Análise Complexa e Equações Diferenciais 1º Semestre 2020/2021

Ficha de Problemas nº 8a

Existência, unicidade, prolongamento e comparação de soluções

1 Exercícios Resolvidos

1. Para cada uma das seguintes equações diferenciais, esboce o campo de direcções e trace os respectivos tipos de soluções .

(a)
$$y' = \frac{ty}{1+t^2}$$
, (b) $y' = (2-y)(y-1)$,

(c)
$$y' = y(1 - y^2)$$
, (d) $y' = \frac{y+t}{y-t}$,

O que é um campo de direções?

Um campo de direções da equação diferencial

$$y' = f(t, y)$$

é um gráfico constituido por segmentos de recta orientados com origem em cada ponto, $(t,y)\in\mathbb{R}^2$, onde f está definida. Cada um desses segmentos de recta deve ser tangente ao gráfico da solução da equação diferencial no ponto (t,y); ele é, na verdade, uma representação miniaturizada da recta tangente ao gráfico da solução da equação diferencial que passa no ponto (t,y).

Pode-se traçar um campo de direções de qualquer equação diferencial da forma y'=f(x,y), mas o mesmo só tem utilidade quando f satisfaz as condições do teorema de Picard. Em particular, a unicidade de solução dos problemas de valor inicial é muito importante porque impede que os gráficos de duas soluções com condições iniciais distintas se intersectem; e isto possibilita o posicionamento relativo desses gráficos.

Como traçar um campo de direções?

Para traçar um campo de direções constroi-se um recticulado, por exemplo,

$$\big\{(n,m)\,:\,n,m\in\mathbb{Z}\big\}$$

e calcula-se em todos os seus pontos o valor de f(n,m). Os valores obtidos são o declive da recta tangente ao gráfico de y(x) no ponto (n,m). Desenha-se então um pequeno segmento com origem em (n,m) e com declive f(n,m).

Uma vez traçado o campo de direções traçado podemos usá-lo para esboçar as soluções da equação diferencial. Se estivermos nas condições do teorema de Picard, a unicidade de solução de qualuqer problema de valor inicial garante que duas soluções com origem em pontos iniciais distintos nunca se intersectam. Dado que este traçado envolve erros, é a unicidade de solução que torna possível o esboço de soluções qualitativamente semelhantes às soluções exactas.

Exemplo

Vamos traçar o campo de direções e esboçar algumas soluções da equação diferencial

$$y' = y - x$$

Vamos calcular y' usando alguns valores de $(x,y)\in\{(n,m)\in\mathbb{Z}^2\,,\,-2\le n,m\le 2\}.$ Assim para x=-2

у	-2	-1	0	1	2
y'	0	1	2	3	4

Para x = -1

у	-2	-1	0	1	2
y'	-1	0	1	2	3

Para x = 0

у	-2	-1	0	1	2
y'	-2	-1	0	1	2

Para x = 1

У	-2	-1	0	1	2
y'	-3	-2	-1	0	1

e para x=2

у	-2	-1	0	1	2
y'	-4	-3	-2	-1	0

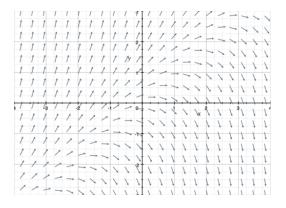


Figura 1: Campo de direções de y' = y - x

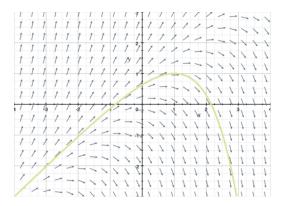


Figura 2: Campo de direções de y'=y-x e a solução que passa em (1,1)

Resolva os problemas cuja solução se apresenta de seguida.

