
Combinatória e Teoria de Códigos
Exercises from the notes

Chapter 1

1.1. The following binary word

01111000000?001110000?00110011001010111000000000?01110

encodes a date. The encoding method used consisted in writing the date in 6 decimal digits
(e.g. 290296 means February 29th, 1996), then converting it to a number in base 2 (e.g. 290296
becomes 1000110110111111000), and enconding the binary number using the rule

{0, 1}2 −→ C ⊂ {0, 1}6

00 7−→ 000000

01 7−→ 001110

10 7−→ 111000

11 7−→ 110011

The received word contains 3 unknown digits (which were deleted) and it may also contain
some switched digits.
(a) Find the deleted bits.
(b) How many, and in which positions, are the wrong bits?
(c) Which date is it?
(d) Repeat the problem switching the bits in positions 15 and 16.

1.2. Consider the binary code {01101, 00011, 10110, 1100}. Using minimum distance decoding, de-
code the following received words:
(a) 00000;
(b) 01111;
(c) 01101;
(d) 11001.

1.3. Consider a binary channel with the following error probabilities

P (1 received | 0 sent) = 0, 3 and P (0 sent | 1 sent) = 0, 2 .

For the binary code {000, 100, 111}, use maximum likelihood decoding, to decode the received
words
(a) 010;
(b) 011;
(c) 001.

1.4. Prove that, for a symmetric binary channel, with crossover probability p < 1
2 , the minimum

distance and maximum likelihood decoding schemes coincide.

1.5. What is the capacity of a code, with minimum distance d, for detecting and correcting errors
simultaneously? Illustrate with examples.

1.6. Discuss the capacity of a code, with minimum distance d, for correcting erasure errors, and for
correcting symbol errors and erasure errors simultaneously. Prove your statments carefully and
illustrate with examples.



1.7. (A HAMMING Code) We encode a message vector with 4 binary components m = m1m2m3m4,
mi ∈ {0, 1}, as a code word with 7 binary components c = c1c2c3c4c5c6c7, cj ∈ {0, 1}, defined
by

c3 = m1 ; c5 = m2 ; c6 = m3 ; c7 = m4

and the other components are chosen so that

c4 : such that α = c4 + c5 + c6 + c7 is even

c2 : such that β = c2 + c3 + c6 + c7 is even

c1 : such that γ = c1 + c3 + c5 + c7 is even.

Check that with this coding scheme we get a code which corrects an error in any position.
If we receive the vector x = x1x2x3x4x5x6x7, we compute

α = x4 + x5 + x6 + x7
β = x2 + x3 + x6 + x7
γ = x1 + x3 + x5 + x7

 mod 2 ;

αβγ is the binary representation of the j component in which the error occured. If αβγ = 000
we assume no error occured.
Study this example carefully.



Chapter 2

2.1. Show that Aq(n, d) < Aq+1(n, d).

2.2. Show that, up to equivalence, there are precisely n binary codes with lenght n containing two
words.

2.3. Show that A2(5, 4) = 2 and A2(8, 5) = 4.

2.4. (a) Prove Proposition 2.8, i.e., show that (i) d(x, y) = w(x − y) and (ii) d(x, y) = w(x) +
w(y)− 2 w(x ∩ y), for all x, y ∈ Zn2 .

(b) With a counter-example, show that part (ii) of Proposition 2.8 is not true, in general, for
vectors in Zn3 , n > 1.

2.5. Using Lemma 2.12, verify that the volume of the balls with radius n in Anq is qn.

2.6. Show that, if there is a perfect code C with parameters (n,M, d)q, then Aq(n, d) = M and
equality holds in the Hamming Estimate.

2.7. Justify the statements in Example 2.20 by solving the following questions:
(a) Verify that a single word code satisfies equality in the Hamming Estimate.
(b) For C = Anq , compute the packing radius ρe(C) and the covering radius ρc(C). Verify that

C satisfies the equality in the Hamming Estimate.
(c) Repeat part (b) for the binary repetition codes with odd length.

2.8. Show that, in the definition of a perfect code, it isn’t necessary to assume that the minimum
distance is odd. That is, show that, if C has even minimum distance, then ρe(C) < ρc(C).

2.9. Prove the binary and q-ary Plotkin Estimates:
(a) For a (n,M, d) binary code C with n < 2d, show that

M ≤


2d

2d− n
if M is even

2d

2d− n
− 1 if M is odd

.

(b) For q-ary codes, show that

Aq(n, d) ≤ d

d− θn
,

where d > θn and θ = q−1
q .

2.10. (a) Given two vectors u = (u1, . . . , un) and v = (v1, . . . , vm), we define

(u|v) = (u1, . . . , un, v1, . . . , vm) .

Let C1 and C2 be binary codes with parameters (n,M1, d1) and (n,M2, d2), respectively.
The Plotkin Construction of the codes C1 and C2 is the code defined by

C1 ∗ C2 = {(u|u+ v) : u ∈ C1, v ∈ C2} .

