffeomorphism
φ : U → V , where U, V are open sets in Rd, we have:

φ∗(dx1 ∧ · · · ∧ dxd) = det[φ′(x)]dx1 ∧ · · · ∧ dxd.

Hence φ preserves the standard orientation if and only if det[φ′(x)] > 0, for
all x ∈ Rd.

One can also express the possibility of orienting a manifold in terms of
an atlas, as shown by the following proposition.
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Proposition 17.15. Let M be a manifold of dimension d. The following
statements are equivalents:

(i) M is orientable, i.e., M has a volume form.
(ii) There exists an atlas {(Ui, φi)}i∈I for M such that for all i, j ∈ I the

transition functions preserve the standard orientation of Rd.

In particular, if [µM ] is an orientation for M , then there exists an atlas
{(Ui, φi)}i∈I for M such that each chart φi : Ui → Rd is positive, where in
Rd we consider the canonical orientation.

The proof is left as an exercise.

Homework.

1. Construct the natural differentiable structure on ∧kT ∗M , for which the
canonical projection π : ∧kT ∗M →M is a submersion.

2. Determine the formulas of transformation of variables for multivector fields
and tensor fields.

3. Show that a Riemannian structure on a manifold M (see Exercise 8 in
Section 10) defines a symmetric tensor field of degree (0,2).
Note: In a chart (U, xi), a symmetric tensor field of degree (0,2) is written as

g|U =
∑

i,j

gijdx
i ⊗ dxj ,

where the components gij ∈ C∞(U) satisfy gij = gji.

4. Prove the basic properties of the pull-back and interior product of differential
forms.

5. Let Φ : M → N be a smooth map and let X ∈ X(M) and Y ∈ X(N) be
Φ-related smooth vector fields. Show that

Φ∗(iY ω) = iXΦ∗ω, ∀ω ∈ Ω(N).

6. Prove Proposition 17.15.

7. Show that for any orientable manifolds M and N the product M × N is
orientable. Conclude that the torus Td is orientable. Give an example of a
volume form in Td.

8. Show that the real projective space RPd is orientable if and only if d is odd.

9. Verify that the Klein bottle (see Example 7.8.4) is a non-orientable manifold.

10. Show that every oriented manifold (M, [µ]) has an atlas whose transition
functions preserve the standard orientation of Rd.
Hint: If (U, φ) = (U, x1, . . . , xd) is a negative chart, then

(U, φ̄) := (U,−x1, x2, . . . , xd)
is a positive chart.
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11. Let (M, g) be a Riemannian manifold of dimension d. Show that:
(a) For each p ∈ M , the map TpM → T ∗

pM , v 7→ g(v, ·), is an isomorphism,
so the inner product on the tangent space TpM induces an inner product
on the cotangent space T ∗

pM .
(b) For each p ∈ M , there exists a neighborhood U of p and orthonormal

smooth vector fields X1, . . . , Xd ∈ X(U):

〈Xi, Xj〉 = δij (Kronecker symbol).

The set {X1, . . . , Xd} is called a (local) orthonormal frame.
(c) For each p ∈ M , there exists a neighborhood U of p and orthonormal

differential forms α1, . . . , αd ∈ Ω1(U):

〈αi, αj〉 = δij (Kronecker symbol).

The set {α1, . . . , αd} is called a (local) orthonormal coframe.
(d) Assume further that (M, [µ]) is oriented. Show that there exists a volume

form µ0 ∈ Ωd(M) such that:

µ0|U = α1 ∧ · · · ∧ αd,

for every local orthonormal coframe α1, . . . , αd ∈ Ω1(U) which is positive
(i.e., α1 ∧ · · · ∧αd is positive). One call µ0 the canonical volume form
of the oriented Riemannian manifold (M, g, [µ]).

12. Let (M, g, [µ]) be an oriented Riemannian manifold of dimension d. Show
that there exists a unique linear map ∗ : Ωk(M) → Ωd−k(M) such that for
every local orthonormal coframe α1, . . . , αd which is positive (i.e., α1∧· · ·∧αd
is positive) the following properties hold:
(a) ∗1 = α1 ∧ · · · ∧ αd and ∗(α1 ∧ · · · ∧ αd) = 1;
(b) ∗(α1 ∧ · · · ∧ αk) = αk+1 ∧ · · · ∧ αd.
Show also that:

∗ ∗ ω = (−1)k(d−k)ω, where k = degω.

∗ is called the Hodge star operator.

18. Differential and Cartan Calculus

We will introduce now two important differentiation operations on differ-
ential forms: the differential of forms, which is an intrinsic derivative, and
the Lie derivative of differential forms, which is a derivative along vector
fields. These differential operations together with the algebraic operations
on differential forms that we studied in the previous section, are the basis of
a calculus on differential forms on which is usually called Cartan Calculus.

132



Let ω ∈ Ωk(M). The differential of ω is the differential form of degree
k + 1, denoted dω, defined by:

(18.1) dω(X0, . . . ,Xk) =

k∑

i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . ,Xk))+

+
∑

0≤i<j≤k
(−1)i+jω([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j . . . ,Xk),

for any smooth vector fields X0, . . . ,Xk ∈ X(M). This formula defines a
C∞(M)-multilinear, alternating, map X(M) × · · · × X(M) → C∞(M), so
that dω is indeed a smooth differential (k+1)-form.

A smooth function f ∈ C∞(M) is a degree 0 form. In this case, formula
(18.1) gives:

df(X) = X(f).

Therefore this definition matches our previous definition of the differential
of a smooth function.

Our next result shows that the differential is the only operation on the
forms which extends the differential of functions in a reasonable way:

Theorem 18.1. The differential

d : Ω•(M)→ Ω•+1(M)

is the only operation on forms satisfying the following properties:

(i) d is R-linear:

d(aω + bθ) = adω + bdθ.

(ii) d is a derivation:

d(ω ∧ θ) = (dω) ∧ θ + (−1)deg ωω ∧ (dθ).

(iii) d extends the differential of smooth functions: if f ∈ C∞(M), then

df(X) = X(f),∀X ∈ X(M).

(iv) d2 = 0.

Moreover, if Φ :M → N is a smooth map, then for every ω ∈ Ωk(N):

Φ∗dω = dΦ∗ω.

Proof. We leave it for the exercises to check that d, as defined by (18.1),
satisfies properties (i) through (iv). To prove uniqueness, we need to check
that given ω ∈ Ωk(M), then dω is determined by properties (i)–(iv).

Since d is a derivation, it is local: if ω|U = 0 on an open set U then
(dω)|U = 0. In fact, let p ∈ U and f ∈ C∞(M) with f(p) > 0 and supp f ⊂
U . Since fω ≡ 0, we find that:

0 = d(fω) = df ∧ ω + fdω.

If we evaluate both sides of this identity at p, we conclude that f(p)(dω)p =
0. Hence dω|U = 0, as claimed.
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Therefore, to prove uniqueness, it is enough to consider the case where
ω ∈ Ωk(U), where U is the domain of some local chart (x1, . . . , xd). In this
case we have:

ω =
∑

i1<···<ik
ωi1···ikdx

i1 ∧ · · · ∧ dxik .

Using only properties (i)–(iv) we find:

dω =
∑

i1<···<ik
d(ωi1···ikdx

i1 ∧ · · · ∧ dxik) (by (i))

=
∑

i1<···<ik
d(ωi1···ik) ∧ dxi1 ∧ · · · ∧ dxik (by (ii) and (iv))

=
∑

i1<···<ik

∑

i

∂ωi1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik (by (iii)).

The last expression defines a differential form of degree k + 1 in U . Hence,
dω is completely determine by properties (i)–(iv), as claimed.

The proof that the differential commutes with pull-backs also follows if
one proves it for every local chart. We leave the (easy) computation to the
exercises. �

As this proof shows, one can compute the differential of a form in local
coordinates using only properties (i)–(iv). This is often much more efficient
than applying directly the formula (18.1).

Example 18.2.
Let ω = eydx ∧ dz + ezdy ∧ dz ∈ Ω2(R3). Using properties (i)–(iv), we find:

dω = d(eydx ∧ dz + ezdy ∧ dz)

= (dey) ∧ dx ∧ dz + d(ez) ∧ dy ∧ dz

= eydy ∧ dx ∧ dz + ezdz ∧ dy ∧ dz = −eydx ∧ dy ∧ dz.

The operation d : Ω•(M) → Ω•+1(M) is also referred to as exterior
differentiation, since it increases the degree of a form. There is another type
of differentiation of a form which preserves the degree:

Definition 18.3. The Lie derivative of a differential form ω ∈ Ωk(M)
along a vector X ∈ X(M) is the differential form LXω ∈ Ωk(M) defined by:

LXω =
d

dt
(φtX)

∗ω

∣∣∣∣
t=0

= lim
t→0

1

t

(
(φtX)

∗ω − ω
)
.

Example 18.4.
Let ω = eydx ∧ dz + ezdy ∧ dz ∈ Ω2(R3) and X = x ∂

∂y ∈ X(R3). The flow of

X is given by φtX(x, y, z) = (x, y + tx, z). Hence, we find that:

(φtX)∗ω = ey+txdx ∧ dz + ezd(y + tx) ∧ dz

= ey+txdx ∧ dz + ezdy ∧ dz + tezdx ∧ dz
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Then:

LXω =
d

dt
(φtX)∗ω

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

(
ey+txdx ∧ dz + ezdy ∧ dz + tezdx ∧ dz

)

= xeydx ∧ dz + ezdx ∧ dz.

In most examples, it is impossible to find explicitly the flow of a vector
field. Still the basic properties of the Lie derivative listed in the next propo-
sition allow one to find the Lie derivative without knowledge of the flow.
The proof is left as an exercise:

Proposition 18.5. Let X ∈ X(M) and ω, η ∈ Ω•(M). Then:

(i) LX(aω + bη) = aLXω + bLXη for all a, b ∈ R.
(ii) LX(ω ∧ η) = LXω ∧ η + ω ∧ LXη.
(iii) LX(f) = X(f), if f ∈ Ω0(M) = C∞(M).
(iv) LXdω = dLXω.
Example 18.6.
Let us redo Example 18.4 using only properties (i)-(iv) in the previous propo-
sition:

LXω = LX(eydx ∧ dz + ezdy ∧ dz)

= LX(ey)dx ∧ dz + eyLX(dx) ∧ dz + eydx ∧ LX(dz)+

+ LX(ez)dy ∧ dz + ezLX(dy) ∧ dz + ezdy ∧ LX(dz)

= X(ey)dx ∧ dz + ezdX(y) ∧ dz

= xeydx ∧ dz + ezdx ∧ dz.

There is still another efficient way to compute the Lie derivative, by ap-
plying a formula which relates all three basic operations on forms: Lie deriv-
ative, exterior differential and interior product. This “magic” formula often
plays an unexpected role.

Theorem 18.7 (Cartan’s Magic Formula). Let X ∈ X(M) and ω ∈ Ω(M).
Then:

(18.2) LXω = iXdω + diXω.

Proof. By Proposition 18.5, LX : Ω(M) → Ω(M) is a derivation. The
properties of d and iX give that iXd + diX : Ω(M) → Ω(M) is also a
derivation. Hence, it is enough to check that both derivations take the
same values on differential forms of the type ω = f and ω = dg, where
f, g ∈ C∞(M).

On the one hand, the properties in Proposition 18.5, give:

LX(f) = X(f), LX(dg) = dLXg = d(X(g)).
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On the other hand, the properties of d and iX yield:

(iXd + diX)f = iXdf = X(f),

(iXd + diX)dg = d(iXdg) = d(X(g)).

�

Example 18.8.
Let us redo Example 18.4 using Cartan’s Magic Formula:

LXω = iXdω + diXω

= iX(−eydx ∧ dy ∧ dz) + d(xezdz)

= xeydx ∧ dz + ezdx ∧ dz.

Homework.

1. Show that d defined by formula (18.1), satisfies properties (i)–(iv) in Theo-
rem 18.1.

2. Let Φ :M → N be a smooth map. Show that for any form ω ∈ Ωk(M):

Φ∗dω = dΦ∗ω.

3. Let I ⊂ Ω(M) be an ideal generated by k linearly independent differen-
tial forms α1, . . . , αk ∈ Ω1(M) (i.e., such that {α1|p, . . . , αk|p} is a linearly
independent set for every p ∈ M). Show that the following statements are
equivalent:
(a) I is a differential ideal, i.e., if α ∈ I then dα ∈ I;
(b) dαi =

∑
j ωij ∧ αj , for some 1-forms ωij ∈ Ω1(M);

(c) If ω = α1 ∧ · · · ∧ αk, then dω = α ∧ ω, for some 1-form α ∈ Ω1(M).

(d) The distribution D =
⋂k
i=1 kerαi is involutive.

4. Prove the properties of the Lie derivative given in Proposition 18.5.

5. Let X,Y ∈ X(M) be vector fields and ω ∈ Ω(M) a differential form. Show
that:

L[X,Y ]ω = LX(LY ω)− LY (LXω).

6. Let Φ : M → N be smooth. Show that if X ∈ X(M) and Y ∈ X(N) are
Φ-related vector fields, then

Φ∗(LY ω) = LX(Φ∗ω),

for every differential form ω ∈ Ω(N).

7. Let X ∈ X(M) and ω ∈ Ωk(M). Show that:

(18.3) LX(ω(X1, . . . , Xk)) = LXω(X1, . . . , Xk) +

k∑

i=1

ω(X1, . . . ,LXXi, . . . , Xk).
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8. LetM be a manifold equipped with a volume form µ. Given a vector fieldX ,
the divergence of X is the unique function divµ(X) ∈ C∞(M) that satisfies:

LXµ = divµ(X)µ.

Show that:
(a) a complete vector field X ∈ X(M) is divergence free (i.e., divµ(X) = 0)

if and only the flow of X preserves the volume form µ, i.e., if and only if:

(φtX)∗µ = µ, ∀t ∈ R.

(b) if µ = dx1 ∧ · · · ∧ dxd is the canonical volume form on M = Rd then for

a vector field X =
∑d

i=1X
i ∂
∂xi one has:

divµ(X) =

d∑

i=1

∂X i

∂xi
.

(c) if (M, g, [µ]) is an oriented Riemannian manifold with associated volume
form µ and Hodge-star operator ∗ (see Exercises 17.11 and 17.12), then:

divµ(X) = ∗ d ∗X.

9. Let (M, g) be a Riemannian manifold. Given a function f ∈ C∞(M) one
defines its gradient to be the unique vector field grad f ∈ X(M) satisfying:

g(gradf, v) = df(v), ∀v ∈ TM.

If (M, g, [µ]) is also oriented, one defines the laplacian of f : M → R to be
the function ∆f :M → R given by:

∆f := − div(grad f).

Let M = R3 with its canonical Riemannian structure and canonical orienta-
tion. Find the gradient, the divergence and the laplacian in cylindrical and in
spherical coordinates.

10. In a smooth manifold M denote by Xk(M) the vector space of multivector
fields of degree k. Show that there exists a unique R-bilinear operation [ , ] :
Xp+1(M)×Xq+1(M)→ Xp+q+1(M) which coincides with the usual Lie bracket
of vector fields when p = q = 0 and satisfies:
(a) [P,Q] = −(−1)pq[Q,P ];
(b) [P,Q ∧R] = [P,Q] ∧R+ (−1)p(q+1)Q ∧ [P,R];
Verify that this bracket satisfies the following Jacobi type identity:

(−1)pr[P, [Q,R]] + (−1)qp[Q, [R,P ]] + (−1)rq[R, [P,Q]] = 0.

In all these identities, P ∈ Xp+1(M), Q ∈ Xq+1(M) and R ∈ Xr+1(M).
Note: This operation is known as the Schouten bracket and is the counter-
part for multivector fields of the exterior differential for forms. It is an example
of a graded Lie bracket.
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19. Integration on Manifolds

Ultimately, our interest on differential forms of degree d lies in the fact
that they can be integrated over oriented d-manifolds, as we now explain.

Let us start with the case where M = Rd, with the usual orientation. If
U ⊂ Rd is open, then every differential form ω ∈ Ωd(U) can be written as:

ω = f dx1 ∧ · · · ∧ dxd, (f ∈ C∞(U)).

We say that ω is integrable in U and we define its integral by:
∫

U
ω =

∫

U
f(x1, . . . , xd)dx1 · · · dxd,

provided the integral in the right hand side exists and is finite.
The usual change of variable formula for the integral in Rd yields the

following result:

Lemma 19.1. Let Φ : U → Rd be a diffeomorphism defined in an open
connected set U ⊂ Rd. If ω is a differential form integrable in Φ(U), then
Φ∗ω is integrable in U and

∫

Φ(U)
ω = ±

∫

U
Φ∗ω,

where ± is the sign of det(Φ′(p)) for any p ∈ U .

Therefore, as long as we consider only orientation preserving diffeomor-
phisms, the integral is invariant under diffeomorphisms. For this reason, we
will only consider the integral of differential forms over oriented manifolds.
It is possible to define the integral over non-oriented manifolds, but this
requires introducing densities, which generalize the notion of volume form.

We will also assume, in order to avoid convergence issues, that the differ-
ential forms ω ∈ Ωk(M) to be integrated have support

suppω = {p ∈M : ωp 6= 0},
a compact set. We will denote by Ωkc (M) the smooth differential forms of
degree k with compact support.

Definition 19.2. If M is an oriented d-manifold and ω ∈ Ωdc(M) has com-
pact support, we define its integral over M as follows:

• If suppω ⊂ U , where (U, φ) is a positive coordinate chart, then:
∫

M
ω :=

∫

φ(U)
(φ−1)∗ω.

• More generally, we consider an open cover of M by positive charts
(Uα, φα) and a partition of unity {ρα} subordinated to this cover,
and we define: ∫

M
ω =

∑

α

∫

M
ραω.
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We remark that the sum in this definition is finite, since we assume that
suppω is compact. It is easy to check that the definition is independent of
the choices of covering by positive charts and of partition of unity. We leave
it to the exercises the check of all these details.

It is also easy to check, that the integral satisfies the following basic
properties:

(a) Linearity: If ω, η ∈ Ωdc(M) and a, b ∈ R, then:
∫

M
(aω + bη) = a

∫

M
ω + b

∫

M
η.

(b) Additivity: If M =M1 ∪M2 and ω ∈ Ωdc(M), then:
∫

M
ω =

∫

M1

ω +

∫

M2

ω,

provided that M1 ∩M2 has zero measure.

Moreover, we have:

Theorem 19.3 (Change of Variables Formula). Let M and N be oriented
manifolds of dimension d and let Φ : M → N be an orientation preserving
diffeomorphism. Then, for every differential form ω ∈ Ωdc(N), one has:

∫

N
ω =

∫

M
Φ∗ω.

Proof. Since Φ is a diffeomorphism and preserves orientations, we can find
an open cover of M by positive charts (Uα, φα), such that the open sets
Φ(Uα) are domains of positive charts ψα : Φ(Uα) → Rd for N . Let {ρα}
be a partition of unity for N subordinated to the cover {Φ(Uα)}, so that
{ρα ◦ Φ} is a partition of unity for M subordinated to the cover {Uα}. By
Lemma 19.1, we find:

∫

Φ(Uα)
ραω =

∫

Uα

Φ∗(ραω) =
∫

Uα

(ρα ◦ Φ)Φ∗ω.

Hence, we obtain:
∫

N
ω =

∑

α

∫

N
ραω

=
∑

α

∫

Φ(Uα)
ραω

=
∑

α

∫

Uα

(ρα ◦ Φ)Φ∗ω

=
∑

α

∫

M
(ρα ◦ Φ)Φ∗ω =

∫

M
Φ∗ω.

�
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The computation of the integral of differential forms from the definition
is not practical since it uses a partition of unity . The following result can
often be applied to avoid the use of partitions of unity :

Proposition 19.4. Let M be an oriented manifold of dimension d and
let C ⊂ M be a closed subset of zero measure. For any differential form
ω ∈ Ωdc(N), we have: ∫

M
ω =

∫

M−C
ω.

Proof. Using a partition of unity we can reduce the result to the case where
M is an open subset of Rd. For an open set U ⊂ Rd, the result reduces to
the equality: ∫

U
fdx1 . . . dxd =

∫

U−C
fdx1 . . . dxd,

where f : U → R is smooth and bounded. This result holds, since C has
zero measure. �

Example 19.5.
Given a volume form µ is a compact manifold M , we can define the volume

of M relative to µ to be the positive number:

volµ(M) :=

∫

M

µ,

where the integral is relative to the orientation [µ].
For example, consider on the sphere S2 the standard orientation defined by

the volume form µ ∈ Ω2(S2):

µ = i∗(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy).

By the proposition above, we have that:

volµ(S
2) =

∫

S2

µ =

∫

S2−p
µ,

for any p ∈ S2. Let us take the north pole p = pN . Then the stereographic
projection πN : S2 − {pN} → R2 defines a global chart for S2 − {pN} whose
inverse is the parameterization:

π−1
N (u, v) =

1

u2 + v2 + 1
(2u, 2v, u2 + v2 − 1).

We then compute:

(π−1
N )∗µ = (i ◦ π−1

N )∗(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)

= − 4

(u2 + v2 + 1)2
du ∧ dv.

Which shows that πN is a negative chart. Therefore:
∫

S2

µ =

∫

R2

4

(u2 + v2 + 1)2
du ∧ dv.
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The integral on the right can be computed using polar coordinates, and the final
result is:

volµ(S
2) =

∫

S2

µ =

∫ +∞

0

∫ 2π

0

4r

(r2 + 1)2
dθdr = 4π

Our next aim is to generalize Stokes Theorem to differential forms.
Let M be a manifold with boundary and p ∈ ∂M . In a boundary chart

(U, x1, . . . , xd) centered at p, a tangent vector v ∈ TpM can be written in
the form:

v =

d∑

i=1

vi
∂

∂xi

∣∣∣∣
p

.

and the tangent vectors in Tp(∂M) are exactly the tangent vectors whose
last component vanishes:

Tp(∂M) = {v ∈ TpM : vd = 0}.
We will say that a tangent vector is exterior to ∂M if vd < 0. It is easy to
see that this condition is independent of the choice of boundary chart.

We can use this remark to construct the induced orientation on ∂M ,
whenever (M, [µ]) is an oriented manifold with boundary: if p ∈ ∂M , the
orientation of Tp(∂M) is, by definition, [ivµp] where v ∈ TpM is any exterior
tangent vector to ∂M . Is easy to see that this definition is independent of
choice of exterior tangent vector so we have a well defined orientation [∂µ]
for ∂M . Henceforth, whenever M is an oriented manifold with boundary,
we will always consider the induced orientation on ∂M .

Theorem 19.6 (Stokes Formula). Let M be an oriented manifold with
boundary of dimension d. If ω ∈ Ωd−1

c (M) then:
∫

M
dω =

∫

∂M
ω.

Proof. We divide the proof into several cases.

The case M = Rd: In this case, we can write:

ω =
d∑

i=1

fidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd,

where fi are compactly supported functions. We find its differential to be:

dω =
d∑

i=1

(−1)i−1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxd.

By Fubini’s Theorem:

∫

Rd

dω =
d∑

i=1

(−1)i−1

∫

Rd−1

(∫ +∞

−∞

∂fi
∂xi

dxi
)
dx1 · · · d̂xi · · · dxd = 0.
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where we used that fi has compact support. Since ∂Rd = ∅, Stokes Formula
for Rd follows.

The case M = Hd: We proceed as in the case of Rn, but this time we
obtain
∫

Hd

dω =
d∑

i=1

(−1)i−1

∫

Hd

∂fi
∂xi

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd

=

d−1∑

i=1

(−1)i−1

∫

Hd−1

(∫ +∞

−∞

∂fi
∂xi

dxi
)
dx1 · · · d̂xi · · · dxd+

+ (−1)d−1

∫

Rd−1

(∫ +∞

0

∂fd
∂xd

dxd
)
dx1 · · · dxd−1

= (−1)d
∫

Rd−1

fd(x
1, . . . , xd−1, 0)dx1 · · · dxd−1.

On the other hand, ∂Hd = {(x1, . . . , xd) : xd = 0}, hence
∫

∂Hd

ω =

∫

∂Hd

fd(x
1, . . . , xd−1, 0)dx1 ∧ · · · ∧ dxd−1.

In ∂Hd = Rd−1 we must take the induced orientation from the canonical
orientation [µ] = [dx1 ∧ · · · ∧ dxd] in Hd. The induced orientation is given
by: [(−1)ddx1 ∧ · · · ∧ dxd−1] so we conclude that:

∫

∂Hd

ω = (−1)d
∫

∂Rd−1

fd(x
1, . . . , xd−1, 0)dx1 · · · dxd−1.

Therefore, Stokes Formula also holds for the half space Hd.

The case of general M : We fix an open cover of M by positive charts
(Uα, φα) and we choose a partition of unity {ρα} subordinated to this cover.
We can also assume that the charts have been chosen so that φα(Uα) is
either Rd or Hd. The forms ραω have compact support contained in Uα:

suppραω ⊂ suppρα ∩ suppω ⊂ Uα.
and since each Uα is diffeomorphic to either Rd or to Hd, by the change of
variable formula, we already know that:∫

Uα

d(ραω) =

∫

∂Uα

ραω.

Notice that ∂Uα = Uα ∩ ∂M , and so by the linearity and the additivity of
the integral, we obtain:∫

M
dω =

∑

α

∫

M
d(ραω) =

∑

α

∫

Uα

d(ραω)

=
∑

α

∫

Uα∩∂M
ραω =

∫

∂M

∑

α

ραω =

∫

∂M
ω.

�
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Corollary 19.7. Let M be an oriented, manifold without boundary of di-
mension d. For any ω ∈ Ωd−1

c (M):
∫

M
dω = 0.

Homework.

1. Show that the integral of differential forms is linear and additive relative to
the region of integration.

2. In Hd consider the standard orientation [µ] = [dx1∧· · ·∧dxd]. Show that the
induced orientation in ∂Hd = Rd−1 is given by [∂µ] = [(−1)ddx1∧· · ·∧dxd−1].

3. Consider the n-torus Tn as an embedded submanifold of R2n:

Tn = {(x1, . . . , xn, y1, . . . , yn) ∈ R2n : (xi)2 + (yi)2 = 1, i = 1, . . . , n},
and let ω ∈ Ωn(Tn) be the form

ω =
(
dx1 ∧ · · · ∧ dxn

)
|Tn .

Compute the integral
∫
Tn ω for an orientation of your choice, in the following

ways:
(a) using the definition, and
(b) using Stokes formula.

4. Find the volume of Sd for the standard volume form on the sphere:

µ =

d+1∑

i=1

(−1)i+1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1

∣∣∣∣∣
Sd

.

5. Let (M, g, [µ]) is an oriented Riemannian manifold with boundary, and with
associated volume form µ and Hodge-star operator ∗. If f : M → R is a
smooth, compactly supported function, define the integral of f over M by:∫

M

f ≡
∫

M

∗f.

If X is any vector field, prove the classical Divergence Theorem:∫

M

divµX =

∫

∂M

X · n,

where n : ∂M → T∂MM is the unit exterior normal vector field along ∂M .

6. LetM be an oriented Riemannian manifold with boundary. For any smooth
function f : M → R denote by ∂f

∂n the function n(f) : ∂M → R, where n is
the unit exterior normal vector field along ∂M . Verify the following Green
identities: ∫

∂M

f
∂g

∂n
=

∫

M

〈grad f, grad g〉 −
∫

M

f∆g,

∫

∂M

(
f
∂g

∂n
− g ∂f

∂n

)
=

∫

M

(g∆f − f∆g),

where f, g ∈ C∞(M).
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7. Let G be a Lie group of dimension d.
(a) Show that if ω, ω′ ∈ Ωd(G) are left invariant and [ω] = [ω′], then

∫

G

fω = a

∫

G

fω′, ∀f ∈ C∞(G),

for some real number a > 0.
Fix an orientation µ = [ω] for G defined by a left invariant form ω ∈ Ωd(G).
Define the integral of f : G→ R relative to this orientation by:∫

G

f ≡
∫

G

fω.

(b) Show that the integral is left invariant, i.e., for every g ∈ G is valid the
identity: ∫

G

f ◦ Lg =
∫

G

f.

(c) Give an example of a Lie group where the integral is not right invariant.
For each g ∈ G, the differential form R∗

gω is left invariant, hence

R∗
gω = λ̃(g)ω,

for some smooth function λ̃ : G→ R. The modular function λ : G→ R+ is

defined to be λ(g) = |λ̃(g)|.
(d) Show that the integral is right invariant if and only if G is unimodular,

i.e., λ ≡ 1.
(e) Show that a compact Lie group is unimodular.

8. Let G be a compact Lie group and let Φ : G→ GL(V ) be a representation
of G. Show that there exists an inner product 〈 , 〉 in V such that this
representation is by orthogonal transformations:

〈Φ(g) · v,Φ(g) ·w〉 = 〈v,w〉, ∀g ∈ G.
(Hint: Use the fact that a compact Lie group is unimodular.)

9. Let G be a compact Lie group. Show that G has a bi-invariant Riemannian
metric, i.e., a Riemannian metric which is both right and left invariant.
(Hint: A left invariant Riemannian metric in G is also right invariant if and
only if the inner product 〈 , 〉 induced in g ≃ TeG satisfies:

〈Ad(g) ·X,Ad(g) · Y 〉 = 〈X,Y 〉, ∀g ∈ G,X, Y ∈ g.

20. de Rham Cohomology

The equation d2 = 0, which so far we have made little use, has in fact
some deep consequences, as we shall see in the next few sections.

Definition 20.1. Let ω ∈ Ωk(M).

(i) ω is called a closed form if dω = 0.
(ii) ω is called an exact form if ω = dη, for some η ∈ Ωk−1(M).

We will denote by Zk(M), respectively Bk(M), the subspaces of closed, re-
spectively exact, differential forms of degree k.
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In other words, the closed forms form the kernel of d, while the exact forms
form the image of d. The pair (Ω(M),d) is called the de Rham complex of
M and we will often represent it as:

· · · // Ωk−1(M)
d // Ωk(M)

d // Ωk+1(M) // · · ·

The fact that d2 = 0 means that every exact form is closed:

Bk(M) ⊂ Zk(M).

One should think of (Ω(M),d) as a set of differential equations associ-
ated with the manifold M . Finding the closed forms, means to solve the
differential equation:

dω = 0.

On the other hand, the exact forms can be thought of as the trivial solutions
of this equation. We are interested in the space of all solutions modulus the
trivial solutions, and this is called the de Rham cohomology of M :

Definition 20.2. The de Rham cohomology space of degree k is the
vector space:

Hk(M) ≡ Zk(M)/Bk(M).

In general, the computation of the cohomology spaces Hk(M) directly
from the definition is very hard. In the next sections we will study several
properties of the de Rham cohomology spaces which can be used to compute
them. For now we list some easy consequences of the definition and we give
a very simple example.

Proposition 20.3. Let M be a smooth manifold. Then:

(i) H0(M) = Rl, where l is the number of connected components of M ;
(ii) Hk(M) = {0}, if k < 0 or k > dimM .

Proof. We have Ω0(M) = C∞(M) and if f ∈ C∞(M) satisfies df = 0, then
f is locally constant. Hence:

Z0(M) = Rl,

where l is the number of connected components of M . Since B0(M) = {0},
we have that H0(M) = Rl. On the other hand, since Ωk(M) = {0} if
k > dimM , the result follows. �

Example 20.4.
Let M = S1 = {(x, y) ∈ R2 : x2 + y2 = 1}. Since S1 is connected, it follows
that:

H0(S1) = R.

Now to compute H1(S1), we consider the 1-form −ydx+xdy ∈ Ω1(R2). This
form restricts to a 1-form in S1 which we will denote by ω. Since dim S1 = 1,
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ω is closed. On the other hand, consider the parameterization σ :]0, 2π[→
S1 − {(1, 0)}, given by σ(t) = (cos t, sen t). Then:

∫

S1

ω =

∫

]0,2π[

σ∗ω

=

∫

]0,2π[

(− sin t)d cos t+ cos td sin t =

∫ 2π

0

dt = 2π.

By the corollary to Stokes Formula, we see that ω is not exact, so it represents
a non-trivial cohomology class [ω] ∈ H1(S1).

The form ω has a simple geometric meaning: since σ∗ω = dt, we have that
ω = dθ in S1 − {(1, 0)}, where θ : S1 − {(1, 0)} → R is the angle coordinate
(the inverse of the parameterization σ). Sometimes one denotes ω by dθ, in
spite of the fact that this is not an exact form.

We claim that [ω] is a basis for H1(S1). Given a form α ∈ Ω1(S1) we have
that α = fω, for some function f : S1 → R. Let

c =
1

2π

∫

S1

α =
1

2π

∫ 2π

0

f(θ)dθ,

and define g : R→ R by:

g(t) =

∫ t

0

(α− cω) =
∫ t

0

(f(θ)− c)dθ.

Since:

g(t+ 2π) =

∫ t+2π

0

(f(θ) − c)dθ

=

∫ t

0

(f(θ)− c)dθ +
∫ t+2π

t

(f(θ)− c)dθ

= g(t) +

∫ 2π

0

(f(θ)− c)dθ = g(t),

we obtain a C∞ function g : S1 → R. In S1 − {(1, 0)}, we have that

dg = f(θ)dθ − cdθ = α− cω.
Hence, we must have dg = α− cω in S1 so that [α] = c[ω]. This shows that [ω]
generates H1(S1) so we conclude that:

H1(S1) ≃ R.

The wedge product ∧ : Ωk(M) × Ωl(M) → Ωk+l(M) induces the cup
product in the de Rham cohomology of M which is defined by setting:

[α] ∪ [β] := [α ∧ β].
We leave it as an exercise to check that this definition is independent of the
choice of representatives of the cohomology classes. With this product the
space:

H•(M) =
⊕

k∈Z
Hk(M)

becomes a Z-graded ring (in fact, a Z-graded algebra).
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If Φ : M → N is a smooth map, then pull-back map gives a linear map
Φ∗ : Ω•(N)→ Ω•(M) which commutes with the differentials:

Φ∗dω = d(Φ∗ω).

Therefore, Φ∗ takes closed (respectively, exact) forms to closed (respectively,
exact) forms, and we have an induced map in cohomology:

Φ∗ : H•(N)→ H•(M), [ω] 7−→ [Φ∗ω].

The induced map Φ∗ : H•(N)→ H•(M) is a ring homomorphism:

Φ∗([α] + [β]) = Φ∗[α] + Φ∗[β]. Φ∗([α] ∪ [β]) = Φ∗[α] ∪ (Φ∗[β].

Moreover, we have:

(i) If Φ :M → N and Ψ : N → Q are smooth maps, then the composi-
tion (Ψ ◦ Φ)∗ : H•(Q)→ H•(M) satisfies (Ψ ◦ Φ)∗ = Φ∗ ◦Ψ∗;

(ii) The identity mapM →M induces the identity linear transformation
H•(M)→ H•(M).

One can summarize (i) and (ii) as follows: the assignment which associates
to a differential manifold M its de Rham complex (Ω(M),d) and to each
smooth map Φ : M → N the pull-back Φ∗ : Ω•(N) → Ω•(M) is a con-
travariant functor from the category of differential manifolds to the category
of cochain complexes. In particular, when Φ :M → N is a diffeomorphism,
the induced linear map Φ∗ : H•(N) → H•(M) is an isomorphism in coho-
mology. Hence, we have:

Corollary 20.5. The de Rham cohomology ring is an invariant of differen-
tiable manifolds: if M and N are diffeomorphic, then H•(M) and H•(N)
are isomorphic rings.

Remark 20.6 (A Crash Course in Homological Algebra - part I ). The de
Rham complex (Ω•(M),d) and the compactly supported de Rham com-
plex (Ω•

c(M),d) are examples of cochain complexes. In general, one calls a
cochain complex a pair (C,d) where:

(a) C is a Z-graded vector space, i.e., C = ⊕k∈ZCk is the direct sum of
vector spaces 3;

(b) d : C → C is a linear transformation of degree 1, i.e., d(Ck) ⊂ Ck+1,
such that d2 = 0.