Solução:

(a)
$$y' = \frac{t y}{1 + t^2}$$

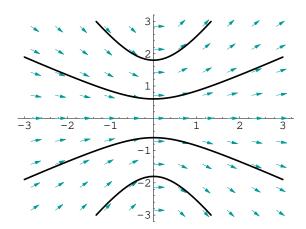


Figura 3: Campo de direções e algumas soluções de $y'=\frac{t\,y}{1+t^2}$

(b)
$$y' = (2 - y)(y - 1)$$

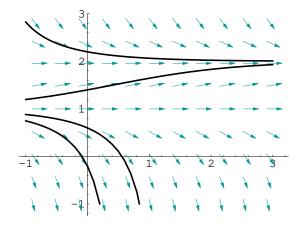


Figura 4: Campo de direções e algumas soluções de $y'=(2-y)\left(y-1\right)$

(c)
$$y' = y(1 - y^2)$$

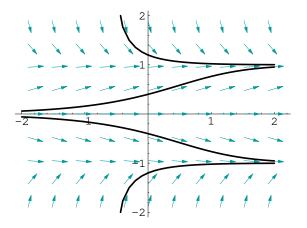


Figura 5: Campo de direções e algumas soluções de $y'=y\left(1-y^2\right)$

(d)
$$y' = \frac{y+t}{y-t}$$

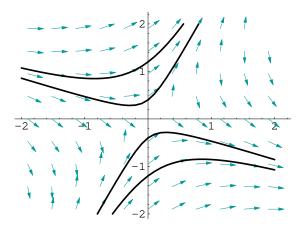


Figura 6: Campo de direções e algumas soluções de $y'=\dfrac{y+t}{y-t}$

2. Mostre que o problema de valor inicial

$$\begin{cases} \frac{dy}{dt} = 2t y^{2/3} \\ y(0) = 0 \end{cases}$$

tem infinitas soluções, e explique porque esse facto não contradiz o Teorema de Picard. **Resolução**

Começamos por notar que a solução constante $y(t)\equiv 0$ é solução do PVI. Por outro lado, se $y(t)\neq 0$ a equação pode ser escrita na forma

$$y^{-2/3}\frac{dy}{dt} = 2t \Leftrightarrow \int y^{-2/3}dy = \int 2t \, dt + c \Leftrightarrow 3y^{1/3} = t^2 + c \Leftrightarrow y(t) = \left(\frac{t^2 + c}{3}\right)^3$$

Visto termos obtido uma função polinomial, verifica-se que estas soluções são de classe C^1 em $\mathbb R$ e também verificam a equação diferencial quando $c \leq 0$ e $y(t) = 0 \Leftrightarrow t = \pm \sqrt{-c}$ (basta substituir a solução geral obtida na equação diferencial). A solução que verifica a condição inicial y(0) = 0 é

$$y(t) = \frac{t^6}{27},$$

pelo que acabámos de obter uma segunda solução do PVI.

Podemos agora utilizar o método de "cortar" e "colar" a solução geral

$$y(t) = \frac{(t^2 + c)^3}{27} \qquad \text{e} \qquad y(t) \equiv 0$$

e, dessa forma, obter novas soluções do PVI. Para isso é certamente necessário tomar c tal que a função obtida é contínua no ponto de "colagem" (que designamos por t_1):

$$\lim_{t \to t_1} \left(\frac{t^2 + c}{3} \right)^3 = 0 \qquad \Leftrightarrow \qquad c = -t_1^2$$

Assim, para $t_1 > 0$, define-se

$$y_{t_1}(t) = \begin{cases} 0 & \text{se } t \le t_1 \\ \frac{(t^2 - t_1^2)^3}{27} & \text{se } t > t_1 \end{cases}$$

Calculando também as derivadas laterais de y_{t_1} no ponto de "colagem" (exercício) verifica-se que

$$f'_d(t_1) = 0 = f'_e(t_1)$$

Desta forma, y_{t_1} é diferenciável em \mathbb{R} e verifica a equação diferencial para qualquer $t \in \mathbb{R}$; note que foi construida à custa de soluções da equação diferencial, portanto só faltava verificar que a satisfazia também no ponto de "colagem". Além disso, $y_{t_1}(0) = 0$.

De igual modo, para cada $t_2 < 0$

$$y_{t_2}(t) = \begin{cases} \frac{(t^3 - t_2^2)^3}{27} & \text{se } t < s_0 \\ 0 & \text{se } t \ge s_0 \end{cases}$$

é também solução do PVI.

Finalmente, o facto de existir uma infinidade de soluções deve-se a que a função $f(t,y)=2ty^{2/3}$ é contínua em $y\geq 0$, mas não é de classe C^1 em qualquer conjunto que contenha pontos da forma (t,0). De facto:

$$\frac{\partial f}{\partial y} = \frac{4t}{3} y^{-1/3} = \frac{4t}{3\sqrt[3]{y}} \ \longrightarrow \ \infty \qquad \text{quando} \qquad y \to 0^+.$$

3. Para p um número real 1 considere

$$f(t,y) = p|y|^{\frac{p-1}{p}}$$
 , $(t,y) \in \mathbb{R}^2$

Considere-se o (PVI)

$$y' = f(t, y) \quad , \quad y(0) = 0$$

Mostre que o (PVI) admite uma infinidade de soluções. Explique porque é que isto não contradiz o teorema de Picard.