Show that the parameters of C1 ∗ C2 are (2n,M1M2, d), where d = min{2d1, d2}.



(b) The important familly of Reed-Muller binary codes can be obtained as follows:
RM(0,m) = {~0,~1} the binary repetition code with length 2m

RM(m,m) = (Z2)
2m

RM(r,m) = RM(r,m− 1) ∗ RM(r − 1,m− 1) , 0 < r < m

for r,m ∈ N0, where C1 ∗C2 denotes the Plotkin Construction obtained from the codes C1

and C2.
Study this family of codes by showing that the parameters of RM(r,m) are: n = 2m,

M = 2δ(r,m), where δ(r,m) =
∑r

i=0

(
m
i

)
, d = 2m−r.



Chapter 3

3.1. (a) Verify that the tables in Examples 3.21 and 3.22 are correct.
(b) Write a (ring) isomorphism between Z2 ⊕ Z2 and F2[t]/〈t2 + t〉.

3.2. Find a primitive element in each of the following fields: F5, F11 and F13.

3.3. The field F24 :
(a) Show that the polynomial t4 + t+ 1 is irreducible in F2[t].
(b) Define F24 = F2[t]/〈t4 + t + 1〉 by identifiying its elements and by sketching the addition

and multiplication tables.
(c) Find a primitive element in F24 .

3.4. List all irreducible polynomials in F2[t] with degrees 2, 3 and 4.

3.5. Let I(p, n) be the number of irreducible monic polynomials of degree n in Fp[t].

(a) Show that I(p, 2) =

(
p

2

)
.

(b) Show that I(p, 3) =
p(p2 − 1)

3
.

(c) Study Section 2.2 in the Apendix A for a proof of a formula for I(p, n).

3.6. Let F be a field with characteristic p, with p a prime number. Show that F is a vector space
over Fp. Conclude that the order of any finite field is a power of a prime number.

3.7. (a) Justify that the polynomials t3 + t+ 1 and t3 + t2 + 1 are irreducible in F2[t].
(b) Justify that both quotients A = F2[t]/〈t3+t+1〉 and B = F2[t]/〈t3+t2+1〉 are isomorphic

to the field F8, and write an isomorphism φ : A −→ B.
[Sugestion: Let α ∈ A be a root of 1 + t + t3 and β ∈ B be a root of 1 + t2 + t3. Find a
relation between α and β or, more precisely, find a root of 1 + t2 + t3 in A.]

(c) For the description A of F8, determine a primitive element. Justify that A is a vector
space over F2 and write a basis.

3.8. Let V be a vector subspace of Fnq , with dimention 1 ≤ k ≤ n.
(a) How many vectors does V contain?
(b) How many distinct bases does V have?

3.9. (a) Determine the number of nonsingular n×n square matrices with entries in a finite field Fq.
(b) What is the probability P (q, n) of a n× n matrix over Fq being nonsingular?

3.10. Consider the vector space Fnq over Fq. Denote by
[
n
k

]
q

the number of k dimentional subspaces

of Fnq :
(a) Show that [

n

k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

(b) Show that [
n

k

]
q

=

[
n− 1

k − 1

]
q

+ qk
[
n− 1

k

]
q

.

(c) Justify that

lim
q→1

[
n

k

]
q

=

(
n

k

)
.



3.11. (a) Show that Fqm is a vector space over Fq, with the vector sum and product by a scalar
defined via the operations in Fqm .

(b) Let f(t) ∈ Fq[t] be an irreducible polynomial in Fq[t], with degree m, and let α ∈ Fqm be a
root f(t). Show that {1, α, α2, . . . , αm−1} is a basis of Fqm over Fq.

3.12. Let V be a finite dimentional vector space over Fqm .
(a) Show that V is also a vector space over Fq and

dimFq (V ) = mdimFqm
(V ) ,

where dimF(V ) denotes the dimention of V as an F-vector space.
(b) Let {v1, . . . , vk} be a basis of V over Fqm , and {α1, . . . αm} be a basis of Fqm over Fq. Show

that {αivj : i = 1, . . . ,m ; j = 1, . . . , k} is a basis of V over Fq.

3.13. Let V and W be vector subspaces of Fnq . Show that the sum V + W (defined by V + W =
{v +w ∈ Fnq : v ∈ V,w ∈W}), and the intersectione V ∩W are vector spaces. Show also that
the sum V +W is the vector space generated by V and W .

3.14. Let < ·, · >H : Fnq2 × Fnq2 −→ Fq2 be defined by

< u, v >H=

n∑
i=1

uiv
q
i ,

where u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fnq2 . Show that < ·, · >H is an inner product in Fnq2 .

Remark: < ·, · >H is the hermitian inner product. The hermitian dual of a linear code C is
defined as

C⊥H = {v ∈ Fnq2 :< v, c >H= 0 ∀ c ∈ C} .