One represents a complex by the diagram:

· · · // Ck−1 d // Ck
d // Ck+1 // · · ·

The transformation d is called the differential of the complex.
For any cochain complex, (C,d) one defines the subspace of all cocycles:

Zk(C) ≡ {z ∈ Ck : dz = 0},
3More generally, one can consider complexes formed by Z-graded modules over commuta-
tive rings with unit (e.g., abelian groups). Most of the following statements are valid for
the category of modules over commutative rings with unit, with obvious modifications.
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and the subspace of all coboundaries

Bk(C) ≡ {dz : z ∈ Ck−1}.
Since d2 = 0, we have that Bk(C) ⊂ Zk(C). The cohomology of (C,d) is
the direct sum H•(C) = ⊕k∈ZHk(C) of all the cohomology spaces of degree
k, which are defined by:

Hk(C) =
Zk(C)

Bk(C)
.

Given two cochain complexes (A,dA) and (B,dB), a cochain map of
degree d is a linear map f : A→ B such that:

(a) f shifts the grading by d, i.e., f(Ak) ⊂ Bk+d;
(b) f commutes with the differentials, i.e., fdA = dBf .

One represents a cochain map by a commutative diagram:

· · · // Ak−1 dA //

f
��

Ak
dA //

f
��

Ak+1 //

f
��

· · ·

· · · // Bk+d−1
dB

// Bk+d
dB

// Bk+d+1 // · · ·

It should be clear that a cochain map f : A→ B takes cocycles to cocycles
and coboundaries to coboundaries. Hence, f induces a linear map in coho-
mology, denoted by the same letter: f : H•(A)→ H•+d(B). Most often we
consider cochain maps of degree 0, so we will omit mentioning the degree.

The cochain complexes and cochain maps form a category, and their study
is one of the central themes of Homological Algebra.

Notice that the differential d takes a compactly supported form to a com-
pactly supported form, so we have another complex (Ωc(M),d).

Definition 20.7. The compactly supported de Rham cohomology space

of degree k is the vector space:

Hk
c (M) ≡ Zkc (M)/Bk

c (M),

where Zkc (M) ⊂ Ωkc (M), respectively Bk
c (M) ⊂ Ωkc (M), denotes the sub-

spaces of closed, respectively exact, compactly supported forms of degree k.

Obviously, Hk(M) = Hk
c (M) if M is compact. In general, the inclusion

Ωkc (M) ⊂ Ωk(M) gives a linear map in cohomology:

Hk
c (M)→ Hk(M).

Notice that this map, in general, is neither injective nor surjective:

(i) given a closed form ω ∈ Ωk(M) one may not be able to find a coho-
mologous form ω + dη with compact support, and

(ii) given an exact form ω = dη ∈ Ωkc (M) one may not be able to find
another primitive η′ with compact support.
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Hence, Hk
c (M) and Hk(M) can be very different. This can be seen already

in degree 0:

Proposition 20.8. Let M be a smooth manifold. Then:

(i) H0
c (M) = Rs, where s is the number of compact connected components

of M ;
(ii) Hk

c (M) = {0}, if k < 0 or k > dimM .

Proof. If f ∈ C∞
c (M) satisfies df = 0, then f is constant in the compact

connected components of M and is zero in the non-compact connected com-
ponents. Since B0

c (M) = {0}, we conclude that

H0
c (M) = Rs,

where s is the number of compact connected components of M . �

Similar to what we saw before, the wedge product of forms induces a cup
product:

∪ : Hk
c (M)×H l

c(M)→ Hk+l
c (M), [α] ∪ [β] := [α ∧ β],

so we have a Z-graded ring (in fact, a Z-graded algebra):

H•
c (M) =

⊕

k∈Z
Hk
c (M).

The pullback by a smooth map Φ : M → N of a form ω with compact
support is a form Φ∗ω that may fail to have compact support. However, for
a proper map Φ, we do have an induced map in cohomology:

Φ∗ : Hk
c (N)→ H∗

c (M).

This defines a functor from the category of differential manifolds and smooth
proper maps to the category of cochain complexes, which assigns to a dif-
ferentiable manifold M its compactly supported de Rham complex.

Homework.

1. Show that H1(Td) = Rd, using the definition of the de Rham cohomology.
(Hint: Show that a basis for H1(Td) is given by {[dθ1], . . . , [dθd]}, where
(θ1, . . . , θd) are the angles on each S1 factor.)

2. Consider the 2-sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
(a) Show that every closed 1-form ω ∈ Ω1(S2) is exact.
(b) Show that the 2-form in R3 given by

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy.

induces by restriction to S2 a non-trivial cohomology class [ω] ∈ H2(S2).
(Hint: For (a), you can use the fact that a closed 1-form in R2 is always
exact.)

3. Use de Rham cohomology to prove that T2 and S2 are not diffeomorphic
manifolds.
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4. Show that if M is a compact, orientable, d-manifold, then Hd(M) 6= 0.

5. Show that the wedge product ∧ : Ωk(M) × Ωl(M) → Ωk+l(M) induces
a well-defined product ∪ in the de Rham cohomology of M , which makes
H(M) = ⊕kHk(M) into a ring (actually, an algebra over R).

6. A symplectic form on a manifold M of dimension 2n is a 2-form ω ∈ Ω2(M)
such that dω = 0 and ∧nω is a volume form. Show that if M is compact and
admits some symplectic form, then H2k(M) 6= 0 for k = 0, . . . , n.
(Hint: Use the ring structure of H•(M).)

21. The de Rham Theorem

We saw in the previous section that de Rham cohomology is an invariant
of differential manifolds. Actually, de Rham cohomology is a topological
invariant. This is a consequence of the famous de Rham Theorem, which
shows that for any smooth manifold its singular cohomology with real coef-
ficients is isomorphic with its de Rham cohomology. Our aim in this section
is to present the ingredients and the statement of this result. Several proofs
will be left open, since they go beyond the scope of this notes and require
more advanced material.

Singular Homology. We recall the definition of the singular homology of a
topological space M . Although we will continue to use the letter M , the
following discussion only uses the topology of M .

We denote by ∆k ⊂ Rk+1 the standard k-simplex:

∆k = {(t0, . . . , tk) ∈ Rk+1 :

k∑

i=0

ti = 1, ti ≥ 0}.

Note that ∆0 = {1} has only one element.

∆0 ∆1 ∆2

Definition 21.1. A singular k-simplex in M is a continuous map σ :
∆k →M . A singular k-chain is a formal linear combination

c =

p∑

i=1

aiσi,

where ai ∈ R and the σi are singular k-simplices.
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We will denote by Sk(M ;R) the set of all singular k-chains. It is a real
vector space. In fact, formally, Sk(M ;R) is the free vector space generated
by the set of all singular k-simplices. One can also consider other abelian
rings as coefficients besides R, but here we will consider only real coefficients,
since this is the case of interest to relate to differential forms.

We define the i-face map of the standard k-simplex, where 0 ≤ i ≤ k,
to be the map εi : ∆k−1 → ∆k defined by:

εi(t0, . . . , tk−1) = (t0, . . . , ti−1, 0, ti, . . . , tk−1).

These face maps of the standard k-simplex induce face maps εi of any sin-
gular k-simplex σ : ∆k →M by setting:

εi(σ) = σ ◦ εi.
These clearly extend by linearity to any k-chain, yielding linear maps

εi : Sk(M ;R)→ Sk−1(M ;R),

and these lead to the following definition:

Definition 21.2. The boundary of a k-chain c is the (k − 1)-chain ∂c
defined by

∂c =

k∑

i=0

(−1)iεi(c).

The geometric meaning of this definition is that we consider the faces
of each simplex with a certain choice of signs, which one should view as
some kind of orientations of the faces. We illustrate this choice in the next
example.

Example 21.3.
The boundary of the standard 2-simplex σ =id: ∆2 → R3 is the chain:

∂σ = ε0(σ) − ε1(σ) + ε2(σ),

where ε0, ε1 and ε2 are the 1-simplices (faces) given by:

ε0(σ)(t0, t1) = (0, t0, t1),

ε1(σ)(t0, t1) = (t0, 0, t1),

ε2(σ)(t0, t1) = (t0, t1, 0).

We can represent this choice of signs by including orientations on the faces of
the simplex, as shown schematically by the following figure:

σ

ε0(σ)

−ε1(σ)

ε2(σ)
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Also, the 1-simplices ε0, ε1 and ε2 have boundaries the 0-chains:

∂ε0(σ)(1) = ε0(σ)(0, 1)− ε0(σ)(1, 0) = (0, 0, 1)− (0, 1, 0),

∂ε1(σ)(1) = ε1(σ)(0, 1)− ε1(σ)(1, 0) = (0, 0, 1)− (1, 0, 0),

∂ε2(σ)(1) = ε2(σ)(0, 1)− ε2(σ)(1, 0) = (0, 1, 0)− (1, 0, 0).

Note that:

∂2σ = ∂(∂σ) = ∂ε0(σ) − ∂ε1(σ) + ∂ε2(σ) = 0.

We noticed in this example that ∂2σ = 0. This is actually a general fact
which is a consequence of the judicious choice of signs and parameterizations
of the faces. We leave its proof as an exercise:

Lemma 21.4. For every singular chain c:

∂(∂c) = 0.

In this way we obtain a complex S(M ;R) = ⊕k∈ZSk(M ;R):

· · · Sk−1(M ;R)oo Sk(M ;R)
∂oo Sk+1(M ;R)

∂oo · · ·oo

One calls (S(M ;R), ∂) the complex of singular chains in M . The ho-
mology of the complex (S(M ;R), ∂) is called the singular homology of M
with real coefficients, and is denoted

Hk(M ;R) =
Zk(M ;R)

Bk(M ;R)
.

Remark 21.5 (A Crash Course in Homological Algebra - part II ). In the
cochain complexes that we studied related to de Rham cohomology the
differentials increase the degree, while for the singular chains the differential
decreases the degree.

We call a complex C = ⊕k∈ZCk where the differential decreases the degree

· · · Ck−1
oo Ck

∂oo Ck+1
∂oo · · ·oo

a chain complex. We say that z ∈ Ck is a cycle if ∂z = 0 and we say
that z is a boundary if z = ∂b (4). In this case, one defines the homology
of the complex C to be the direct sum H(C) = ⊕k∈ZHk(C) of the vector
spaces:

Hk(C) =
Zk(C)

Bk(C)
,

where Zk(C) is the subspace of all cycles and Bk(C) is the subspace of all
boundaries. Note also the position of the indices.

4Notice that given a complex (C, ∂) where the differential decreases one can define a new
complex (C̄,d) setting C̄k

≡ C−k and d = ∂, obtaining a complex where the differential
increases the degree. Therefore, these conventions are somewhat arbitrary.
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If Φ :M → N continuous map, then for any singular simplex σ : ∆k →M ,
we have that Φ∗(σ) ≡ Φ◦σ : ∆k → N is a singular simplex in N . We extend
this map to any chain c =

∑
j ajσj requiring linearity to hold:

Φ∗(c) ≡
∑

j

aj(Φ ◦ σj).

It follows that Φ∗ : S(M ;R)→ S(N ;R) is a chain map:

· · · Sk−1(M ;R)oo

Φ∗

��

Sk(M ;R)
∂oo

Φ∗

��

Sk+1(M ;R)
∂oo

Φ∗

��

· · ·oo

· · · Sk−1(N ;R)oo Sk(N ;R)
∂oo Sk+1(N ;R)

∂oo · · ·oo

Therefore, Φ∗ induces a linear map in singular homology:

Φ∗ : H•(M ;R)→ H•(N ;R).

One checks easily that this assignment has the following properties:

(i) If Φ :M → N and Ψ : N → Q are continuous maps, then:

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗;

(ii) The identity map id:M →M induces the identity map in homology:

id∗ = id : H•(M ;R)→ H•(M ;R).

It follows that singular homology is a topological invariant :

Proposition 21.6. IfM and N are are homeomorphic spaces then H•(M,R) ≃
H•(N,R).

Smooth Singular Homology. Assume now thatM is a smooth manifold. The
chain complex (S•(M ;R), ∂) has a subcomplex (S∞

• (M ;R), ∂) formed by the
smooth singular k-chains:

S∞
k (M ;R) = {

p∑

i=1

aiσi : σi : ∆
k →M is smooth}

This is a sub complex because if c ∈ S∞
k (M ;R) is a smooth k-chain, then

so is ∂c ∈ S∞
k (M ;R).

Remark 21.7. Even when c is smooth, the use of the term “singular” is
justified by the absence of any assumption on the differentials of the maps
σi: in general, a smooth k-simplex does not parameterize any submanifold
and its image may be a rather pathological subset of M .

One has the following important fact:

Proposition 21.8. The inclusion S∞
• (M,R) →֒ S•(M,R) induces an iso-

morphism in homology:

H(S∞
• (M,R)) ≃ H(S•(M,R)).

This proposition says that:
153



(i) every homology class in H•(M ;R) has a representative c which is a
C∞ cycle, and

(ii) if two C∞ cycles c and c′ differ by a continuous boundary (c−c′ = ∂b),
then they also differ by a C∞ boundary b′ (c− c′ = ∂b′).

Hence, smooth singular homology and singular homology coincide. The
proof of the previous proposition is beyond the scope of these notes.

Singular Cohomology. Dually, one defines the singular cohomology of M
as follows. First, one defines the space of singular k-cochains with real
coefficients to be the vector space dual to Sk(M.R)

Sk(M ;R) := Hom(Sk(M ;R),R).

We have a singular differential obtained by transposing the singular
boundary operator:

d : Sk(M ;R)→ Sk+1(M ;R), (dl)(c) = l(∂c), ∀c ∈ Sk(M ;R).

It follows that d2 = 0, so we have a cochain complex (S•(M ;R),d). The
corresponding cohomology is called the singular cohomology of M with
real coefficients and is denoted by H•(M ;R).

Remark 21.9. A more explicit form of the singular differential is as follows.
Since the k-simplices form a basis for the vector space Sk(M,R) a linear
map l : Sk(M,R) → R amounts to a collection of real numbers l = (lσ),
indexed by all singular simplices (so lσ = l(σ)). Then the singular differential
dl ∈ Sk+1(M ;R) is given by the collection ((dl)σ) indexed by k+1-simplices
defined by:

(dl)σ =

k+1∑

i=0

(−1)ilεi(σ).

If Φ : M → N we can transpose the map Φ∗ : Sk(M ;R) → Sk(N ;R),
obtaining a linear map Φ∗ : Sk(N ;R)→ Sk(M ;R) which is a cochain map:

Φ∗d = dΦ∗.

Therefore, we have an induced linear map in singular cohomology Φ∗ :
H•(N ;R) → H•(M ;R), which satisfies the obvious functorial properties,
and hence we also have:

Proposition 21.10. IfM and N are homeomorphic spaces then H•(M,R) ≃
H•(N,R).

Of course, one can also consider smooth singular k-cochains:

Sk∞(M ;R) := Hom(S∞
k (M ;R),R).

which form a complex (S•
∞(M ;R),d). There is an obvious restriction map

Sk(M ;R)→ Sk∞(M ;R), l 7→ l|Sk
∞
(M ;R),

which is easily checked to be a cochain map. So we have an induced map in
cohomology and one can prove:
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Proposition 21.11. The restriction map Sk(M ;R)→ Sk∞(M ;R) yields an
isomorphism in cohomology:

H(S•(M ;R),d) ≃ H(S•
∞(M ;R),d).

For this reason, in the sequel we will not distinguish between these coho-
mologies.

Singular Cohomology vs. de Rham Cohomology. We now take advantage of
the fact that singular cohomology and differentiable singular cohomology
coincide to relate it with the de Rham cohomology. For that, we start by
explaining that one can integrate differential forms over singular chains.

First, we observe that we can parameterize the standard k-simplex ∆k by
the map φ : ∆k

0 → ∆k, where:

∆k
0 := {(x1, . . . , xk) : xi ≥ 0,

k∑

i=1

xi ≤ 1}

φ(x1, . . . , xk) = (1−
k∑

i=1

xi, x1, . . . , xk),

Hence, if ω ∈ Ωk(U) is a k-form which is defined in some open set U ⊂ Rk+1

containing the standard k-simplex ∆k, we can write:

φ∗ω = f(x1, . . . , xk)dx1 ∧ · · · ∧ dxk,

and define: ∫

∆k

ω :=

∫

∆k
0

fdx1 · · · dxk.

Next, given any differential form ω ∈ Ωk(M) in a smooth manifold M ,
we define the integral of ω over a smooth simplex σ : ∆k → M to be
the real number: ∫

σ
ω :=

∫

∆k

σ∗ω.

We extend this definition to any smooth singular k-chain c =
∑p

j=1 ajσj by
linearity: ∫

c
ω :=

p∑

j=1

aj

∫

σj

ω.

Notice that, unlike the case of integration over manifolds, there is now no
assumption about orientation and M may very well be non-oriented.

We leave it to the exercises the proof of the following version of Stokes
formula for chains:

Theorem 21.12 (Stokes II). Let M be a smooth manifold, ω ∈ Ωk−1(M) a
(k − 1)-differential form, and c a smooth singular k-chain. Then:

∫

c
dω =

∫

∂c
ω.
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Now we can define an integration map I : Ω•(M)→ S•
∞(M ;R):

I(ω)(σ) =

∫

σ
ω, ω ∈ Ωk(M), σ ∈ S∞

k (M ;R).

and we have:

Proposition 21.13. The integration map I : (Ω•(M),d)→ (S•
∞(M ;R),d)

is a chain map:

I(dω) = dI(ω).

Proof. This follows from the following computation:

(I(dω))(σ) =

∫

σ
dω =

∫

∂σ
ω

= I(ω)(∂σ) = (dI(ω))(σ),

where we used Stokes formula for chains and the fact that the singular
differential is the transpose of the singular coboundary operator. �

It follows that we have an induced linear map in cohomology:

I : Hk(M)→ Hk(M ;R).

Theorem 21.14 (de Rham). For any smooth manifold the integration map
I : H•(M)→ H•(M ;R) is an isomorphism.

There is also cup product in singular cohomology and one can show that
the integration map is actually a ring isomorphism (see the exercises). The
proof of this result is beyond the scope of these notes.

An important consequence of the de Rham Theorem is that the de Rham
cohomology is actually a topological invariant of smooth manifolds, i.e., ifM
and N are homeomorphic smooth manifolds then their de Rham cohomolo-
gies are isomorphic. For example, the different exotic smooth structures on
the spheres all have the same de Rham cohomology!

Homework.

1. Show that for every singular chain c one has ∂(∂c) = 0.

2. Give a proof of Stokes Formula for singular chains, by showing the following:
(a) It is enough to prove the formula for chains consisting of a singular sim-

plex.
(b) It is enough to prove the formula for the standard k-simplex ∆k

0 ⊂ Rk.
(c) It is enough to prove the formula for (k − 1)-differential forms in Rk of

the type:

ω = fdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk.

(d) Show that ∫

∆k
0

dω =

∫

∂∆k
0

ω,

where ω is a differential form of the type (c).
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3. In the torus Td = S1 × · · · × S1 consider the 1-chains c1, . . . , cd : [0, 1]→ Td

defined by:

cj(t) ≡ (1, . . . , e2πit, . . . , 1) (j = 1, . . . , d).

Show that:
(a) The cj ’s are 1-cycles: ∂cj = 0;
(b) The cj ’s are not 1-boundaries;
(c) The classes {[c1], . . . , [cd]} ⊂ H1(Td,R) form a linearly independent set.

Hint: Use Stokes formula.

4. The de Rham Theorem, shows that the exterior product induces a product

∪ : Hk(M ;R)×H l(M : R)→ Hk+l(M ;R),

so that H•(M ;R) becomes a ring. This product is called the cup product.
Here is one way of constructing it directly:
(a) Show that for l < k and 0 ≤ i0 < · · · < il ≤ k one has maps εi0,...,il :

∆l → ∆k, defined by:

εi0,...,il(t0, . . . , tl) = (s0, . . . , sk), where

{
sl = 0, if l 6∈ {i0, . . . , il}
sij = tj , otherwise.

(b) Show that if c1 ∈ Sk(M ;R) and c2 ∈ Sl(M ;R) the formula:

(c1 ∪ c2)(σ) := c1(σ ◦ ε1,...,k)c2(σ ◦ εk+1,...,k+l),

defines an element c1 ∪ c2 ∈ Sk+l(M ;R).
(c) Show that for any chains c1 ∈ Sk(M ;R) and c2 ∈ Sl(M ;R) one has:

d(c1 ∪ c2) = (dc1) ∪ c2 + (−1)kc1 ∪ (dc2).

It follows that one can define ∪ : Hk(M ;R)×H l(M : R)→ Hk+l(M ;R) by

[c1] ∪ [c2] := [c1 ∪ c2].
Note that for the integration map I : Ωk(M)→ Sk∞(M), in general, I(ω∧η) 6=
I(ω) ∪ I(η). However, show that this equality holds in cohomology:

I([ω] ∧ [η]) = I([ω]) ∪ I([η]), [ω] ∈ Hk
dR(M), [η] ∈ H l

dR(M).

5. Let Sk(M,Z) ⊂ Sk(M,R) be the abelian group consisting of all integral
singular k-simplex, i,e, all formal linear combinations

c =

p∑

i=1

niσi,

where ni ∈ Z and the σi are singular k-simplices (so Sk(M,Z) be the free
abelian group generated by the set of all singular k-simplices).
(a) Show that Sk(M,Z) ⊂ (Sk(M,R), ∂) is a subcomplex of abelian groups.

The corresponding homology groups are denoted Hk(M,Z) and are called
integral singular homology groups of M .

(b) Dually, define the complex of singular integral cochains (Sk(M,Z), d) by:

Sk(M,Z) := Hom(Sk(M,Z),Z), dc(σ) := c(∂σ).
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Denoting by Hk(M,Z) corresponding integral singular cohomology
groups, show that there is a group homomorphism:

i : Hk(M,Z)→ Hk(M,R).

6. Let (S∞
k (M,Z), ∂) be the complex of smooth integral singular chains and

let (Sk∞(M,Z), d) be the complex of smooth integral singular cochains (see
previous problem). It is a fact that these complexes still yield the integral
singular homology and cohomology:

Hk(S
∞
• (M,Z), ∂) = Hk(M,Z), Hk(S•

∞(M,Z), d) = Hk(M,Z).

Assuming this, show that:
(a) There is a homomorphism of abelian groups:

I : Hk(M,Z)→ Hk(M).

(b) For a closed form ω ∈ Ωk(M) the set:

Per(ω) :=

{∫

c

ω : [c] ∈ Hk(S
∞
• (M,Z), ∂)

}
⊂ R,

is an additive subgroup. It is called the group of periods of ω,
(c) A cohomology class [ω] ∈ Hk(M) belongs to the image of the homomor-

phism I : Hk(M,Z)→ Hk(M) if and only if Per(ω) ⊂ Z.

22. Homotopy Invariance and Mayer-Vietoris Sequence

We shall now study some properties of de Rham cohomology which are
very useful in the computation of these rings in specific examples.

The Poincaré Lemma. We start with the simplest example of manifold,
namely M = Rd. In order to compute its cohomology we will compare the
cohomology of M and the cohomology of M × R, for an arbitrary smooth
manifold M .

Proposition 22.1. If M is a smooth manifold, consider the projection map
π :M × R→M and the inclusion map i :M →M × R given by:

M × R

π
��

M

i

OO π(p, t) = p,
i(p) = (p, 0).

The induced maps i∗ : H•(M×R)→ H•(M) and π∗ : H•(M)→ H•(M×R)
are inverse to each other.

Since H0(R0) = R and Hk(R0) = 0 if k 6= 0, repeated use of the proposi-
tion gives the cohomology of euclidean space:
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Corollary 22.2 (Poincaré Lemma).

Hk(Rd) = Hk(R0) =





R if k = 0,

0 if k 6= 0.

In other words, in Rd every closed form of positive degree is exact.

We now turn to the proof of Proposition 22.1. For that it is useful to
recall a bit more of homological algebra.

Remark 22.3 (A Crash Course in Homological Algebra - part III ). In order
to prove this proposition we will use the notion of homotopy operator. Given
two cochain complexes (A,d) and (B,d) and cochain maps f, g : A → B a
homotopy operator is a linear map h : A→ B of degree −1, such that

f − g = ±(dh± hd)
(the choice of signs is irrelevant). In this case, we say that f and g are
homotopic cochain maps and we express it by the diagram:

· · · // Ak−1 d //

f
��

g
��||②②

②②
②②
②②
②②

Ak
d //

f
��

g
��

h

||②②
②②
②②
②②

Ak+1 //

f
��

g
��

h

||②②
②②
②②
②②
②

· · ·

||②②
②②
②②
②②

· · · // Bk−1
d

// Bk
d

// Bk+1 // · · ·

Since ±(dh±hd) maps closed forms to exact forms, it is induces the zero
map in cohomology. Hence. if f and g are homotopic chain maps, they
induce the same map in cohomology:

f∗ = g∗ : H
•(A)→ H•(B).

Proof of Proposition 22.1. Note that π◦i =id, hence i∗◦π∗ =id. To complete
the proof we need to check that π∗◦i∗ =id. For this we construct a homotopy
operator h : Ω•(M × R)→ Ω•−1(M × R) such that:

id− π∗ ◦ i∗ = dh+ hd.

To construct h, we leave as an exercise to check that any differential
k-form θ ∈ Ωk(M × R) can be expressed as locally finite sum:

θ =
∑

i

θi,

where each θi ∈ Ωk(M × R) is of one of the following two kinds:

f1(x, t)π
∗ω1,

f2(x, t)dt ∧ π∗ω2,

with ω1 and ω2 differential forms in M of degree k and k − 1, respectively,
and f, g :M×R→ R smooth functions. So we define the homotopy operator
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in each of these kinds of forms by:

h :

{
f1(x, t)π

∗ω1 7−→ 0,

f2(x, t)dt ∧ π∗ω2 7−→
∫ t
0 f2(x, s)ds π

∗ω2,

and then we extend it by linearity to all forms. We now check that h is
indeed a homotopy operator, i.e., that we have:

(22.1) (id − π∗ ◦ i∗)θ = (dh+ dh)θ.

Let θ1 = f1(x, t)π
∗ω1 ∈ Ωk(M × R) be a form of the first kind. Then:

(id− π∗ ◦ i∗)θ1 = θ1 − π∗(f1(x, 0)ω1) = (f1(x, t) − f1(x, 0))π∗ω1.

On the other hand,

(dh+ hd)θ1 = hdθ1

= h ((df1 ∧ π∗ω1 + f1π
∗dω1)

= h

(
∂f1
∂t

dt1 ∧ π∗ω1

)

=

∫ t

0

∂f1
∂t

(x, s)ds π∗ω1 = (f1(x, t)− f1(x, 0))π∗ω1.

Hence, for any form θ1 formula 22.1 holds.
Let now θ2 = f2(x, t)dt ∧ π∗ω2 be a differential form of the second kind.

On the one hand,
(id − π∗ ◦ i∗)θ2 = θ2.

On the other hand, in any local coordinates (U, xi) for M , we find:

(dh+ hd)θ2 = d(

∫ t

0
f2(x, s)ds π

∗ω2) + h

(∑

i

∂f2
∂xi

dxi ∧ dt ∧ π∗ω2 − f2dt ∧ π∗dω2

)

= f2(x, t)dt ∧ π∗ω2 +
∑

i

∫ t

0

∂f2
∂xi

ds dxi ∧ π∗ω2 +

∫ t

0
f2(x, s)ds dπ∗ω2

−
∑

i

∫ t

0

∂f2
∂xi

ds dxi ∧ π∗ω2 −
∫ t

0
f2(x, s)ds π

∗dω2

= f2(x, t)dt ∧ π∗ω2 = θ2.

Therefore, for any form θ2 of the second kind formula 22.1 also holds. �

Homotopy Invariance. Proposition 22.1 is actually very special case of a
general property of cohomology: if a manifold can be continuously deformed
into another manifold then their cohomologies are isomorphic. In order to
formulate a precise statement, we make the following definition.

Definition 22.4. Let Φ,Ψ : M → N be smooth maps. A smooth homo-

topy between Φ and Ψ is a smooth map H :M × R→ N such that

H(p, t) =





Φ(p) if t ≤ 0,

Ψ(p) if t ≥ 1.
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Often one defines a smooth homotopy between Φ and Ψ to be a smooth
map H :M × [0, 1]→ N such that:

H(p, 0) = Φ(p), H(1, p) = Ψ(p), p ∈M.

It is easy to see that two definitions are equivalent. Less obvious, one can
show that:

(i) two smooth maps are smooth homotopic iff they are C0-homotopic;
(ii) any continuous map between two smooth manifolds is C0-homotopic

to a smooth map.

Theorem 22.5 (Homotopy Invariance). If Φ,Ψ : M → N are smooth
homotopic maps then Φ∗ = Ψ∗ : H•(N)→ H•(M).

Proof. Denote by π : M × R → M the projection and i0, i1 : M → M × R
the sections:

i0(p) = (p, 0) and i1(p) = (p, 1).

By Proposition 22.1, i∗0 and i∗1 are linear maps which both invert π∗, so they
must coincide: i∗0 = i∗1.

Now let H : M × R → N be a homotopy between Φ and Ψ. Then
Φ = H ◦ i0 and Ψ = H ◦ i1. At the level of cohomology we find:

Φ∗ = (H ◦ i0)∗ = i∗0 H
∗,

Ψ∗ = (H ◦ i1)∗ = i∗1 H
∗.

Since i∗0 = i∗1, we conclude that Φ∗ = Ψ∗.
�

We say that two manifolds M and N have the homotopy type if there
exist smooth maps Φ : M → N and Ψ : N → M such that Ψ ◦ Φ and
Φ ◦Ψ are homotopic to idM and idN , respectively. A manifold is said to be
contractible if it has the same homotopy type as a point (i.e., R0).

Corollary 22.6. If M and N have the same homotopy type then H•(M) ≃
H•(N). In particular, if M is a contractible manifold then:

Hk(M) =





R if k = 0,

0 if k 6= 0.

Examples 22.7.

1. An open set U ⊂ Rd is called star shaped if there exists some x0 ∈ U such
that for any x ∈ U , the segment tx+(1− t)x0 lies in U . We leave it as exercise
to show that a star shaped open set U is contractible, so that

Hk(U) =





R if k = 0,

0 if k 6= 0.
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2. The manifoldM = Rd+1−0 has the same homotopy type as Sd: the inclusion
i : Sd →֒ Rd+1 − 0 and the projection π : Rd+1 − 0 → Sd, x 7→ x/||x||, are
homotopic inverses to each other. Hence:

H•(Sd) = H•(Rd+1 − 0).

Notice that we don’t know yet how to compute H•(Rd+1 − 0)!

Mayer-Vietoris Sequence. Let us discuss now another important property
of cohomology, which allows to compute the cohomology of a manifold M
from a decomposition of M into more elementary pieces of which we already
know the cohomology.

Theorem 22.8 (Mayer-Vietoris Sequence). Let M be a smooth manifold
and let U, V ⊂M be open subsets such that M = U ∪V . There exists a long
exact sequence:

// Hk(M) // Hk(U)⊕Hk(V ) // Hk(U ∩ V )
δ // Hk+1(M) //

Remark 22.9 (A Crash Course in Homological Algebra - part IV ). A se-
quence of vector spaces and linear maps

· · · // Ck−1
fk−1 // Ck

fk // Ck+1 // · · ·

is called exact if Im fk−1 = Ker fk. An exact sequence of the form:

0 // A
f // B

g // C // 0

is called a short exact sequence. This means that:

(a) f is injective,
(b) Im f = Ker g, and
(c) g is surjective.

A basic property of exact sequences is the following: given any exact
sequence ending in trivial vector spaces

0 // C0 // · · · // Ck // · · · // Cd // 0

the alternating sum of the dimensions is zero:

d∑

i=0

(−1)i dimCi = 0.

We leave the (easy) proof for the exercises.
Note that a short exact sequence of complexes:

0 // (A•,d)
f // (B•,d)

g // (C•,d) // 0
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can be represented by a large commutative diagram where all rows are exact:

0 // Ak+1 f //

OO

Bk+1 g //

OO

Ck+1 //

OO

0

0 // Ak
f //

d

OO

Bk g //

d

OO

Ck //

d

OO

0

0 // Ak−1 f //

d

OO

Bk−1 g //

d

OO

Ck−1 //

d

OO

0OO OO OO

We have the following basic fact: given a short exact sequence of complexes
as above there exists an associated long exact sequence in cohomology

· · · // Hk(A)
f // Hk(B)

g // Hk(C)
δ // Hk+1(A) // · · ·

where δ : Hk(C) → Hk+1(A) is called the connecting homomorphism. The
fact that Im f = Ker g follows immediately from the definition of short exact
sequence. On the other hand, the identities Im g = Ker δ and Im δ = Ker f
follow from the way δ is constructed, and which we now describe.

For the construction of δ one should keep in mind the large commutative
diagram above. Given a cocycle c ∈ Ck so that dc = 0, it follows from the
fact that the rows are exact that there exists b ∈ Bk such that g(b) = c.
Since the diagram commutes, we have

g(db) = dg(b) = dc = 0.

Using again that the rows are exact, we conclude that there exists a unique
a ∈ Ak+1 such that f(a) = db. Note that:

f(da) = df(a) = d2b = 0,

and since f is injective, we have da = 0, i.e., a is cocycle. In this way, we
have associated to a cocycle c ∈ Ck a cocycle a ∈ Ak+1.

This association depends on a choice of an intermediate element b ∈ Ck.
If we choose a different b′ ∈ Ck such g(b′) = c, we obtain a different element
a′ ∈ Ak+1. However, note that

g(b− b′) = g(b′)− g(b) = c− c = 0,

so there exist ā ∈ Ak such that f(ā) = b− b′. Hence, we find

f(a− a′) = f(a)− f(a′) = db− db′ = df(ā) = f(dā).

Since f is injective, we conclude that a− a′ = dā. This shows that different
intermediate choices lead to elements in the same cohomology class.
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Finally, note that this assignment associates a coboundary to a cobound-
ary. In fact, if c ∈ Ck is a coboundary, i.e., c = dc′, then there exists
b′ ∈ Ck−1 such that g(b′) = c′. Moreover,

g(b− db′) = g(b)− dg(b′) = c− dc′ = 0.

Therefore, there exists a′ ∈ Ak such that f(a′) = b− db′, and:

f(a− da′) = f(a)− df(a′) = db− db+ d2b′ = 0.

Since f is injective, we conclude that a = da′ is a coboundary, as claimed.
This discussion shows that we have a well-defined linear map

δ : Hk(C)→ Hk+1(A), [c] 7→ [a].

We leave it as an exercise to check that this definition leads to Im g = Ker δ
and Im δ = ker f .

Proof of Theorem 22.8. We claim that we have a short exact sequence:

0 // Ω•(M) // Ω•(U)⊕ Ω•(V ) // Ω•(U ∩ V ) // 0

where the first map is given by:

ω 7→ (ω|U , ω|V ),
while the second map is defined by:

(θ, η) 7→ θ|U∩V − η|U∩V .

Since M = U ∪ V , the first map is injective. Also, it is clear that the image
of the first map is contained in the kernel of the second map. On the other
hand, if (θ, η) ∈ Ω•(U) ⊕ Ω•(V ) belongs to the kernel of the second map,
then

θ|U∩V = η|U∩V .

Hence, we can define a smooth differential form in M by:

ωp =





θp if p ∈ U,

ηp if p ∈ V.
Therefore the image of the first map coincides with the kernel of the second
map. Finally, let α ∈ Ω•(U ∩ V ) and choose a partition of unity {ρU , ρV }
subordinated to the cover {U, V }. Then ρV α ∈ Ω•(U) and ρUα ∈ Ω•(V )
and this pair of forms is transformed by the second map to

(ρV α,−ρUα) 7→ ρV α+ ρUα = α.

Therefore, the second map is surjective and we have a short exact sequence
as claimed. The corresponding long exact sequence in cohomology yields
the statement of the theorem. �
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Example 22.10.
Let us use the Mayer-Vietoris sequence to compute the cohomology of Sd for
d ≥ 2 (we already know the cohomology H•(S1); see in Example 20.4).