Resolução

Uma das soluçõess do (PVI) é a solução constante $y_c(t)\equiv 0$. Por outro lado, se y(t)>0 a equação pode ser escrita na forma

$$\frac{1}{p}y^{-\frac{p-1}{p}}\frac{dy}{dt} = p \iff \frac{d}{dt}\left(\int \frac{1}{p}y^{-1+\frac{1}{p}}dy\right) = 1 \iff y^{1/p} = t + c \iff y(t) = (t+c)^p$$

Esta solução é continuamente diferenciável e verifica a equação para qualquer $t \in \mathbb{R}$. A condição inicial y(0) = 0 é satisfeita se tomarmos c = 0; assim sendo, outra solução do PVI é

$$y(t) = t^p$$

Podemos ainda definir outras duas funções "cortando e colando" estas duas soluções:

$$y^{+}(t) = \begin{cases} 0 & \text{se } t \le 0 \\ t^{p} & \text{se } t > 0 \end{cases}$$
, $y^{-}(t) = \begin{cases} t^{p} & \text{se } t \le 0 \\ 0 & \text{se } t > 0 \end{cases}$

Verifica-se que

- $y^+(t)$ e $y^-(t)$ são diferenciáveis em $\mathbb R$ (note-se que, como p>1 em ambos os caso a derivada em 0 existe e é 0)
- $y^+(t)$ e $y^-(t)$ são soluções da equação diferencial.
- $y^+(0) = y^-(0) = 0$

Conclui-se que ambas são soluções do PVI.

Finalmente, utilizando a solução geral da equação

$$y(t) = (t - k)^p$$

(onde fizémos k=-c) e a solução nula, podemos construir uma infinidade de soluções:

$$y_k^+(t) = \begin{cases} 0 & \text{se } t \le k \\ (t-k)^p & \text{se } t > k \end{cases}$$
 tomando $k > 0$.

$$y_k^-(t) = \left\{ \begin{array}{ll} (t-k)^p & \text{se} & t \leq k \\ 0 & \text{se} & t > k \end{array} \right. \qquad \text{tomando} \ k < 0$$

Para verificar que não há contradição entre estas conclusões e o Teorema de Picard, note-se que f é contínua em \mathbb{R}^2 e

$$\lim_{y \to 0} \frac{\partial f}{\partial y} = \lim_{y \to 0} \frac{p-1}{p} y^{-\frac{1}{p}} = \infty$$

pelo que f não é de classe C^1 em qualquer conjunto que contenha pontos da recta y=0.

Concluimos então que a continuidade de f implica existência de solução do PVI, mas o facto de f não ser de classe C^1 numa vizinhança de (0,0) abre a possibilidade de que a unicidade de solução do PVI possa falhar.

4. Seja $z(t) \ge 0$ é uma função real contínua tal que

$$z(t) \le C + k \int_0^t z(s)ds,\tag{1}$$

para $t \geq 0$, onde C é k são constantes reais positivas. Prove a seguinte desigualdade:

$$z(t) \le Ce^{kt}, \quad \forall t \ge 0.$$

Esta proposição é uma versão simples da conhecida desigualdade de Gronwall, sendo muito usada na teoria qualitativa das equações diferenciais.

Resolução

Considere-se a função v definida em $[0, +\infty[$ pelo segundo membro de (1):

$$v(t) \stackrel{\mathsf{def}}{=} C + k \int_0^t z(s) \, ds$$

Note que, por hipótese, $z(t) \leq v(t)$. Pelo teorema fundamental do cálculo, v é de classe C^1 e a sua derivada é dada por:

$$v'(t) = kv(t) \qquad \forall t \ge 0.$$

Esta equação é equivalente a:

$$v'(t) - kv(t) = 0 \quad \Leftrightarrow \quad e^{-kt}v'(t) - ke^{-kt}v(t) = 0 \quad \Leftrightarrow \quad \frac{d}{dt}\Big(e^{-kt}v(t)\Big) = 0.$$