3.15. Recall that F4 = F2[t]/〈t2 + t+ 1〉 = {0, 1, α, α2}, where α is a root of t2 + t+ 1 ∈ F2[t]. Show
that the following linear codes over F4 are self-dual with respect to the hermitian inner product
defined in the previous problem:
(a) C1 = 〈(1, 1)〉 ⊂ F2

4,
(b) C2 = 〈(1, 0, 0, 1, α, α), (0, 1, 0, α, 1, α), (0, 0, 1, α, α, 1)〉 ⊂ F6

4.
Are these self-dual codes with respect to the euclidean inner product?



Chapter 4

4.1. Let C be a [n, k] linear code over Fq. For each i ∈ {1, . . . , n}, show that either xi = 0 for all

x = (x1, . . . , xn) ∈ C, or C contains |C|q = qk−1 words with xi = a, for a ∈ Fq fixed.

4.2. Let C be a binary linear code. Show that either all words in C have even weight, or half of
them have even weight and the other half odd weight.

4.3. Let C be a [n, k, 2t+ 1] binary code and let C ′ = {x ∈ C : w(x) is even} be the subcode of C
consisting of the even weighted words.
(a) Show that C ′ is a linear code.
(b) Find the dimention of C ′. Justify carefully your answer.

4.4. Write a generating matrix, a parity-check matrix, and the parameters [n, k, d] for the smallest
linear code over Fq containing the set S, when
(a) q = 3, S = {110000, 011000, 001100, 000110, 000011};
(b) q = 2, S = {10101010, 11001100, 11110000, 01100110, 00111100}.

4.5. Let C be a linear code with length n ≥ 4. Let H be a parity-check matrix for C such that its
columns are distinct and have odd weight. Show that d(C) ≥ 4.

4.6. (a) For a q-ary linear code, with lenght n and minimum distance d, show that the vectors
x ∈ Fnq with weight w(x) ≤ bd−12 c are coset leaders of distinct cosets of this code.

(b) Let C be a perfect code with d(C) = 2t+ 1. Show that the only coset leaders of C are the
ones determined in part (a).

(c) Assuming that the perfect code C in part (b) is binary, let Ĉ be the code obtained from C
by adding a parity-check digit, i.e.,

Ĉ =
{

(x1, . . . , xn, xn+1) ∈ Fn+1
2 : (x1, . . . , xn) ∈ C ,

n+1∑
i=1

xi = 0
}
.

Show that the weight of any coset leader of Ĉ is less or equal than t+ 1.

4.7. Consider the linear code over F11 with parity-check matrix

H =

 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 X
12 22 32 42 52 62 72 82 92 X2

 .

(a) Find the parameters [n, k, d] of this code. [Sugestion: First show that in any field K∣∣∣∣∣∣
1 1 1
a1 a2 a3
a21 a22 a23

∣∣∣∣∣∣ = (a3 − a1)(a2 − a1)(a3 − a2) , ∀ a1, a2, a3 ∈ K
]
.

(b) Write a generating matrix for the code.
(c) Describe a decoding algorithm for this code that can correct 1 error and detect 2 errors in

any position.
(d) Apply that algorithm to decode the received vectors

x = 0204000910 e y = 0120120120 .



4.8. Solve the analogous problem to the previous one for the linear code over F11 with parity-check
matrix 

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 X
12 22 32 42 52 62 72 82 92 X2

13 23 33 43 53 63 73 83 93 X3

 .

Decode also the received vector z = 1204000910.

4.9. Find a [7,K] linear code with the largest possible rate which can correct the following error
vectors: 1000000,1000001,1100001,1100011,1110011,1110111 and 1111111.

4.10. Consider a linear code C over F3 = {0, 1, 2} with parity-check matrix

H =

2 1 2 1 1 0
1 1 2 1 0 1
0 1 0 2 0 0

 .

(a) Determine the [n, k, d] parameters of C.
(b) Find a generator matrix in standard form for the code C.
(c) What is the capacity of C for correcting erasure errors? Give a detailed justification.
(d) Explain what to do with the following received words

x = 2101?? , y = 1???12 e z =???210 .

4.11. Prove Proposition 4.29. Show that, for a perfect code, we also have that αi = 0 for all i > t.

4.12. (a) Show that the ISBN minimum distance is 2.
(b) How many words in ISBN end with the symbol X ∈ F11?
(c) How many words in ISBN end with the symbol a ∈ {0, 1, . . . , 9} ⊂ F11?
(d) Let C be the linear code over F11 defined in Example 4.33 and let C ′ ⊂ C be the subcode

defined by
C ′ = {x ∈ C : xi 6= X ∀ i = 1, . . . , 10} .

Show that |C ′| = 82644629.
[Sugestion: use the Inclusion-Exclusion Principle and Exercise 4.1.]