Let pN ∈ Sd be the north pole and let U = Sd − pN . The stereographic
projection πN : U → Rd is a diffeomorphism, so U is contractible. Similarly if
pS ∈ Sd is the south pole, the open set V = Sd−pS is contractible. On the other
hand, we have that M = U ∩ V and the intersection U ∩ V is diffeomorphic
to Rd − 0 (via any of the stereographic projections). We saw in Example 22.7
that Rd − 0 as the same homotopy type as Sd−1.

We have all the ingredients to compute the Mayer-Vietoris sequence:
• if k ≥ 1, the sequence gives:

· · · // 0⊕ 0 // Hk(Sd−1)
d∗

// Hk+1(Sd) // 0⊕ 0 // · · ·

Hence, Hk+1(Sd) ≃ Hk(Sd−1). By induction, we conclude that:

Hk(Sd) ≃ Hk−1(Sd−1) ≃ · · · ≃ H1(Sd−k+1).

• On the other hand, since U , V and U ∩ V are connected, the first terms
of the sequence are

0 // R // R⊕ R // R
δ // H1(Sd) // 0 // · · ·

It follows that dimH1(Sd) = 0 if d ≥ 2, since the alternating sum of the
dimensions must be zero.

Since H1(S1) = R, we conclude that:

Hk(Sd) =





R if k = 0, d,

0 otherwise.

Compactly supported cohomology. As we saw in the previous section, com-
pactly supported cohomology does not behave functorialy under smooth
maps. Still this cohomology behaves functorialy under proper maps and,
because of this, compactly supported cohomology still satisfies properties
analogous, but distinct, to the properties we have studied for de Rham co-
homology.

Proposition 22.11. Let M be a smooth manifold. Then:

H•
c (M × R) ≃ H•−1

c (M).

Proof. Note that if π : M × R → M is the projection and ω 6= 0 then π∗ω
does not have compact support. Instead, one has “push-forward” maps

π∗ : Ω
•+1
c (M × R)→ Ω•

c(M),

e∗ : Ω
•
c(M)→ Ω•+1

c (M × R).

which are cochains maps, homotopic inverse to each other.
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We start by constructing π∗. Note that every compactly supported k-form
in M × R is a locally finite sum of forms of two kinds:

f1(x, t)π
∗ω1,

f2(x, t)π
∗ω2 ∧ dt,

where ω1 ∈ Ωkc (M), ω1 ∈ Ωk−1
c (M) and f1, f2 : M × R → R are compactly

supported smooth functions. The map π∗ is given by:

f1(x, t)(π
∗ω1) 7−→ 0,

f2(x, t)π
∗ω2 ∧ dt 7−→

∫ +∞

−∞
f2(x, t)dt ω2.

and it is known as integration along the fibers.
On the other hand, in order to construct e∗ one chooses some 1-form

θ = g(t)dt ∈ Ω1
c(R) with

∫
R θ = 1 and sets:

e∗ : ω → π∗ω ∧ θ.
It follows from these definitions that:

π∗ ◦ e∗ = id, dπ∗ = π∗d, e∗d = de∗.

To finish the proof, we check that e∗ ◦ π∗ is homotopic to the identity. We
leave it as an exercise to check that the map h : Ω•

c(M ×R)→ Ω•−1
c (M ×R)

defined by:

f1(x, t)(π
∗ω1) 7−→ 0,

f2(x, t)π
∗ω2 ∧ dt 7−→

(∫ t

−∞
f2(x, s)ds−

∫ +∞

−∞
f2(x, s)ds

∫ t

−∞
g(s)ds

)
π∗ω2,

is indeed a homotopy from e∗ ◦ π∗ to the identity. �

The proposition shows that compactly supported cohomology is not in-
variant under homotopy. On the other hand, the proposition shows that the
Poincaré Lemma must be modified as follows:

Corollary 22.12 (Poincaré Lemma for compactly supported cohomology).

Hk
c (R

d) =





R if k = d,

0 if k 6= d.

Next we construct the Mayer-Vietoris sequence for compactly supported
cohomology. Notice that if U, V ⊂ M are open sets with U ∪ V = M , the
inclusions U, V →֒ M , U ∩ V →֒ U and U ∩ V →֒ V give a short exact
sequence

0 Ω•
c(M)oo Ω•

c(U)⊕ Ω•
c(V )oo Ω•

c(U ∩ V )oo 0oo

where the first map is:

(θ, η) 7→ θ + η,
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while the second map is:
ω 7→ (−ω, ω).

Hence, it follows that

Theorem 22.13 (Mayer-Vietoris sequence for compactly supported coho-
mology). Let M be a smooth manifold and U, V →֒ M open subsets such
that M = U ∪ V . There exists a long exact sequence

Hk
c (M)oo Hk

c (U)⊕Hk
c (V )oo Hk

c (U ∩ V )oo Hk−1
c (M)

δoo oo

We leave the details of the argument for the exercises.
Notice that in the Mayer-Vietoris sequence for compact supported coho-

mology the inclusions U, V →֒ M , U ∩ V →֒ U and U ∩ V →֒ V induce
maps in the same direction, while for the ordinary de Rham cohomology the
inclusions are reversed in the sequence. In the next section we will relate
these two cohomology theories, and this will explain all the differences of
behavior that we have just discussed.

Homework.

1. Let h : Ωk(M × R)→ Ωk−1(M × R) be the homotopy operator used in the
proof of Proposition 22.1. Show that h can be written in either of the following
more invariant forms:
(a) If E = t ∂∂t ∈ X(M ×R) is the Euler vector field and ψs :M ×R→M ×R

the family of maps ψs(x, t) = (x, st), then:

h(θ) =

∫ 1

0

1

s
(ψs)∗iEθ ds,

(b) If E is the Euler vector field and φsE(x, t) = (x, est) its flow, then:

h(θ) =

∫ 0

−∞
(φsE)

∗iEθ ds,

(c) Use the second expression and Cartan Calculus to prove that h verifies
(22.1).
(Hint: The flow φsX of a vector fieldX satisfies: d

ds (φ
s
X)∗ω = (φsX)∗LXω.)

2. Show that a star shaped open set is contractible.

3. Let i : N →֒ M be a submanifold. We say that a map r : M → N is a
retraction of M in N if r ◦ i =idN and that N is a deformation retract of
M if there exists a retraction r : M → N such that i ◦ r is homotopic to idM .
Show that:
(a) If N is a deformation retract of M , then H•(N) ≃ H•(M).
(b) Show that S2 is a deformation retract of R3 − 0.
(c) Show that T2, viewed as a submanifold of R3 as in Example 7.8.2, is a

deformation retract of R3 − {L ∪ S} where L is the z-axis and S is the
circle in the xy-plane of radius R and center the origin.

4. In Remark 22.9, show that the connecting homomorphism in the long exact
sequence satisfies Im g = Ker d∗ and Imd∗ = ker f .
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5. Given a long exact sequence of vector spaces

0 // C0 // · · · // Ck−1 // Ck // · · · // Cd // 0

show that:
d∑

i=0

(−1)i dimCi = 0.

6. Compute the cohomology of T2 and RP2.

7. Complete the construction of the Mayer-Vietoris sequence for compactly
supported cohomology, by showing that:

0 Ω•
c(M)oo Ω•

c(U)⊕ Ω•
c(V )oo Ω•

c(U ∩ V )oo 0oo

is a short exact sequence of complexes.

8. Compute the compactly supported cohomology of Rd − 0.
(Hint: Apply the Mayer-Vietoris sequence to M = Sd, U = Sd − pN and
V = Sd − pS.)

23. Computations in Cohomology

In the previous section we constructed the Mayer-Vietoris sequence re-
lating the cohomology of the union of open sets with the cohomology of
its factors. This sequence leads to a very useful technique to compute co-
homology by induction, which also allows to extract many properties of
cohomology. In order to apply it, we need to cover M by open sets whose
intersections have trivial cohomology.

Definition 23.1. An open cover {Uα} of a smooth manifold M is called a
good cover if all finite intersections Uα1 ∩ · · · ∩ Uαk

are diffeomorphic to
Rd. We say that M is a manifold of finite type if it admits a finite good
cover.

Proposition 23.2. Every smooth manifold M admits a good cover. If M
is compact then it admits a finite good cover.

Sketch of proof. 5 Let g be a Riemannian metric for M . In Riemannian
geometry one shows that each point p ∈M has a strong geodesically convex
neighborhood Up, i.e., a neighborhood such that for any two points q, q′ ∈ Up
there exists a unique (length minimizing) geodesic in Up which connects q
and q′. Then one checks that:

(i) a strong geodesically convex open set is diffeomorphic to Rd, and
(ii) the intersection of two strong geodesically convex open sets is a strong

geodesically convex open set.

5This proof requires some knowledge of Riemannian geometry. If you are not familiar
with the notion of geodesics, you may wish to skip the proof and admit the result as valid.
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It follows that a cover {Up}p∈M by strong geodesically convex open neigh-
borhoods is a good cover of M .

If M is compact, then any good cover has a finite subcover which is also
good. �

Finite dimensional cohomology. We can use good covers and the Mayer-
Vietoris sequence to show that the cohomology is often finite dimensional:

Theorem 23.3. IfM is a manifold of finite type then the cohomology spaces
Hk(M) and Hk

c (M) have finite dimension.

Proof. For any two open sets U and V , the Mayer-Vietoris sequence:

· · · // Hk−1(U ∩ V )
δ // Hk(U ∪ V )

r // Hk(U)⊕Hk(V ) // . . .

shows that:

Hk(U ∪ V ) ≃ Im δ ⊕ Im r.

Hence, if the cohomologies of U , V and U ∩ V are finite dimensional, then
so is the cohomology of U ∪ V .

Now we can use induction on the number of open sets in a cover, to
show that manifolds which admit a finite good cover have finite dimensional
cohomology:

• If M is diffeomorphic to Rd the Poincaré Lemma shows that M has
finite dimensional cohomology.
• Now assume that all manifolds admitting a good cover with at most
n open sets have finite dimensional cohomology. Let M be manifold
which admits a good cover with n+1 open sets {U1, . . . , Un+1}. We
observe that the open sets:

Un+1,

U1 ∪ · · · ∪ Un, and
(U1 ∪ · · · ∪ Un) ∩ Un+1 = (U1 ∩ Un+1) ∪ · · · ∪ (Un ∩ Un+1),

all have finite dimensional cohomology, since they all admit a good
cover with at most n open sets. Hence, the cohomology of M =
U1 ∪ · · · ∪ Un+1 is also finite dimensional.

The proof for compactly supported cohomology is similar. �

Poincaré duality. Recall (see the exercises in Section 20) that the exterior
product induces a ring structure in cohomology:

∪ : Hk(M)×H l(M)→ Hk+l(M), [ω] ∪ [η] ≡ [ω ∧ η].
Obviously, if η has compact support then ω ∧ η also has compact support,
hence we obtain also a “product”:

∪ : Hk(M)×H l
c(M)→ Hk+l

c (M).
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Stokes formula shows that the integral of differential forms descends to
the level of cohomology. Hence, if M is an oriented manifold of dimension
d we obtain a bilinear form

(23.1) Hk(M)×Hd−k
c (M)→ R, ([ω], [η]) 7→

∫

M
ω ∧ η.

Theorem 23.4 (Poincaré duality). If M is an oriented manifold of finite
type the bilinear form (23.1) is non-degenerate. In particular:

Hk(M) ≃ Hd−k
c (M)∗.

Remark 23.5 (A Crash Course in Homological Algebra - part V ). For the
proof of Poincaré duality we turn once more to Homological Algebra.

Lemma 23.6 (Five Lemma). Consider a commutative diagram of homo-
morphisms of vector spaces:

A
f1 //

α
��

B
f2 //

β
��

C
f3 //

γ
��

D
f4 //

δ
��

E

ε
��

A′ f ′1 // B′ f ′2 // C ′ f ′3 // D′ f ′4 // E′

where the rows are exact. If α, β, δ and ε are isomorphisms, then γ is also
an isomorphism.

The proof of this lemma is by diagram chasing and is left as an easy
exercise.

Proof of Theorem 23.4. Let us start by observing that the bilinear form
(23.1) gives always a linear map Hk(M) → Hd−k

c (M)∗. If U and V are
open sets, one checks easily that the Mayer-Vietoris sequence for Ω• and
Ω•
c , give a diagram of exact sequences:

// Hk(U ∪ V ) //

��

Hk(U)⊕Hk(V ) //

��

Hk(U ∩ V )
δ //

��

Hk+1(U ∪ V )

��

//

// Hd−k
c (U ∪ V )∗ // Hd−k

c (U)∗ ⊕Hd−k
c (V )∗ // Hd−k

c (U ∩ V )∗
δ∗// Hd−k−1

c (U ∪ V )∗ //

which commutes up to signs: for example, we have∫

U∩V
ω ∧ δθ = ±

∫

U∪V
δω ∧ τ.

If we apply the Five Lemma to this diagram, we conclude that if Poincaré
duality holds for U , V and U ∩ V , then it also holds for U ∪ V .

Now letM be a manifold with a finite good cover. We show that Poincaré
duality holds using induction on the cardinality of the cover:

• If M ≃ Rd, the Poincaré Lemmas give:

Hk(Rd) =





R if k = 0,

0 if k 6= 0.
Hk
c (R

d) =





R if k = d,

0 if k 6= d.
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Also, (·, ·) : H0(Rd)×Hd
c (R

d)→ R is non-zero, so the bilinear form
is non-degenerate in this case.
• Now assume that Poincaré duality holds for any manifold admitting
a good cover with at most n open sets. If M is a manifold which
admits an open cover {U1, . . . , Un+1} with n+ 1 open sets, we note
that the open sets:

Un+1, U1 ∪ · · · ∪ Un, and
(U1 ∪ · · · ∪ Un) ∩ Un+1 = (U1 ∩ Un+1) ∪ · · · ∪ (Un ∩ Un+1),

all satisfy Poincaré duality, since they all admit a good cover with at
most n open sets. It follows that M = U1 ∪ · · · ∪ Un+1 also satisfies
Poincaré duality.

�

If M is a compact manifold, we have H•
c (M) = H•(M). Hence:

Corollary 23.7. If M is a compact oriented manifold then:

Hk(M) ≃ Hd−k(M).

Remark 23.8. One can show that Poincaré duality still holds for oriented
manifolds which do not admit a finite good cover: when the cohomology of
M is not finite dimensional, one still has an isomorphism:

Hk(M) ≃ (Hd−k
c (M))∗.

However, in general, one does not have a dual isomorphism Hd−k
c (M) ≃

Hk(M)∗. The reason is that while the dual of direct product is a direct
sum, the dual of an infinite direct sum is not a direct product. We discuss
an example in the exercises.

Because of the previous remark, in the next corollary we omit the as-
sumption that M has a finite good cover.

Corollary 23.9. Let M be a connected manifold of dimension d. Then:

Hd
c (M) ≃





R if M is orientable,

0 if M is not orientable.

In particular, if M is compact and connected of dimension d, then M is
orientable if and only if Hd(M) ≃ R.

Proof. By Poincaré duality, if M is a connected orientable manifold of di-
mension d, then (Hd

c (M))∗ ≃ H0(M) ≃ R. We leave the proof of the
converse to the exercises. �
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Triangulations and Euler’s formula. As another application of the Mayer-
Vietoris sequence, we show how the familiar Euler’s formula for regular
polygons can be extended to any compact manifold M admitting a trian-
gulation, i.e., a nice decomposition of M into regular simplices as we now
explain(6).

A regular simplex is a simplex σ : ∆d → M which can be extended to
a diffeomorphism σ̃ : U → σ̃(U) ⊂M , where U is some open neighborhood
of ∆d. We have defined before the (d − 1)-dimensional faces of a simplex
σ : ∆d → M . For a regular simplex, these are regular (d − 1)-simplices
εi(σ) : ∆d−1 → M of dimension (d − 1). By iterating this construction
we obtain the d − k-dimensional faces of a simplex, which are regular
(d− k)-simplices εi1,i2,...,id−k

(σ) : ∆d−k →M .

Definition 23.10. A triangulation of a compact manifoldM of dimension
d is a finite collection {σi} of regular d-simplices such that:

(i) the collection {σi} covers M , and
(ii) if two simplices in {σi} have non-empty intersection, then there inter-

section σi ∩ σj is a face of both simplices σi and σj .

The next figure illustrates condition (ii) in this definition for dimensions
2 and 3.
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Notice that on the top the condition is satisfied while on the bottom the
condition fails.

If M is a manifold with finite dimensional cohomology (e.g., if M is com-
pact) one defines the Euler characteristic of M to be the integer χ(M)
given by:

χ(M) = dimH0(M)− dimH1(M) + · · ·+ (−1)d dimHd(M).

Applying Poincaré duality, we have that:

6Actually, one can show that every smooth compact manifold can be triangulated. This
result is very technical and we will not discuss it in these notes.
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Corollary 23.11. If M is a compact oriented odd dimensional manifold
then χ(M) = 0.

For other manifolds the Euler characteristic, in general, is non-zero and
can be computed using a triangulation:

Theorem 23.12 (Euler’s Formula). If M is a compact manifold of dimen-
sion d, for any triangulation we have:

(−1)dχ(M) = r0 − r1 + · · ·+ (−1)drd,
where ri denotes the number of faces of dimension i of the triangulation.

Proof. Let us fix a triangulation {σ1, σ2, . . . , σrd} of M and define open sets:

Vk :=M − {k-faces of the triangulation}.
We claim that for 0 ≤ k ≤ d− 1 we have:

(23.2) χ(M) = χ(Vk) + (−1)d(r0 − r1 + · · ·+ (−1)krk).
Assuming this claim, since

Vd−1 =

rd⋃

j=1

int(σj),

and each open set int(σj) is contractible, we have Hk(Vd−1) = 0, for k > 0.
Hence:

χ(Vd−1) = dimH0(Vd−1) = rd.

This identity, together with (23.2), show that Euler’s formula holds.

Lets us start by verifying (23.2) for k = 0. For each 0-dimensional face we
can choose disjoint open neighborhoods U0,1, . . . , U0,r0 , each diffeomorphic

to the open ball Bd
1 = {x ∈ Rd : ||x|| < 1}.

U0
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We set

U0 :=

r0⋃

i=0

U0,i.

Notice that V0 ∪ U0 =M . Since each U0,i is contractible, we have:

dimHk(U0) =





r0, if k = 0,

0, if k 6= 0.

On the other hand, the intersection V0 ∩ U0,i deformation retracts in Sd−1,
hence

dimHk(V0 ∩ U0) =





r0, if k = 0, d − 1,

0, if k 6= 0, d − 1.

We can apply the Mayer-Vietoris argument to the pair (U0, V0): if d > 2,
this sequence gives the following information:

(i) The lowest degree terms in the sequence are:

0 // H0(M) // H0(U0)⊕H0(V0) // H0(U0 ∩ V0) //

// H1(M) // 0⊕H1(V0) // 0

so it follows that:

dimH0(M)− dimH0(U0)− dimH0(V0)+

+ dimH0(U0 ∩ V0)− dimH1(M) + dimH1(V0) = 0.

Since M and V0 have the same number of connected components we find

dimH0(M) = dimH0(V0).

On the other hand, the number of connected components of U0 and V0 ∩U0

are also the same, hence we conclude that:

dimH1(M) = dimH1(V0).

(ii) For 1 < k < d− 1, the Mayer-Vietoris sequence gives:

0 // Hk(M) // 0⊕Hk(V0) // 0

Hence:

dimHk(M) = dimHk(V0).

(iii) Finally, the last terms in the sequence give:

0 // Hd−1(M) // 0⊕Hd−1(V0) // Hd−1(U0 ∩ V0) //

// Hd(M) // 0⊕Hd(V0) // 0
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Since dimHd−1(U0 ∩ V0) = r0, we conclude that:

dimHd−1(M)− dimHd−1(V0) + dimHd−1(V0)− dimHd(M) = −r0.
When d = 2, we obtain exactly the same results except that we can

consider the whole sequence at once. In an any case, we conclude that:

χ(M) =

d∑

i=0

(−1)i dimH i(M)

=

d∑

i=0

(−1)i dimH i(V0) + (−1)dr0 = χ(V0) + (−1)dr0.

which yields (23.2) if k = 0.
In order to prove (23.2) when k = 1, we can proceed as follows: for each

1-face we choose open disjoint neighborhoods U1,1, . . . , U1,r1 of the (1-faces)-

(0-faces), diffeomorphic to (int ∆1)×Bd−1
1 , and we define the open set:

U1 =

r1⋃

i=0

U1,i.
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We have that V0 = U1 ∪ V1. Moreover, U1 is a disjoint union of r1
contractible open sets, while U1 ∩ V1 as the same homotopy type as the
disjoint union of (d− 2)-spheres This allows one to show, exactly like in the
case k = 0, that the Mayer-Vietoris sequence yields:

χ(V0) = χ(V1) + (−1)d−1r1.

In general, for each k, we choose open disjoint neighborhoodsUk,1, . . . , Uk,rk
of {k-faces}−{(k−1)-faces}, diffeomorphic to (int ∆k)×Bd−k

1 , and we define
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the open set:

Uk =

rk⋃

i=0

Uk,i.

We have that Vk−1 = Uk ∪ Vk, where Uk is a union of rk contractible open
sets, while Uk ∩ Vk as the same homotopy type as the disjoint union of
(d− k − 1)-spheres. The Mayer-Vietoris sequence then shows that:

χ(Vk−1) = χ(Vk) + (−1)d−krk.
This proves (23.2) and finishes the proof of Euler’s formula. �

Homework.

1. Given an example of a connected manifold which is not of finite type.

2. Prove the Five Lemma and find weaker conditions on the maps α, β, ε and
δ, so that the conclusion still holds.

3. Check the commutativity, up to signs, of the diagram of long exact sequences
that appears in the proof of Poincaré duality.

4. Let M be a connected manifold of dimension d, which is not orientable.
Prove that

Hd
c (M) = 0,

by proceeding as follows. Let M̃ denote the set of orientations for all the
tangent spaces TpM :

M̃ = {(p, [µp]) : [µp] is an orientation for TpM}.
One calls M̃ the orientation cover of M . Show that:
(a) M̃ is a connected orientable manifold of dimension d;
(b) The map:

π : M̃ →M, (p, [µp]) 7→ p,

is a double cover, i.e., each p ∈ M has a neighborhood U such that
π−1(U) = V1 ∪ V2 (disjoint) and π|Vi

: Vi → U is a diffeomorphism;

(c) The map Φ : M̃ → M̃ , (p, [µp]) 7→ (p,−[µp]) is a diffeomorphism that
changes orientation and satisfies:

π = π ◦ Φ, Φ ◦ Φ = id;

(d) Given ω̃ ∈ Ωk(M̃), there exists ω ∈ Ωk(M) such that ω̃ = π∗ω if and only
if Φ∗ω̃ = ω̃;

(e) Conclude that one must have Hd
c (M) = 0.

5. Let M1,M2, . . . , be orientable manifolds of finite type of dimension d and
consider the disjoint union of the Mi:

M =
+∞⋃

i=1

Mi.

Show that:
(a) Hk(M) =

∏+∞
i=1 H

k(Mi);
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(b) Hk
c (M) =

⊕+∞
i=1 H

k
c (Mi);

(c) Conclude that there exists an isomorphism: Hk(M) ≃ (Hd−k
c (M))∗;

(d) Give an example of an orientable M with Hd−k
c (M) not isomorphic to

Hk(M)∗.

6. Compute Hk(M) and Hk
c (M) for the following manifolds:

(a) Möbius band;
(b) Klein bottle;
(c) The d-torus;

(Answer: dimHk(Td) =
(
d
k

)
.)

(d) Complex projective space;

(Answer: dimH2k(CPd) = 1 if 2k ≤ d, and 0 otherwise.)

7. Consider the following two subdivisions of the square [0, 1]× [0, 1]:
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(a) Verify that only one of these subdivisions induces a triangulation of the
2-torus T2;

(b) Compute r0, r1 and r2 for this triangulation.

8. Let M and N be connected compact manifolds of dimension d. Let M#N
be the connected sum of M and N , i.e., the manifold obtained by gluing M
and N along the boundary of open sets U ⊂M and V ⊂ N both diffeomorphic
to the ball {x ∈ Rd : ||x|| < 1}. Show that the Euler characteristics satisfy:

χ(M#N) = χ(M) + χ(N)− χ(Sd).
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Conclude that the Euler characteristic of a compact, oriented, surface of
genus g (i.e., with g holes) is 2− 2g.
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24. The Degree and the Index

We saw in the previous section that a connected manifoldM of dimension
d is orientable if and only if Hd

c (M) ≃ R. Notice that a choice of orientation
for M determines a generator of Hd

c (M). In fact, in this case, integration
gives an isomorphism Hd

c (M) ≃ R by:

Hd
c (M)→ R, [ω] 7→

∫

M
ω.

By the way, this isomorphism is just Poincaré duality, since M being con-
nected H0(M) is the space of constant functions in M . In the sequel, we
will often use the same symbol µM to denote the orientation of M and the
generator µM ∈ Hd

c (M) that corresponds to the constant function 1.
Let Φ :M → N be a proper map between connected, oriented manifolds

of the same dimension: dimM = dimN = d. The canonical isomorphisms
Hd
c (M) ≃ R and Hd

c (N) ≃ R give a representation of the induced map in
cohomology

Φ∗ : Hd
c (N)→ Hd

c (M)

as a real number which one calls the degree of the map. In other words:

Definition 24.1. Let Φ : M → N be a proper map between connected,
oriented manifolds of the same dimension d. The degree of Φ is the unique
real number degΦ such that:

∫

M
Φ∗ω = degΦ

∫

N
ω,

for every differential form ω ∈ Ωdc(N).

Our aim is to give a geometric characterization of the degree of map,
which allows also for its computation. For simplicity, we will consider only
the case where both manifolds are compact. You may wish to try to extend
these results to any proper map. We start with the following property:

Proposition 24.2. Let Φ : M → N be a smooth map between compact,
connected, oriented manifolds of the same dimension d. If Φ is not surjective
then degΦ = 0.

Proof. Let q0 ∈ N − Φ(M). Since Φ(M) is closed, there is an open neigh-
borhood of q0 such that U ⊂ N − Φ(M). Let ω ∈ Ωd(N) have its support
in U be such that

∫
N ω 6= 0. Then:

0 =

∫

M
Φ∗ω = degΦ

∫

N
ω,

hence deg Φ = 0. �

We can now give a geometric interpretation of the degree of a map. This
interpretation also shows that the degree is always an integer, something
which is not obvious from our definition of the degree.
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Theorem 24.3. Let Φ : M → N be a smooth map between compact, con-
nected, oriented manifolds of the same dimension d. Let q ∈ N be a regular
value of Φ and for each p ∈ Φ−1(q) define

sgnpΦ ≡





1 if dpΦ : TpM → TqN preserves orientations,

−1 if dpΦ : TpM → TqN switches orientations.

Then 7:
degΦ =

∑

p∈Φ−1(q)

sgnpΦ.

In particular, the degree is an integer.

Proof. Let q be a regular value of Φ. If Φ−1(q) is empty, then Φ is not
surjective and the result follows from the previous proposition. On the other
hand, if Φ−1(q) is non-empty then it is a discrete subset of M which, by
compactness, must be finite: Φ−1(q) = {p1, . . . , pN}. We need the following
lemma:

Lemma 24.4. There exists a neighborhood V of q and disjoint neighbor-
hoods U1, . . . , UN of p1, . . . , pN such that

Φ−1(V ) = U1 ∪ · · · ∪ UN .
Assuming that this lemma holds, let V and U1, . . . , UN be as in its state-

ment. Since each pi is a regular point, we can assume, additionally that
V is the domain of a chart (y1, . . . , yd) in N and that the restrictions
Φ|Ui : Ui → V are diffeomorphisms.

Let:
ω = fdy1 ∧ · · · ∧ dyd ∈ Ωd(N),

where f ≥ 0 has supp f ⊂ V . Obviously, we have

suppΦ∗ω ⊂ U1 ∪ · · · ∪ UN ,
so we find: ∫

M
Φ∗ω =

N∑

i=1

∫

Ui

Φ∗ω.

Since each Φ|Ui is a diffeomorphism, the change of variables formula gives:
∫

Ui

Φ∗ω = ±
∫

V
ω = ±

∫

N
ω,

where the sign is positive if Φ|Ui preserves orientations and negative other-
wise. Since Φ|Ui preserves orientations if sgnpi Φ > 0 and switches orienta-
tions if sgnpi Φ < 0, we conclude that

∫

M
Φ∗ω =

N∑

i=1

sgnpi Φ

∫

N
ω.

7If Φ−1(q) is empty then q is a regular value and we convention that the sum is zero.
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To finish the proof it remains to prove the lemma. Let O1, . . . , ON be any
disjoint open neighborhoods of p1, . . . , pN , and W a compact neighborhood

of q. The set W̃ ⊂M defined by:

W̃ = Φ−1(W )− (O1 ∪ · · · ∪ON ),

is compact. Hence, Φ(W̃ ) is a closed set which does not contain q. Therefore,

there exists an open set V ⊂W−Φ(W̃ ), containing q, and we have Φ−1(V ) ⊂
O1∪ · · · ∪ON . If we let Ui = Oi∩Φ−1(V ), we see that the lemma holds. �

The degrees of two homotopic maps coincide, since homotopic maps in-
duce the same map in cohomology. This is a very useful fact in computing
degrees, and can be explored to deduce global properties of manifolds. A
classic illustration of this is given in the next example.

Example 24.5.
Consider the antipodal map Φ : Sd → Sd, p 7→ −p. For the canonical orienta-
tion of the sphere Sd defined by the form

ω =
d+1∑

i=1

(−1)i+1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1.

we see that Φ preserves or switches orientations if d is odd or even, respectively.
Since Φ−1(q) contains only one point, we conclude that

deg Φ = (−1)d−1.

By the way, we could also compute the degree directly from the definition, since
we have ∫

Sd

Φ∗ω = (−1)d−1

∫

Sd

ω.

We claim that we can use this fact to show that every vector field on a
even dimensional sphere vanishes at some point. In fact, let X ∈ X(S2d) be
a nowhere vanishing vector field. Then for each p ∈ S2d there exists a unique
semi-circle γp joining p to −p with γ′p(0) = X |p. It follows that the map

H : S2d × [0, 1]→ S2d given by

H(p, t) = γp(t),

is a homotopy between Φ and the identity map. Hence,

−1 = degΦ = deg(id) = 1,

a contradiction.
You should notice that, in contrast, any odd degree S2d−1 ⊂ R2d admits the

vector field:

X = x2
∂

∂x1
− x1 ∂

∂x2
+ · · ·+ x2d

∂

∂x2d−1
− x2d−1 ∂

∂x2d
,

which is a nowhere vanishing vector field.
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As another application of degree theory, we will introduce now the index
of a vector field, which will eventually lead to a geometric formula for the
Euler characteristic of a manifold, known as the Poincaré-Hopf Theorem.

Consider first a vector field X defined in an open set U ⊂ Rd which has
an isolated zero at x0 ∈ U . We can view it as a map X : U → Rd which
vanishes at x0 and is non-zero in a deleted neighborhood V − {x0}. Let
Dε(x0) ⊂ U be a closed disk of radius ε centered at x0 which does not
contain any other zero of X and let Sε be the sphere of radius ε centered at
x0:

Sε := ∂Dε(x0).

We define the Gauss map Gε : Sε → Sd−1 by:

Gε(x) =
X(x)

||X(x)|| .

The index of X at x0 is the degree of the Gauss map:

indx0 X ≡ degGε,

where on both spheres we consider the induced orientation from Rd.
Our next result states that the degree is independent of ε and is a diffeo-

morphism invariant:

Proposition 24.6. Let U ⊂ Rd be open and let X ∈ X(U) a vector field
with an isolated zero at x0.

(i) Any two Gauss maps Gε0 and Gε1 have the same degree.
(ii) If Φ : U → U ′ a diffeomorphism and X ′ = Φ∗X then

indx0 X = indΦ(x0)X
′.

Proof. We leave (i) as an exercise. To prove (ii), we can assume that Φ(x0) =
x0 = 0 and that U is star shaped with center 0.

Assume first that Φ preserves orientations. Then the map

H(t, x) =





1
tΦ(tx), if t > 0,

d0Φ(x), if t = 0.

is a homotopy between Φ and d0Φ, consisting of diffeomorphisms that fix
the origin. Since d0Φ is homotopic to the identity, via diffeomorphisms that
fix the origin, we see that there exists a homotopy, via diffeomorphisms that
fix the origin, between Φ and the identity. Hence, the Gauss maps of X and
X ′ are homotopic, so that the indices of X and X ′ coincide.

Now, the case where Φ switches orientations follows if we can prove the
case where Φ is a reflection. In this case Φ is a linear map, so:

X ′ = Φ∗X = Φ ◦X ◦ Φ−1.

The corresponding Gauss maps are then related by:

G′
ε = Φ ◦Gε ◦ Φ−1,

and, hence, their degrees coincide. �
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The proposition allows us to define the index for any vector field:

Definition 24.7. If X ∈ X(M) is a vector field with an isolated zero p0,
the index of X at p0 ∈M , is the number

indp0 X ≡ ind0 φ∗(X|U ),
where (U, φ) is any coordinate system centered at p0.

In some simple cases it is possible to determine the index of a vector field
from its phase portrait, even if the zeros are degenerate. The pictures in
the next page illustrate some examples of planar vector fields with a zero
and the value of its index. You should try to check that the degree of the
corresponding Gauss maps is indeed the integer in each figure.
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In general, it maybe hard to compute the index, but there is a method
for so-called non-degenerate zeros of vector fields, as we now explain.

Let X be a vector field in a manifold M and let p0 ∈ M be a zero of X.
The zero section Z ⊂ TM and the fiber Tp0M ⊂ TM intersect transversely
at 0 ∈ Tp0M , i.e., we have:

T0(TM) = Tp0Z ⊕ Tp0(Tp0M) ≃ Tp0M ⊕ Tp0M,
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where the isomorphism arises from the differential dp0π of the projection
π : TM →M . Under this decomposition, the differential of the vector field:

dp0X : Tp0M → T0(TM).

has first component the identity (since π ◦X =idM ), while the second com-
ponent is a linear map Tp0M → Tp0M . This linear map will be denoted
also by dp0X, and is called the linear approximation to X at the zero p0.
Notice that we can also view dp0X as a linear vector field on the tangent
space Tp0M .

In a chart (U, x1, . . . , xd) centered at p0 the vector field has a represen-

tation X =
∑d

i=1X
i ∂
∂xi

where Xi(0) = 0. The linear approximation is the

linear map dp0X whose matrix relative to the basis { ∂
∂x1

∣∣
p0
, . . . , ∂

∂xd

∣∣
p0
} is:

dp0X =

[
∂Xi

∂xj
(0)

]d

i,j=1

.

If we prefer to view dp0X as a linear vector field in Tp0M , it has the expres-
sion:

dp0X =

d∑

i,j=1

∂Xi

∂xj
(0)xj

∂

∂xi

∣∣∣∣
p0

.

Definition 24.8. A zero p0 of X ∈ X(M) is called non-degenerate if the
linear approximation dp0X : Tp0M → Tp0M is invertible.

Non-degenerate zeros are always isolated and their indices can be com-
puted easily:

Proposition 24.9. Let p0 ∈ M be a non-degenerate zero of a vector field
X ∈ X(M). Then p0 is an isolated zero and:

indp0 X =





+1, if det dp0X > 0,

−1, if det dp0X < 0.

Proof. Choose local coordinates (U, φ) centered at p0. The vector field
φ∗(X|U ) has an associated Gauss map G : Sε → Sd−1 which is a diffeo-
morphism. Moreover, this diffeomorphism preserves (switches) orientations
if and only if det dp0X > 0 (respectively, < 0). Hence the result follows from
Theorem 24.3. �

Example 24.10.
Consider R3 with coordinates (x, y, z). The vector field

X = y
∂

∂x
− x ∂

∂y
∈ X(R3),

is tangent to the sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1} and hence defines
a vector field X ∈ X(S2), with exactly two zeros: the north pole pN and the
south pole pS.
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The projection φ = (u, v) : (x, y, z) 7→ (x, y) restricts on the upper and lower
hemispheres to system of coordinates on S2 centered at pN and pS. We have:

φ∗X = v
∂

∂u
− u ∂

∂v
.