Isto significa que a função $e^{kt}v(t)$ é constante; em particular, para qualquer $t \ge 0$,

$$e^{-kt}v(t) = v(0).$$

Conclui-se então que:

$$u(t) \le v(t) = v(0)e^{kt} = Ce^{kt}.$$

5. Dados dois números reais, b_0 e b_1 , arbitrários, considere os problemas de valor inicial

$$y' = f(t, y), \qquad y(0) = b_0$$

e

$$y' = f(t, y), \qquad y(0) = b_1$$

e as respectivas soluções:

$$y_0(t) = y(t, 0, b_0)$$
 e $y_1(t) = y(t, 0, b_1)$.

Suponha também que f é de classe C^1 em \mathbb{R}^2 e $\frac{\partial f}{\partial y}$ é limitada em \mathbb{R}^2 .

Determine uma função $\varphi(t)$ tal que

$$|y_1(t) - y_0(t)| \le |b_1 - b_0|\varphi(t)$$
 (2)

para todo o $t \geq 0$. Esta proposição mostra a dependência contínua das soluções do PVI da condição inicial.

Sugestão: Utilize a desigualdade de Gronwall (veja o problema anterior).

Resolução:

Dado que $y_0(t)$ é solução do primeiro PVI então

$$y_0(t) = b_0 + \int_0^t f(s, y_0(s)) ds$$

e analogamente, sendo $y_1(t)$ solução do segundo PVI,

$$y_1(t) = b_1 + \int_0^t f(s, y_1(s)) ds$$

$$|y_1(t) - y_0(t)| = |b_1 + \int_0^t f(s, y_1(s)) ds - b_0 - \int_0^t f(s, x_0(s)) ds|$$

$$\leq |b_1 - b_0| + \int_0^t |f(s, y_1(s)) - f(s, y_0(s))| ds$$

Visto $\left|\frac{\partial f}{\partial y}\right| \leq K$ em \mathbb{R}^2 , para certo K>0, então pelo teorema de Lagrange existe c=c(s) (no intervalo de extremos $y_1(s)$ e $y_0(s)$) tal que:

$$\left| f(s, y_1(s)) - f(s, y_0(s)) \right| = \left| \frac{\partial f}{\partial y}(t, c) \right| \left| y_1(s) - y_0(s) \right| \le K \left| y_1(s) - y_0(s) \right| \tag{3}$$

A designaldade (3) designa-se por **condição de Lipshitz** relativa a y; K diz-se a **constante de Lipshitz** de f. Desta forma,

$$|y_1(t) - y_0(t)| \le |b_1 - b_0| + K \int_0^t |y_1(s) - y_0(s)| ds$$

onde K é a constante de Lipschitz de f. Aplicando a designaldade de Gronwall com $C=|x_1-x_0|>0$ e $z(t)=|x_1(t)-x_0(t)|\geq 0$:

$$|y_1(t) - y_0(t)| \le |b_1 - b_0|e^{Kt}$$
.

Podemos assim tomar $\varphi(t) \stackrel{\text{def}}{=} e^{Kt}$ em (2).

6. Mostre que o problema de valor inicial (abrev. PVI)

$$x' = e^{\cos x} \quad , \quad x(0) = 0$$

tem uma solução única em \mathbb{R} .

Resolução:

Considere-se $f(t,x) = e^{\cos x}$. Observa-se o seguinte

- ullet f(t,x) está definida e é contínua em \mathbb{R}^2
- A condição inicial $(t_0, x_0) = (0, 0) \in \mathbb{R}^2$

Tem-se então que as condições do teorema de Picard são verificadas em \mathbb{R}^2 e, como tal, o PVI admite uma única solução definida, $x_s(t)$, definida para t numa vizinhança de 0. Para demonstrar que a solução está definida em \mathbb{R} vamos usar o teorema da extensão de soluções: esse teorema diz-nos que se o PVI satisfaz as condições do teorema de Picard então a solução única, x(t), pode ser prolongada a um intervalo maximal,]a,b[. Esse intervalo será \mathbb{R} a não ser que a solução x(t) exploda quando $t \to b^-$ (ou quando $t \to a^+$).

Para mostrar que tal não pode acontecer vejamos em primeiro lugar que, para todo o $(t,x) \in \mathbb{R}^2$,

$$|\cos x| \le 1$$
 \Rightarrow $|f(t,x)| \le e$.