Chapter 5

5.1. Check the equalities (5.2) in Example 5.3.

5.2. If there is a [n, k, d]q code, show that there is also a [n− r, k− r, d] code for any 1 ≤ r ≤ k− 1.

5.3. Given a [n, k, d]q code C,
(a) is there always a [n+ 1, k, d+ 1] code?
(b) is there always a [n+ 1, k + 1, d] code?

5.4. (a) Let G1 and G2 be generating matrices for the q-ary linear codes C1 and C2, respectively.
show that

G =

[
G1 0
0 G2

]
is a generating matrix for the sum code C1 ⊕ C2.

(b) Write a parity-check matrix for C1 ⊕ C2 in terms of parity-check matrices H1 and H2 for
C1 and C2, respectively.

5.5. Repeat the previous exercise for the Plotkin construction:
(a) If C1 and C2 are linear codes, show that C1 ∗ C2 is also linear.
(b) Let G1 and G2 be generating matrices for the q-ary linear codes C1 and C2, respectively,

both with length n. Show that

G =

[
G1 G1

0 G2

]
is a generating matrix for C1 ∗ C2.

(c) If H1 and H2 are parity-check matrices for C1 and C2, respectively, write a parity-check
matrix for C1 ∗ C2 in terms of H1 and H2.

5.6. Consider the linear codes C1 and C2 over Fq, with length n and dimentions dim(Ci) = ki,
i = 1, 2, and define

C = {(a+ x, b+ x, a+ b+ x) : a, b ∈ C1, x ∈ C2} .
(a) Show that C is a lienar code with parameters [3n, 2k1 + k2].
(b) Write a generating matrix for C in terms of generating matrices G1 and G2 for C1 and C2,

respectively.
(c) Write a parity-check matrix for C in terms of parity-check matrices H1 and H2 for C1 and

C2, respectively.

5.7. Let C be a [n, k, d]2 linear code, with k ≥ 2, and let c ∈ C, with d ≤ w(c) < n, be such that

Gk×n =

[
— c —

G′(k−1)×n

]
is a generating matrix for C. If ci1 = ci2 = · · · = cin−w = 0 are the zero components of c,
consider the submatrix of G′

G′1 =

 g′1i1 g′1i2 · · · g′1in−w

...
...

. . .
...

g′(k−1)i1 g′(k−1)i2 · · · g′(k−1)i1n−w

 .

The code with G′1 as a generator matrix is called the Residual Code RES(C, c).
(a) Justify that we can always choose a codeword satisfying the same conditions as c.
(b) Show that, for a fixed c ∈ C, the code RES(C, c) does not depend on the matrix G′.



(c) Show, with examples, that RES(C, c) depends on the chosen word c and, even if w(c) =
w(c′), in general we have RES(C, c) 6= RES(C, c′) and, moreover, these codes may not be
equivalent.

(d) Now fix c ∈ C, with w(c) = w(C) = d. Show that RES(C, c) is a [n− d, k− 1, d′] code with

d′ ≥
⌈
d

2

⌉
.

(e) Define
n∗(k, d) = min{n ∈ N : ∃ a binary [n, k, d] code},

and show that

n∗(k, d) ≥
k−1∑
i=0

⌈
d

2i

⌉
.

(f) Show that the binary simplex codes (the dual of the binary Hamming codes – Definition 6.1)
satisfy the equality in the inequality in part (e).

5.8. Let α be a root of 1 + t2 + t3 ∈ F2[t] and consider the map φ : F8 → F3
2 defined by φ(a1 +a2α+

a3α
2) = (a1, a2, a3), where a1, a2, a3 ∈ F2. Consider the linear code

A = 〈(α+ 1, α2 + 1, 1)〉
over F8. What are the parameters of φ∗(A)?

5.9. Let α be a root of 1 + t+ t2 ∈ F2[t]. Consider the linear code

A = 〈(1, 1), (α, 1 + α)〉
over F4, and the binary code B = {0000, 1100, 1010, 0110}. Let φ : F4 → B be the map defined
by φ(1) = 1100 and φ(α) = 1010. What are the parameters C = φ∗(A)?

5.10. Consider the linear code A = 〈(1, α2, 0), (α, 0, 1)〉 over F4 = F2[α] (where α2 = 1 + α) and the
binary linear code B = 〈1010, 0101〉. Let A∗ be the concatenation of A and B with respect to
the lienar function φ : F4 −→ F4

2 defined by φ(1) = 1010 and φ(α) = 1111.
(a) Write a basis for the code A∗.
(b) Find the parameters [n, k, d] for the code A∗.



Chapter 6

6.1. Let C be the binary Hamming code Ham(3, 2) in Example 6.2. Decode the received vectors
y = 1101101 and z = 1111111.

6.2. Let C be a Ham(5, 2) code and assume that column j of the parity-check matrix is a binary
representation of the integer j. Find the parameters of C and decode the received vector
y = ~e1 + ~e3 + ~e15 + ~e20, where ~ei is the vector with a 1 in the i-th coordinate and 0 in all the
others.