The matrix representation of the linear approximation to X at pN and pS
relative to the basis { ∂∂u , ∂∂v} is then given by:

dpNX = dpSX =

[
0 1
−1 0

]
.

We conclude that pN and pS are non-degenerate zeros and:

indpN X = indpS X = 1.

In the previous example, the sum of the indices of the zeros the vector field
X ∈ X(S2) equals 2, so it coincides with the value of the Euler characteristic
of S2. This is an illustration of the following famous result:

Theorem 24.11 (Poincaré-Hopf). Let X ∈ X(M) is a vector field on a
compact manifold with a finite number of zeros {p1, . . . , pN}. Then:

χ(M) =

N∑

i=1

indpi X.

This beautiful theorem connects the topology ofM with its smooth struc-
ture, i.e., its tangent bundle. The proof will be given in the next chapter
where we will study bundle theory.

Homework.

1. Let Φ : C→ C be a polynomial map of degree d. Find degΦ.

2. Show that for a smooth manifold M of dimension d > 0 the identity map
M →M is never homotopic to a constant map. Use this fact to prove that there
is no retraction of the closed unit disk Dd ⊂ Rd on its boundary Sd−1 = ∂Dd.

Hint: If there was such a retraction r : Dd → Sd−1 consider the map H(x, t) =
r(rx).
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3. Let A =

(
a b
c d

)
be a 2 × 2 matrix with integer entries. Identifying

T2 = R2/Z2, consider the map Φ : T2 → T2 defined by:

Φ([x, y]) = [ax+ by, cx+ dy].

Determine degΦ.

4. Let X : Rd → Rd be a vector field with an isolated zero at x = 0 and
associated Gauss map Gε. Define G̃ε : Sd−1 → Sd−1 to be the composition of
Gε : Sε → Sd−1 with the map Sd−1 → Sε, x 7→ εx.

(a) Show that deg G̃ε = degGε;

(b) Show that for any ε0, ε1 > 0 the maps G̃ε0 and G̃ε1 are homotopic;
(c) Conclude that the degree of the Gauss map Gε is independent of ε.

5. Identify M = R2 with the field of complex numbers C. Show that the
polynomial map z 7→ zk defines a vector field in R2 which has a zero at the
origin of index k. How would you change z 7→ zk to obtain a vector field with
a zero of index −k?

6. Find the index of the zeros of the following vector fields in R2:
(a) x ∂

∂x ± y ∂
∂y ;

(b) (x2y + y3) ∂∂x − (x3 + xy2) ∂∂y ;

7. Show that a vector field on a compact, oriented, surface of genus g must
have at least one zero if g 6= 1.

8. Consider the vector field X ∈ X(S2d) obtained by restriction of the vector
field in R2d+1:

X = x2
∂

∂x1
− x1 ∂

∂x2
+ · · ·+ x2d

∂

∂x2d−1
− x2d−1 ∂

∂x2d
.

Show that there is a vector field X in RP2d such that π∗X = X and apply
the Poincaré-Hopf theorem to compute the Euler characteristic of RP2d. What
can you say about the Euler characteristic of RP2d+1?
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Part 4. Fiber Bundles

We have seen already several examples of fiber bundles, such as the tan-
gent bundle, the cotangent bundle or the exterior bundles. So far, we have
used the concept of a bundle in a more or less informal way. We will see now
that one can understand many global properties of manifolds by studying
more systematically fibre bundles and their properties.

The main notions and concepts to retain from the next series of sections
are the following:

• Section 25: The notion of a vector bundle and the basic constructions
with these bundles, such as the sum, tensor product and exterior
product, etc.
• Section 26: Two import invariants of vector bundles that measure
how twisted they are: the Thom class and the Euler class. The rela-
tionship between the Euler class of the tangent bundle and the Euler
characteristic and, as a consequence, the Poincaré-Hopf Theorem.
• Section 27: A fundamental construction with vector bundles, which
allows to move between different base manifolds: the pullback of
vector bundles. The homotopy invariance of pullbacks.
• Section 28: The classification of vector bundles, which shows that
every vector bundle is the pullback of a universal vector bundle.
• Section 29: The concept of a connection in a vector bundle, which
allows one to differentiate sections of the vector bundle along vector
fields in the basis and hence compare different fibers.
• Section 30: The curvature of a connection and the holonomy of a
connection, which allows to characterize the global structure of flat
vector bundles.
• Section 31: The Chern-Weil homomorphism associating to a vector
bundle cohomology classes in a functorial way.
• Section 32: The theory of characteristics classes of real vector bun-
dles (Pontrjagin classes) and complex vector bundles (Chern classes).
• Section 33: The abstract notion of a fibre bundle and of a principal
fibre bundle. The constructions of the associated bundles.
• Section 34: The classification of principal bundles, connections in
principal bundles and characteristic classes of principal bundles.
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25. Vector Bundles

A vector bundle is a collection {Ep}p∈M of vector spaces parameterized
by a manifold M . The union of these vector spaces is a manifold E and the
map π : E → M , π(Ep) = p must satisfy a local trivialization condition.
You should be able to recognize all these properties in the tangent bundle
or in the cotangent bundle of a manifold.

PSfrag replaements

T

2

M

E

E

p

�

�

0

�

1

�

2

C

X

Y

�X

�Y

[X;Y ℄

q

C

�

0

�

1

�

2

�

3

R

r

�

�

U

1

U

�

�

 

 Æ �

�1

p

1

= �

p

"

Y

(p)

p

2

= �

p

"

X

(p

1

)

p

3

= �

�

p

"

Y

(p

2

)



p

(") = �

�

p

"

X

(p

3

)

R

d

R

d

R

d�k

R

k

R

e�d

R

R

2

R

4

d = 3

d = 2

p

�

N

(p)

�2

�1

1

2

�

�

�

~v

~w

T

p

S

T

p

M

TM

In order to formalize this concept, let π : E → M be a smooth map
between differentiable manifolds. A trivializing chart of dimension r for
π is a pair (U, φ), where U ⊂ M is open and φ : π−1(U) → U × Rr is a
diffeomorphism, such that we have a commutative diagram:

π−1(U)
φ //

π
##❋

❋❋
❋❋

❋❋
❋❋

U × Rr

π1
{{①①
①①
①①
①①
①①

U

In this diagram, π1 : U × Rr → U denotes the projection in the first factor.
Let Ep = π−1(p) be the fiber over p ∈ U . We define a diffeomorphism

φp : Ep → Rr as the composition:

φp : Ep
φ // {p} × Rr // Rr .

Hence, if v ∈ Ep, we have

φ(v) = (p, φp(v)).

Notice that since each φp is a diffeomorphism, we can use φp to transport
the vector space structure of Rr to Ep. Given two trivializing charts whose
domains intersect we would like that the induced vector space structures on
the fibers coincide. This leads to the following definition:
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Definition 25.1. A vector bundle structure of rank r over a manifold
M is a triple ξ = (π,E,M), where π : E → M is a smooth map admitting
a collection of trivializing charts C = {(Uα, φα) : α ∈ A} of dimension r,
satisfying the following properties:

(i) {Uα : α ∈ A} is an open cover of M :
⋃
α∈A Uα =M ;

(ii) The charts are compatible: for any α, β ∈ A and every p ∈ Uα ∩ Uβ ,
the transition functions gαβ(p) ≡ φpα ◦ (φpβ)−1 : Rr → Rr are linear

isomorphisms;
(iii) The collection C is maximal: if (U, φ) is a trivializing chart of dimen-

sion r with the property that for every α ∈ A, the maps φp ◦ (φpα)−1

and φpα ◦ (φp)−1 are linear isomorphisms, then (U, φ) ∈ C.
We call ξ = (π,E,M) a vector bundle of rank r.

For a vector bundle ξ = (π,E,M) we will use the following notations:

• E is call the total space, M is called the basis space, and π the
projection of ξ.
• A collection of charts satisfying (i) and (ii) is called an atlas of the
vector bundle or a trivialization of ξ.

An atlas of a vector bundle defines a vector bundle, since every atlas is
contain in a unique maximal atlas. As we have already remarked, (ii) implies
that the fiber Ep has a vector space structure such that for any trivializing
chart (U, φ) the map φp : Ep → Rr is a linear isomorphism.

In the definition above of a vector bundle all maps are C∞. Of course,
one can also define Ck-vector bundles over Ck-manifold or even topological
manifolds. Also, one can define complex vector bundles over smooth man-
ifolds by replacing Rr by Cr and where the the base is still a real smooth
manifold. In these notes, we will consider mainly real C∞ vector bundles,
but we will see that complex vector bundles will also be important.

Let ξ = (π,E,M) be a vector bundle and U ⊂ M an open set. A map
s : U → E is called a section over U if π ◦ s = IdU . The sections over U
form a real vector space which we denote by ΓU (E). When U =M we call a
section over M a global section of E and we write Γ(E) instead of ΓM (E).
If rank ξ = r a collection s1, . . . , sr of sections over U is called a frame over
U if, for every p ∈ U , the sections {s1(p), . . . , sr(p)} form a basis for Ep.

Definition 25.2. Let ξ1 = (π1, E1,M1) and ξ2 = (π2, E2,M2) be two vector
bundles. A morphism of vector bundles is a smooth map Ψ : E1 → E2

which maps the fibers of ξ1 linearly in the fibers of ξ2, i.e., Ψ covers a smooth
map ψ :M1 →M2:

E1
Ψ //

π1
��

E2

π2
��

M1
ψ // M2

and the map of the fibers Ψp ≡ Ψ|(E1)p : (E1)p → (E2)ψ(p) is a linear
transformation for each p ∈M1.
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In this way we have the category of all vector bundles. Often we will
be interested in vector bundles over a fixed base manifoldM and morphisms
over the identity ψ = IdM : M →M . These form the category of vector
bundles over M .

Two vector bundles ξ1 = (π1, E1,M1) and ξ2 = (π2, E2,M2) are called:

• equivalent if there exist morphisms Ψ : ξ1 → ξ2 and Ψ′ : ξ2 → ξ1
which are inverse to each other. This means that Ψ is an isomor-
phism in the category of vector bundles: it covers a diffeomorphism
ψ : M1 → M2 and each fiber map Ψp : (E1)p → (E2)ψ(p) is a linear
isomorphism.
• isomorphic if M1 = M2 = M and there exist morphisms Ψ : ξ1 →
ξ2 and Ψ′ : ξ2 → ξ1, covering the identity which are inverse to each
other. This means that Ψ is an isomorphism in the category of vector
bundles over M : it covers the identity ψ = IdM and each fiber map
Ψp : (E1)p → (E2)p is a linear isomorphism.

Examples 25.3.

1. Obviously, for any smooth manifold M , we have the associated vector bun-
dles TM , T ∗M , ∧kT ∗M , ⊗rTM ⊗s T ∗M , etc. The sections of these bun-
dles are the vector fields, the differential forms and general tensor fields, that
we have studied before. If Ψ : M → N is a smooth map, its differential
dΨ : TM → TN is a morphism of vector bundles (note, however, that the
transpose (dxΨ)∗, in general, is not a vector bundle morphism).

2. The trivial vector bundle of rank r over M is the vector bundle εrM =
(π,M × Rr,M), where π : M × Rr → M is the projection in the first factor.
The global sections of εrM can be identified with C∞(M ;Rr). In general, a
vector bundle ξ over M of rank r is said to be trivial if it is isomorphic to
εrM . It is easy to see that a vector bundle is trivial if and only if it admits a
global frame.

A parallelizable manifold is a manifold M for which TM is a trivial
vector bundle. For example, any Lie group G is parallelizable, but S2 is not
parallelizable (actually, one can show that Sd is parallelizable if and only if
d = 0, 1, 3 and 7).

3. A r-dimensional distribution D in a manifold M , defines a vector bundle
over M of rank r. The fibers are the subspaces Dp ⊂ TpM . A section of this
vector bundle is simply a vector field tangent to the distribution.

4. A vector bundle of rank 1 is usually refer to as a line bundle. For example,
any non-vanishing vector field X ∈ X(M) defines a line bundle which is always
trivial. More generally, a rank 1 distribution defines a line bundle which is
trivial if and only if the distribution is generated by a single vector field.

5. Consider the manifold formed by pairs ([x],v), where [x] is a line through
the origin in Rd+1 and v is a point in this line:

E = {([x],v) ∈ RPd × Rd+1 : v = λx, for some λ ∈ R}.
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The map π : E → RPd given by π([x],v) = [x] satisfies the the local triviality
condition. To see this, given an open set V ⊂ Sd such that if x ∈ V then
−x 6∈ V , denoted by U = {[x] : x ∈ V } ⊂ RPd the corresponding open set in
real projective space. Then the map defined by:

ψ : U × R→ π−1(U), ψ([x], t) = ([x], tx), ∀x ∈ V,
is a diffeomorphism, and its inverse φ = ψ−1 defines a trivializing chart over
U . The family of all such charts (U, φ) is an atlas of a vector bundle over

RPd. This vector bundle is called the canonical line bundle over RPd and
is denoted γ1d.

One way of describing vector bundles is through transition functions.
Let ξ = (π,E,M) be a rank r vector bundle. If (Uα, φα) and (Uβ, φβ)
are trivializing charts, the corresponding transition function is the map
gαβ : Uα ∩ Uβ → GL(r) given by

p 7→ gαβ(p) ≡ φpα ◦ (φpβ)−1,

so that:
φα ◦ (φβ)−1(p,v) = (p, gαβ(p) · v).

The transition functions satisfies the following fundamental identity:

(25.1) gαβ(p)gβγ(p) = gαγ(p), (p ∈ Uα ∩ Uβ ∩ Uγ).
If α = β = γ, this condition reduces to:

gαα(p) = I, (p ∈ Uα),
and when γ = α we obtain:

gβα(p) = gαβ(p)
−1, (p ∈ Uα ∩ Uβ).

The family {gαβ} depends on the choice of trivializing charts. However,
we have:

Lemma 25.4. Let ξ and η be vector bundles over M with trivializations
{φα} and {φ′α} subordinated to the same open cover {Uα}. Denote by {gαβ}
and {g′αβ} the corresponding collections of transition functions. If ξ is iso-

morphic to η, then there exist smooth maps λα : Uα → GL(r) such that:

(25.2) g′αβ(p) = λα(p) · gαβ(p) · λ−1
β (p), (p ∈ Uα ∩ Uβ).

Proof. Let Ψ : ξ → η be an isomorphism. For each Uα we define smooth
maps λα : Uα → GL(r) by:

λα(p) = φ′pα ◦Ψ ◦ (φpα)−1.

If p ∈ Uα ∩ Uβ, we have:

g′αβ(p) = φ′pα ◦ (φ′
p
β)

−1 = λα(p) ◦ φpα ◦ (φpβ)−1 ◦ (λβ(p))−1

= λα(p) ◦ gαβ(p) ◦ λβ(p)−1.

�
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Given a manifold M and an open cover {Uα}α∈A we call a family of maps
gαβ : Uα ∩ Uβ → GL(r) satisfying (25.1) a cocycle subordinated to the
cover. Two cocycles {gαβ} and {g′αβ} subordinated to the same cover are

said to be equivalent if they are related by (25.2) for some family of smooth
maps λα : Uα → GL(r).

We saw above that (i) a trivialization of a vector bundle determines a
cocycle and that (ii) two trivializations of isomorphic vector bundles subor-
dinated to the same cover determine equivalent cocycles. If two cocycles are
subordinated to different covers we can refine the covers and obtain cocycles
subordinated to the same cover. Moreover, we have the following converse:

Proposition 25.5. Let {gαβ} be a cocycle subordinated to an open cover
{Uα} of M . There exists a vector bundle ξ = (π,E,M), that admits a
trivialization {φα} for which the transition functions are the {gαβ}. Two
equivalent cocycles {gαβ} and {g′αβ} determine isomorphic vector bundles
so there is a 1:1 correspondence:



vector bundles ξ = (π,E,M)

up to isomorphism



 ←̃→




cocycles

{
gαβ : Uα ∩ Uβ → GL(r)

}

up to equivalence and refinement





Proof. Given a cocycle {gαβ}, subordinated to the cover {Uα} of M , we
construct the manifold E as the quotient:

E =
⊔

α∈A
(Uα × Rr)

/
∼

where ∼ is the equivalence relation defined by:

(p,v) ∼ (q,w) iff





p = q and

∃α, β ∈ A : gαβ(p) · v = w.

The quotient topology on E turns this space into a 2nd countable, Hausdorff,
topological space. We also have the obvious projection π : E →M :

π([p,v]) = p.

For each chart (V, ψ) for M and each α such that Uα∩ V 6 ∅ we construct a
chart for E:

π−1(V ∩ Uα → Rd+r, [(p,v)] 7→ (ψ(p),v).

This make E into a local euclidean topological space, and it is easy to see that
the corresponding change of charts are smooth, so E is a smooth manifold
such that π is a smooth map.

The maps φα : π−1(Uα)→ Uα × Rr defined by:

φα([p,v]) = (p,v).

give trivializing charts for π : E → M and the corresponding transition
functions are exactly the {gαβ}. Denote this vector bundle by ξ = (π,E,M)
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If {g′αβ} is another cocycle equivalent to {gαβ} through the family {λα}
and ξ′ = (π′, E′,M) denotes the vector bundle associated with {g′αβ}, we
have a vector bundle isomorphism Ψ : ξ → ξ′ defined on each open set
π−1(Uα) by:

Ψ([p,v]) = [p, λα(p) · v].
�

Let us now turn to constructions with vector bundles. We have the fol-
lowing general principle:

• For every functorial construction with vector spaces there is a similar
construction with vector bundles.

This principle can actually be made precise. However, instead of following
the abstract route we will describe explicitly the constructions that are most
relevant for us.

Subbundles and quotients. Every vector bundle ξ = (π,E,M) can be re-
stricted to a submanifold N ⊂M . The restriction ξN is the vector bundle
with total space:

EN = {Ep : p ∈ N},
and projection πN : EN → N the restriction of π to EN . The restriction is
an example of a vector subbundle:

Definition 25.6. A vector bundle η = (τ, F,N) is called a vector subbun-

dle of a vector bundle ξ = (π,E,M) if F is a submanifold of E, and the
inclusion F →֒ E is a morphism of vector bundles.

If Ψ : η → ξ is a morphism of vector bundles covering the identity, in
general, its image and its kernel are not vector subbundles: these are made
of vector spaces of varying dimension. This can be fixed if we assume that
Ψ has constant rank k, i.e., if all linear maps Ψp : Ep → Fp have the same
rank k. For a constant rank morphism we can define the following vector
subbundles over M :

• The kernel of Ψ is the vector subbundle KerΨ ⊂ E whose total
space is {v ∈ E : Ψ(v) = 0};
• The image of Ψ is the vector subbundle ImΨ ⊂ F whose total space
is {Ψ(v) ∈ F : v ∈ E};
• The co-kernel of Ψ is the vector bundle coKerΨ whose total space
is the quotient F/ ∼, where ∼ the equivalence relation w1 ∼ w2 if
and only if w1 −w2 = Ψ(v), for some v ∈ E.

Note that if Ψ is a monomorphism (i.e., each Ψp is injective) or if Ψ is an
epimorphism (i.e., each Ψp is surjective) then Ψ has constant rank. There-
fore, the kernel, image and cokernel of monomorphisms and epimorphisms
are vector subbundles.
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The notions associated with exact sequences can be easily extended to
vector bundles and morphisms of constant rank. For example, a short exact
sequence of vector bundles is a sequence of vector bundle morphisms

0 // ξ
Φ // η

Ψ // θ // 0

where Φ is a monomorphism, Ψ is an epimorphism and ImΦ = KerΨ. In
this case, we have vector bundle isomorphisms ξ ≃ KerΨ and θ ≃ coKerΨ.
We say that θ is the quotient vector bundle of the monomorphism Φ.

For a concrete example, consider a vector subbundle ξ = (τ, F,M) ⊂ η =
(π,E,M). The inclusion is a monomorphism of vector bundles, hence we
can form its quotient, which we denote by η/ξ. Notice that the fibers of η/ξ
are the quotient vector spaces Ep/Fp.

Example 25.7.
Let M be a manifold and N ⊂M a submanifold. The tangent bundle TN is a
vector subbundle of TNM . The quotient bundle ν(N) ≡ TNM/TN is usually
called the normal bundle to N in M .

More generally, let F be a foliation of M . Then F gives rise to the vector
subbundle TF ⊂ TM . The quotient bundle ν(F) ≡ TM/TF is usually called
the normal bundle of F in M . If L is a leaf of F the restriction of ν(F) to
L is the normal bundle ν(L).

Direct sums and tensor products. Let ξ = (π,E,M) and η = (τ, F,M) be
vector bundles over the same manifold M . The Whitney sum or direct
sum of ξ and η is the vector bundle ξ ⊕ η whose total space is:

E ⊕ F := E ×M F = {(v,w) ∈ E × F : π(v) = τ(w)},
and whose projection is:

E ⊕ F →M, (v,w) 7→ π(v) = τ(w).

Note that the fiber of ξ⊕ η over p ∈M is the direct sum Ep⊕Fp. The local
triviality condition is easily verified: if {φα} and {ψα} are trivializations of ξ
and η, subordinated to the same covering, with corresponding cocycles {gαβ}
and {hαβ}, then we have the trivialization of ξ⊕η given by {(φα×ψα)|E⊕F },
to which corresponds the cocycle defined by:

gαβ ⊕ hαβ =

[
gαβ 0
0 hαβ

]
.

Similarly, we can define:

• The tensor product ξ⊗η: the fibers are the tensor products Ep⊗Fp
and the transition functions are gαβ ⊗ hαβ .
• The dual vector bundle ξ∗: the fibers are the dual vector spaces E∗

p

and the transition functions are the inverse transpose maps (gαβ)
−T .

• The exterior product ∧kξ: the fibers are the exterior products
∧kEp and the transition functions are the exterior powers ∧kgαβ .

194



• The Hom(ξ, η)-bundles: the fibers are the space of all linear mor-
phisms Hom(Ex, Fx). We leave as an exercise to show that there is
a natural isomorphism Hom(ξ, η) ≃ ξ∗ ⊗ η.

Orientations. A vector bundle ξ = (π,E,M) of rank r is called an ori-
entable vector bundle if the exterior product ∧rξ has a section which
never vanishes. Note that this section corresponds to a smooth choice of an
orientation in each vector space Ep. We call an orientation for ξ an equiv-
alence class [s], where two non-vanishing sections s1, s2 ∈ Γ(∧rξ) are equiv-
alent if and only if s2 = fs1 for some smooth positive function f ∈ C∞(M).
We leave as an exercise to check that ξ is orientable if and only if it admits
a trivialization {φα} for which the associated cocycle {gαβ} takes values in
GL+(r), the group of invertible r × r matrices with positive determinant:

gαβ : Uα ∩ Uβ → GL+(r) ⊂ GL(r).
For a manifold M , the notion of orientation that we studied before corre-

sponds to the notion of orientation of the vector bundle TM . For a vector
bundle ξ = (π,E,M), the possible orientations for ξ, E and M are related
as follows:

Lemma 25.8. Let ξ = (π,E,M) be a vector bundle. If two among the
vector bundles TM , TE and ξ are orientable so is the third one.

The proof is left as an exercise.

Riemmanian structures. A Riemann structure in a vector bundle ξ =
(π,E,M) is a choice of an inner product 〈 , 〉 : Ep × Ep → R in each
fiber which varies smoothly, i.e., for any sections s1, s2 ∈ Γ(E) the map
p 7→ 〈s1(p), s2(p)〉 is smooth. This condition is equivalent to say that the
section of the vector bundle ⊗2ξ∗ defined by 〈 , 〉 is smooth.

It is easy to see, using a partition of unity, that a vector bundle always
admits a Riemann structure. Given a trivialization {(Uα, φα)}, one chooses
a partition of unity {ρα} subordinated to the cover {Uα} and defines a
Riemmanian structure by:

〈v,w〉 :=
∑

α

ρα(p)(φ
p
α(v), φ

p
α(w))Rr (v,w ∈ Ep).

On the other hand, it is not hard to see that a vector bundle has a Riemann
structure if and only it it admits a trivialization {φα} whose associated
cocycle {gαβ} take values in the orthogonal group O(r):

gαβ : Uα ∩ Uβ → O(r) ⊂ GL(r).
The fact behind the existence of such a trivialization is the polar decompo-
sition:

GL(r) = O(r)× {positive definite symmetric matrices}.
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If ξ = (π,E,M) is a vector bundle and 〈 , 〉 is a Riemann structure in ξ,
then for any vector subbundle η = (τ, F,N) we can define the orthogonal
vector bundle η⊥ over N as the subbundle of ξ with total space F⊥, where

F⊥
p ≡ {v ∈ Ep : 〈v,w〉 = 0,∀w ∈ Fp}.

When M = N , we obtain:
ξ = η ⊕ η⊥.

in this case η⊥ ≃ ξ/η, since the natural projection ξ → ξ/η restricts to an
isomorphism on η⊥.

Homework.

1. Show that a vector bundle is trivial if and only it admits a global frame.

2. Let Gr(Rd) be the Grassmannian manifold of r-planes in Rd. Consider the
submanifold E ⊂ Gr(Rd)× Rd defined by:

E = {(S, x) : S is a subspace of Rd and x ∈ S},
and the smooth map π : E → Gr(Rd) given by:

π(S, x) = S.

Show that γrd = (π,E,Gr(Rd)) is a vector bundle of rank r. It is called the
canonical bundle over Gr(Rd).

3. Let Ψ : η → ξ be a morphism of vector bundles which covers the identity.
Show that the kernel and the image of Ψ are vector subbundles if the rank of
the linear maps Ψp is constant. Give counterexamples when the rank is not
constant.

4. Let ξ = (π,E,M) and η = (τ, F,M) be vector bundles.
(a) Show that there exists a vector bundle Hom(ξ, η) whose fibers are the

vector spaces Hom(Ex, Fx).
(b) Find the transition function of Hom(ξ, η) in terms of the transition func-

tions of ξ and η.
(c) Find an isomorphism Hom(ξ, η) ≃ ξ∗ ⊗ η.

5. Given a vector bundle ξ show that there exists a trivialization of ξ for which
the transition functions take values in O(r).

6. Consider a short exact sequence of vector bundles

0 // ξ1 // ξ2
Ψ // ξ3 // 0

Show that:
(a) Such a short exact sequence always splits, i.e., there exists a morphism of

vector bundles Φ : ξ3 → ξ2 such that Ψ ◦ Φ = Id;
(b) There is an isomorphism of vector bundles:

ξ2 ≃ ξ1 ⊕ ξ3.
(c) If two among the vector bundles ξ1, ξ2 and ξ3 are orientable, so is the

third one.
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7. Let ξ = (π,E,M) be a vector bundle. Show that:
(a) There exists a natural isomorphism of vector bundles

TME ≃ ξ ⊕ TM ;

(b) If two among the vector bundles TM , TE and ξ are orientable so is the
third one.

8. For a vector bundle ξ show that the following statements are equivalent:
(a) ξ is orientable;
(b) There exists a trivialization of ξ for which the transition functions take

values in GL+(r);
(c) There exists a trivialization of ξ for which the transition functions take

values in SO(r).

26. The Thom Class and the Euler Class

The homotopy invariance of de Rham cohomology relied crucially on the
isomorphism:

H•(M × Rr) ≃ H•(M).

One can interpret this isomorphism as relating the cohomology of the total
space of the trivial bundle with the cohomology of its base. More generally,
we have:

Proposition 26.1. For any vector bundle ξ = (π,E,M):

H•(E) ≃ H•(M).

Proof. Let s :M → E be the zero section. Its image is a deformation retract
of E. Therefore, by homotopy invariance we see that s∗ : H•(E)→ H•(M)
is an isomorphism. �

One may guess that the corresponding statement for compactly supported
cohomology:

H•
c (M × Rr) ≃ H•−r

c (M),

can also be generalized to vector bundles. The following example shows that
one must be careful.

Example 26.2.
Consider the canonical line bundle γ11 over RP1 = S1. The total space E of
this bundle is the Möbius band, a non-oriented manifold of dimension 2, so we
have H2

c (E) = 0. On the other hand, for the base:

H2−1
c (S1) = H1(S1) ≃ R 6= 0.

On other hand, under a orientability assumption we do have:
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Proposition 26.3 (Thom Isomorphism – first version). Let ξ = (π,E,M)
be a vector bundle of rank r, where E is orientable and M is of finite type.
Then:

H•
c (E) ≃ H•−r(M).

Proof. Since M is of finite type, so is E. Hence, E is both orientable and of
finite type and we can apply Poincaré duality to conclude:

H•
c (E) ≃ Hd+r−•(E) (by Poincaré duality for E),

≃ Hd+r−•(M) (by Proposition 26.1).

�

The isomorphism behind the Thom isomorphism can be described explic-
itly. It relies on a push-forward map

π∗ : Ω
•
c(E)→ Ω•−r(M)

called integration along the fibers. For the case of the trivial line bundle
this map appeared in the proof of Proposition 22.11. Using a local trivi-
alization, we ca extended the description given in that proof to any vector
bundle. We start by covering M by trivializing oriented charts (Uα, φα) for
the vector bundle ξ, where each Uα is the domain of a chart (x1, . . . , xd) of
the base M . This yields a chart (x1, . . . , xd, t1, . . . , tr) for the total space E
with domain π−1(Uα), where (t

1, . . . , tr) are linear coordinates on the fibers.
If ω ∈ Ω•

c(E), then ωα = ω|π−1(Uα) is a linear combination of two kinds of
forms:

f1(x, t)π
∗θ1 ∧ dti1 ∧ · · · ∧ dtik , with k < r

f2(x, t)π
∗θ2 ∧ dt1 ∧ · · · ∧ dtr

where θi are differential forms in M and the functions fi(x, t) have compact
support. Integration along the fibers π∗ : Ω•

c(E)→ Ω•−r(M) is given by:

f1(x, t)π
∗θ1 ∧ dti1 ∧ · · · ∧ dtik 7−→ 0, (k < r)

f2(x, t)(π
∗θ2) ∧ dt1 ∧ · · · ∧ dtr 7−→ θ2

∫

Rr

f2(x, t
1, . . . , tr) dt1 · · · dtr.

One checks that this definition is independent of the choices made. Using
this explicit description one can check that fiber integration satisfies the
following properties:

Proposition 26.4. If π∗ : Ω•
c(E)→ Ω•−r(M) denotes integration along the

fibers, then:

(i) π∗ is a cochain map: dπ∗ω = π∗dω;
(ii) Projection formula: for any θ ∈ Ω∗(M) and ω ∈ Ω•

c(E):

(26.1) π∗(π
∗θ ∧ ω) = θ ∧ π∗ω.
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(iii) If Ψ : ξ1 → ξ2 is a vector bundle map covering a map ψ : M1 → M2,
which is a fiberwise isomorphism and preserves orientations, then for
any ω ∈ Ω•

c(E):

(26.2) (π1)∗Ψ
∗ = ψ∗(π2)∗.

Remark 26.5 (Differential forms with compact vertical support). The de-
scription above of integration along the fibers shows that:

(i) The definition of fiber integration π∗ only requires that the vector
bundle ξ is oriented, so the base and/or the total space can be non-
orientable;

(ii) Fiber integration π∗ can be defined for any differential form ω in E with
compact vertical support, i.e., such that suppω ∩ π−1(K) is compact
for every compact set K ⊂M .

The space Ω∗
cv(E) of differential forms with compact vertical support is a

subcomplex of the de Rham complex and gives rise to a cohomology H•
cv.

The general version of the Thom isomorphism states that:

Proposition 26.6 (Thom Isomorphism). Let ξ = (π,E,M) be an oriented
vector bundle of rank r over a manifold of finite type. Then there is an
isomorphism:

H•
cv(E) ≃ H•−r(M).

Proof. For a trivial vector bundle, the proof is the same as the proof of
Proposition 22.11.

Using a partition of unity argument, one sees that the cohomology H•
cv(E)

satisfies the Mayer-Vietoris sequence property. Then, given open sets U, V ⊂
M , one obtains a commutative diagram of Mayer-Vietoris sequences:

// Hk
cv(E|U∪V ) //

π∗

��

Hk
cv(E|U )⊕Hk

cv(E|V ) //

π∗

��

Hk
cv(E|U∩V )

δ //

π∗

��

Hk+1
cv (E|U∪V )

π∗

��

//

// Hk−r(U ∪ V )∗ // Hk−r
c (U)∗ ⊕Hk−r

c (V )∗ // Hk−r
c (U ∩ V )∗

δ∗// Hk+1−r
c (U ∪ V )∗ //

If the vector bundle ξ is trivial over U and V , then in the previous diagram
one obtains that π∗ is an isomorphism for U , V and U ∩ V . By the Five
Lemma, it follows that π∗ is an isomorphism also over U ∪ V . Then the
proof proceeds by an induction argument over the number of elements of a
good cover, as in the proof of Poincaré duality. �

We can now introduce a cohomological invariant of a vector bundle:

Definition 26.7. The Thom class of an oriented vector bundle ξ = (π,E,M)
of rank r is the image of 1 under the Thom isomorphism H0(M) ≃ Hr

cv(E).
We will denote this class by U ∈ Hr

cv(E).

The Thom class allows one to write, in a more or less explicit way, the
inverse to the integration along fibers π∗ : H•

cv(E) → H•−r(M). In fact,
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since π∗U = 1, the projection formula (26.1) shows that the linear map
H•(M)→ H•+r

cv (E) defined by:

(π∗)
−1([ω]) = [π∗ω] ∪ U.

is an inverse to π∗.
The following result gives an alternative characterization of the Thom

class:

Theorem 26.8. The Thom class of an oriented vector bundle ξ = (π,E,M)
is the unique class U ∈ Hr

cv(E) whose pullback to each fiber Ep is the canon-
ical generator of Hr

c (Ep), i.e.,∫

Ep

i∗U = 1, ∀p ∈M,

where i : Ep →֒ E is the inclusion.

Proof. Since π∗U = 1, we see that the restriction i∗U to each fiber Ep is a
compactly supported form with

∫
Ep
i∗U = 1.

Conversely, let U ′ ∈ Hr
cv(E) be a class such for each p ∈M the restriction

i∗U ′ ∈ Hr
c (Ep) is the canonical generator. By the projection formula (26.1),

we obtain

π∗(π
∗θ ∧ U ′) = θ ∧ π∗U ′ = θ, ∀θ ∈ H•(M).

Hence, θ 7→ π∗θ ∧ U ′ inverts π∗. The image of 1, which is U ′, must then
coincide with the Thom class. �

From now on, to simplify the presentation, we will assume that M is
compact so that it is of finite type. Moreover it follows that for a vector
bundle ξ = (π,E,M) we have Hr

cv(E) = Hr
c (E).

The Thom class of a vector bundle ξ = (π,E,M) is an invariant of the
bundle, but it lies in the cohomology of the total space. We can use a global
section to obtain an invariant which lies in the cohomology of the base. For
that observe that given a section s : M → E we have the induced map in
cohomology

s∗ : H•
c (E)→ H • (M).

Notice that we can view this map has the composition of two maps:

H•
c (E) // H•(E)

s∗ // H•(M) .

On the other hand, any two sections s0, s1 :M → E are homotopic:

H(p, t) = ts1(p) + (1− t)s0(p)
From the homotopy invariance of cohomology, we conclude that the maps
induced in cohomology by any two section are identical:

s∗0 = s∗1 : H
•
c (E)→ H • (M).

Therefore, the following definition makes sense:
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Definition 26.9. Let ξ = (π,E,M) be an oriented vector bundle of rank r
over a compact manifoldM . The Euler class of ξ is the class e(ξ) ∈ Hr(M)
defined by:

e(ξ) ≡ s∗U,
where U is the Thom class of ξ and s :M → E is any global section of ξ.