Considere-se o PVI auxiliar

$$u' = c$$
 , $u(0) = 0$,

(com $c=\pm e$) cuja solução é x(t)=ct (definida em $\mathbb R$). Pelo teorema da comparação de soluções, e tendo em conta que $-e\leq f(t,x)\leq e$,

$$-et \le x(t) \le et \quad \forall t \ge 0 \qquad \mathbf{e} \qquad et \le x(t) \le -et \quad \forall t \le 0$$

Mas isto mostra que

$$|x(t)| \le e|t| \quad \forall t \in]a, b[.$$

Por isso, x(t) não pode explodir, pelo que está definida em \mathbb{R} .

7. Considere o PVI

$$x' = \frac{e^x}{1 + e^x}$$
 , $x(0) = 0$.

Mostre que existe uma solução única definida em \mathbb{R} .

Resolução:

Considere-se $f(t,x)=\frac{e^x}{1+e^x}.$ Observa-se o seguinte

- ullet f(t,x) está definida e é contínua em \mathbb{R}^2
- $\frac{\partial f}{\partial x} = \frac{e^x}{(e^x+1)^2}$ está definida e é é contínua em \mathbb{R}^2
- A condição inicial $(t_0, x_0) = (0, 0) \in \mathbb{R}^2$

Tem-se então que as condições do teorema de Picard são verificadas em \mathbb{R}^2 e, como tal, o PVI admite uma única solução definida, x(t), definida para t numa vizinhança de 0. Atendendo a que

$$|f(t,x)| \le 1, \quad \forall (t,x) \in \mathbb{R}^2$$

e procedendo como no problema anterior, o teorema da comparação de soluções mostra-nos que

$$|x(t)| \le |t|$$

no intervalo onde x(t) está definida. Isto mostra que a solução não explode, pelo que e está definida em \mathbb{R} .

8. Considere-se o problema de valor inicial:

$$\frac{dy}{dt} = t^2 + y^2 \quad , \quad y(1) = 0$$

Mostre que existe $\theta\in\left]1,1+\frac{\pi}{2}\right]$ tal que $\lim_{t\to\theta}y(t)=+\infty$, ou seja, a solução y(t) do PVI explode quando $t\to\theta$.

Resolução:

Temos, para t>1, $\frac{dy}{dt}>y^2+1$ ou seja $\frac{1}{y^2+1}\frac{dy}{dt}\geq 1$. Integrando ambos os membros desta desigualdade entre 1 e t, obtém-se:

pelo que arctg $y \ge t + c$. Assim, a solução do PVI verifica

$$y(t) \ge \operatorname{tg}(t-1)$$
.

Tendo em conta que $\lim_{t\to 1+\frac{\pi}{2}} \operatorname{tg}(t-1) = +\infty$, então existe $\theta\in\left]1,1+\frac{\pi}{2}\right]$ tal que

$$\lim_{t\to\theta}y(t)=+\infty.$$

9. Considere o problema de valor inicial

$$x' = \frac{x\cos(t+x)}{1+2x^2}$$
 , $x(0) = 1$

Mostre que o intervalo máximo de existência de solução é \mathbb{R} .

Resolução:

A função $f(t,x)=\frac{x\cos{(t+x)}}{1+2x^2}$ é contínua em \mathbb{R}^2 e é fácil de verificar que também $\frac{\partial f}{\partial x}$ é contínua em \mathbb{R}^2 . Pelo Teorema de Picard conclui-se que o PVI admite solução única numa vizinhança do valor inicial $t_0=0$. Estimando o módulo de f(t,x):

$$\left|f(t,x)\right| \;=\; \left|\frac{x\cos\left(t+x\right)}{1+2x^2}\right| \;\leq\; \frac{|x|}{1+2x^2} \;\leq\; 1$$

Aplicando o teorema da comparação de soluções da forma usual, verifica-se que a solução x(t) do PVI satisfaz:

$$1 - t \le x(t) \le 1 + t \qquad \forall t \ge 0$$

$$1 + t \le x(t) \le 1 - t \qquad \forall t \le 0$$

Isto prova que a solução não explode. Como o domínio de f é \mathbb{R}^2 , pelo teorema de extensão de soluções o intervalo máximo de existência é \mathbb{R} .