6.3. Write the parameters and a parity-check matrix H for Ham(2, 5). Using your matrix H, decode
the received vector y = 3~e1 + ~e3 + 2~e4.

6.4. Write the parameters and a parity-check matrix for Ham(3, 4).

6.5. Describe a decoding algorithm for the extended Hamming code Ĥam(r, 2) that corrects any
simple error and detects double errors simultaneously.

6.6. Let C be the binary code with the following parity-check matrix

H =


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 .

(a) Determine the [n, k, d] parameters of the code C.
(b) Show that C can be used to correct all errors with weight 1 and all errors with weight 2

with a nonzero n-th component. Can this code correct simultaneously all these errors plus
a few more with weight 2?

(c) Describe a decoding algorithm that corrects all errors mentioned in part (b), and decode
the received vector y = 10111011.

6.7. (a) Show that

RM(r,m)⊥ = RM(m− r − 1,m), ∀ 0 ≤ r < m.

(b) Show that RM(1,m) contains a unique word of weight 0, namely the zero word, a unique
word of weight 2m, namely the word whose components are all 1, and 2m+1 − 2 words of
weight 2m−1.

(c) Show that RM(1,m) is equivalent to the dual of an extended binary Hamming code.
(d) Conclude that the words in the dual of a Hamming code of redunduncy r are all equidistant

and have weight 2r−1.

6.8. For each binary vector x ∈ Fn2 , consider the corresponding vector x∗ ∈ {+1,−1}n obtained by
replacing each zero component by the real number +1 and each 1 by −1.
(a) Show that, if x, y ∈ Fn2 , then, using the euclidean inner product in Rn,

〈x∗, y∗〉 = n− 2 d(x, y) .

In particular, if x, y ∈ F2h
2 with d(x, y) = h, then 〈x∗, y∗〉 = 0.

(b) Let RM(1,m)± = {c∗1, c∗2, . . . , c∗2m+1} be the code obtained replacing each codeword c ∈
RM(1,m) by its ±1 version c∗. Show that:

(i) c∗ ∈ RM(1,m)± ⇒ −c∗ ∈ RM(1,m)± ;

(ii) 〈c∗i , c∗j 〉 =


2m se c∗i = c∗j
−2m se c∗i = −c∗j
0 se c∗i 6= ±c∗j

.



(c) Apply part (b) to justify the following decoding algorithm: If y is the received vector,
compute the inner products 〈y, c∗i 〉, for i = 1, . . . , 2m+1, and decode y by the codeword c∗j
which maximizes these products.

6.9. Justify that the Hamming codes Ham(2, q), with redundancy 2, are MDS codes.

6.10. Let F4 = {0, 1, α, α2}, where α is a root of 1 + t + t2. Let C be a linear code over F4 with
generating matrix

G =

[
1 0 1 1
0 1 α α2

]
.

Write a generating matrix for the dual code C⊥. Show that C and C⊥ are MDS codes.

6.11. Show that the only binary MDS codes are the trivial ones.

6.12. Let C be a q-ary MDS code with parameters [n, k], where k < n.
(a) Show that there is a q-ary MDS code with length n and dimention n− k.
(b) Show that there is a q-ary MDS code with length n− 1 and dimention k.

6.13. In each of the two cases below, show that the linear code C over Fq with parity-check matrix
H is MDS, where Fq = {0, a1, a2, . . . , aq−1} and
(a)

H =


1 1 1 · · · 1
a1 a2 a3 · · · aq−1
a21 a22 α2

3 · · · a2q−1
...

...
...

...
ar−11 ar−12 ar−13 · · · ar−1q−1

 , 1 ≤ r ≤ q − 2 ;

(b)

H =


1 1 1 · · · 1 1 0
a1 a2 a3 · · · aq−1 0 0

a21 a22 α2
3 · · · a2q−1

...
...

...
...

...
... 0 0

ar−11 ar−12 ar−13 · · · ar−1q−1 0 1

 , 1 ≤ r ≤ q − 1 .

6.14. Let C be the code over F4 = {0, 1, α, α2} (where α2 = 1 + α) with parity-check matrix

H =

1 1 1 1 0 0
1 α α2 0 1 0
1 α2 α 0 0 1

 .

Show that C is a MDS code.
Try to generalize this example, or justify that it can not be done, to obtain a code over an
arbitrary field Fq, with length q + 2 and redundancy 3 ≤ r ≤ q − 1.



Chapter 7

7.1. Let x, y ∈ Fnq .
(a) Show that w(x− y) ≥ w(x)− w(y).
(b) Show that d(x, y) = w(x)− w(y) if and only if x covers y.
(These properties were used in the proof of Theorem 7.12.)