Note that, in particular, we can define the Euler class by pulling back
along the zero section. The following proposition lists some properties of
the Euler class. We leave its proof for the exercises:

Proposition 26.10. Let ξ = (π,E,M) be an oriented vector bundle of rank
r over a compact manifold M . Then:

(i) If Ψ : η → ξ is a vector bundle map covering a map ψ : M1 →
M2, which is a fiberwise isomorphism and preserves orientations, then:
e(η) = ψ∗e(ξ).

(ii) If ξ̄ denotes the vector bundle ξ with the opposite orientation then
e(ξ̄) = −e(ξ).

(iii) If rank r is odd, then e(ξ) = 0.
(iv) If ξ′ = (π′, E′,M) is another oriented vector bundle of rank r′ over M ,

then e(ξ⊕ξ′) = e(ξ)∪e(ξ′), where ξ⊕ξ′ has the direct sum orientation.

The Euler class of a vector bundle is an obstruction to the existence of a
non-vanishing global section. In fact, we have:

Theorem 26.11. Let ξ = (π,E,M) be an oriented vector bundle over a
compact manifold M . If ξ admits a non-vanishing section then e(ξ) = 0.

Proof. Let s : M → E be a non-vanishing section. If ω ∈ Ωrc(E) is a
compactly supported form representing the Thom class, then there exists
c ∈ R such that the image of the section cs does not intersect suppω.
Hence:

e(ξ) = (cs)∗U = [(cs)∗ω] = 0.

�

Note, however, that the converse to this result does not hold: there are
examples of vector bundles ξ with e(ξ) = 0 and for which every global section
has a zero.

Example 26.12.
Consider an oriented vector bundle ξ = (π,E,M) of rank 2. We fix some
Riemannian metric on ξ and cover M by charts {(Uα, xiα)} over which we have
a positive orthonormal frame {sα1 , sα2 }. These define coordinates (π∗xiα, rα, θα)
on

(E − {0M})|Uα
≃ Uα × (R2 − {0})

where (rα, θα) are polar coordinates on R2 − {0}. On an overlap Uα ∩ Uβ the
radial functions coincide rα = rβ, while the angles differ by a rotation:

θα − θβ = π∗ϕαβ , ϕαβ : Uα ∩ Uβ → S1.
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Note that on triple intersections Uα ∩ Uβ ∩ Uγ we have:

ϕαβ + ϕβγ = ϕαγ .

Let {ρα} be a partition of unity subordinated to the cover {Uα}. If we let:

εα :=
∑

γ

ργdϕαγ ∈ Ω1(Uα),

we obtain a 1-form on each open Uα whose differentials on a double intersection
Uα ∩ Uβ satisfy:

dϕαβ =
∑

γ

ργdϕαβ =
∑

γ

ργ(dϕαγ − dϕβγ) = εα − εβ .

Hence, it follows that we have a well-defined 2-form ε ∈ Ω2(M) such that:

ε|Uα
= dεα.

On the the other hand, on (E − 0M )|Uα∩Uβ
we have:

dθα − dθβ = π∗dϕαβ = π∗εα − π∗εβ.

Hence, we also have a global “angular form” φ ∈ Ω1(E − 0M ) such that:

φ = dθα − π∗εα on (E − 0M )|Uα
.

Notice that:

dφ = −π∗ε.

Finally, let δ > 0 and choose a smooth function ρ : R → R which is non-
decreasing, ρ(r) = − 1

2π for t < δ, ρ(r) = 0 for t ≥ 1 and
∫
R
ρ′(r)dr = 1

2π . We
can promote it to a function ρ : E → R of the radius:

ρ(v) = ρ(||v||) (v ∈ E).

Then we define the 2-form:

u := d(ρφ) = dρ ∧ φ− ρ π∗ε.

A priori this form is only defined outside the zero section, but the second expres-
sion shows that it extends smoothly to E, since ρ is constant in a neighborhood
of 0M . The restriction of u to a fiber Ep is the compactly supported 2-form
(dρ ∧ φ)|Ep

, which is positively oriented and has integral 1. Hence, U = [u] is
the Thom class of the bundle ξ. Moreover, if we pullback u by the zero section
s0 :M → E we obtain:

s∗0u = −ρ(0)s∗0π∗ε =
1

2π
ε.

So we conclude also that e(ξ) = 1
2π [ε].

The name Euler class is related with the special case where ξ = TM .
Let M be an oriented, connected, manifold with dimM = d and denote the
orientation by µ. The corresponding canonical generator in cohomology will
also be denoted by µ ∈ Hd

c (M): it is the class represented by any top degree
form ω ∈ Ωdc(M) such that: ∫

M
ω = 1.
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If we assume thatM is of finite type, then µ is the image of 1 under Poincaré
duality H0(M) ≃ Hd

c (M). Recalling the notion of index of an isolated zero
of a vector field from Section 24), we have:

Theorem 26.13. Let M be an oriented, compact, connected manifold of
dimension d. For any vector field X ∈ X(M) with a finite number of zeros
{p1, . . . , pN}, one has:

e(TM) =

(
N∑

i=1

indpi X

)
µ ∈ Hd(M),

where µ ∈ Hd(M) is the class defined by the orientation of M .

Proof. Let ω ∈ Ωdc(TM) be a compactly supported form representing the
Thom class. We need to show that:

∫

M
X∗ω =

(
N∑

i=1

indpi X

)
.

Choose coordinate systems (Ui, φi) centered at pi and denote by Di the
closed balls:

Di = φ−1
i ({x ∈ Rd : ||x|| ≤ 1}).

Consider the identification TUi ≃ Ui×Rd provided by the charts, and denote
by p : TUi → Rd the projection on the second factor. Using a partition
of unity argument, it follows from Theorem 26.8 that we can choose the
representative ω so that on each coordinate system Ui we have:

ω|TDi = p∗dθ where

∫

Sd−1

θ = 1.

For any c > 0 the vector fields X and cX have the same zeros and the
same indices. Hence, by choosing c sufficiently large we can assume that:

Xp 6∈ suppω, ∀ p 6∈
N⋃

i=1

Di.

Therefore,
∫

M
X∗ω =

N∑

i=1

∫

Di

X∗ω,

and so it is enough to verify that:
∫

Di

X∗ω = indpi X.

Recall that indpi(X) = degGi where the Gauss map Gi is obtained using

the identification TUi ≃ Ui × Rd provided by the charts:

X|Ui : Ui → TUi, p 7→ (p,Xi(p)), Gi =
Xi

||Xi||
: ∂Di → Sd−1 ⊂ Rd.
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Since the maps Xi : ∂Di → Rd and Gi : ∂Di → Rd are homotopic, we find:∫

Di

X∗ω =

∫

Di

d(X∗p∗θ) =
∫

∂Di

X∗
i θ

=

∫

∂Di

G∗
i θ = (degGi)

∫

Sd−1

θ = indpi(X).

�

An immediate corollary is:

Corollary 26.14. Let X and Y be vector fields with a finite number of zeros
on an oriented, compact, connected manifold M . The sum of the indices of
the zeros of X coincides with the sum of the indices of the zeros of Y .

We must have already guessed that we have:

Theorem 26.15 (Poincaré-Hopf). Let M be an oriented, compact, con-
nected manifold of dimension d. Then for any vector field X ∈ X(M) with
a finite number of zeros {p1, . . . , pN}, we have:

χ(M) =
N∑

i=1

indpi X.

In particular, e(TM) = χ(M)µ, where µ ∈ Hd(M) is the orientation class.

Remark 26.16. As we remarked before, there exists vector bundles with
e(ξ) = 0, but where every section has a zero. However, in the case of the
tangent bundle one can show that e(TM) = 0 if and only if there exists
a non-vanishing vector field in M – see the Exercises at the end of this
section. This result admits a “dual result” due to Thurston: a compact,
oriented manifold admits a codimension 1 foliation if and only if e(TM) = 0.
Thurston’s Theorem is much harder to prove.

Proof. By the corollary above it is enough to construct a vector field X in
M , with a finite number of zeros, for which the equality holds. For that,
we fix a triangulation {σ1, . . . , σl} of M , and we construct a vector field X
with the following properties:

(a) X has exactly one zero pi in each face of the triangulation.
(b) The zero pi is non-degenerate and

indpi X = (−1)k,
where k is the dimension of the face containing pi.

Hence, if rk is the number of faces of dimension k, we have

N∑

i=1

indpi X = r0 − r1 + · · ·+ (−1)drd,

so the result follows from Euler’s Formula – see Theorem 23.12. We construct
X by describing its phase portrait in each face of the triangulation:
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• In each face of dimension 0, the vector field X has a zero.
• In each face of dimension 1, we put a zero in the center of the face and
connect it by orbits to the zeros in the vertices, as in the following
figure:

PSfrag replaements

T

2

M

E

E

p

�

�

0

�

1

�

2

C

X

Y

�X

�Y

[X;Y ℄

q

C

�

0

�

1

�

2

�

3

R

r

�

�

U

1

U

�

�

 

 Æ �

�1

p

1

= �

p

"

Y

(p)

p

2

= �

p

"

X

(p

1

)

p

3

= �

�

p

"

Y

(p

2

)



p

(") = �

�

p

"

X

(p

3

)

R

d

R

d

R

d�k

R

k

R

e�d

R

R

2

R

4

d = 3

d = 2

p

�

N

(p)

ind

p

0

X = �1

ind

p

0

X = 0

ind

p

0

X = 1

ind

p

0

X = 2

�1

1

2

�

�

�

~v

~w

T

p

S

T

p

M

TM

• In each face of dimension 2, we put a zero in the center of the face
and connect it by heteroclinic orbits to the zeros in the faces of
dimension 1, as in the following figure:
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Then we complete the phase portrait of X in the face of dimension
2, so that the zero in its interior becomes an attractor of the vector
field restricted to the face:
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• In general, once one has constructed the phase portrait in the faces
of dimension k − 1, we construct the phase portrait in a face of
dimension k, putting a zero in the center of the face and connecting
it by heteroclinic orbits to the zeros in the faces of dimension k− 1.
We then complete the phase portrait so that the new zero is an
attractor of the vector field restricted to the face of dimension k.

The vector field one constructs in this way has exactly one zero in each
face. Moreover, we can assume that they are non-degenerate zeros. For a
zero pi in the face of dimension k, the linearization of the vector field at pi
is a real matrix with k eingenvalues with negative real part, corresponding
to the directions along the face, and n − k eingenvalues with positive real
part, corresponding to the directions normal to the face. The sign of the
determinant of this matrix is (−1)k. Hence, we have that:

indpi X = (−1)k.
This shows that the vector field X satisfies (a) and (b) and completes the
proof of the Poincaré-Hopf Theorem. �
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Homework.

1. Prove the properties of fiber integration given in Proposition 26.4.

2. Let E1 → M and E2 → M be oriented vector bundles over a compact
manifold M . Consider their Whitney sum with the the direct sum of the
orientations. Denoting the projections:

E1 ⊕ E2

π1

zz✈✈
✈✈
✈✈
✈✈
✈

π2

$$❍
❍❍

❍❍
❍❍

❍❍

E1 E2

show that the Thom classes of E1, E2 and E1 ⊕ E2 are related by:

UE1⊕E2
= π∗

1UE1
∧ π∗

2UE2
.

Use this property to prove that

e(ξ ⊕ ξ′) = e(ξ) ∪ e(ξ′).

3. Let ξ = (π,E,M) and η = (τ, F,N) be oriented vector bundles of rank
r over compact manifolds M and N . If Ψ : η → ξ is a morphism of vector
bundles covering a map ψ : N → M , which preserves orientations and is a
fiberwise isomorphism, show that:

e(η) = ψ∗e(ξ).

Use this property to conclude that:
(a) e(ξ̄) = −e(ξ), where ξ̄ denotes the vector bundle ξ with the opposite

orientation.
(b) e(ξ) = 0 whenever rank ξ is odd.

4. Let M = CP1 ≃ S2 embedded in CP2 as the submanifold:

CP1 →֒ CP2, [x : y] 7→ [x : y : 0].

Find the Euler class of the normal bundle ν(CP1) and conclude that this vector
bundle is non-trivial.

5. Consider the canonical complex line bundle γ1d(C) over CP
d, defined analo-

gously to the canonical real line bundle γ1d over RPd. Show that it is orientable
and that is Euler class is non-trivial.

6. Let M be a compact manifold of dimension d. One can show that:
(a) If p1, . . . , pN ∈ M there exists an open set U ⊂ M , diffeomorphic to the

ball {x ∈ Rd : ||x|| < 1}, such that p1, . . . , pn ∈ U .
(b) If ψ : Sd−1 → Sd−1 is a map with degree zero, then it is homotopic to the

constant map.
Use these facts to show that if χ(M) = 0, then there exists a nowhere vanishing
vector field in M .
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27. Pullbacks of Vector Bundles

The following pullback construction for vector bundles plays a crucial role.

Definition 27.1. Let ψ : M → N be a smooth map and ξ = (π,E,N) a
vector bundle over N of rank r. The pullback of ξ by ψ is the vector bundle
ψ∗ξ = (π̂, ψ∗E,M) of rank r, with total space given by:

ψ∗E = {(p,v) ∈M × E : ψ(p) = π(v)},
and projection defined by:

π̂ : ψ∗E →M, (p,v) 7→ p.

Note that the fiber of ψ∗ξ over p is a copy of the fiber of ξ over ψ(p).
Therefore the pullback of ξ by ψ is a vector bundle for which we take a copy
of the fiber of ξ over q for each point in the preimage ψ−1(q).

We still need to check that the construction in the definition above does
indeed produce a vector bundle. First of all, note that

ψ∗E = (ψ × π)(∆),

where ∆ ⊂ N × N is the diagonal. Since π : E → N is a submersion, we
have that (ψ × π) ⋔ ∆, so ψ∗E ⊂ M × E is a submanifold. To cheek local
triviality of ψ∗ξ, let {(Uα, φα)} be a trivialization of ξ. Then we obtain a

trivialization {(ψ−1(Uα), φ̃α)} for ψ∗ξ, where

φ̃α : π̂−1(ψ−1(Uα))→ ψ−1(Uα)× Rr

(p,v) 7−→ (p, φψ(p)α (v)).

Moreover, if {gαβ} is the cocycle of ξ associated with the trivialization
{(Uα, φα)}, then {ψ∗gαβ} = {gαβ ◦ ψ} is the cocycle of ψ∗ξ associated with

the trivialization {(ψ−1(Uα), φ̃α)}.
Notice that the map

Ψ : ψ∗ξ → ξ (p,v) 7→ v,

is a morphism of vector bundles covering ψ. Hence, the pullback construc-
tion allows to complete the following commutative diagram of morphisms of
vector bundles:

ψ∗E

π̂
��✤
✤

✤

Ψ //❴❴❴❴❴❴ E

π
��

M
ψ // N

In fact, we have the following universal property which characterizes the
pullback up to isomorphism:

Proposition 27.2. Let ψ : M → N be a smooth map, η = (τ, F,M)
and ξ = (π,E,N) vector bundles and Φ : η → ξ a morphism of vector
bundles covering ψ. Then there exists a unique morphism of vector bundles
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Φ̃ : η → ψ∗ξ, covering the identity, which makes the following diagram
commutative:

F
Φ

''

Φ̃

!!❈
❈

❈
❈

τ

��

ψ∗E Ψ //

π̂
��

E

π
��

M
ψ

// N

Moreover, Φ̃ is an isomorphism if an only if Φp : Fp → Eψ(p) is an isomor-
phism for all p ∈M .

Proof. The map Φ̃ : η → ψ∗ξ is given by:

Φ̃(w) = (τ(w),Φ(w)).

We leave the details as an (easy) exercise. �

One can also pullback morphisms covering the identity: if ξ = (π,E,N)
and η = (τ, F,N) are vector bundles and Φ : ξ → η is a morphism covering
the identity, then for any smooth map ψ :M → N we define a morphism of
vector bundles ψ∗(Φ) : ψ∗ξ → ψ∗η by:

ψ∗(Φ)(p,v) = (p,Φ(v)).

Obviously, this morphism makes the following diagram commute:

ψ∗E
ψ∗(Φ)

//

��

%%❏❏
❏❏

❏❏
❏

ψ∗F

��

%%❏❏
❏❏

❏❏
❏

E

��

Φ // F

��

M //

ψ %%❑
❑❑

❑❑
❑❑

M

ψ %%❑❑
❑❑

❑❑
❑

N // N

We list some basic properties of the pullback which are immediate from
the definitions:

Proposition 27.3. Let ψ : M → N and φ : Q→ M be smooth maps, ξ, η
and θ vector bundles over N , and Φ : ξ → η and Ψ : η → θ morphisms of
vector bundles over the identity. Then:

(i) ψ∗(Idξ) = Idψ∗ξ;
(ii) ψ∗(Ψ ◦ Φ) = ψ∗(Ψ) ◦ ψ∗(Φ);
(iii) ψ∗(εrN ) = εrM ;
(iv) (Id)∗ξ = ξ;
(v) (ψ ◦ φ)∗ξ = φ∗(ψ∗ξ).
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Remark 27.4. Some of the equalities in this proposition are actually iso-
morphisms. However, they are canonical, i.e., they do not depend on any
choices. So we still use the symbol “=” instead of “≃” to ease the notation.
This same remark applies to many of the “equalities” that follow.

The previous result shows that if we fix a smooth map ψ :M → N , then:

• The pullback defines a covariant functor from the category of vector
bundles over N to the category of vector bundles over M .

On the other hand, if we denote by Vectr(M) the set of isomorphism classes
of vector bundles of rank r over a manifold M , there is a distinguish point
in Vectr(M): the class of the the trivial vector bundles. Given a smooth
map ψ : M → N , the pullback ψ∗ : Vectr(N) → Vectr(M) preserves this
distinguished point, so we also have:

• The pullback defines a contravariant functor from the category of
smooth manifolds to the category of sets with a distinguished point.

All the functorial constructions with vector bundles are preserved under
pullbacks. For example, one finds that:

(i) ψ∗(ξ ⊕ η) = ψ∗ξ ⊕ ψ∗η;
(ii) ψ∗(ξ∗) = (ψ∗ξ)∗;
(iii) ψ∗(∧kξ) = ∧kψ∗ξ.

One can also commute the operation of restriction with pullbacks, provided
the map ψ : M → N is transverse to the submanifold Q ⊂ N so that
ψ−1(Q) ⊂M is a submanifold. One then has:

ψ∗(ξ|Q) = ψ∗(ξ)|ψ−1(Q).

There is also an operation of pullback of sections, taking sections of a
vector bundle ξ = (π,E,N) to sections of the pullback ψ∗ξ = (π̂, ψ∗E,M):

ψ∗E Ψ //

π̂
��

E

π
��

M
ψ

//

ψ∗s

DD

N

s

]]

ψ∗s(p) := (p, s(φ(p))).

In particular, if rank ξ = r, then ψ∗ ∧r ξ = ∧rψ∗ξ, and the pullback of a
non-vanishing section of ∧rξ is a non-vanishing section of ∧rψ∗ξ. It follows
that the pullback ψ∗ξ of an oriented vector bundle ξ has a natural pullback
orientation. This gives rise to another property of pullbacks: it preserves
fiber integration. We state it and leave the proof as an exercise:

Proposition 27.5. Let ψ : M → N be a smooth map, let ξ = (π,E,N) be
an oriented vector bundle and consider ψ∗ξ = (π̂, ψ∗E,M) with the pullback
orientiation. For any form ω ∈ Ω•

cv(E):

π̂∗Ψ
∗ω = ψ∗π∗ω,

where Ψ : ψ∗ξ → ξ is the canonical vector bundle map covering ψ.
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Another fundamental property of the pullback of vector bundles is:

Theorem 27.6 (Homotopy invariance). If ψ and φ :M → N are homotopic
maps and ξ is a vector bundle over N , then the pullbacks ψ∗ξ and φ∗ξ are
isomorphic vector bundles.

Proof. Let H :M × [0, 1]→ N be an homotopy between φ and ψ. We have:

φ∗ξ = H∗
0ξ = H∗ξ|M×{0},

ψ∗ξ = H∗
1ξ = H∗ξ|M×{1}.

Hence, it is enough to show that for any vector bundle η over M × [0, 1], the
restrictions η|M×{0} and η|M×{1} are isomorphic. Note that H is only C0,
but one can show that:

(a) a vector bundle morphism of class C0 covering a map of class C∞ can
be approximated by a morphism of classe C∞ covering the same map.

(b) a vector bundle morphism which is close enough to an isomorphism is
also an isomorphism.

Hence, it is enough to proof that for any vector bundle η = (π,E,M×[0, 1]),
there exists a C0-morphism of vector bundles ∆ : η → η, covering the map

δ :M × [0, 1]→M × [0, 1], (p, t) 7→ (t, 1),

and such that the induced maps in the fibers are isomorphisms. In order to
construct ∆, we use the following lemma, whose proof is left as an exercise:

Lemma 27.7. Let η be a vector bundle over M×[0, 1]. There exists an open
cover {Uα}α∈A of M such that the restrictions η|Uα×[0,1] are trivial vector
bundles.

Now choose a locally finite countable open cover {Uk}k∈N of M such that
each η|Uk×[0,1] is trivial. Let us denote the trivializing maps φk by:

E|Uk×[0,1]
φk //

π
&&▼▼

▼▼
▼▼

▼▼
▼▼

(Uk × [0, 1]) × Rr

π1vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

Uk × [0, 1]

Denote by {ρk}k∈N an envelope of unity subordinated to the cover {Uk}k∈Nn,
i.e., a collection of continuous maps ρk : M → R such that 0 ≤ ρk ≤ 1,
suppρk ⊂ Uk and, for all p ∈M ,

max{ρk(p) : k ∈ N} = 1.

Such an envelope of unity can be constructed starting with a partition of
unity {θk} and defining:

ρk(p) ≡
θk(p)

max{θk(p) : k ∈ N} .

For each k ∈ N we define vector bundle morphisms ∆k : η → η by:
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(a) ∆k cover the map δk :M × [0, 1]→M × [0, 1] given by:

δk(p, t) = (p,max(ρk(p), t)).

(b) In π−1(Uk × [0, 1]), ∆k is defined by:

∆k(φ
−1
k (p, t,v)) ≡ φ−1

k (p,max(ρk(p), t), v),

and ∆k is the identity outside π−1(Uk × [0, 1]).

Finally, one defines ∆ : η → η by:

∆ = · · · ◦∆k ◦ · · · ◦∆1.

Since each p ∈ M has a neighborhood which intersects a finite number of
open sets Uk, this is a well-defined vector bundle morphism ∆ : η → η
which locally is an the composition of vector bundle which isomorphisms
on the fibers. Hence, ∆ is a vector bundle isomorphism which covers δ :
M × [0, 1]→M × [0, 1]. �

Corollary 27.8. Any vector bundle over a contractible manifold is trivial.

Proof. Let ξ = (π,E,M) be a vector bundle and let φ : M → {∗} and
ψ : {∗} → M be smooth maps such that ψ ◦ φ is homotopic to idM . The
theorem above shows that:

ξ ≃ (ψ ◦ φ)∗ξ ≃ φ∗(ψ∗ξ).

Since ψ∗ξ is a vector bundle over a set which consist of a single point, it is a
trivial vector bundle. Hence ξ ≃ φ∗(ψ∗ξ) is also a trivial vector bundle. �

Hence, when M is contractible the space Vectr(M) consisting of isomor-
phism classes of vector bundles of rank r over M has only one point.

Example 27.9.
Given a line bundle ξ = (π,E, S1), we can cover S1 by the two contractible open
sets U = S1−{pN} and V = S1−{pS}. By the corollary, over each open set U
and V the vector bundle trivializes: φU : E|U ≃ U ×R and φV : E|V ≃ V ×R.
Therefore, the line bundle is completely characterized by the transition function
gUV : U ∩ V → R, so that:

φV ◦ φ−1
U : U × R→ V × R, (p, v) 7→ (p, gUV (p)v).

The intersection U ∩ V has two connected components, and we leave it as an
exercise to check that if gUV (x) has the same sign in both components, then ξ
is trivial, while if gUV (x) has the opposite signs in the two components then
the line bundle is isomorphic to the line bundle whose total space is the Möbius
band. In other words, the space Vect1(S1) consisting of isomorphism classes of
line bundles over S1 has two elements.

For a general manifold, up to isomorphism, a line bundle ξ over M is
uniquely determined by its first Stiefel-Whitney class w1(ξ) ∈ H1(M,Z2),
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which can be defined as follows. Define a group homomorphism w̃1(ξ) : π1(M)→
Z2 by setting:

w̃1(ξ)([γ]) :=





0 if γ∗ξ → S1 is trivial,

1 if γ∗ξ → S1 is not trivial.

Since Z2 is abelian, any commutator in π1(M) must be in the kernel of this
group homomorphism. Hence, w̃1(ξ) descends to a group homomorphism:

w1(ξ) : H1(M,Z)→ Z2,

i.e., we have an element w1(ξ) ∈ H1(M,Z2). We leave as an exercise to check
that w1 gives a bijection:

w1 : Vect1(M) ≃ H1(M,Z2).

For example, for the real projective space one has H1(RPd,Z2) = Z2. So

Vect1(RP
d) has two elements: the class of the trivial bundle and the class of

the canonical line bundle γ1d.

Homework.

1. Give a proof of the universal property of pullbacks (Proposition 27.2). Show
that this property characterizes the pullback of vector bundles up to isomor-
phism.

2. Verify the properties of the pullback of vector bundles given by Proposition
27.3.

3. Let Ψ : η → ξ be a vector bundle map covering a map ψ : M → N . Show
that if Ψ is a fiberwise isomorphism then η is isomorphic to φ∗η. Use this to
conclude that Proposition 27.5 follows from Proposition 26.4.

4. Let φ :M → N be a submersion and denote by F the foliation of M by the
fibers of φ. Show that the normal bundle ν(F) is naturally isomorphic to the
pulback bundle φ∗TN .

5. Let ξ be a vector bundle over M × [0, 1]. Show that there exists an open
cover {Uα}α∈A of M such that the restrictions ξ|Uα×[0,1] are trivial.
Hint: Show that if ξ is a vector bundle over M × [a, c] which is trivial when
restricted to both M × [a, b] and M × [b, c], for some a < b < c, then ξ is a
trivial vector bundle.

6. Complete the details of Example 27.9, showing that Vect1(S1) ≃ Z2.

7. For a line bundle ξ denote by w1(ξ) ∈ H1(M,Z2) its first Stiefel-Whitney
class.
(a) Given a class c ∈ H1(M,Z2) show that there exists a line bundle ξ whose

first Stiefel-Whitney class is w1(ξ) = c;
(b) Conclude that there is a bijection:

w1 : Vect1(M) ≃ H1(M,Z2);
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(c) Show that the tensor product makes Vect1(M) into a group. What is the
group structure induced on H1(M,Z2)?

8. Determine Vect1(Td).

9. Denote by Pic(M) is the space of isomorphism classes of complex line bun-
dles over a manifold M . Show the tensor product turns Pic(M) into a group,
called the Picard group of M . Find Pic(S1).

28. The Classification of Vector Bundles

The problem of determining Vectk(M) can be reduced to a problem in
homotopy theory. We will only sketch this briefly since this topic belongs
to the realm of algebraic topology.

Recall that γrn denotes the canonical bundle over the Grassmannian
Gr(Rn) (Section 25, Exercise 2): the total space of γrn is defined by:

E = {(S, x) : S ⊂ Rn is r-dimensional subspace and x ∈ S},

and the projection π : E → Gr(Rn) is given by π(S, x) = S. The canonical
bundle is a subbundle of the trivial vector bundle εnGr(Rn).

There is another important vector bundle over the Grassmannian, called
the universal quotient bundle and denoted ηrn. We can define it as the
vector bundle of rank r over Gn−r(Rn) whose total space is:

F = {(S, x+ S) : S ⊂ Rn is (n− r)-dimensional subspace and x ∈ Rn},

and the projection π : F → Gr(Rn) is given by π(S, x + S) = S. In other
words, the fiber over S is the normal space to S in Rn.

These vector bundles are related via the short exact sequence of vector
bundles:

0 // γn−rn
// εnGn−r(Rn)

// ηrn // 0

In particular, choosing n global sections of the trivial bundle εnGn−r(Rn) yields

n global sections of ηrn which at each point S generate the fiber Rn/S.
The reason for the name universal is justified by the following proposition:

Proposition 28.1. Let ξ be a rank r vector bundle over a manifold M . If
ξ admits n global sections s1, . . . , sn which generate Ep for all p ∈M , then
there exists a smooth map ψ :M → Gn−r(Rn) such that:

ξ ≃ ψ∗(ηrn).

Proof. Let

V :=
n⊕

i=1

Rsi,
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so V ≃ Rn. Since the sections si generate Ep, for each p ∈ M , there exists
a linear surjective map

V
evp // Ep // 0 .

The kernel Ker evp of this map is a subspace of V of codimension r.
Define a smooth map:

ψ :M → Gn−r(V ), p 7→ Ker evp.

Then we have a vector bundle map:

ξ 7→ ψ∗ηrn, v 7→ (π(v), ev−1
π(v)(v)).

This is a fiberwise isomorphism covering the identity, so it is a vector bundle
isomorphism. After choosing a basis for V , we obtain the desired classifying
map ψ :M → Gn−r(Rn). �

A map ψ : M → Gn−r(Rn) such that ξ ≃ ψ∗ηrn is called a classifying
map for the vector bundle ξ. We leave as an exercise to check that any such
classifying map arises from the choice of n global sections s1, . . . , sn ∈ Γ(ξ)
generating each fiber Ep, as in the previous proof.

The next result shows that given a vector bundle over a manifold of finite
type one can always find a classifying map by taking n sufficient large.

Proposition 28.2. Let ξ be a rank r vector bundle over a manifold M . If
M admits a finite good cover with k open sets, then for n ≥ rk:
(i) There exist classifying maps ψ :M → Gn−r(Rn) for ξ;
(ii) Any two classifying maps are homotopic.

Proof. (i) We claim that ξ admits global sections s1, . . . , sn which generate
Ep, for all p ∈ M , so (i) follows from Proposition 28.1. To see this, let
U1, . . . , Uk be a finite good cover of M . Since each Ui is contractible, the
restriction ξ|Ui is trivial. Hence, we can choose a basis of local sections
{si1, . . . , sir} for Γ(ξ|Ui). Note that there are open sets V1, . . . , Vk, with V i ⊂
Ui which still cover M . If we choose smooth functions fi : Ui → R such that
fi|Vi = 1 and fi = 0 outside Ui, then {fisi1, . . . , fisir : i = 1, . . . , k} are the
desired global sections.

(ii) Let ψ : M → Gn−r(V ) and ψ : M → Gn−r(V ′) be two classify-
ing maps constructed from two choices of global sections {s1, . . . , sn} and
{s′1, . . . , s′n}, as in the proof of the previous proposition. Then we have a
canonical identification between V and V ′ and also between Gn−r(V ) and
Gn−r(V ′). It follows that the classifying map is well-defined up to a choice
of identification V ≃ Rn. If we fix this choice, then we conclude that two
classifying maps ψ : M → Gn−r(Rn) and ψ : M → Gn−r(Rn) differ by the
action of an element A ∈ GL(n):

ψ′ = A ◦ ψ.
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Note that A can be chosen to have positive determinant. Since GL+(n) is
connected, we can choose a continuous path At ∈ GL+(n) with A1 = A and
A0 = I, so that the map:

ψt := At ◦ ψ :M → Gn−r(R
n),

is a homotopy between ψ and ψ′. �

Denote by [M,N ] the set of homotopy classes of maps φ : M → N . We
obtain:

Theorem 28.3 (Classification of vector bundles). Let M be a manifold
which admits a good open cover with k open sets. For every n ≥ rk, there
exists a bijection:

Vectr(M) ≃ [M,Gn−r(R
n)].

Proof. We saw above that the homotopy class of a classifying map for ξ is
determined by the isomorphism class of ξ, so we have a well-defined map:

Vectr(M)→ [M : Gn−r(R
n)].

On the other hand, by the homotopy invariance of the pullbacks, we conclude
that the pullback of the universal bundle induces a map

[M : Gn−r(R
n)]→ Vectr(M), ψ 7→ ψ∗ηrn.

We leave as an exercise to show that these maps are inverse to each other,
so the result follows. �

This result reduces the classification of vector bundles to a homotopy
problem. We illustrate this in the next example, which assumes some knowl-
edge of homotopy theory.

Example 28.4.
Recall that if X is a path connected topological space then the free homotopies
and the homotopies based at x0 ∈ X are related by:

πk(X, x)/π1(X, x) ≃ [Sk, X ],

where the right-hand side is the orbit space for the natural action of π1(X, x)
in πk(X, x). Therefore, we have:

Vectr(S
k) = [Sk, Gn−r(R

n)] ≃ πk(Gn−r(Rn))/π1(Gn−r(Rn)),
for n large enough. On the other, since the Grassmannian is a homogeneous
space:

Gn−r(R
n) = O(n)/(O(n − r)×O(r)),

and πk(O(n)/O(n − r)) = 0, if n is large enough, the long exact sequence in
homotopy yields:

πk(Gn−r(R
n)) = πk−1(O(r)).

Hence, we conclude that:

Vectr(S
k) = πk−1(O(r))/π0(O(r)) = πk−1(O(r))/Z2 .
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In order to understand this quotient, one needs to figure out the action of
π0(O(r)) on πk−1(O(r)). If g ∈ O(r), the action by conjugation ig : O(r) →
O(r), ig(h) = ghg−1, induces an action in homotopy:

(ig)∗ : πk−1(O(r)) → πk−1(O(r)).

If g1 and g2 belong to the same connected component, then (ig1)∗ = (ig2)∗.
Hence, we obtain an action of π0(O(r)) = Z2 on πk−1(O(r)), which is precisely
the action above.

For example, if r is odd then −I represents the non-trivial class in π0(Or).
Since the action by conjugation of −I is trivial, we conclude that

Vectr(S
k) = πk−1(O(r)), if r is odd.

For instance, we have:

Vect3(S
4) = π3(SO(3)) = π3(S

3) = Z.

On the other hand, when r is even, the action maybe non-trivial. Take for
instance r = 2, so we have π1(O(2)) = Z. The action of π0(O2) = Z2 in Z is
just ±1 · n = ±n. Hence, we have

Vect2(S
k) = πk−1(O(2))/Z2 = πk−1(S

1)/Z2 =

{
Z/Z2 if k = 2,

0 if k ≥ 3.

Remark 28.5. If a manifold is not of finite type, there still exists a classi-
fication of vector bundles over M . In this case, we need to consider the the
space:

R∞ =

∞⊕

d=0

Rd,

which is the direct limit of the increasing sequence of vector spaces:

· · · ⊂ Rd ⊂ Rd+1 ⊂ Rd+2 ⊂ · · ·
This is an example of a so-called profinite manifold, a class of infinite dimen-
sional manifolds sharing many properties with the class of finite dimensional
manifolds.

In R∞ we can still consider the Grassmannian:

G̃r(R
∞) = G∞−r(R

∞) = {S ⊂ R∞ : linear subspace of codimension r}.
Over this infinite dimensional Grassmannian there is a tautological vector
bundle ηr∞ = (π,E, G̃r(R∞)), called the universal bundle of rank r. It
has total space:

E = {(S, x) : S ⊂ R∞ subspace of codimension r, x ∈ R∞/S},
and projection:

π : E → G̃r(R
∞), (S, x) 7→ S.

One can show that every vector bundle of rank r over a manifold M is
isomorphic to a pullback ψ∗ηr∞ for some classifying map

ψ :M → G̃r(R
∞).
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Has before, any two classifying maps are homotopic, and one obtains for
any manifold M a bijection:

Vectr(M) ≃ [M, G̃r(R
∞)].

This approach, via infinite dimensional Grassmanian, has the advantage
of avoiding any reference to “large enough n”, as we did before in the case
of a manifold of finite type. On the other had, it forces one to deal with
vector bundles over infinite dimensional manifolds.

Homework.

1. Let ξ = (π,E,M) be a vector bundle and N ⊂ M a closed submanifold.
Show that every section s : N → E over N , admits an extension to a section
s̃ : U → E definided over an open set U ⊃ N .