10. Mostre que o seguinte problema de valor inicial:

$$\begin{cases} \frac{dy}{dt} = \frac{1}{3y^2 + \sqrt[3]{(t+1)^2}} \\ y(0) = 1 \end{cases}$$

tem uma única solução y(t), definida para $t\in [0,+\infty[$, e calcule $\lim_{t\to +\infty}y(t)$.

Sugestão. Não tente resolver a equação diferencial. Considere a função u(t) definida por

$$\begin{cases} \frac{du}{dt} = \frac{1}{3u^2} \\ u(0) = 1 \end{cases}$$

Determine explicitamente a função u(t) e mostre que

$$\frac{dy}{dt} \ge \frac{1}{3(u(t))^2 + \sqrt[3]{(t+1)^2}}.$$

Depois, integre ambos os membros desta desigualdade entre 0 e t.

Resolução:

Definindo

$$f(t,y) = \frac{1}{3y^2 + (t+1)^{\frac{2}{3}}}$$

o domínio de f é

$$D = \left\{ (t, y) \in \mathbb{R}^2 : 3y^2 + (t+1)^{\frac{2}{3}} \neq 0 \right\} = \mathbb{R}^2 \setminus \left\{ (t, y) = (-1, 0) \right\}$$

Começemos por mostrar existência e unicidade de solução local. Verifica-se facilmente que tanto f como $\partial f/\partial y$ são contínuas em D; como também $(t_0,y_0)=(0,1)\in D$, o teorema de Picard assegura existência de uma única solução local do PVI. Isto significa que a solução, y(t), existe e é única para $t\in]-\beta,\beta[$. Em particular, exite uma única solução, y(t), do PVI no intervalo $I=[0,\beta[$. Falta mostrar que podemos tomar $\beta=\infty$, nesta última afirmação.

Pelo teorema de extensão de solução, basta mostrar que nem (t,y(t)) converge para fronteira de D quando $t \to \beta$, nem $|y(t)| \to \infty$ quando $t \to \beta$. Como não conhecemos a solução do PVI, teremos que usar o teorema de comparação de soluções.

Como estamos a estudar a solução para $t \geq 0$, e como não existe qualquer ponto fronteiro de D para $t \geq 0$, podemos desde já descartar a possibilidade de (t,y(t)) atingir a fronteira de D quando $t \rightarrow \beta$.

Para verificar que a solução não explode, basta ter em conta que, para $t \geq 0$,

$$3y^2 + (t+1)^{\frac{2}{3}} \ge 0 + 1^{\frac{2}{3}} = 1$$

Assim sendo,

$$0 \le f(t, y) \le 1 \tag{4}$$

para $y \in \mathbb{R}$ e $t \geq 0$. Considerando os problemas de valor inicial (com c = 0 ou c = 1)

$$\begin{cases} \dot{u} = c \\ u(0) = 1 \end{cases}$$

cujas únicas soluções (em $[0, +\infty[)$ são dadas por u(t) = ct + 1. Usando as desigualdades (4) e o teorema de comparação de soluções, resulta que:

$$1 \le y(t) \le t + 1, \qquad \forall t \ge 0. \tag{5}$$

De (5) podemos concluir que

y(t) não explode no extremo superior do intervalo máximo de solução;

$$y(t) \ge 1$$
 para $t \ge 0$.

Desta forma, o teorema de extensão de solução diz-nos que a y(t) está definida no intervalo $I=[0,+\infty[$. Para calcular o limite de y(t) quando $t\to+\infty$, consideremos o PVI auxiliar

$$\begin{cases} \frac{du}{dt} = \frac{1}{3u^2} \\ u(0) = 1 \end{cases}.$$

A solução geral da equação separável $3u^2\frac{du}{dt}=1$ é $u^3=t+c$, com $c\in\mathbb{R}$. Usando a condição inicial obtém-se $u(t)=(t+1)^{\frac{1}{3}}$, estando esta solução definida em $[0,+\infty[$. Tendo em conta que, para $y\in\mathbb{R}$ e $t\geq 0$,

$$f(t,y) = \frac{1}{3y^2 + (t+1)^{\frac{2}{3}}} \le \frac{1}{3y^3},$$

pelo teorema de comparação de soluções podemos concluir que

$$y(t) \le u(t) = (t+1)^{\frac{1}{3}}, \quad \forall t \ge 0.$$

Mas então:

$$\frac{dy}{dt} = \frac{1}{3(y(t))^2 + (t+1)^{\frac{2}{3}}} \ge \frac{1}{3(u(t))^2 + (t+1)^{\frac{2}{3}}} = \frac{1}{4(t+1)^{\frac{2}{3}}} = \frac{1}{4}(t+1)^{-\frac{2}{3}}$$