7.2. Consider the vector space V = F3
q .

(a) Show that V contains q3−1
q−1 = q2 + q + 1 1-dimentional vector subspaces.

(b) Show that V contains q3−1
q−1 = q2 + q + 1 2-dimentional vector subspaces.

(c) Let P be the set of 1-dimentional vector subspaces and let B be the set of 2-dimentional
vector subspaces. Show that P (as the set of points) and B (as the set of blocks), with
the relation P ∈ P belongs to B ∈ B if P is a subspace of B, define a Steiner system
S(2, q + 1, q2 + q + 1).
Note: Since the number of points and the number of blocks are the same, this Steiner
system is called a 2-dimentional projective geometry (or a projective plane) of order q, and
it is denoted by PG(2, q) or PG2(q).

7.3. From the extended Golay code G24, construct a Steiner system S(5, 8, 24).

7.4. (Generalization of the previous exercise.) Let C be a binary perfect code with length n and
minimum distance 2t+ 1. Show that there is a Steiner system S(t+ 2, 2t+ 2, n+ 1).

7.5. Show that a q-ary Hamming code Ham(r, q) contains

A3 =
q(qr − 1)(qr−1 − 1)

6
words with weight 3.

7.6. How many words with weight 7 are there in G23?

7.7. How many words with weight 5 are there in G11?

7.8. For any code C, we define Ai = #{x ∈ C : w(x) = i}. Determine the numbers Ai for the

extended Golay code G24. [Sugestion: Show that ~1 ∈ G24.]



Chapter 8

8.1. (a) Show that the cyclic shift σ : Fnq −→ Fnq defined by

σ(x1, . . . , xn−1, xn) = (xn, x1, . . . , xn−1)

is a bijective linear function.
(b) Show that the code C is cyclic if and only if σi(C) = C for all i ∈ Z.

8.2. (a) Show that 〈2, t〉 is not a principal ideal in Z[t].
(b) Show that 〈x, y〉 is not a principal ideal in the ring of two variable polynomials1 Fq[x, y].

8.3. For a fixed a ∈ Fq, show that the set I = {f(t) ∈ Fq[t] : f(a) = 0} is an ideal in Fq[t].
Determine a generator for I.

8.4. The ideals in the following questions are ideals in the ring Rn = Fq[t]/〈tn − 1〉. Assuming that
g(t)|tn − 1 in Fq[t], show that
(a) 〈f1(t)〉 ⊂ 〈f2(t)〉 if and only if f2(t) divides f1(t) in Rn;
(b) 〈f(t)〉 = 〈g(t)〉 if and only if there exists a(t) ∈ Fq[t] such that f(t) ≡ a(t)g(t) (mod tn−1)

and gcd(a(t), h(t)) = 1, where h(t)g(t) = tn − 1;

8.5. Factorize t7 − 1 in F2[t] and identify all cyclic binary codes with length 7.

8.6. Classify all cyclic codes with length 4 over F3. Conclude that the ternary Hamming code
Ham(2, 3) is not equivalent to a cyclic code.

8.7. (a) Write t12 − 1 as a product of irreduble polynomials in F3[t].
(b) How many ternary cyclic codes of length 12 are there?
(c) Determine the integers k for wihch there is a ternary [12, k] cyclic code.
(d) How many ternary [12, 9] cyclic codes are there?

8.8. Let C be a binary cyclic code with generator polynomial g(t).
(a) Show that, if t− 1 divides g(t), then all code words have even weight.
(b) Assuming that C has odd length, show that C contains a word with odd weight if and only

if the vector ~1 = (1, . . . , 1) is a code word.

8.9. (a) Determine the generator polynomial and the dimention of the smallest binary cyclic code
which contains the word c = 1110010 ∈ F7

2.
(b) Write a generating matrix, the check polinomial and the parity-check matrix for the code

your code in part (a).

8.10. (a) Determine the generator polynomial and the dimention of the smallest ternary cyclic code
which contains the word c = 212110.

(b) What’s the minimum distance of that code? Justify your answer.

8.11. Let C be a cyclic code, with length n, with generator polynomial g(t). Show that, if C = 〈f(t)〉,
i.e., if f(t) is a generator for the ideal C, then g(t) = gcd(f(t), tn − 1). In particular, conclude
that the generator polynomial of the smallest cyclic code, with length n, containing f(t) is
g(t) = gcd(f(t), tn − 1).

8.12. If g(t) is the generator polynomial of a cyclic code, show that 〈g(t)〉 and 〈ḡ(t)〉 are equivalent
codes. Conclude that the code generated by the check polynomial of a cyclic code C is equivalent
to the dual code C⊥.

1This holds in K[x, y], with K any field.