2. Let ψ : M → Gn−r(Rn) be a classifying map for a vector bundle ξ =
(π,E,M). Show that ψ is obtained from the choice of n global sections
s′1, . . . , s

′
n ∈ Γ(ξ) generating each fiber Ep, as in the proof of Proposition 28.1.

3. Let M admit a finite good cover with k open sets and let n ≥ kr. Show
that the map

Vectr(M)→ [M : Gn−r(R
n)], [ξ] 7→ f,

associating to an isomorphism class of a vector bundle ξ the homotopy class
of a classifying map f , and the map

[M : Gn−r(R
n)]→ Vectr(M), ψ 7→ ψ∗ηrn,

are inverse to each other.

4. Determine Vectr(S1), Vectr(S2) and Vectr(S3).

29. Connections and Parallel Transport

In general, there is no natural way to differentiate sections of a vector
bundle. The reason is that there is no canonical way of comparing fibers of
a vector bundle over different points of the base. This can be fixed with the
following notion:

Definition 29.1. A connection on a vector bundle ξ = (π,E,M) is a
map

∇ : X(M) × Γ(E)→ Γ(E), (X, s) 7→ ∇Xs,
which satisfies the following properties:

(i) ∇X1+X2s = ∇X1s+∇X2s;
(ii) ∇X(s1 + s2) = ∇Xs1 +∇Xs2;
(iii) ∇fXs = f∇Xs;
(iv) ∇X(fs) = f∇Xs+X(f)s.
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Properties (iii) and (iv) show that a connection ∇ can be restrict to any
open set U ⊂ M , yielding a connection in ξ|U . On the other hand, the
map X 7→ ∇X is C∞(M)-linear, hence, for any section s definided in a
neighborhood U of p ∈M and any v ∈ TpM , we can define

∇vs ≡ ∇Xs(p) ∈ Ep,
where X is any vector field defined in a neighborhood of p such that Xp = v.
Note, however, that ∇vs depends on the values of s in a neighborhood of p,
not only on s(p) (property (iv) in the definition).

Let U ⊂ M be an open set where ξ trivializes, so we can choose a basis
of sections {s1, . . . , sr} for ξ|U . Given any section s ∈ Γ(ξ) we have that:

s|U = f1s1 + · · ·+ f rsr.

for unique smooth functions f i ∈ C∞(U). The connection ∇ on the open
set U is then completely determined by its effect on the sections si: for any
vector field X ∈ X(M), by property (iv), we have:

(∇Xs)|U =

r∑

a=1

(fa∇Xsa +X(fa)sa) .

We can write the local section ∇Xsa in terms of the local basis as

∇Xsa =
r∑

b=1

ωba(X)sb,

where, by properties (i) and (iii), ωba ∈ Ω1(U). One calls the matrix of
1-forms ω = [ωab ] the connection 1-form. It determines completely the
connection on U :

(∇Xs)|U =

r∑

a=1

(
r∑

b=1

f bωab (X) +X(fa)

)
sa.

Exercise 3, in the Homework, discusses how the connection 1-form depends
on the choice of trivializing sections.

Assume, additionally, that U is the domain of a chart (x1, . . . , xd). Then
there exists unique functions Γbia ∈ C∞(U) such that:

∇ ∂

∂xi
sa =

r∑

b=1

Γbia sb.

The functions Γbia are called the Christoffel symbols of the connection
relative to the coordinate systems and basis of local sections. They are
related to the connection 1-form by:

ωab =
r∑

i=1

Γaibdx
i.
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If X =
∑d

i=1X
i ∂
∂xi

, then the local form for the connection becomes:

(∇Xs)|U =

r∑

a=1

d∑

i=1

(
r∑

b=1

f bXiΓaib +Xi ∂f
a

∂xi

)
sa.

Example 29.2.
Recall that the vector bundle ξ = (π,E,M) of rank r is trivial if and only if
it admits a basis of global sections {s1, . . . , sr}. For each such choice of basis,
we can define a connection in ξ by setting:

∇Xsa := 0, (a = 1, . . . , r).

Note that this connection depends on the choice of trivializing sections.

The collection of all connections on a fixed vector bundle ξ has an affine
structure: if ρ ∈ C∞(M) is any smooth function, ∇1 and∇2 are connections,
then the affine combination

ρ∇1 + (1− ρ)∇2,

also defines a connection in ξ. This fact that allows us to show that:

Proposition 29.3. Every vector bundle ξ = (π,E,M) admits a connection.

Proof. Let {Uα} be an open cover of M by trivializing open sets. The
previous example shows that in each Uα we can choose a connection ∇α.
We define a connection ∇ in M “gluing” these connections: if {ρα} is a
partition of unity subordinated to the cover {Uα}, then

∇ ≡
∑

α

ρα∇α,

defines a connection in ξ. �

If one starts with vector bundles with a connection, the usual construc-
tions lead to vector bundles with connections. The proof is left as an exercise.

Proposition 29.4. Let ξ and ξ′ be vector bundles over M , furnished with
connections ∇ and ∇′. Then the associated bundles ξ⊕ ξ′, ξ∗ and ∧kξ, have
induced connections satisfying:

∇X(s1 ⊕ s2) = ∇Xs1 ⊕∇Xs2,
∇X(s1 ∧ · · · ∧ sk) = ∇Xs1 ∧ · · · ∧ sk + · · ·+ s1 ∧ · · · ∧ ∇Xsk

X(〈s, η〉) = 〈∇Xs, η〉+ 〈s,∇Xη〉.
If ψ : N →M is a smooth map, then ψ∗ξ has a connection induced from ∇
such that:

(∇Xψ∗s)(p) = (p,∇dpψ(Xp)s), ∀p ∈ N, s ∈ Γ(ξ).
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Connections can be used to compare different fibers of a vector bundle.
Let ξ = (π,E,M) be a vector bundle with a connection ∇. If c : [0, 1]→M
is a smooth curve then the pullback bundle c∗ξ has an induced connection
which we still denote by ∇. Notice that a section s of the bundle c∗ξ is
just a section of ξ along c, i.e., a smooth map s : [0, 1] → E such that
π(s(t)) = c(t), for all t ∈ [0, 1].

Definition 29.5. The covariant derivative of a section along a curve c
is the section along c given by:

Dcs ≡ ∇ d
dt
s.

A section along c is called a parallel section if it has vanishing covariant
derivative: Dcs = 0

The operation of covariant derivative enjoys the following properties:

(i) Dc(s1 + s2) = Dcs1 +Dcs2;
(ii) Dc(fs) = (f ◦ c)Dcs+ df(ċ)s.

Choose local coordinates (U, x1, . . . , xd), admitting trivializing sections {s1, . . . , sr}
over U . Given a curve c(t) in U we set ci(t) = xi(c(t)). Any section s along
c can be expressed as s(t) =

∑
a v

a(t)sa(c(t)), and then the covariant deriv-
ative along c has components:

(29.1) (Dcs)
a =

dva

dt
(t) +

∑

ib

dci

dt
(t)Γaib(c(t))v

b(t), (a = 1, . . . , r).

Remark 29.6. One can define the covariant derivative alternatively as fol-
lows. Given a section s(t) along a curve c(t) one chooses a time-dependent
section s̃t ∈ Γ(E) such that:

s̃t(c(t)) = s(t), ∀t ∈ I.
Then:

(29.2) Dcs(t) := ∇c(ts̃t +
d

dt
s̃t(p)

∣∣∣∣
p=c(t)

.

One can show that this is independent of the choice of extension s̃t, either
by working in a local chart or by showing that it coincides with our first
definition.

Notice, in particular, that even for a constant curve c(t) = p0 the covariant
derivative along c may not be zero! In fact, in this case, a section along c is
just a curve s : [0, 1]→ Ep0 in the fiber over p0 and the covariant derivative
is the usual derivative of this curve.

Lemma 29.7. For any curve c : [0, 1]→M and any v0 ∈ Ec(0), there exists
a unique parallel section s along c with initial condition s(0) = v0.

Proof. Since an interval is contractible, the pullback bundle c∗ξ is trivial.
This means that we can find sections {s1, . . . , sr} along c such that any
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section s along c can be uniquely written as s(t) =
∑r

a=1 v
a(t)sa(t), for

some smooth functions va : [0, 1]→ R. In particular, if we define ωab (t) by:

Dcsb(t) =

r∑

a=1

ωab (t)sa(t),

we find that:

Dcs =

r∑

a=1

(
dva

dt
(t) +

r∑

b=1

ωab (t)v
b(t)

)
sa(t).

Hence, the parallel sections along c are the solutions of the system of ODEs:




dva

dt (t) = −
∑r

b=1 ω
a
b (t)v

b(t),

va(0) = va0

(a = 1, . . . , r).

Hence the lemma follows from the well-known results about existence and
uniqueness of solutions of ODEs with time dependent coefficients. �

Under the conditions of this lemma, we say that the vectors s(t) ∈ Ec(t)
are obtained by parallel transport along the curve c. We denote the opera-
tion of parallel transport along c by:

τt : Ec(0) → Ec(t), τt(v0) := s(t).

The next result shows that parallel transport contains all the information
about the connections ∇:

Proposition 29.8. Let ξ = (π,E,M) be a vector bundle with a connection
∇ and let c : [0, 1]→M be a smooth curve. Then:

(i) Parallel transport τt : Ec(0) → Ec(t) along c is a linear isomorphism.
(ii) If v = c′(0) ∈ Tc(0)M , then for any section s ∈ Γ(ξ):

∇vs = lim
t→0

1

t

(
τ−1
t (s(c(t))) − s(c(0))

)
.

Proof. Since the differential equation defining parallel transport is linear,
it depends linearly on the initial conditions, so τt is linear. On the other
hand, τt is invertible, since its inverse is parallel transport along the curve
c̄ : [0, t]→M , given by c̄(ε) = c(t− ε).

For the proof of (ii), first we use Lemma 29.7 to produce {s1, . . . , sr}
sections along c that at each point c(t) generate the fiber Ec(t). Then there
are functions va : [0, 1]→ R such that

s(c(t)) =
r∑

a=1

va(t)sa(t),
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and we find that:

lim
t→0

1

t

(
τ−1
t (s(c(t))) − s(c(0))

)
= lim

t→0

r∑

a=1

1

t

(
va(t)τ−1

t (sa(t))− va(0)sa(0)
)

= lim
t→0

r∑

a=1

1

t
(va(t)− va(0)) sa(0)

=

r∑

a=1

dva

dt
(0)sa(0) = Dc(

r∑

a=1

vasa)(0) = ∇vs.

where in the last line we have used (29.2). �

Consider now the tangent bundle ξ = TM of a manifold M . For a
connection ∇ in TM , the notions above have a more geometric meaning. For
example, in M = Rd, there is a canonical connection ∇ in TRd = Rd × Rd,
which corresponds to the usual directional derivative. A vector field X (i.e.,
a section of TM) is parallel for this connection along a curve c(t) if and only
if the vectors Xc(t) are parallel in the usual sense.

For a connection in the tangent bundle TM there are additional notions
that do not make sense for connections on a general vector bundle. This is
because a connection in TM differentiates vector fields along vector fields,
so we have a more symmetric situation. Here is a first example:

Definition 29.9. Let ∇ be a connection in TM . A geodesic is a curve
c(t) for which its derivative ċ(t) (a vector field along c(t)) is parallel, i.e.,
we have:

Dcċ(t) = 0.

If we choose local coordinates (U, x1, . . . , xd), we have trivializing vector
fields { ∂

∂x1
, . . . , ∂

∂xd
} for TM |U , and we can write:

∇ ∂

∂xi

∂

∂xj
=
∑

k

Γkij
∂

∂xk
.

The equations for the components ci(t) = xi(c(t)) of a geodesic c(t) in local
coordinates are:

d2ck(t)

dt2
= −

∑

ij

Γkij(c(t))
dci(t)

dt

dcj(t)

dt
, (k = 1, . . . , n).

Using these equations, it should be clear that given p0 ∈M and v ∈ Tp0M ,
there exists a unique geodesic c(t) such that c(0) = p0 and ċ(0) = v. This
geodesic is defined for 0 ≤ t < ε, and if we choose v sufficiently small we
can assume that ε > 1. In this case, we set::

expp0(v) ≡ c(1).
In this way, we obtain the exponential map expp0 : U → M , which is
defined in an open neighborhood U ⊂ Tp0M of the origin.
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Another notion which only makes sense for connections ∇ in TM is the
torsion of a connection: this is the map T : X(M) × X(M) → X(M)
defined by:

T (X,Y ) = ∇XY −∇YX − [X,Y ].

One checks that T is C∞(M)-linear in both arguments, so it defines a mor-
phism of vector bundles T : TM ⊗ TM → TM . One calls T the torsion
tensor of the connection. A symmetric connection is a connection ∇
whose torsion is zero.

The next proposition gives a characterization of the torsion in terms of the
covariant derivative. For that we choose a smooth map φ : [0, 1]×[0, 1] →M
which one can think as a parameterized surface. Denoting the parameters
by (x, y) we have maps [0, 1] × [0, 1]→ TM covering φ defined by:

∂φ

∂x
≡ φ∗(

∂

∂x
),

∂φ

∂y
≡ φ∗(

∂

∂y
).

One can think of these as vector fields along φ. If one fixes y, they give
vector fields along the curve t 7→ φ(t, y), and similarly if one fixes x. So we
may consider the covariant derivatives:

• Dx
∂φ
∂y ≡ covariant derivative along the curve t 7→ φ(t, y) at t = x;

• Dy
∂φ
∂x ≡ covariant derivative along the curve t 7→ φ(x, t) at t = y;

Proposition 29.10. Consider a parameterized surface φ : [0, 1] × [0, 1] →
M . The torsion of a connection ∇ in TM satisfies:

Dx
∂φ

∂y
−Dy

∂φ

∂x
= T

(∂φ
∂x
,
∂φ

∂x

)
.

Proof. The proof is similar (but simpler!) to the proof of Proposition 30.2
below, and so is left as an exercise. �

The most classical example of a connection is the Levi-Civita connection
in the tangent bundle of a Riemannian manifold, which we now describe.
We start with a definition:

Definition 29.11. Let ξ be a vector bundle over M with a fiber metric 〈 , 〉.
A connection in ξ is said to be compatible with the metric if

X(〈s1, s2〉) = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉,

for every vector field X ∈ X(M) and every pair of sections s1, s2 ∈ Γ(ξ).

For a Riemannian manifold we have a natural choice of compatible metric:

Proposition 29.12. Let (M, 〈 , 〉) be a Riemannian manifold. There exists
a unique symmetric connection in TM compatible with the metric.
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Proof. Let X,Y,Z ∈ X(M) be vector fields in M . The compatibility of ∇
with the metric gives:

X · 〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉,
Y · 〈Z,X〉 = 〈∇Y Z,X〉 + 〈Z,∇YX〉,
Z · 〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉.

Adding the first two equations and subtracting the third one, gives:

X · 〈Y,Z〉+ Y · 〈Z,X〉 − Z · 〈X,Y 〉 = 2〈∇XY,Z〉
− 〈X, [Z, Y ]〉 − 〈Y, [Z,X]〉 − 〈Z, [X,Y ]〉,

where we have used the symmetry of the connection. This relation shows
that the two conditions completely determine the connection by the formula:

〈∇XY,Z〉 =
1

2
(X · 〈Y,Z〉+ Y · 〈Z,X〉 − Z · 〈X,Y 〉)

+
1

2
(〈X, [Z, Y ]〉+ 〈Y, [Z,X]〉 + 〈Z, [X,Y ]〉) .

On the other, one checks easily that this formula does define a connection
in TM which is symmetric and compatible with the metric. �

The connection in the proposition is known as the Levi-Civita connec-
tion of the Riemannian manifold. This allows to define parallel transport,
geodesics, exponential map, etc., for a Riemannian manifold. The fact that
this connection comes from a metric leads to additional properties of these
concepts. We will not go into any deeper discussion of Riemannian geometry
and refer the reader to any standard text on the subject.

Homework.

1. Let ξ and ξ′ be vector bundles overM , furnished with connections∇ and∇′.
Show that the associated bundles ξ⊕ ξ′, ξ∗ and ∧kξ, have induced connections
satisfying:

∇X(s1 ⊕ s2) = ∇Xs1 ⊕∇Xs2,
∇X(s1 ∧ · · · ∧ sk) = ∇Xs1 ∧ · · · ∧ sk + · · ·+ s1 ∧ · · ·∇X ∧ sk

X(〈s, η〉) = 〈∇Xs, η〉+ 〈s,∇Xη〉.
Determine the connection 1-form of these connections in terms of the original
connection 1-forms.

2. Let ξ be a vector bundle over M with a connection ∇. If ψ : N → M is a
smooth map, show that ψ∗ξ has a connection induced from ∇ such that:

(∇vψ∗s) = ψ∗(∇dpψ(v)s), ∀v ∈ TpN, s ∈ Γ(ξ).

Determine the connection 1-form of the pullback connections in terms of the
connection 1-form of the original connection.
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3. Let {s1, . . . , sr} and {s′1, . . . , s′r} be two basis of local sections for a vector

bundle ξ = (π,E,M) over a common open set U ⊂ M . Denote by A = (aji ) :

U → GL(r) the matrix of change of basis so that s′i =
∑

j a
j
isj . Show that the

corresponding connection 1-forms ω and ω′ are related by:

ω′ = A−1ωA+A−1dA.

4. Deduce formula (29.1) for the local expression of the covariant derivative of
a connection.

5. Show that the covariant derivative of a section s(t) along a curve c(t) as
given in Definition 29.5 can be computed by choosing a time-dependent section
extending s and applying formula (29.2). In particular, conclude that this
formula does not depend on the choice of extension.

6. Let ξ be a vector bundle over M with a fiber metric g := 〈 , 〉. Viewing the
metric as a section g ∈ Γ(⊗2E∗), verify that the condition that the connection
∇ is compatible with the metric g is equivalent to:

∇Xg = 0, ∀X ∈ X(M).

Show that one can always find such a compatible connection ∇.

7. Let ξ = (π,E,M) be a vector bundle with a fiber metric 〈 , 〉. For a
connection ∇ in ξ, show that the following are equivalent:
(i) ∇ is compatible with the metric.
(ii) Parallel transport τt : Ec(0) → Ec(t) along any curve c is an isometry.
(iii) For any basis of orthonormal trivializing sections the connection 1-form

ω = [ωba] is a skew-symmetric matrix.

8. Let M ⊂ Rn be an embedded submanifold so that TpM ⊂ Rn has the inner
product induced from the standard inner product on Rn. Show that these yield
a Riemannian metric g in M , whose associated Levi-Civita connection is given
by:

(∇XY )(p) = prTpM

(
dpY (Xp)

)
,

where prTpM : Rn → TpM denotes the orthogonal projection and we view

Y ∈ X(M) as a map Y :M → Rn.

30. Curvature and Holonomy

A trivial vector bundle carries natural connections defined in terms of
trivializing sections si, for which ∇si = 0. In general, for an arbitrary
connection ∇ on a vector bundle ξ = (π,E,M), it is not possible to choose
a basis of local sections si such that ∇si = 0. The obstruction is given by
the curvature of ∇, which is the map

R : X(M) × X(M)× Γ(ξ)→ Γ(ξ)

defined by:

R(X,Y )s = ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s.
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A simple computation shows that R is C∞(M)-linear in all the arguments,
so we can think of R as a vector bundle map R : TM ⊗ TM ⊗E → E. For
this reason one also calls R the curvature tensor.

The local expression for the curvature over a chart (U, xi) where one has
a basis of sections {s1, . . . , sr} for ξ, is:

R
( ∂

∂xi
,
∂

∂xj

)
sa =

r∑

b=1

Rbijasb,

where the components Rbija can be expressed in terms of the Christoffel

symbols Γbia by:

Rbija =
∂Γbja
∂xi

− ∂Γbia
∂xj

+
r∑

c=1

(
ΓciaΓ

b
jc − ΓcjaΓ

b
ic

)
.

We can also codify the curvature in terms of a matrix of differential forms:

Ωba =
∑

i<j

Rbijadx
i ∧ dxj,

and Ω = [Ωba] is called the curvature 2-form of the connection. This
matrix-valued 2-form is independent of the choice of local coordinates, and
it can also be defined from the relation:

R(X,Y )sa =
r∑

b=1

Ωba(X,Y )sb.

The dependence of Ω on the choice of trivializing sections is discussed in the
Homework.

Theorem 30.1. For a connection in a vector bundle ξ, the connection 1-
form ω and the curvature 2-form Ω associated with some trivializing sections,
are related by the structure equations:

Ωba = dωba +
∑

c

ωca ∧ ωbc ⇐⇒ Ω = dω + ω ∧ ω,

and one has the Bianchi’s identity:

dΩba =
∑

c

(
Ωca ∧ ωbc − ωca ∧ Ωbc

)
⇐⇒ dΩ = Ω ∧ ω − ω ∧ Ω.

Proof. Direct computation. �

Let us turn now to the geometric interpretation of curvature in term of
parallel transport. For that we choose a smooth map φ : [0, 1] × [0, 1]→M
which one can think as a parameterized surface. Denoting the parameters
by (x, y) we have maps [0, 1] × [0, 1]→ TM covering φ defined by:

∂φ

∂x
≡ φ∗(

∂

∂x
),

∂φ

∂y
≡ φ∗(

∂

∂y
).

One can think of these as vector fields along φ. If one fixes y, they give
vector fields along the curve t 7→ φ(t, y), and similarly if one fixes x. Given
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a section s of the vector bundle ξ along φ, we can introduce the covariant
derivatives:

• Dxs(x, y) ≡ covariant derivative along the curve t 7→ φ(t, y) at t = x;
• Dys(x, y) ≡ covariant derivative along the curve t 7→ φ(x, t) at t = y;

We have:

Proposition 30.2. For any section s of ξ along a parameterized surface
φ : [0, 1] × [0, 1] →M , the curvature of the connection satisfies:

DxDys−DyDxs = R
(∂φ
∂x
,
∂φ

∂x

)
s.

Proof. Choose (x, y)-dependent vector fields Xx,y, Yx,y ∈ X(M) extending
∂φ
∂x and ∂φ

∂y :

Xx,y(φ(x, y)) =
∂φ

∂x
(x, y), Yx,y(φ(x, y)) =

∂φ

∂y
(x, y).

We will need the following result whose proof we leave as an exercise:

Lemma 30.3.( d

dy
Xx,y −

d

dx
Yx,y

)∣∣∣
φ(x,y)

= [Xx,y, Yx,y]
∣∣∣
φ(x,y)

.

We choose also a (x, y)-dependent section sx,y ∈ Γ(ξ) extending s:

sx,y(φ(x, y)) = s(x, y).

Using Remark 29.6, we can compute the covariant derivatives:

Dxs(x, y) =
(
∇Xx,ysx,y +

d

dx
sx,y

)∣∣∣
φ(x,y)

,

Dys(x, y) =
(
∇βx,ysx,y +

d

dy
sx,y

)∣∣∣
φ(x,y)

.

It follows that:

DxDys(x, y) =
(
∇Xx,y∇Yx,ysx,y +

d

dx
∇Yx,ysx,y +∇Xx,y

dsx,y
dy

+
d2sx,y
dxdy

)∣∣∣
φ(x,y)

,

DyDxs(x, y) =
(
∇βx,y∇Xx,ysx,y +

d

dy
∇Xx,ysx,y +∇Yx,y

dsx,y
dx

+
d2sx,y
dydx

)∣∣∣
φ(x,y)

.

Taking the difference of these two equations, we obtain:

DxDys(x, y)−DyDxs(x, y) =

=
(
∇Xx,y∇Yx,ysx,y −∇Yx,y∇Xx,ysx,y +∇ d

dx
Yx,y− d

dy
Xx,y

sx,y

)∣∣∣
φ(x,y)

.

Using the lemma above, we obtain the result:

DxDys(x, y)−DyDxs(x, y) =

=
(
R(Xx,y, Yx,y)sx,y

)∣∣∣
φ(x,y)

= R
(∂φ
∂x
,
∂φ

∂x

)
s(x, y).

�
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A flat connection is a connection for which the curvature tensor van-
ishes. We will often refer to a vector bundle with a flat connection as a
flat bundle. Clearly, if around each point one can choose coordinates and
trivializing sections for which the Christoffel symbols vanish, the connection
is flat. The converse is also true, as a consequence of the following local
normal form for flat bundles:

Corollary 30.4. Let ξ = (π,E,M) be a vector bundle of rank r with a
flat connection ∇. For each p ∈ M , there exists a base of local sections
{s1, . . . , sr} definided in a neighborhood U of p, such that

∇Xsi = 0, ∀X ∈ X(M).

Hence, ξ|U is isomorphic to the trivial vector bundle εrU with the canonical
flat connection.

Proof. See Exercise 3 in the homework at the end of this section. �

In the case of Riemannian manifolds, Corollary 30.4 takes the following
more geometric meaning:

Corollary 30.5. Let (M, 〈 , 〉) be a Riemannian manifold with vanishing
curvature tensor: R = 0. For each p ∈M , there exists a neighborhood U of
p which is isometric to an open in Rd furnished with the Euclidean metric.

Proof. See Exercise 5 in the homework at the end of this section. �

The previous results describe flat connections locally. To describe what
happens with a flat connection globally, we need to introduce the notion of
holonomy of a connection. Given a vector bundle ξ = (π,E,M) of rank
r with a connection ∇ fix a base point p0 ∈ M . For each a closed path
γ : [0, 1] →M based at p0, so γ(0) = γ(1) = p0, parallel transport along the
curve γ(t) gives a linear isomorphism called the holonomy of γ:

Hp0(γ) ≡ τ1 : Ep0 → Ep0 .

If we extend this definition, in the obvious way, to closed paths which are
piecewise smooth, it is clear that:

Hp0(γ1 · γ2) = Hp0(γ1) ◦Hp0(γ2),

where γ1 · γ2 denotes the concatenation of the two paths:

γ1 · γ2(t) :=





γ2(2t) if 0 ≤ t ≤ 1
2 ,

γ1(2t− 1) if 1
2 ≤ t ≤ 1.

When the connection is flat we also have:

Proposition 30.6. Given a flat connection, any two path-homotopic closed
curves γ0 and γ1 have the same holonomy: Hp0(γ0) = Hp0(γ1).
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Proof. One can show that two smooth curves which are C0 path-homotopic
are also smooth path-homotopic. So denote by γ : [0, 1] × [0, 1] → M a
path-homotopy between γ0 and γ1:

γ(t, 0) = γ0(t), γ(t, 1) = γ1(t), γ(0, ε) = γ(1, ε) = p0.

Fixing v0 ∈ Ep0 , we define a section s : [0, 1] × [0, 1] → E along γ : [0, 1] ×
[0, 1]→M , by:

s(t, ε) := τ
γ(·,ε)
t (v0) =

{
parallel transport of v0 along
s 7→ γ(s, ε) with s ∈ [0, t].

Notice that, by construction, for each fixed ε:

Dts := Dγ(·,ε)s = 0.

We claim that for each fixed t one also has:

Dεs := Dγ(t,·)s = 0.

Indeed, since γ(0, ε) = 0 and s(0, ε) = v0, we have:

Dεs(0, ε) = Dγ(0,·)s(0, ε) =
d

dε
s(0, ε) = 0.

On the other hand, using Proposition 30.2, we find:

DtDεs = R
(∂γ
∂t
,
∂γ

∂ε

)
+DεDts = 0.

Hence, Dεs is parallel along the curve t 7→ γ(t, ε) so we must haveDεs(t, ε) =
0, as claimed.

Now, applying our claim, and the fact that γ(1, ε) = p0, we conclude that:

0 = Dεs(1, ε) =
d

dε
s(1, ε).

Hence,

τγ01 (v0) = s(1, 0) = s(1, 1) = τγ11 (v0).

Since v0 ∈ Ep0 was an arbitrary vector, we conclude that Hp0(γ0) = Hp0(γ1).
�

Since every element in π1(M,p0) has a smooth a representative, we con-
clude that for a flat connection, one has a group homomorphism

Hp0 : π1(M,p0)→ GL(Ep0),

called the holonomy representation of ∇ with base point p0. If q0 ∈ M
is a different point in the same connected component of M , we can choose a
smooth path c : [0, 1]→M with c(0) = p0 and c(1) = q0. Parallel transport
along c(t) gives an isomorphism τ : Ep0 → Eq0 and

Hq0 = τ ◦Hp0 ◦ τ−1.

Hence, the holonomy representations of different points in the same compo-
nent are related by conjugacy.
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Theorem 30.7. Let M be a connected manifold with base point p0 ∈ M ,
there is a 1:1 correspondence:



isomorphism classes of
flat vector bundles of rank r over M



 ←̃→Hom(π1(M,p0),GL(r))/GL(r).

where GL(r) acts on Hom(π1(M,p0),GL(r)) by conjugation.

Proof. We already know that a flat vector bundle (ξ,∇) induces a represen-
tation of the fundamental group, namely the holonomy representation:

Hp0 : π1(M,p0)→ GL(Ep0).

Fixing a basis for the fiber Ep0 , we obtain a group homomorphism:

Hp0 : π1(M,p0)→ GL(r).

Two different basis for Ep0 are related by conjugation of an element of GL(r).
It follows that isomorphic vector bundles induce homomorphisms which are
related by conjugation too, so one can associate to an isomorphism class of
vector bundles an element in the quotient

Hom(π1(M,p0),GL(r))/GL(r).

Conversely, given a representation H : π1(M,p0) → GL(r) representing
some element in this quotient, we construct a flat vector bundle as follows:
on the one hand, the representation gives an action of π(M,p0) in Rr. On
the other hand, the fundamental group π1(M,p0) acts in the universal cover

M̃ by deck transformations: identifying M̃ with the set of homotopy classes

of paths [c] with initial point c(0) = p0, the action of π1(M,p0) in M̃ is given
by concatenation:

π1(M,p0)× M̃ → M̃, ([γ], [c]) 7→ [γ · c].
Since this action is proper and free, the resulting diagonal action of π1(M,p0)

in M̃ × Rr is also proper and free. Hence, the quotient space E = (M̃ ×
Rr)/π1(M,p0) is a manifold, and we have the projection

π : E →M, [[c],v] 7→ c(1).

The triple ξ = (π,E,M) is a vector bundle. Moreover, the canonical flat

connection in M̃ × Rr induces a connection in ξ for which the holonomy
with base point p0 is precisely H : π1(M,p0) → GL(r). Finally, one checks
that given two homomorphisms H0,H1 : π1(M,p0) → GL(r) in the same
conjugacy class this construction produces isomorphic flat vector bundles.

�

Remark 30.8. The space appearing in the previous result is an example
of a character variety. More general, given a Lie group G and a finitely
generated group π, the G-character variety of π is the space of equivalence
classes of group homomorphisms:

Hom(π,G)/G.
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Homework.

1. Show that the connection 1-form and the curvature 2-form of a connection
satisfy the structure equations and Bianchi’s identity of Theorem 30.1.

2. Prove Lemma 30.3.

3. Let {s1, . . . , sr} and {s′1, . . . , s′r} be two basis of local sections for a vector

bundle ξ = (π,E,M) over a common open set U ⊂ M . Denote by A = (aji ) :

U → GL(r) the matrix of change of basis so that s′i =
∑

j a
j
isj . Show that the

corresponding curvature 2-forms Ω and Ω′ are related by:

Ω′ = A−1ΩA.

4. Show that if ∇ is a flat connection on a vector bundle ξ = (π,E,M), then
around every point p ∈M one can find a local basis of flat sections for ξ.
Hint: Using Exercise 3 in the previous section and the previous exercise, show
that the condition ω′ = 0 defines an integrable distribution in U × GL(r), so
one can apply Frobenius.

5. Let G be a connected Lie group with Lie algebra g. Show that there exists a
unique connection∇ in TG, which is invariant under left and right translations,
and under inversion. Show that ∇ satisfies the following properties:
(a) For any left invariant vector fields X,Y ∈ g:

∇XY =
1

2
[X,Y ].

(b) The torsion of ∇ vanishes and its curvature is given by:

R(X,Y ) · Z =
1

4
[[X,Y ], Z], ∀X,Y, Z ∈ g).

(c) The exponential map of ∇ at the identity expe coincides with the Lie
group exponential map exp : g→ G.

(d) Parallel transport along the curve c(t) = exp(tX), X ∈ g, is given by:

τt(v) = dLexp( t
2
X) · dRexp( t

2
X) · v, ∀v ∈ TeG.

(e) The geodesics are translations of the 1-parameter subgroups of G.

6. Let (M, 〈 , 〉) be a Riemannian manifold whose curvature tensor vanishes:
R = 0. Show that for each p ∈M , there exists a neighborhood U isometric to
an open in Rd with the Euclidean metric.

31. The Chern-Weil homomorphism

We saw in the previous section that a flat vector bundle is globally char-
acterized by its holonomy representation. We will now study the non-flat
case, a situation that is more complicated but more interesting. Eventually,
we will see that one can use a connection on a vector bundle to construct
cohomology classes which are invariants of the vector bundle, and which
characterize certain properties of the vector bundle up to isomorphism.
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Let π : E → M be a vector bundle. We consider differential forms in M
with values in E, which we denote by

Ω•(M ;E) := Γ(∧kT ∗M ⊗ E).

So a differential form of degree k with values in E is a C∞(M)-multilinear
alternating map:

ω : X(M) × · · · × X(M)︸ ︷︷ ︸
k-times

→ Γ(E).

In particular, Ω0(M ;E) is the space Γ(E) of global sections of the vector
bundle π : E →M . Notice that we also have:

Ω•(M ;E) = Ω•(M)⊗ Γ(E),

where ⊗ denotes here the tensor product of C∞(M)-modules. This last
interpretation shows that we have a well-defined wedge product ω ∧ η ∈
Ωk+l(M ;E), for any ω ∈ Ωk(M) and η ∈ Ωl(M ;E).

A choice of connection ∇ in π : E →M allows us to take the differential
of E-valued differential forms as follows. Such a connection determines an
operator d∇ : Ω0(M ;E)→ Ω1(M ;E) through the formula:

(d∇s)(X) = ∇Xs.
The map d∇ is R-linear and satisfies the Leibniz identity:

d∇(fs) = df ⊗ s+ fd∇s.

Remark 31.1. Conversely, any R-linear map d∇ : Ω0(M ;E) → Ω1(M ;E)
that satisfies the Leibniz identity determines a unique connection ∇. So this
gives an alternative approach to the theory of connections E.

One can extend d∇ to arbitrary forms by requiring that for any form
ω ∈ Ω•(M) and section s ∈ Γ(E) the following general Leibniz identity
holds:

(31.1) d∇(ω ⊗ s) = d∇(ω)⊗ s+ (−1)deg ωω ∧ d∇(s).

In fact, one has:

Proposition 31.2. Given a connection ∇ and ω ∈ Ωk(M ;E) define d∇ω ∈
Ωk+1(M ;E) by:

(31.2) d∇ω(X0, . . . ,Xk) =
k+1∑

i=0

(−1)i∇Xi(ω(X0, . . . , X̂i, . . . ,Xk))

+
∑

i<j

(−1)i+jω([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk).

Then d∇ : Ω•(M ;E)→ Ω•+1(M ;E) is the unique operator satisfying:

(i) For any 0-form s ∈ Γ(E), one has (d∇s)(X) = ∇Xs;
(ii) d∇ is R-linear and satisfies the Leibniz identity (31.1).
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Proof. One checks easily that the operator d∇ defined by (31.2) satisfies (i)
and (ii). Since any E-valued k-form η can be written as a linear combination:

η =
l∑

i=1

ωi ⊗ si (ωi ∈ Ωk(M), si ∈ Γ(E)),

it is clear that (i) and (ii) determined completely d∇. �

Note that, in general, d2∇ 6= 0, so d∇ is not a differential. In fact, the
curvature of ∇ can be seen as the failure in d∇ being a differential.