Integrando ambos os membros desta desigualdade entre 0 e t, obtém-se

$$y(t) - \underbrace{y(0)}_{1} \ge \frac{1}{4} \int_{0}^{t} (s+1)^{-\frac{2}{3}} ds = \frac{3}{4} (s+1)^{\frac{1}{3}} \bigg|_{0}^{t} = \frac{3}{4} (t+1)^{\frac{1}{3}} - \frac{3}{4},$$

ou seja,

$$y(t) \; \geq \; \frac{3}{4}(t+1)^{\frac{1}{3}} + \frac{1}{4} \quad \longrightarrow \quad +\infty \qquad \text{ quando} \quad t \to +\infty.$$

Podemos assim concluir que:

$$\lim_{t \to +\infty} y(t) = +\infty.$$

2 Exercícios Propostos

1. Para cada uma das seguintes equações diferenciais, esboce o campo de direcções e trace os respectivos tipos de soluções .

(a)
$$y' = \frac{t y}{1 + t^2}$$
 (b) $y' = (2 - y)(y - 1)$ (c) $y' = y(1 - y^2)$ (d) $y' = \frac{y + t}{y - t}$

2. Mostre que existe uma solução de classe C^1 para o problema de valor inicial

$$\begin{cases} \frac{dy}{dt} = 6t\sqrt[3]{y^2} \\ y(0) = 0 \end{cases},$$

diferente da solução y(t)=0, $\forall t\in\mathbb{R}.$ Explique porque é que isto não contradiz o teorema de Picard.

3. Mostre que o problema de valor inicial

$$\begin{cases} \frac{dy}{dt} = y^{1/2} \\ y(0) = 0 \end{cases}$$

tem infinitas soluções, e explique porque esse facto não contradiz o Teorema de Picard.

4. Majorando e minorando as seguintes equações, obtenha estimativas para os intervalos máximos de definição dos problemas de valor inicial indicados.

(a)
$$\frac{dy}{dt} = \operatorname{arctg}(ty)$$
, $y(0) = 2$ (b) $\frac{dy}{dt} = \frac{e^{\cos(ty)}}{y^3}$, $y(0) = 1$

(c)
$$\frac{dy}{dt} = y^2 e^y$$
, $y(0) = 1$

Nota: Em (c), a função constante igual a 0 é uma solução da equação.

5. Determine o limite quando $t \to \infty$ da solução do problema de valor inicial

$$(e^y + \sin^4 y)y' = y - y^4$$
 , $y(0) = \frac{1}{2}$

6. Considere o seguinte problema de valor inicial

$$\begin{cases} (1-t)y\frac{dy}{dt} = 1 - y^2 \\ y(1/2) = 2 \end{cases}$$

- (a) Determine uma solução do PVI, e justifique que essa é a única solução do problema numa vizinhança suficientemente pequena de $\frac{1}{2}$ onde esteja definida.
- (b) Mostre que o PVI admite um número infinito de soluções definidas em \mathbb{R} .
- (c) Diga, justificando, porque não há contradição ao Teorema de Picard.
- 7. Considere o problema de valor inicial

$$\frac{dy}{dt} = t(1+y^2)$$
 , $y(1) = 0$ (6)

- (i) Determine a solução de (6) e indique o seu intervalo máximo de solução.
- (ii) Considere agora o problema de valor inicial

$$\frac{dy}{dt} = t(1+y^2)e^y$$
 , $y(1) = 0$

- (a) Sem tentar resolver a equação, justifique que o problema tem localmente uma e uma só solução.
- (b) Mostre que o intervalo máximo de existência de solução é limitado superiormente, isto é, existe $\beta>1$ tal que $\lim_{t\to\beta^-}y(t)=\pm\infty$.

Sugestão: Começe por mostrar que a solução é uma função crescente para t>1, e relacione com o problema (6).