8.13. Supose that, in F2[t],
tn − 1 = (t− 1)g1(t)g2(t)

and that 〈g1(t)〉 and 〈g2(t)〉 are equivalent codes. Show that:
(a) If c(t) is a code word in 〈g1(t)〉 with odd weight w, then

(i) w2 ≥ n;
(ii) If, moreover, g2(t) = g1(t), then w2 − w + 1 ≥ n.

(b) If n is an odd prime number, g2(t) = g1(t) and c(t) is a code word in 〈g1(t)〉 with even
weight w, then

(i) w ≡ 0 (mod 4);
(ii) n 6= 7⇒ w 6= 4.

(c) Show that the binary cyclic code with length 23 generated by the polynomial g(t) =
1 + t2 + t4 + t5 + t6 + t10 + t11 is a perfect code [23, 12, 7] – the binary Golay Code.

8.14. (a) Let g(t) be the generator polynomial of a binary Hamming code Ham(r, 2), with r ≥ 3.
Show that the parameter of C = 〈(t− 1)g(t)〉 are [2r − 1, 2r − r − 2, 4].
[Sugestion: apply exercise 8.8.]

(b) Show that the code C can be used to correct all adjacent double errors.

8.15. (Generalization of the previous exercise.) Let C = 〈(t + 1)f(t)〉 be a binary cyclic code with
length n, where f(t) | tn − 1, but f(t) - tk − 1, for 1 ≤ k ≤ n − 1. Show that C corrects all
simple errors and also the adjacent double errors.

8.16. Consider binary cyclic code with length n = 15 generated by the polynomial g(t) = 1 + t3 +
t4 + t5 + t6.
(a) Justify that g(t) is indeed the generator polynomial of this code.
(b) Write a generator matrix, the check polynomial and a parity-check matrix for this code.
(c) Write a generator matrix in the form G =

[
R I

]
for this code and the corresponding

parity-check matrix.
(d) Use systematic coding to encode the message vector m = 010010001.
(e) Given that this code has minimum distance d(C) = 5, decode the received vector y =

010011000111010, and carefully justify your procedure.

8.17. (a) Verify that g(t) = 2 + t2 + 2t3 + t4 + t5 divides t11 − 1 in F3[t].
(b) Let C be the ternary cyclic code generated by g(t). Knowing that it’s a [11, 6, 5]3 code, use

the Error Trapping Algorithm to decode the received vector y = 20121020112.
(c) What is the proportion of errors with weight 2 which are not corrected by this algorithm?

8.18. Consider the binary cyclic code [15, 5, 7] with generator polynomial g(t) = 1 + t+ t2 + t4 + t5 +
t8 + t10.
(a) Justify that the Error Trapping Algorithm can correct all error vectors with weight ≤ 3

except for ê = 100001000010000 and its cyclic shifts σj(ê).
(b) Decode the received vector y = 111101010011101.
(c) (i) Complete this algorithm so that it also corrects the errors of the form êj , j = 0, 1, 2, 3, 4.

[Sugestion: Note that the syndrome of ê(t) is 1+ t5 +ρ(t), where ρ(t) is the remainder
of the division of t10 by g(t).]

(ii) Decode the received vector y′ = 111000111100100.

8.19. Consider again the binary cyclic with length n = 15 with generator polynomial g(t) = 1 + t3 +
t4 + t5 + t6 as in Exercise 8.16.
(a) Verify that, althougth this is a code with minimum distance 5, it corrects up to burst

3-errors. Explain carefully the meaning of that statement and justify your answer.
(b) Decode the received vector y = 011100000111000 using the Burst-Error Trapping Algo-

rithm.



8.20. Show that the interleaved code of degree s, C(s), is equivalent to the sum code C ⊕ · · · ⊕ C of
s copies of C. Conclude that d(C(s)) = d(C).

8.21. Finish the proof of Theorem 8.52 (a): Let C be a q-ary linear code and let x(s) and y(s) be the
vectors obtained by interleaving x1, . . . , xs ∈ C and y1, . . . , ys ∈ C, respectively. Show that

(i) x(s) + y(s) is the result of interleaving the vectors x1 + y1, . . . , xs + ys;

(ii) ax(s) is the result of interleaving the vectors ax1, . . . , axs, where a ∈ Fq.

8.22. Let C = Ham(3, 2) be the binary Hamming code with redundancy 3 and generator polynomial
g(t) = 1 + t+ t3.

(a) Find the parameters and the generator polynomial of C(3).

(b) Show that C(3) corrects all m-burst errors with m ≤ 3.
(c) Using the Burst Error Trapping Algorithm, decode the following received vector

y(t) = t+ t3 + t5 + t7 + t8 + t9 + t11 .

8.23. A q-ary cyclic code, with length n, is called degenerate if there is r ∈ N such that r divides n
and each code word is of the form c = c′c′ · · · c′ with c′ ∈ Frq, i.e., each code word consists of
n/r identical copies of a sequence c′ with length r.