Proposition 31.3. Let ∇ be a connection on a vector bundle ξ = (π,E,M)
with curvature R. Then:

(i) For any 0-form s ∈ Γ(E)

d2∇s(X,Y ) = R(X,Y )s, (X,Y ∈ X(M));

(ii) Viewing the curvature as a 2-form R ∈ Ω2(M,EndE), for the connec-
tion on End(E) induced by ∇:

(31.3) d∇R = 0.

Proof. Using the definition of d∇ that:

d2∇s(X,Y ) = ∇X(d∇s(Y ))−∇Y (d∇s(X))− d∇s([X,Y ]))

= ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s = R(X,Y )s.

The proof of (ii) is left as an exercise.. �

Remark 31.4. The previous result shows that d∇ is a differential if and only
if the connection is flat. In this case, one calls the cohomology of the complex
(Ω•(M ;E),d∇) the de Rham cohomology of M with coefficients in
E and denotes it by H•(M ;E). Notice that the usual de Rham cohomology
corresponds to the case where E =M × R is the trivial flat line bundle.

The Bianchi identity can be used to define certain cohomology classes.
For that we need first to recall that for a finite dimensional vector space
V one has a canonical identification between the homogeneous polynomials
and the multilinear symmetric functions:

(i) Every k-multilinear symmetric map P : V × · · · × V → R determines

a homogeneous polynomial P̃ : V → R of degree k, by the formula:

P̃ : v 7→ P (v, . . . , v).

(ii) Conversely, every homogeneous polynomial P̃ : V → R of degree k
determines a k-multilinear symmetric map P : V × · · · × V → R by
polarization:

P (v1, . . . , vk) =
1

k!

∂

∂t1
· · · ∂

∂tk
P (t1v1 + · · ·+ tkvk)

∣∣∣∣
t1=···=tk=0

.
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These correspondences are inverse to each other, and the usual product of
polynomials corresponds to the product of k-multilinear, symmetric maps,
defined by:

P1 ◦ P2(v1, . . . , vk+l) =

1

(k + l)!

∑

σ∈Sk+l

P1(vσ(1), . . . , vσ(k))P2(vσ(k+1), . . . , vσ(k+l)).

Example 31.5.
If one fixes a base ξ1, . . . , ξr for V ∗, then one can think of polarization of the

polynomial P̃ : V → R as follows: one can write the polynomial:

P̃ (v) =

r∑

i1···ik=1

ai1···ikξ
i1(v) · · · ξik(v),

where the coefficients ai1···ik are symmetric in the indices. Then the corre-
sponding k-multilinear, symmetric map P : V × · · · × V → R is given by:

P (v1, . . . , vk) =

r∑

i1···ik=1

ai1···ikξ
i1(v1) · · · ξik(vk).

For example, let V = R3 with linear coordinates (x, y, z). The homogeneous
polynomial of degree 2:

P̃ (x, y, z) = x2 + xy + z2 = x2 +
1

2
(xy + yx) + z2,

corresponds to the bilinear symmetric map:

P (v, w) = v1w1 +
1

2
(v1w2 + v2w1) + v3w3.

We are interested in the case where V = g is the Lie algebra of a Lie
group G. We will denote by Ik(G) the space of k-multilinear, symmetric
maps P : g× · · · × g→ R which are invariant under the adjoint action:

P (Ad g · v1, . . . ,Ad g · vk) = P (v1, . . . , vk), ∀g ∈ G, v1, . . . , vk ∈ g.

and we let

I(G) =

∞⊕

k=0

Ik(G).

Note that I(G) is a ring with the symmetric product. Under the corre-
spondence above, we can identify I(G) with the algebra of polynomials in g

which are Ad-invariant.
For now, we are only interested in the case where G = GL(r), so that

g = gl(r) is the space of all r× r-matrices. In this case the adjoint action is
given by matrix conjugation:

AdA ·X = AXA−1, A ∈ GL(r), X ∈ gl(r).
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Then the invariance condition is just invariance under conjugation:

P (AX1A
−1, . . . , AXkA

−1) = P (X1, . . . ,Xk) (X1, . . . ,Xk ∈ gl(r)),

which must hold for any invertible matrix A ∈ GL(r).
Example 31.6.
Invariant polynomials on gl(r) can be obtained by taking traces of powers:

X 7→ tr(Xk).

Actually, these polynomials generate the ring of AdGL(r)-invariant polynomials.
We will came back to this issue in the next section.

Returning to the discussion of vector bundles with connection, the key
remark is now the following:

Proposition 31.7. Let ξ = (π,E,M) be a rank r vector bundle with a
connection ∇. Every element P ∈ Ik(GL(r)) determines a map

(31.4) P : Ω•(M ;⊗k End(E))→ Ω•(M), ω 7→ P ◦ ω,
which satisfies:

dP = Pd∇.

Proof. Note that if s1, . . . , sr is a base of local of sections of E then for any
section A ∈ Γ(End(E)), we have:

Asi =

r∑

j=1

Ajisj ,

for some functions Aji . Given a P ∈ Ik(GL(r)), we define a map P :

Γ(⊗k End(E))→ C∞(M) by:

P (A1 ⊗ · · · ⊗Ak) := P ([(A1)
j
i ], · · · , [(Ak)

j
i ]).

The invariance condition shows that this expression is independent of the
choice of base of local of sections, so this map is well-defined. A degree l
form ω ∈ Ωl(M ;⊗k End(E)) can be seen as an l-multilinear alternating map

ω : X(M) × · · · × X(M)→ Γ(⊗k End(E)),

so composing with P determines an l-multilinear alternating map

P ◦ ω : X(M)× · · · × X(M)→ C∞(M).

Hence, P (ω) ∈ Ωl(M) and an elementary computation using the definitions
of d, d∇ and the fact that P is multilinear, shows that dP = Pd∇. �

Now let R denote the curvature of the connection ∇. The k-symmetric
power of R is an element Rk ∈ Ω2k(M ;⊗k End(E)) defined by:

Rk(X1, . . . ,X2K) :=

1

(2k)!

∑

σ∈S2k

(−1)σR(Xσ(1),Xσ(2))⊗ · · · ⊗R(Xσ(2k−1),Xσ(2k)).
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Therefore, if P ∈ Ik(GL(r)), we obtain a differential form P (Rk) ∈ Ω2k(M).
If one fixes some local basis of sections {s1, . . . , sr} and lets Ω = [Ωba] denotes
the curvature 2-form of the connection relative to this basis, this form is
given explicitly by:

(31.5) P (Rk)(X1, . . . ,X2k) =

1

(2k)!

∑

σ∈S2k

(−1)σP (Ω(Xσ(1),Xσ(2)), . . . ,Ω(Xσ(2k−1),Xσ(2k))).

Using the previous expression, one checks that if P1 ∈ Ik(GL(r)) and
P2 ∈ I l(GL(r)), then:

P1 ◦ P2(R
k+l) = P1(R

k) ∧ P2(R
l) ∈ Ω2(k+l)(M).

On the other hand, the Bianchi identity (31.3) gives:

dP (Rk) = P (d∇R
k) = kP (Rk−1d∇R) = 0,

so P (Rk) ∈ Ω2k(M) is a closed form. Now, we have:

Theorem 31.8 (Chern-Weil). Let ∇ be a connection in a vector bundle
π : E → M of rank r, with curvature R. The map I(GL(r)) → H(M)
defined by:

Ik(GL(r))→ H2k(M), P 7−→ [P (Rk)],

is a ring homomorphism. This homomorphism is independent of the choice
of connection.

Proof. All that it remains to be proved is that the homomorphism is inde-
pendent of the choice of connection. For that we claim that if ∇0 and ∇1 are
two connections in π : E → M , then for all P ∈ Ik(GL(r)) the differential
forms P (Rk∇0

) and P (Rk∇1
) differ by an exact form.

To prove the claim, consider the projection p : M × [0, 1] → M . The
pullback bundle p∗E carries a connection ∇ defined by requiring that on
pullback sections:

∇ ∂
∂t
p∗s = 0, ∇Xp∗s := tp∗(∇1

Xs) + (1− t)p∗(∇0
Xs), (X ∈ X(M)).

On the other hand, we have integration along the fibers of p:
∫ 1

0
: Ω•(M × [0, 1])→ Ω•−1(M),

which is explicitly given by:

(∫ 1

0
ω
)
(X1, . . . ,Xl−1) =

∫ 1

0
ω
( ∂
∂t
,X1, . . . ,Xl−1

)
dt.

Then one defines the Chern-Simons transgression form by setting

(31.6) P (∇0,∇1) ≡ k
∫ 1

0
P (Rk∇) ∈ Ω2k−1(M).
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and one checks by direct computation that:

dP (∇0,∇1) = P (Rk∇1
)− P (Rk∇0

).

This proves the claim, showing that [P (Rk∇1
)] = [P (Rk∇0

)] ∈ H2k(M). �

The ring homomorphism given by the previous result:

CW[ξ] : I(GL(r))→ H•(M),

is called the Chern-Weil homomorphism ξ = (π,E,M). This homomor-
phism depends only on the isomorphism class of the vector bundle ξ:

Proposition 31.9. Let ψ : N →M be a smooth map and let ξ = (π,E,M)
be a vector bundle of rank r. For every P ∈ I•(GL(r)),

ψ∗P (Rk∇) = P (Rkψ∗∇),

where ∇ is any connection in ξ. Hence, the Chern-Weil homomorphisms of
ξ and ψ∗ξ fit into a commutative diagram:

H•(M)

φ∗

��

I(GL(r))

CW[ξ]
88rrrrrrrrrr

CW[φ∗ξ] &&▲▲
▲▲

▲▲
▲▲

▲▲

H•(N)

We leave the proof for the Homework.

Homework.

1. Let ∇ be a connection in a vector bundle π : E → M with curvature R.
Prove Bianchi’s identity:

d∇R = 0.

2. Let π : E → M be a vector bundle of rank r. Given P ∈ Ik(GL(r)),
show that the map P : Ω•(M ;⊗k End(E))→ Ω•(M) given by (31.4) satisfies:
dP = Pd∇.

3. Show that the Chern-Simons transgression form (31.6), satisfies:

dP (∇0,∇1) = P (Rk∇1
)− P (Rk∇0

).

4. Let ψ : N → M be a smooth map and ξ = (π,E,M) a vector bundle of
rank r with a connection ∇. Show that for all P ∈ I•(GL(r)),

ψ∗P (Rk∇) = P (Rkψ∗∇).
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32. Characteristic Classes

A cohomology class in the image of the Chern-Weil homomorphism is
called a characteristics class of ξ. There are certain canonical charac-
teristic classes that arise from natural choices of elements in the ring of
invariant polynomials I(GL(r)).

We have already observed that traces of powers yield invariant polynomi-
als in gl(r). One can show that any homogeneous polynomial P ∈ Ik(GL(r))
can be written as a R-linear combination of invariant polynomials of the
form:

X 7→ tr(Xk1) · · · tr(Xks), k1 + · · ·+ ks = k.

However, these are not algebraically independent.

Theorem 32.1. The coefficients of the characteristic polynomial

det
(
λI +X

)
= λr + σ1(X)λr−1 + · · ·+ σr−1(X)λ+ σr(X) (X ∈ gl(r)),

are algebraically independent and generate the ring I(GL(r)).

Remark 32.2. The coefficients σk : gl(r) → R can be expressed using the
elementary symmetric functions. Recall that if x1, . . . , xr denote r indeter-
minates then for polynomial p(x) =

∏r
i=1(x + xi) with coefficients in the

field of fractions R(x1, . . . , xn), we have:

p(x) =

r∏

i=1

(x+ xi) = xr + s1x
r−1 + · · ·+ sr1x+ sr,

where the coefficients are the elementary symmetric functions:

s1 =
∑

i

xi, s2 =
∑

i<j

xixj , . . . sr = x1 · · · xr.

Applying this to the characteristic polynomial, one obtains:

σ1(X) = trX,

σ2(X) =
1

2

(
(trX)2 − trX2

)
,

...

σr(X) = detX.

One can show that the field R(x1, . . . , xr) is a Galois extension of the field
R(s1, . . . , sr) with Galois group the symmetric group Sn. In other words, any
symmetric expression in the indeterminates x1, . . . , xr is a polynomial in the
elementary symmetric functions s1, . . . , sr. Applying this to the invariant
polynomials, one obtains the theorem above. Note that in this discussion
one can replace R by C, or any other field of characteristic zero.

The previous discussion suggest to apply the Chern-Weil homomorphism
to the invariant polynomials σ1, . . . , σr. Before we do that, let us recall
that one can equip any vector bundle ξ with a fiber metric, and then one
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can choose a connection ∇ compatible with the metric. We leave as an
exercise to check that for such a connection the curvature 2-form relative to
an orthonormal frame is always skew-symmetric:

Ω = −ΩT .
On the other hand, it follows from the above discussion that if X is skew-
symmetric then

σ2k+1(X) = 0.

Hence, by (31.5), we have σ2k+1(R
2k+1) = 0 for such a connection. This

explains why in the following definition we only consider even dimensional
classes.

Definition 32.3. Let ξ = (π,E,M) be a vector bundle of rank r. For
k = 1, 2, . . . , the Pontrjagin classes of ξ are:

pk(ξ) =

[
σ2k

(( 1

2π
R
)2k)]

∈ H4k(M),

where R is the curvature of any connection ∇ in ξ. The total Pontrjagin

class of the vector bundle ξ is:

p(ξ) = 1 + p1(ξ) + · · · + p[r/2](ξ),

where [r/2] denotes the largest integer less or equal to r/2.

Remark 32.4. The normalization factor 1
2π is included so that the Pontr-

jagin classes belong to the image of the natural homomorphism:

H•(M,Z)→ H•(M).

The next proposition lists basic properties of the Pontrjagin classes. The
proof follows from the construction of these classes and is left as an exercise.

Proposition 32.5. Let M be a smooth manifold, ξ and η vector bundles
over M . The Pontrjagin classes satisfy:

(i) p(ξ ⊕ η) = p(ξ) ∪ p(η);
(ii) p(ψ∗ξ) = ψ∗p(ξ), for any smooth map ψ : N →M ;
(iii) p(ξ) = 1, if ξ admits a flat connection.

The Pontrjagin classes pi = pi(TM) of the tangent bundle of a manifold
M give an important invariant of a smooth manifold. Although, from its
definition it seems that these classes are only invariants of diffeomorphism
type, Novikov proved that these classes are in fact topological invariants:
two smooth manifolds which are homemorphic have the same Pontrjagin
classes pi. Here it is important that we are dealing with classes in de Rham
cohomology. Using classifying bundles, one can also define Pontrjagin classes
leaving in integral cohomology and the integral Pontrjagin classes of TM are
not topological invariants.
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Over a compact oriented manifold of dimension dimM = 4m one can
also define Pontrjagin numbers of ξ. One chooses non-negative integers
a1, . . . , a[r/2] such that:

4(a1 + 2a2 + · · ·+ [r/2]a[r/2]) = 4m,

and defines a Pontrjagin number:
∫

M
pa11 ∧ pa22 ∧ · · · ∧ p

a[r/2]
[r/2]

.

The Pontrjagin numbers of M , where M is compact, oriented, of dimen-
sion 4m are, by definition, the Pontrjagin numbers of its tangent bundle. For
example, a compact, oriented manifold of dimension 4 has only one Pontr-
jagin number

∫
M p1 while in dimension 8 there are two Pontrjagin numbers:

∫

M
p21,

∫

M
p2.

Examples 32.6.

1. Let M = Sd →֒ Rd+1 and denote by ν(Sd) = TSdR
d+1/TSd the normal

bundle of Sd. Notice that the Whitney sum

TSd ⊕ ν(Sd) = TSdR
d+1,

is the trivial vector bundle over Sd. On the other hand, the normal bundle ν(Sd)
is also trivial, for it is a line bundle which admits a nowhere vanishing section.
By properties (i) and (iii) in the Proposition we conclude that p(TSd) = 1.
Note that Sd has trivial tangent bundle only for d = 1, 3, 7.

2. Let M = CPd. Recall that we have CPd = S2d+1/S1, where S2d+1 ⊂ Cd+1

and S1 acts by complex multiplication: θ · z = eiθ. The Euclidean metric
in Cd+1 = R2d+2 induces a Riemannian metric in S2d+1 which is invariant
under the S1-action. Hence, this induces a Riemannian metric in the quotient
CPd = S2d+1/S1, called the Fubini-Study metric.

One can use the connection associated with the Fubini-Study metric to com-
pute the Pontrjagin classes p(TCPd). For example, in the Homework we sketch
how in the case of CP2 one finds that CP2 with its canonical orientation (the
one induced from the standard orientation of S5) has Pontrjagin number

∫

M

p1 = 3.

So far, all our vector bundles were real vector bundles. One can also
consider complex vector bundles ξ = (π,E,M), where the fibers Ex
are now complex vector spaces of complex dimension r and the transition
functions are maps:

gαβ : Uα ∩ Uβ → GL(r,C).

Every complex vector bundle of rank r can be viewed as a real vector bundle
of rank 2r equipped with a complex structure J , i.e., an endomorphism of
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(real) vector bundles J : ξ → ξ such that J2 = −id. The complex structure
J and the complex structure in the fibers are related by:

(a+ ib)v = av + bJ(v), ∀v ∈ E.
On a complex vector bundle ξ one can consider C-connections, i.e.,

connections ∇ such that for each vector field X ∈ X(M) the map s 7→ ∇Xs
is C-linear:

∇X(λs) = λ∇Xs, ∀λ ∈ C, s ∈ Γ(ξ).

Using the endomorphism J , this condition can be expressed as

∇X(Js) = J∇Xs, ∀ s ∈ Γ(ξ)), X ∈ X(M).

Hence, a C-connection is an ordinary connection which is compatible with
the complex structure J :

∇J = 0.

Any complex vector bundle admits a C-connection.
The connection 1-form ω and the curvature 2-form Ω of a C-connection

∇ relative to any local C-basis of sections defined over an open U ⊂M are
matrices of complex-valued forms:

ω = [ωba] ∈ Ω1(U, gl(r,C)), Ω = [Ωba] ∈ Ω2(U, gl(r,C)).

Hence, using a C-connection, one defines the Chern-Weil homomor-
phism much the same way as in the real case, obtaining now a ring ho-
momorphism into the complex de Rham cohomology:

I(GL(r,C)) → H•(M,C).

Again, the ring of invariant polynomials I(GL(r,C)) is generated by the
elementary invariant polynomials now viewed as polynomials σ1, . . . , σr in
gl(r,C):

det(λI +X) = λr + σ1(X)λr−1 + · · · + σr−1(X)λ+ σr(X), X ∈ gl(r,C).

These allow us to define:

Definition 32.7. Let ξ = (π,E,M) be a complex vector bundle of rank r.
For k = 1, . . . , r we define the Chern classes of ξ by:

ck(ξ) =

[
σk

(( i

2π
R
)k)]

∈ H2k(M),

where R is the curvature of any C-connection ∇ in ξ. The total Chern

class of ξ is sum:

c(ξ) = 1 + c1(ξ) + · · ·+ cr(ξ) ∈ H(M).

Note that, a priori, the Chern classes are cohomology classes lying in
complex de Rham cohomology H•(M,C). However, the normalization factor
makes them real cohomology classes. To see this, we use the following lemma
which is the complex analogue of the fact that real vector bundles admit fiber
metrics and compatible connections. The proof is left as an exercise.
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Lemma 32.8. Every complex vector bundle ξ = (π,E,M) admits a fiber
hermitian metric h = 〈·, ·〉 and a compatible C-connection: ∇h = 0.

Choosing a connection as in the lemma, for any orthonormal C-basis of
local sections {s1, . . . , sr} of E, the connection 1-form ω and the curvature
2-form Ω take values in:

u(r) = {X ∈ gl(r,C) : X +X
T
= 0}.

Then the eigenvalues of Ω are purely imaginary, so iΩ has real eigenvalues.
It follows that σk((iR/2π)

k) is a real form, showing that the Chern classes
are real cohomology classes, as claimed.

Similar to the real case, the Chern classes enjoy the following properties:

Proposition 32.9. Let M be a smooth manifold, ξ and η complex vector
bundles over M . The Chern classes satisfy:

(i) c(ξ ⊕ η) = c(ξ) ∪ c(η);
(ii) c(ψ∗ξ) = ψ∗c(ξ), for any smooth map ψ : N →M ;
(iii) c(ξ) = 1, if ξ admits a flat C-connection;
(iv) c(γ11) = 1− µ where µ denotes the canonical orientation of CP1.

Remark 32.10. One can show that properties (i)–(iv) above determine
completely the Chern class.

Proof. We leave the proof of properties (i)–(iii) to the exercises in the home-
work. To prove (iv), we define a C-connection ∇ on the canonical (complex)
line bundle γ11 over CP1 = S2 as follows. First, γ11 is a subbundle of the
trivial bundle:

γ11 ⊂ CP1 × C2,

so a section of γ11 can be viewed as map s : CP1 → C2. Then we set:

(∇Xs)(p) = prEp
(dps(X)),

where Ep ⊂ C2 is the fiber over p, and prEp
: C2 → Ep denotes the projection

relative to the standard hermitian inner product on C2.
The bundle trivializes on the open set:

U0 := {[z0 : z1] ∈ CP1 : z0 6= 0}.
The non-vanishing section s : U0 → γ11 defined by:

s([1 : z]) := ([1, z], (1, z)),

is a C-basis of sections over U0. Defining local coordinates (x, y) on U0 by
z = x+ iy, a straightforward computation gives the corresponding C-valued
connection 1-form ω defined by ∇Xs = ω(X)s is given by:

ω =
1

1 + x2 + y2
((xdx+ ydy) + i(−ydx+ xdy)) .

It follows from the structure equations that the curvature 2-form is:

Ω = dω =
2i

(1 + x2 + y2)2
dx ∧ dy.

242



The 1st Chern class is then:

c1(γ
1
1) =

[
i

2π
Ω

]
= −

[
dx ∧ dy

π(1 + x2 + y2)2

]
∈ H2(CP2).

Now (iv) follows by observing that, since U0 is an open dense set and
(U0, (x, y)) is a positive chart, we find:

∫

M
c1(γ

1
1) = −

∫

R2

1

π(1 + x2 + y2)2
dxdy

= −
∫ 2π

0

∫ +∞

0

r dr

π(1 + r2)2
dθ = −

∫ +∞

0

2r dr

(1 + r2)2
= −1.

�

One natural way of obtaining complex vector bundles is to start with a
complex manifold M . Such a manifold is specified by an atlas {(Uα, φα)},
where the charts are homeomorphisms

φα : Uα → Cd, x 7→ (z1α(x), . . . , z
d
α(x))

and the transition functions are holomorphic maps

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ),

defined on open subsets of Cd. Such charts are called holomorphic charts.
Notice that if we write zkα = xkα + iykα, then the charts (xkα, y

k
α) : Uα → R2d

yield a real smooth structure on M of dimension 2d.
For a complex manifold M the tangent bundle TM is a complex vec-

tor bundle over M (viewed as a real manifold). This can be seen either
by construction local C-trivializations, using the holomorphic charts, or by
observing that there is a well defined endomorphism J : TM → TM with
J2 = −Id, which in local holomorphic coordinates zkα = xkα+ iy

k
α is given by:

J
( ∂

∂xk

)
=

∂

∂yk
, J

( ∂

∂yk

)
= − ∂

∂xk
.

Similarly, the cotangent bundle and all the associated bundles are also com-
plex vector bundles over M . Hence, one can define the Chern classes of
these bundles. For example, you are asked to show in the homework that
for complex projective space the total Chern class is

c(TCPd) = (1 + a)d+1,

where a ∈ H2(CPd) is an appropriate generator.
Notice that since a holomorphic map preserves the canonical orientation

of Cd, every complex manifold has a canonical orientation. Hence, for a
compact complex manifold M of (complex) dimension d, one can define
Chern numbers by:

∫

M
ca11 ∧ ca22 ∧ · · · ∧ cadd ,
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where ci = ci(TM) and a1, . . . , ad are any non-negative integers such that:

2(a1 + 2a2 + · · ·+ dad) = 2d.

Another class of examples of complex vector bundles arises by complexi-
fication of a real vector bundle. If ξ = (π,E,M) is a real vector bundle of
rank r we can form its tensor product with the trivial real rank 2 vector
bundle M × C → M . The resulting bundle, denoted ξ ⊗ C, is a real vector
bundle of rank 2r admitting the endomorphism J : ξ ⊗C→ ξ ⊗C given by:

J(v ⊗ λ) := v ⊗ iλ.
Since J2 = −Id, this defines a complex structure in ξ ⊗ C. One calls the
resulting complex vector bundle ξ ⊗ C the complexification of ξ.

Proposition 32.11. Let ξ be a real vector bundle. Then the Pontrjagin
classes of ξ and the Chern classes of ξ ⊗ C are related by:

pk(ξ) = (−1)kc2k(ξ ⊗ C).

Proof. Immediate from the formulas defining them! �

Our discussion of the Pontrjagin classes suggest that the odd classes
c2k+1(ξ⊗C) vanish. To see this, given a complex vector bundle ξ = (π,E,M)
its complex conjugate is the complex vector bundle ξ̄ which, as a real vec-
tor bundle, coincides with ξ, but where the complex structure is the opposite:
Jξ̄ = −Jξ. Notice, e.g., that the identity map id: ξ → ξ̄ satisfies:

id(λv) = λ̄ id(v), ∀v ∈ E,λ ∈ C.

Proposition 32.12. Let ξ = (π,E,M) be a complex vector bundle. The
Chern classes of ξ and ξ̄ are related by ck(ξ̄) = (−1)kck(ξ) so that:

c(ξ̄) = 1− c1(ξ) + c2(ξ)− · · ·+ (−1)rcr(ξ).
Proof. Let ∇ be a C-connection in ξ. It defines also a C-connection in ξ̄
which we denote by ∇. If one fixes local trivializing sections {s1, . . . , sr} for
ξ, then we have:

∇Xsa =
∑

b

ωba(X)sb, ∇Xsa =
∑

b

ωba(X)sb.

Hence, the curvature 2-forms of these two connections relative to this basis
are related by:

Ω∇(X,Y ) = Ω∇(X,Y ),

and it follows that:

σk

(( i

2π
R∇

)k)
= σk

((
− i

2π
R∇
)k)

= (−1)kσk
(( i

2π
R∇
)k)

= (−1)kσk
(( i

2π
R∇
)k)

so that ck(ξ̄) = (−1)kck(ξ). �
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Remark 32.13. The complexification ξ ⊗ C and its conjugate complex
vector bundle ξ ⊗ C are isomorphic complex vector bundles. An explicit
isomorphism is given by the complex conjugation map:

ξ ⊗C→ ξ ⊗ C, v ⊗ λ 7→ v ⊗ λ.
Hence, by Proposition 32.12, we conclude that

ck(ξ ⊗ C) = 0, if k is odd.

This gives another explanation for why the Pontrjagin classes of a real vector
bundle are concentrated in degree 4k.

Different choices of invariant function lead to other interesting charac-
teristic classes. For example, the invariant function χ : gl(r,C) → C given
by:

χ(X) := tr
(
exp(X)

)
,

gives rise to the Chern character of the vector bundle:

ch(ξ) =

[
χ
( i

2π
R
)]
∈ H•(M).

The Chern character is a semi-ring homomorphism:

ch(ξ1 ⊕ ξ1) = ch(ξ1) + ch(ξ2), ch(ξ1 ⊗ ξ1) = ch(ξ1) ∪ ch(ξ2),

and for this reason it is important in K-theory. Other examples of char-
acteristic classes include the Todd class of a complex vector bundle, that
appears in the Hirzebruch-Riemann-Roch formula in algebraic geometry, or
the L-class of a real vector bundle that appears in Hirzebruch’s signature
formula in differential topology.

The presence of extra data on a vector bundle can also lead to special
characteristic classes. For example, the Euler class of an oriented vector
bundle ξ = (π,E,M) can be viewed as a characteristic class. For that,
fix a fiberwise metric g and a connection ∇ compatible with the metric g.
Then for any local positive orthonormal basis of sections {s1, . . . , sr} the
corresponding connection 1-form ω takes values in the Lie algebra so(r)
consisting of all skew-symmetric matrices. If we change to a new basis of
sections {s′1, . . . , s′r} the two bases are related by:

s′a =
r∑

b=1

Abasb, A = [Aba] : U → SO(r).

Hence, we now look for invariant functions in I(SO(r)) to produce charac-
teristic classes.

The restriction of the elementary invariant polynomials σk to so(r) give
obvious elements in I(SO(r)). When r is odd, one can show that these gen-
erate all invariant polynomials, but when r is even, this is not true anymore
and one needs to add an extra polynomial to obtain a set of generators.
This can already be seen for r = 2.
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Example 32.14.
The Lie algebra

so(2) =

{(
0 x
−x 0

)
: x ∈ R

}
⊂ gl(2,R)

is abelian, so the invariance condition is empty. The elementary polynomial
σ1(X) = trX restricts to zero, while σ2(X) = detX restricts to a perfect
square:

det(X) = x2.

We also have the degree 1 invariant polynomial Pf : so(2)→ R defined by:

Pf(X) = x,

which is not generated by {σ1, σ2}.

An analogous invariant polynomial Pf can be defined for any r ≥ 2 as
follows. Any skew-symmetric matrix X ∈ so(2m) is conjugate to a block
diagonal matrix:

X = ADAT , D =




S1
S2

. . .

. Sm




where Sk is a 2x2 matrix of the form:

Sk =

(
0 xk
−xk 0

)
.

It follows that the determinant is a perfect square:

det(X) =
(
det(A)

m∏

i=1

xk

)2
.

and one defines the Pfaffian of X to be the function given by:

Pf(X) := det(A)

m∏

i=1

xk.

That this is well-defined degree m polynomial follows from the following
explicit formula, whose proof is left as an exercise:

Pf(X) =
1

2mm!

∑

σ∈S2m

(−1)σ
m∏

k=1

Xσ(2k−1)σ(2k).

Also, when B ∈ SO(2m), so that B−1 = BT and detB = 1, we find that:

Pf(BXB−1) = det(BA)

m∏

i=1

xk = det(A)

m∏

i=1

xk = Pf(X).

Hence, Pf ∈ Im(SO(2m)). One can show that the invariant polynomial
{σ2k,Pf} generate I(SO(2m)).
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The characteristic class corresponding to the Pfaffian is the Euler class:

Theorem 32.15. Let ξ = (π,E,M) be an oriented vector bundle of rank
r = 2m. Then its Euler class e(ξ) is represented by the form:

Pf
(( 1

2π
R
)m)

∈ Ω2m(M),

where R the curvature tensor of any connection ∇ compatible with a fiberwise
metric.

We will not give a proof of this result. It can be thought of as a somewhat
more involved exercise.

Homework.

1. Show that every complex vector bundle ξ = (π,E,M) admits a C-connection
∇ compatible with a fiber hermitian metric h = 〈·, ·〉 (i.e., such that ∇h = 0).

2. Prove the properties of the Pontrjagin classes and the Chern classes stated
in Propositions 32.5 and 32.9.

3. Let ξ = (π,E,M) be a complex vector bundle. Show that its C-dual ξ∗ =
Hom(ξ,C) is a complex vector bundle and that their Chern classes are related
by:

ck(ξ
∗) = (−1)kck(ξ).

(Hint: Use a fiber hermitian metric.)

4. Let γ1d be the canonical complex line bundle over CPd. Show that:

c(γ1d) = 1− a,
where a ∈ H2(CPd) is an appropriate generator.

5. Denote by εd+1
CPd = CPd × Cd+1 → CPd the trivial complex vector bundle

equipped with the standard hermitian inner product h on the fibers. Let
(γ1d)

⊥ ⊂ εd+1
CPd denote the h-orthogonal bundle to the canonical complex line

bundle γ1d , so that:

εd+1
CPd = γ1d ⊕ (γ1d)

⊥.

(a) Show that there is an isomorphism of complex vector bundles:

TCPd ≃ HomC(γ
1
d , (γ

1
d)

⊥).

(b) Show that there are isomorphisms of complex vector bundles:

TCPd ⊕ ε1
CPd ≃ HomC(γ

1
d , ε

d+1
CPd ) = HomC(γ

1
d , ε

1
CPd ⊕ · · · ⊕ ε1CPd).

(c) Conclude that the total Chern class of the tangent bundle to CPd is:

c(TCPd) = (1 + a)d+1,

where a ∈ H2(CPd) is an appropriate generator.

6. Let ξ = (π,E,M) be an oriented vector bundle of rank r. Show that:

e(ξ)2 = p[r/2](ξ).
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7. Prove that if a compact, oriented, manifold M of dimension 4m can be
embedded in R4m+1 then all its Pontrjagin classes must vanish: p(TM) = 1.
(Hint: The normal bundle ν(M) is trivial.)

8. Two oriented manifolds M1 and M2 are said to be cobordant if dimM1 =
dimM2 and there exists an oriented manifold with boundary N such that, as
oriented manifolds,

∂N =M1 −M2,

where −M2 denotes M2 with the opposite orientation. Show that if M1 and
M2 are compact oriented cobordant manifolds of dimension 4m then they must
have the same Pontrjagin numbers.
(Hint: Show first that if M = ∂N , where N is compact, oriented, then the
Pontrjagin numbers of M must vanish. For this, choose a connection ∇ on N
with the property that ∇XY is tangent to ∂N whenever X and Y are tangent
to ∂N)

33. Fiber Bundles

Bundles with fiber which are not vector spaces also occur frequently in
Differential Geometry. We will study them briefly in these last two sectionrs.

Let π : E → M be a surjective submersion. A trivializing chart for
π with fiber type F is a pair (U, φ), where U ⊂ M is an open set and
φ : π−1(U) → U × F is a diffeomorphism such that the following diagram
commuttes:

π−1(U)
φ //

π
##❋

❋❋
❋❋

❋❋
❋❋

U × F

π1
||②②
②②
②②
②②
②

U

where π1 : U × F → U denotes the projection in the first factor. If Ep =
π−1(p) is the fiber over p ∈ U we obtain a diffeomorphism φp : Ep → F as
the composition of the maps:

φp : Ep
φ // {p} × F // F .

Hence, if v ∈ Ep, we have φ(v) = (p, φp(v)).
Given two trivializing charts (Uα, φα) and (Uβ, φβ) have the transition

map:

φα ◦ φ−1
β : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F, (p, f) 7→ (p, φpα ◦ (φpβ)−1(f)).

This defines the transition functions gαβ : Uα ∩ Uβ → Diff(F ), where
gαβ(p) ≡ φpα ◦ (φpβ)−1.

If one is given a covering of M by trivializing charts {(Uα, φα) : α ∈ A},
this leads to a cocycle {gαβ} with values in the group Diff(F ). We would
like this to determine the fiber bundle, and recover the bundle from the
cocycle. However, Diff(F ) is infinite dimensional, so this may pose some
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difficulties. For this reason, we will restrict our attention to fibre bundles
for which the transition functions take values in a finite dimensional Lie
group G ⊂ Diff(F ):

gαβ : Uα ∩ Uβ → G ⊂ Diff(F ).

Equivalently, we assume that the we have an effective action of a Lie group
G on F and that the transition functions take the form:

φpα ◦ (φpβ)−1(f) = gαβ(p) · f,
for a map gα,β : Uα ∩ Uβ → G. Our formal definition of a G-fiber bundle is
then the following:

Definition 33.1. Let G be a Lie group and G×F → F a smooth, effective,
action. A G-fiber bundle overM with fiber type F is a triple ξ = (π,E,M),
where π : E → M is a smooth map admitting a collection of trivializing
charts C = {(Uα, φα) : α ∈ A} with fiber type F , satisfying the following
properties:

(i) {Uα : α ∈ A} is an open cover of M :
⋃
α∈A Uα =M ;

(ii) The charts are compatible: for any α, β ∈ A there are smooth maps
gαβ : Uα ∩ Uβ → G such that the transition functions take the form:

(p, f) 7→ (p, gαβ(p) · f);
(iii) The collection C is maximal: if (U, φ) is a trivializing chart of fiber type

F with the property that for every α ∈ A, there exist gα : U ∩ Uα → G
such that

φp ◦ (φpα)−1(f) = gα(p) · f, ∀f ∈ F,
then (U, φ) ∈ C.