8. Considere o problema de Cauchy:

$$\begin{cases} y' = y + e^{-(t+y^4)} \\ y(0) = 1 \end{cases}$$

- (a) Mostre que o problema tem solução única definida numa vizinhança de 0, $]-\alpha,\alpha[$.
- (b) Mostre que o intervalo máximo de solução do problema contém $[0,\infty[$ e determine $\lim_{t\to\infty}y(t).$

- (c) Escreva uma equação integral que é equivalente ao P.V.I. para $y \in C^1(]-\alpha,\alpha[)$.
- 9. Considere a equação

$$\frac{dy}{dt} = \cos\left(t + e^y\right)$$

- (a) Justifique que a solução de qualquer problema de valor inicial $y(t_0)=y_0$ é única.
- (b) Mostre que a solução do problema de valor inicial y(0)=0 satisfaz $-t \leq y(t) \leq t$ para $t \geq 0$.
- (c) Mais geralmente, mostre que

$$|y(t) - y_0| \le |t - t_0| \quad \forall t$$

- (d) Determine os intervalos máximos de definição das soluções desta equação.
- **10.** Seja $f:\mathbb{R}^2 \to \mathbb{R}$ uma função contínua tal que f(t,0)=0 para qualquer $t\in\mathbb{R}$ e

$$|f(t,y)-f(t,x)| \leq \frac{1}{2}|y-x| \quad , \quad \text{para todos os} \quad (t,x), \ (t,y) \in \mathbb{R}^2$$

Considere o problema de valor inicial

$$y' = -y + f(t, y)$$
 , $y(0) = 1$

- (a) Mostre que este problema tem solução única numa vizinhança de t=0.
- (b) Mostre que o intervalo máximo de existência de solução é \mathbb{R} .
- **11.** (a) Se x(t) é a solução de uma equação diferencial $\frac{dx}{dt}=f(t,x(t))$, determine uma equação satisfeita pela função y(t)=x(-t).
 - (b) Mostre que todas as soluções da equação diferencial

$$\frac{dx}{dt} = \operatorname{sen}(tx) + t^3$$

são funções pares (quando prolongadas ao seu intervalo máximo de definição).

Soluções

- 1. Ver soluções na Secção 1 (Exercícios resolvidos).
- 2. $y(t) = t^6$
- 3. Com a solução de equilíbrio $y(x) \equiv 0$ e a solução geral $y_c(x) = \frac{(x+c)^2}{4}$, $c \in \mathbb{R}$, podemos definir uma infinidade de soluções do (PVI):
 - para $\alpha \in \mathbb{R}_0^+$

$$y_{\alpha}^{+}(x) = \begin{cases} 0 & \text{se } x \leq \alpha \\ \frac{(x-\alpha)^{2}}{4} & \text{se } x > \alpha \end{cases}$$

– para $\alpha \in \mathbb{R}_0^-$

$$y_{\alpha}^{-}(x) = \begin{cases} \frac{(x-\alpha)^2}{4} & \text{se } x < \alpha \\ 0 & \text{se } x \ge \alpha \end{cases}$$

- 4. (a) $I_{\mathrm{Max}}=\mathbb{R}$ (b) $I_{\mathrm{Max}}=]\alpha,+\infty[$ em que $\alpha\in[-e/4,-e^{-1}/4]$ (c) $I_{\mathrm{Max}}=]-\infty,\alpha[$ em que $\alpha\in]0,e^{-1}]$
- $5. \lim_{t \to +\infty} y(t) = 1$
- 6. (a) $y(t) = \sqrt{1 + 12(1-t)^2}$
 - (b) Com a solução do (PVI) $y(t) = \sqrt{1+12(1-t)^2}$ e a solução geral $y(t) = \sqrt{1-c(1-t)^2}$, $c \in \mathbb{R}$ podemos definir uma infinidade de soluções do (PVI) definidas em \mathbb{R} por

$$y_c(x) = \begin{cases} \sqrt{1 + 12(1-t)^2} & \text{se } t \le 1\\ \sqrt{1 - c(1-t)^2} & \text{se } t > 1 \end{cases}$$
, $c \in \mathbb{R}$

- 7. (i) $y(t) = \lg \frac{t^2 1}{2}$, e $I_{\mathrm{Max}} =] \sqrt{\pi + 1}, \sqrt{\pi + 1}[.$
- 8. (b) $\lim_{t\to+\infty} y(t) = +\infty$
- 11. (a) $\frac{dy}{dt} = -f(-t, y(t))$