We shall use the same notation as in the case of vector bundles, so we
have the total space, the base space, and the projection of the G-bundle.
Also, one calls G the structure group of the fiber bundle. Given a G-fiber
bundle ξ a subcollection of charts of C which still covers M is called an
atlas of fiber bundle or a trivialization of ξ. We define a section over
an open set U in the obvious way and we denote the set of all sections over
U by ΓU (E). Although a fiber bundle always has local sections, it may fail
to have global sections.

Among the most important classes of G-bundles we have:

• Vector bundles: In this case the fiber F is a vector space and
the structure group is the group of linear invertible transformations
G = GL(V ). These are precisely the bundles that we have studied
in the previous sections.
• Principal G-bundles In this case the fiber F is itself a Lie group
G and the structure group is the same Lie group G acting on itself
by translations G×G→ G, (g, h) 7→ gh. We shall see that principal
bundles play a central role among all G-bundles.
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A morphism of G-fiber bundles can be defined in a fashion similar to the
definition of a morphism of vector bundles, where we replace GL(r) by the
structure group G.

Definition 33.2. Let ξ = (π,E,M) and ξ′ = (π′, E′,M ′) be two G-bundles
with the same fiber F and structure group G. A morphism of G-bundles
is a smooth map Ψ : E → E′ mapping fibers of ξ to fibers of ξ′, so Ψ covers
a smooth map ψ :M →M ′:

E
Ψ //

π
��

E′

π′

��
M

ψ // M ′

and such that for each p ∈M , the map on the fibers

Ψp ≡ Ψ|Ep : Ep → E′
q, (q = ψ(p))

satisfies

φ′qβ ◦Ψp ◦ (φpα)−1 ∈ G,
for any trivializations {φα} of ξ and {φ′β} of ξ′.

In this way, we have the category of fiber bundles with fiber type F
structure group G. Just like in the case of vector bundles, we shall also
distinguish between equivalence and isomorphism of G-bundles, according
to wether the base map is the identity map or not.

The set of transition functions associated with an atlas of a G-fiber bundle
completely determined the bundle. The discussion is entirely analogous
to the case of vector bundles. First, if ξ = (π,E,M) is a G-bundle the
transition functions gαβ : Uα ∩ Uβ → G, relative to some trivialization
{(Uα, φα)}, satisfy the cocycle condition:

gαβ(p)gβγ(p) = gαγ(p), (p ∈ Uα ∩ Uβ ∩ Uγ).
We say that two cocycles {gαβ} and {g′αβ} are equivalent if there exist
smooth maps λα : Uα → G such that:

g′αβ(p) = λα(p) · gαβ(p) · λ−1
β (p), (p ∈ Uα ∩ Uβ).

One checks easily the following analogue of Proposition 25.5:

Proposition 33.3. Let M be a manifold and G a Lie group acting on
another smooth manifold F . Given a cocycle {gαβ} with values in G, sub-
ordinated to a covering {Uα} of M , there exists a G-bundle ξ = (π,E,M)
with fiber type F which admits an atlas {φα}, for which the transition func-
tions give the cocycle {gαβ}. Two equivalent cocycles determine isomorphic
G-bundles.

Let ξ = (π,E,M) be a G-fiber bundle with fiber type F and let {gαβ}
be a cocycle associated with a trivialization {φα} of ξ. If H ⊂ G is a Lie
subgroup, we say that the structure group of ξ can be reduced to H
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if the cocycle is equivalent to a cocycle {g′αβ} where the transition functions
take values in H:

g′αβ : Uα ∩ Uβ → H ⊂ G.
We will see later how to describe this notion independently of choice of
trivializations. The next examples illustrate how the structure group (and
its possible reductions) are intimately related with geometric properties of
the bundle.

Examples 33.4.

1. A G-fiber bundle ξ = (π,E,M) with fiber type F and is called trivial if it
is isomorphic to the trivial bundle pr : M × F → M . This is the case if and
only if its structure group can be reduced to the trivial group {e}.

2. We saw before that a vector bundle of rank r is orientable if and only if its
structure group can be reduced to GL+(r). Similarly, a vector bundles admits
a fiber metric if and only if its structure group can be reduced to O(r) (and by
the polar decomposition, this can always be achieved). A further reduction of
its structure group to SO(r) amounts to an additional choice of an orientation
for the bundle (which may or may not be possible).

Remark 33.5. The specification of the structure group is crucial. For
example, a G-cocycle may take values in a subgroupH ⊂ G and be trivial as
a G-cocycle, but not as an H-cocycle. An example is given in the Homework
at the end of this section.

Notice that the cocycles associated with a G-fiber bundle, as well as the
notion of equivalence of cocycles, does not make any use of the G-action on
F . For this reason principal G-bundles play a fundamental role among all
G-bundles. In fact:

• Given a principal G-bundle ξ = (π, P,M), a trivialization {φα} of
ξ determines a cocycle {gαβ} with values in G. If G acts in F we
obtain a G-fiber bundle ξF = (π,E,M) with fibre type F .
• Conversely, given a G-fiber bundle ξF = (π,E,M) and fixing a trivi-
alization {φα} of ξF , the associated cocycle {gαβ} takes values in G.
Since G acts on itself by translations this cocycle defines a principal
G-bundle ξ = (π, P,M).

To make this more explicit, we observe that principal G-bundles can also
be described more succinctly:

Proposition 33.6. A fiber bundle ξ = (π, P,M) is a principal G-bundle if
and only if there exists a right action P × G → P satisfying the following
properties:

(i) The action is free and proper;
(ii) M is diffeomorphic to P/G and under this identification π : P →M ≃

P/G is the quotient map;
(iii) The local trivializations (U, φ) are G-equivariant: φp(v · g) = φp(v)g.
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Proof. Given a principal G-bundle ξ = (π, P,M) one constructs a right
action P ×G→ P working on trivializing charts (U, φ): the action of G on
π−1(U) is defined by

u · g := φ−1(p, φp(u)g), (p = π(u)).

One checks easily that this definition is independent of the choice of trivial-
ization. The rest of the statements are left as an exercise. �

Conversely, by an exercise in Section 16, if one is given a free and proper
right action P × G → P , one obtains a principal G-bundle ξ = (π, P,M)
by setting M = P/G and letting π : P → M be the quotient map. So
principal bundles amount simply to free and proper right actions – which
will be called principal actions.

If one is given a principal action P×G→ P and an action G×F → F one
can form the associated fiber bundle ξF = (πF , E,M) with total space

E := P ×G F,

the quotient space for the action of G on P × F defined by:

(u, f) · g ≡ (u · g, g−1 · f)

(recall that G acts on the right in P and on the left in F ). The projection
πF : E →M is given by: πF ([u, f ]) = π(u).

These descriptions of principal G-bundles and the associated bundles al-
lows one to give many examples of G-fiber bundles.

Examples 33.7.

1. For any Lie group G, we have the trivial principal G-bundle M ×G→M .
Sections of this bundle are just smooth maps M → G. Moreover, if G acts on
some space F , then the associated bundle is also the trivial bundleM×F →M .

2. For any Lie group G and any closed subgroup H ⊂ G the right action of
H on G is principal, so the quotient G → G/H is a principal H-bundle. For
example, if we let S3 be the group of unit quaternions and let S1 ⊂ S3 be the
subgroup of unit complex numbers, then we obtain a principal S1-bundle, which
is easily seen to be isomorphic to the Hopf fibration.

3. If π : M̃ → M is the universal covering space of a manifold M , the triple
(π, M̃ ,M) is a principal bundle with structure group the fundamental group
π1(M) (the topology in π1(M) is the discrete topology). More generally, if

H ⊂ π1(M) is a normal subgroup then the covering space P := M̃/H → M
with group of deck transformations G := π1(M)/H is also a principal G-bundle.

4. Let M be a smooth manifold of dimension d. The frame bundle is the
principal bundle π : F (M) → M with structure group GL(d) whose fiber over
p ∈M consists of the set of all ordered basis of TpM :

F (M)p = {(v1, . . . ,vd) : v1, . . . ,vd is a basis of TpM}.
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The group GL(d) acts on the right on F (M): if u = (v1, . . . ,vd) is a frame

and A = (aji ) is an invertible matrix, then u · A = (w1, . . . ,wd) is the frame:

wi =
d∑

j=1

ajivj , (i = 1, . . . , d).

This is a proper and free action, hence F (M) is a principal bundle with struc-
ture group GL(d).

The group GL(d) acts (on the left) in Rd by matrix multiplication. Hence,
F (M) has an associated fibre bundle with fiber Rd, i.e., a vector bundle. We
leave it as an exercise to check that this bundle is canonically isomorphic to the
tangent bundle T (M). Similarly, one obtains the cotangent bundle, exterior
bundles, tensor bundle, etc., if one considers instead the induced actions of
GL(d) in (Rd)∗, ∧kRd, ⊗kRd, etc.

More generally, for any (real) vector bundle π : E →M of rank r, one can
form the frame bundle F (E), a principal bundle with structure group GL(r).
For the usual action of GL(r) on Rr one obtains an associated bundle to F (E)
with fiber Rr, which is canonically isomorphic to the original vector bundle
π : E →M . Similarly, one can obtained as associated bundles E∗, ∧kE, ⊗kE,
etc.

An entirely similar discussion is valid for complex vector bundles and the
bundle of complex frames where GL(d) is replaced by GL(d,C).

If ξ = (π, P,M) is a principalG-bundle and G×F → F is a smooth action,
then one should expect that any functorial construction in the associated
bundle ξF = (π,E,M) should be expressed in terms of ξ and F . As an
example of this principle, for the sections of ξF we have

Proposition 33.8. Let ξ = (π, P,M) be a principal G-bundle and G×F →
F a smooth action. The sections of the associated bundle ξF = (π,E,M)
are in one to one correspondence with the G-equivariant maps h : P → F .

Proof. The total space of the associated bundle is

E = P ×G F = (P × F )/G.
An element v ∈ Ep is an equivalence class in Pp×G F , which can be written
as:

v = [(u, hp(u))], ∀u ∈ Pp,
for a unique map hp : Pp → F which is G-equivariant:

hp(u · g) = g−1 · hp(u).
Hence, a section s :M → E can be written in the form:

s(p) = [(u, h(u))], ∀u ∈ P com π(u) = p,

where h : P → F is a G-equivariant map. Conversely, a G-equivariant map
h : P → F determines through this formula a section of ξF . �
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Note that a G-fiber bundle ξF = (π,E,M) may not have any sections and
even if has a section it may not be trivial (e.g., vector bundles). However, it
is not hard to see that a principal G-bundle is trivial if and only if it admits
a section. Another important general fact, which we will not prove, is the
following:

Theorem 33.9. Let ξF = (π,E,M) be a G-fiber bundle with contractible
fiber F . Then ξF admits a section and any two sections of ξF are homotopic.

In order to understand the issue of reduction of the structure group with-
out referring to cocycles, it is convenient to enlarge the notion of morphism
of principal bundles as follows:

Definition 33.10. Let ξ′ = (π′, P ′,M ′) be a principal G′-bundle, ξ =
(π, P,M) a principal G-bundle and φ : G′ → G a Lie group homomorphism.
A φ-morphism Ψ : ξ′ → ξ is a map Ψ : P ′ → P such that

Ψ(u · g) = Ψ(u)φ(g),∀u ∈ P ′, g ∈ G′.

A φ-morphism of principal bundles Ψ : ξ′ → ξ takes fibers to fibers so it
covers a smooth map ψ :M ′ →M :

P ′ Ψ //

π′

��

P

π
��

M ′
ψ

// M

If Ψ : P ′ → P and φ : G′ → G are both embeddings, one can identify P ′ and
G′ with its images Ψ(P ′) ⊂ P and H := Φ(G′) ⊂ G. We then say that ξ′ is
a subbundle of the principal bundle ξ. When M ′ = M and ψ =id we say
that ξ′ is a reduced subbundle of ξ. You should check that this matches
the notion of reduction of the structure group from G to H that we have
introduced before in terms of cocycles.

Example 33.11.
If M carries a Riemannian structure, then we can consider the orthogonal

frame bundle whose fiber is:

OF (M)p = {(v1, . . . ,vd) : v1, . . . ,vd is an orthonormal basis of TpM}.
This is a principal O(d)-bundle, which is a reduced subbundle of F (M), ob-
tained by reduction of the structure group from GL(d) to O(d). In general, a
reduction of F (M) to a closed subgroup G ⊂ GL(d) is called a G-structure
on M . We leave the details as an exercise.

Homework.

1. Show that ξ = (π, P,M) is a principal G-bundle principal if and only if
there exists a right action P ×G→ P satisfying the following properties:
(i) The action is free and proper;
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(ii) The quotient P/G is a manifold, M ≃ P/G and π : P → P/G ≃ M is
the quotient map;

(iii) The local trivializations (U, φ) are G-equivariant: φp(g · v) = g · φp(v).

2. Give a proof of Proposition 33.3

3. Consider the covering of M = S1 by the open sets:

U± = {(x, y) ∈ R2 : x2 + y2 = 1} − {(±1, 0)}.
Define a cocycle {gαβ} relative to this covering by

g+−(x, y) =





I if (x, y) ∈ y > 0,

−I if (x, y) ∈ y < 0.

where I is the 2× 2 identity matrix Show that:
(a) This cocycle defines a G-bundle with fibre type S1 and structure group

S1 = S0(2) which is isomorphic (as an S1-bundle) to the trivial bundle.
(b) This cocycle defines a G-bundle with fibre type S1 and structure group

Z2 = {I,−I} which is not isomorphic (as a Z2-bundle) to the trivial
bundle.

4. Show that a principal bundle is trivial if and only if it has a global section.
(Note: This exercise is a very special case of the next exercise.)

5. Let ξ = (π, P,M) be a principal G-bundle and H ⊂ G a closed subgroup.
Note that G acts in the quotient G/H hence there is an associate bundle
ξG/H = (π′, P ×G (G/H),M). Show that this bundle can be identified with
the quotient (π′, P/H,M), where π′ : P/H → M is the map induced in the
quotient by π : P →M . Show that the following statements are equivalent:
(a) The structure group of ξ can be reduced to H .
(b) The associated bundle ξG/H has a section, i.e., there exists a map s :

M → P/H such that π′ ◦ s =id.
(c) There exists a G-equivariant map h : P → G/H .

6. LetM be a Riemannian manifold and let π : OF (M)→M be the principal
O(d)-bundle formed by the orthogonal frames:

OF (M)p = {(v1, . . . ,vr) : v1, . . . ,vr is an orthonormal base of TpM}.
Show that OF (M) is the reduced bundle from F (M), which corresponds to
the reduction of the structure group from GL(d) to O(d).

34. Principal Fiber Bundles

Let ψ : N →M be a smooth map and let ξ = (π, P,M) be a principal G-
bundle. Similar to the case of vector bundles, we have a pullback principal
bundle ψ∗ξ: it is the the principal G-bundle over N with total space:

ψ∗P ≡ {(q, u) ∈ N × P : ψ(q) = π(u)}.
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The G-action on the right of this space is given by (q, u) ·g ≡ (q, u ·g), which
is clearly a principal action.

We also have a morphism of principal bundles Ψ : ψ∗ξ → ξ, given by
Ψ(q, u) = u, which allows to complete the diagram:

ψ∗P

π̂
��✤
✤

✤

Ψ //❴❴❴❴❴❴ P

π
��

M
ψ // N

The pullback of principal bundles satisfies properties analogous to those
of the pullback of vector bundles, such as the universal property, homotopy
invariance, etc., which we leave as an exercise to state (and to prove!).

Let us look briefly at the classification of principal bundles. Let ξ =
(π, P,M) be a principal G-bundle and let E be a space with a right G-
action. If we make the right action into a left action, we can form the
associated fiber bundle

ξE = (π, P ×G E,M).

We make the following assumptions on the G-space:

(i) E is contractible: By Theorem 33.9 the bundle ξE admits sections
and any pair of sections s0, s1 of ξE are homotopic. By Proposition
33.8, a section s : M → P ×G E corresponds to a G-equivariant map
Φ : P → E. So we conclude that the there exists G-equivariant maps
and any two such maps are G-equivariantly homotopic.

(ii) Action is free and proper: We have a principalG-bundle η = (pr, E,E/G)
with projection the quotient map

pr : E → E/G.

Also, any G-equivariant map Φ : P → E is injective and covers a map
φ :M → E/G:

P
Φ //

π

��

E

pr

��
M

φ
// E/G

The map Φ : ξ → η is a morphism of principal G-bundles and yields
an isomorphism of principal G-bundles:

ξ ≃ φ∗η, u 7→ (π(u),Φ(u)).

Since the homotopy class of the map φ :M → E/G is unique and indepen-
dent of the choice of section, one is lead to:
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Theorem 34.1 (Classification of Principal Bundles). Let E be a contractible
space with a free and proper action of G. The isomorphism classes of prin-
cipal G-bundles over M are in one to one correspondence with the homotopy
classes of maps [M : E/G].

The space BG = E/G is usually called the classifying space of principal
G-bundles, while the principal G-bundle EG → BG, where EG = E, is called
the classifying bundle. The classifying space and bundle are far from being
unique, but one can show that the homotopy type of BG is unique. Also, if
G is non-trivial, it is never possible to choose EG (and hence BG) to be a
finite dimensional manifold. However, BG can be chosen to be a simplicial
manifold and this is enough to talk about differential forms, vector fields,
etc., on BG. We will not go into the differential geometry of BG in these
notes.

Examples 34.2.

1. The infinite sphere S∞ is the direct limit of the finite dimensional spheres

· · · ⊂ Sd ⊂ Sd+1 ⊂ Sd+2 ⊂ · · ·
It can be identified with the unit sphere in R∞ furnished with the inner product:

〈(xn), (yn)〉 =
∞∑

n=1

xnyn

(note that in this sum only a finite number terms is non-zero) so that:

S∞ = {(xn) ∈ R∞ :

∞∑

n=1

xn = 1.}

We leave as exercise to check that S∞ is a contractible space. On the other
hand, the antipodal action of the group Z2 on S∞ is free and proper, so we
conclude that:

EZ2
= S∞, BZ2

= RP∞.

2. Consider the space of r-frames in R∞:

Fr(R
∞) = {φ : Rr → R∞ : φ is linear injective map}.

This space is contractible and the right action of GL(r) on Fr(R∞) by pre-
composition is proper and free. The quotient is the infinite Grassmannian
Gr(R∞). We conclude that:

EGL(r) = Fr(R
∞), BGL(r) = Gr(R

∞).

Since vector bundles of rank r can be thought of as the associated bundles of
principal bundles with structure group GL(r) – see Example 33.7.4 – it follows
that the set [M : Gr(R∞)] is also in bijection with the isomorphism classes of
vector bundles of rank r over M .

We studied before connections on vector bundles. By our general prin-
ciple, there must exist a notion of connection on a principal GL(r)-bundle
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which induces a vector bundle connection on any associated bundle. Actu-
ally, one can define a general notion of connection for any principalG-bundle:

Definition 34.3. Let ξ = (π, P,M) be a principal G-bundle. A principal

bundle connection in ξ is a distribution H ⊂ TP such that:

(i) H is horizontal: for every u ∈ P ,

TuP = Hu ⊕ ker duπ;

(ii) H is G-invariant: for all g ∈ G and u ∈ P ,

Hug = (Rg)∗Hu,

where Rg : P → P is the translation by g: Rg(u) = u · g ≡ ug.

Let ξ = (π, P,M) be a principal G-bundle with a connection H. Given
u ∈ P , we call Vu ≡ ker duπ – the tangent space to the fiber containing u –
the vertical space and Hu the horizontal space. An arbitrary tangent
vector v ∈ TuP has a unique decomposition:

v = h(v) + v(v), where h(v) ∈ Hu, v(v) ∈ Vu.

Any vector field on the total space X ∈ X(P ) also splits into an horizontal
vector field h(X) and a vertical vector field v(X).

The next example shows how a vector bundle connection ∇ determines a
principal bundle connection H.

Example 34.4.
Let M be a smooth manifold and ξF = (π,E,M) a vector bundle over M
furnished with a connection ∇. Denote by ξ = (π, F (E),M) the bundle of
frames of ξF : it is a principal bundle with structure group GL(r), where
r = rank ξF . If u = (v1, . . . ,vr) ∈ F (E) is a frame and c : I → M is a
curve with c(0) = π(u), then the vector fields X1, . . . , Xr along c(t) obtained
by parallel transport of v1, . . . ,vr, determine a curve u(t) = (X1(t), . . . , Xr(t))
in F (E). We consider all the curves u(t) obtained in this way, and we define
the subspace:

Hu = {u′(0) ∈ TuF (E) : for all curves u(t)}.

It is not hard to see that the distribution u 7→ Hu is C∞ and satisfies conditions
(i) and (ii) of the definition of a principal bundle connection. Hence, every
connection ∇ in a vector bundle determines a principal bundle connection H
in the corresponding bundle of frames.

Let ξ = (π, P,M) be a principal G-bundle. The G-action on P induces
an infinitesimal Lie algebra action ψ : g→ X(P ). We denote by X∗ = ψ(X)
the vector field in P determined by the element X ∈ g. This vector field is
vertical, i.e., it is tangent to the fibers of P . Moreover, for each u ∈ P , the
map X 7→ X∗

u gives a linear isomorphism g ≃ Vu.
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Let us fix now a principal bundle connection H in P . Its associated
connection 1-form is the g-valued 1-form ω ∈ Ω1(P ; g) defined by:

ω(v) = X, if v ∈ TuP and X ∈ g is such that X∗
u = v(v).

Note that ω(v) = 0 iff v is a vertical vector, so ω determines the distribution.
Indeed, the connection 1-form completely characterizes the connection, as
stated in the following proposition, whose proof is left as an exercise:

Proposition 34.5. Let ξ = (π, P,M) be a principal G-bundle. Given a
principal bundle connection H on P its connection 1-form ω satisfies:

(i) ω(X∗) = X, for all X ∈ g;
(ii) (Rg)∗ω = Ad(g−1)ω, for all g ∈ G.
Conversely, if ω ∈ Ω1(P ; g) satisfies (i) and (ii), there exists a unique prin-
cipal bundle connection H in P whose connection 1-form is ω.

The description of principal bundle connections in terms of connections
1-forms also allows to give a simple proof of existence of connections on any
principal bundle using a partition of unity.

In order to define the curvature of a connection H on a principal G-
bundle ξ = (π, P,M), we introduce the exterior covariant derivative to be
the differential operator D : Ωk(P ; g)→ Ωk+1(P ; g) by setting:

(Dθ)(X0, . . . ,Xk) = (dθ)(h(X0), . . . , h(Xk)), (X0, . . . ,Xk ∈ X(P )).

The curvature 2-form of H is the g-valued 2-form Ω ∈ Ω2(P, g) given by:

Ω ≡ Dω.
Given a trivialization {(Uα, φα)} of the principal G-bundle ξ = (π, P,M),

we have local sections sα : Uα → P , p 7→ φ−1
α (p, e), where e ∈ G is the

identity element. The connection 1-form ω determines a family of local
connection 1-forms ωα ∈ Ω1(Uα; g) by:

ωα = (sα)
∗ω.

On the other hand, the curvature 2-form Ω determines a family of local
curvature 2-forms Ωα ∈ Ω2(Uα; g) by:

Ωα = (sα)
∗Ω.

We leave as an exercise to check how the local forms are related on overlaps.

Example 34.6.
We saw in Example 34.4 that a connection ∇ on a vector bundle π : E →M
determines a principal bundle connection H on the principal GL(r)-bundle of
frames π : F (E) → M . The associated connection 1-form and curvature 2-
form takes values in the Lie algebra gl(r).

A trivialization {(Uα, φα)} for the vector bundle π : E → M yields also
a trivialization for the bundle of frames π : F (E) → M . The matrices of
connection 1-forms ωα = [ωba] and curvature 2-forms Ωα = [Ωba] associated
with ∇ defined in Section 22, are the same as the local connection 1-form and
curvature 2-form of the principal connection H.
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Just like in the case of connections on vector bundles, we have:

Theorem 34.7. Let H be a connection in a principal G-bundle ξ = (π, P,M),
with connection 1-form ω and curvature 2-form Ω. Then the following hold:

(i) Structure equation: Ω = dω + 1
2 [ω, ω].

(ii) Bianchi’s identity: DΩ = 0.

Note that in item (i) of the statement, we have used the bracket of g-
valued 1 forms η1, η2 ∈ Ω1(P, g): it is the g-valued 2-form given by

[η1, η2](X,Y ) := [η1(X), η2(Y )]− [η1(Y ), η2(X)] (X,Y ∈ TP ).
The notion of parallel transport can also be introduced for a connection

H in a principal G-bundle ξ = (π, P,M). First, if X ∈ X(M) is a vector

field on the base M , there exists a unique vector field X̃ in the total space
P such that:

(a) X̃ is horizontal: X̃u ∈ Hu for all u ∈ P ;
(b) X̃ is π-related to X.

One calls X̃ ∈ X(P ) the horizontal lift of X ∈ X(M). The next results
states the most important properties of the horizontal lift, and follows im-
mediately from the definitions:

Proposition 34.8. Let X,Y ∈ X(M) and f ∈ C∞(M). Then:

(i) X̃ + Ỹ is the horizontal lift of X + Y ;

(ii) (π∗f)X̃ is the horizontal lift of fX;

(iii) h([X̃, Ỹ ]) is the horizontal lift of [X,Y ].

Notice that, by property (iii), the vector field

[X̃, Ỹ ]− [̃X,Y ],

is vertical. This leads to a geometric interpretation of curvature, whose
proof we leave as an exercise:

Theorem 34.9. Let H be a connection in a principal G-bundle ξ = (π, P,M),
with curvature 2-form Ω ∈ Ω2(P ; g). For any local section s : U → P and
vector fields X,Y ∈ X(U) we have:

(s∗Ω)(X,Y )∗p =
(
[X̃, Ỹ ]− [̃X,Y ]

)
s(p)

.

A flat connection is a connection whose curvature vanishes identically:

Ω ≡ 0. Since the horizontal lifts X̃ of vector fields X ∈ X(M) generate the
horizontal distribution of the connection, we obtain:

Corollary 34.10. A connection is flat if and only if the horizontal distri-
bution is integrable.

In order to define parallel transport we need to define the horizontal lift
of curves c : I → M : a curve u : I → P is called a horizontal lift of the
curve c(t) if π(u(t)) = c(t) and u(t) is an horizontal curve (i.e., is tangent
to the horizontal distribution).
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Proposition 34.11. Let H be a connection in a principal G-bundle ξ =
(π, P,M). If c : I →M is a curve and u0 ∈ π−1(c(0)) there exists a unique
horizontal lift u : I → P of c(t) with u(0) = u0.

Proof. Local triviality of the bundle, shows that we can always lift c(t) to a
curve v : I → P , such that v(0) = u0 and π(v(t)) = c(t). The horizontal lift
u : I → P through u0, if it exists, takes the form:

u(t) = v(t)g(t),

for some curve g : I → G with g(0) = e. If ω denotes the connection 1-form
of H, differentiating this expression we obtain:

ω(u̇(t)) = Ad(g(t)−1)ω(v̇(t) + g(t)−1ġ(t),

where t 7→ g(t)−1ġ(t) ≡ dg(t)Lg(t)−1 ġ(t) is a curve in the Lie algebra g. The
curve u(t) will be horizontal iff g(t) satisfies the equation:

g(t)−1ġ(t) = −Ad(g(t)−1)ω(v̇(t).

Hence, the proposition follows from the following lemma, whose proof is left
as an exercise:

Lemma 34.12. Let G be a Lie group with Lie algebra g. If t 7→ X(t) is
a curve in g, then there exists a unique curve g : I → G, with g(0) = e,
satisfying:

g(t)−1ġ(t) = X(t), (t ∈ [0, 1]).

�

Therefore, given a curve c : I → M , we can proceed to define parallel
transport along c to be the map τt : Pc(0) → Pc(t) given by

τt(u0) := u(t),

where u(t) is the unique horizontal lift u : I → P of c(t) such that u(0) = u0.
Note that we can also define parallel transport along curves which are only
piecewise smooth, by making parallel transport successively along its smooth
components.

Parallel transport is an isomorphism between fibers, since we have:

Proposition 34.13. Parallel transport along a piecewise smooth curve c :
I →M commutes with the G-action:

τt ◦Rg = Rg ◦ τt, ∀g ∈ G.
Moreover:

(i) τ1 is an isomorphism whose inverse is parallel transport along the curve
c̄(t) ≡ c(1− t).

(ii) If c1 and c2 are piecewise smooth curves and c1(1) = c2(0), then parallel
transport along the concatenation c1 · c2 coincides with the composition
the parallel transports.
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Proof. The first statement follows by observing that Rg takes horizontal
curves to horizontal curves. The rest is obvious. �

The holonomy group Φ(p0) of a connection H on a principal G-bundle
ξ = (π, P,M) with base point p0 ∈M consists of the set of all isomorphisms
τ1 : Pp0 → Pp0 obtain by performing parallel transport along piecewise
smooth curves c : I →M with c(0) = c(1) = p0.

Now choose u0 ∈ π−1(p0). For each τ ∈ Φ(p0) there is an element g ∈ G
such that τ(u) = u0g. This establishes an injective group homomorphism
between Φ(p0) and a subgroup Φ(u0) ⊂ G. Given two points u0, u

′
0 ∈

π−1(p0) there exists an element g0 ∈ G such that u′0 = u0g0, and we have:

Φ(u′0) = g0Φ(u0)g
−1
0 .

Hence, the subgroups Φ(u), for u ∈ π−1(p0), are all conjugate. Moreover,
one can show that the following fundamental result holds:

Theorem 34.14 (Ambrose-Singer). Let H be a connection in a principal
G-bundle ξ = (π, P,M) with curvature 2-form Ω. Given u ∈ P denote by
P (u) ⊂ P the set of all u′ ∈ P which can be connected to u through an
horizontal curve. Then Φ(u) is a Lie subgroup of G with Lie algebra:

{Ωu′(v,w) : u′ ∈ P (u),v,w ∈ Hu′} ⊂ g.

Let ξ = (π, P,M) be a principal G-bundle and let ρ : G → GL(r) be a
representation of G. The associated bundle ξRr = (π,E,M) is then a vector
bundle, and parallel transport in ξ induces a parallel transport operation in
ξRr as we explain next.

If c : I →M is a piecewise smooth curve, the horizontal lift of c(t) in the
associated bundle ξRr is, by definition, a curve v(t) ∈ E of the form:

v(t) = [(u(t),v)] ∈ P ×G Rr ≡ E,
where u(t) is an horizontal lift of c(t) in P . It is easy to see that, for
any v0 ∈ Ec(0), there exists a unique horizontal lift v(t) of c(t) such that
v(0) = v0. As before, we can now define the parallel transport along c(t),
in the associated bundle: τt : Ec(0) → Ec(1).

Now let s be a section of the associated bundle ξRr . Given v ∈ TpM let
c : I → M be a curve such that c(0) = p and ċ(0) = v. The covariant
derivative ∇vs of s in the direction v is defined to be:

∇vs ≡ lim
t→0

1

t

[
τ−1
t (s(c(t)) − s(p)

]
∈ Ep.

It is easy to check that this definition is independent of the choice of curve c.
Moreover, if X ∈ X(M) is a vector field, we define the covariant derivative
of a section s along X, to be the section defined by:

(∇Xs)(p) ≡ ∇Xps.

We have:
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Proposition 34.15. The covariant derivative ∇ : X(M) × Γ(E) → Γ(E)
associated with a connection H in ξ is a vector bundle connection on ξRr .
Moreover, every vector bundle connection ∇ on ξRr arises in this way from
a unique principal bundle connection H on ξ.

This bijective correspondence between connections on a principal bundle
and vector bundle connections on the associated vector bundle, suggests
that the theory of characteristics classes for vector bundles, that we studied
before, can be generalized to principal bundles. Indeed, if H is a connec-
tion in the principal G-bundle ξ = (π, P,M), one defines the Chern-Weil
homomorphism similarly to the way it was defined for vector bundles:

CW[ξ] : Ik(G)→ H2k(M), P 7→ [P (Ωk)],

This homomorphism is independent of the choice of connection.
One can use the Chern-Weil homomorphism to construct characteristics

classes. For example, if ξ is a principal bundle with structure group GL(r,R)
the Pontrjagin classes of ξ are obtained by considering the elementary
symmetric polynomials:

pk(ξ) ≡
[
σ2k

( 1

2π
Ω
)2k]

∈ H4k(M).

Similarly, if ξ is a principal bundle with structure group GL(r,C) the Chern
classes of ξ are given by:

ck(ξ) ≡
[
σk

( i

2π
Ω
)k]
∈ H2k(M).

An alternative approach is to use the classifying space BG. Using the fact
that EG → BG is a simplicial principal G-bundle, one can introduce con-
nections on this principal bundle.The curvature 2-form of such a connection
allows one to define a universal Chern-Weil homorphism:

CWG : I(G)→ H(BG).

The reason for calling this universal is that for any principal G-bundle ξ =
(π, P,M) the Chern-Weil homomorphism factors through its classifying map
ψ :M → BG, so one obtains a commutative diagram:

H•(BG)

ψ∗

��
I•(G)

CWG

66♠♠♠♠♠♠♠♠♠♠♠♠♠

CW[ξ]
// H•(M)

One can show that for any compact Lie group G the universal Chern-Weil
homorphism is actually an isomorphism. Hence, one can think of elements in
H•(BG) as universal characteristic classes and any characteristic class
is a pullback of such a universal characteristic class. One can also consider
elements in the integral cohomology H•(BG,Z) as universal characteristic
classes giving rise to integral characteristic classes, so one has integral Chern
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classes, integral Pontrjagin classes, etc. Of course, these are related to the
real cohomology classes defined using connections and curvature via the
natural homomorphism H•(M,Z)→ H•(M).

Homework.

1. Show that a principal G-bundle is trivial if and only if it admits a section.
Moreover, given any principal G-bundle ξ = (π, P,M):
(a) Prove that there is an open cover {Uα : α ∈ A} ofM over which ξ admits

local sections sα : Uα → P ;
(b) Given an open cover as in (a), show that any two sections sα and sβ with

overlapping domains are related by:

sβ(p) = sα(p)gαβ(p) (p ∈ Uα ∩ Uβ),
for unique functions gαβ : Uα ∩ Uβ → G forming a cocycle.

2. Let ξ = (π, P,M) be a principal G-bundle with connection H , and denote
by ω its connection 1-form and by Ω its curvature 2-form. Let {Uα : α ∈ A}
be an open cover of M over which ξ admits local sections sα : Uα → P and
denote by gαβ : Uα∩Uβ → G the associated cocycle (see the previous exercise).
Show that the local connection 1-forms ωα = s∗αω and local curvature 2-forms
Ωα = s∗αΩ satisfy:

ωβ = Ad(gαβ)
−1ωα + g∗αβωMC , Ωβ = Ad(gαβ)

−1Ωα,

where ωMC ∈ Ω1(G, g) is the Maurer-Cartan form of G, defined by:

ωMC(v) = dgLg−1(v) (v ∈ TgG).

3. Show that a principal G-bundle always admits a connection.

4. If H is a connection in a principal G-bundle ξ = (π, P,M), with curvature
2-form Ω ∈ Ω2(P ; g). For any local section s : U → P , show that:

(s∗Ω)(X,Y )∗ = [X̃, Ỹ ]− [̃X,Y ].

5. Let G be a Lie group with Lie algebra g. If t 7→ X(t) is a curve in g, show
that there exists a unique curve g : I → G, with g(0) = e, satisfying:

g(t)−1ġ(t) = X(t), (t ∈ [0, 1]).

6. Give a proof of the bijective correspondence between vector bundle connec-
tions and principal bundle with connections stated in Proposition 34.15.

7. Give the details of the construction of the Chern-Weil homomorphism for
the case of principal bundles.

8. Let G be a (non-trivial) compact Lie group. Show that there exists no finite
dimensional manifold which is contractible and admits a free G-action.

9. Prove that S∞ and Fr(R∞) are both contractible spaces.

10. Let G = S1. Show that EG = S∞ and BG = CP∞.
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