(a) Show that the interleaved code C(s) of a repetition code C is degenerate.
(b) Show that the generator polynomial of a degenerate cyclic code with lenth n is of the form

g(t) = a(t)(1 + tr + t2r + · · ·+ tn−r) .

(c) Show that a cyclic code with lenght n and check polymonial h(t) is degenerate if and only
if there is r ∈ N such that r divides n and h(t) divides tr − 1.

8.24. Let C be the binary linear code with the following parity-check matrix

H =

1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0

 .

(a) Find the minimum distance d(C), and determine the code capacity for detecting and cor-
recting random errors.

(b) Show that C detects all burst-m errors with m ≤ 3.
Note: In this exercise, we consider only burst-m errors in the “strict sense”, i.e., vectors in
the form (0, . . . , 0, 1, ∗, . . . , ∗, 1, 0, . . . , 0) where all nonzero coordenates have indices between
i ≥ 1 and i+m− 1 ≤ n.

(c) Let C ′ be the punctured code, in the last coordinate, of the dual codeC⊥. Show that C ′ is
a degenerate cyclic code, and determine its generator polynomial.

8.25. Determine all degenerate, cyclic and binary codes with length 9, writing the generator polyno-
mials and the corresponding r-sequences.



Chapter 9

9.1. Write a generator matrix and a parity-check matrix for a Reed-Solomon code [6, 4], and deter-
mine its minimum distance.

9.2. Determine the generator polynomial of a Reed-Solomon over F16 with dimention 11. Write a
parity-check matrix for that code.

9.3. Show that the dual of a Reed-Solomon code is a Reed-Solomon code.

9.4. Let C be the Reed-Solomon code over F8 with generator polynomial g(t) = (t−α)(t−α2)(t−α3),
where α ∈ F8 is a root of 1 + t+ t3.
(a) Justify that α is a primitive element in F8.
(b) Find the parameters of C.
(c) Find the parameters of the dual code C⊥.

(d) Find the parameters of the extended code Ĉ.
(e) Find the parameters of the concatenation code C∗ = φ∗(C), where φ : F8 → F3

2 is the linear
map defined by φ(1) = 100, φ(α) = 010 and φ(α2) = 101.

9.5. (a) Write the generator polynomial for a Reed-Solomon code C, with parameters [7, 2].
(b) Let α be a root of 1 + t + t3 ∈ F2[t] and consider the map φ : F8 → F3

2 defined by
φ(a0 + a1α+ a2α

2) = (a0, a1, a2). Find the parameters of C∗ = φ∗(C).

(c) Let φ̂ : F8 → F4
2 be defined by φ̂(a0 + a1α + a2α

2) = (a0, a1, a2, a0 + a1 + a2). Find the

parameters of C ′ = φ̂∗(C).
(d) What can you say about the capacity of C∗ and C ′ for correcting random errors and/or

burst errors?

9.6. Consider the Reed-Solomon code C over F8 with the following generator polynomial:

g(t) = (t− α)(t− α2)(t− α3)(t− α4) = α3 + αt+ t2 + α3t3 + t4 ,

where we identify F8 with the quotient F2[t]/〈1 + t+ t3〉, and α ∈ F8 is a root of 1 + t+ t3.
(a) Find the parameters [n, k, d] of C.
(b) Apply the Error Trapping Algorithm to decode the following received vectors

y = (0, 1, 0, α2, 0, 0, 0) and z = (0, α3, 0, 1, α3, 1, 1).
(c) Let φ : F8 → F3

2 be a linear isomorphism over F2. What can you say about the capacity of
the concatenation code C∗ = φ∗(C) for correcting burst errors?

9.7. Recall that a linear code C is self-orthogonal if C ⊂ C⊥. Determine the generator polynomial
of all self-orthogonal Reed-Solomon codes over F16. Which of these codes are self-dual?

9.8. Consider the linear code over F11 with gerating matrix

G =

[
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 X

]
.

(a) Show that this code is equivalent to a cyclic code C.
(b) Determine the generator polymonial and conclude that C is a Reed-Solomon code.



9.9. (Generalization of the previous exercise.) Let C be a [q − 1, k] code, over Fq, with generator
matrix

G =


1 1 1 1 · · · 1
1 α α2 α3 · · · αq−2

1 α2 α4 α6 · · · α2(q−2)

...
...

...
...

...

1 αk−1 α2(k−1) α3(k−1) · · · α(q−2)(k−1)

 ,

where α is a primitive element in Fq and 1 ≤ k ≤ q − 2.
(a) Show that C is a cyclic code.
(b) Determine the generator polynomial and conclude that C is a Reed-Solomon code.



Appendix A

A.1. Prove the Inclusion-Exclusion Principle by induction on the number of the sets Ei, 1 ≤ i ≤ r.

A.2. How many integers between 1 and 1000 are not divisible by 2, 3, 5, but are divisible by 7?

A.3. How many permutations of {a, b, c, . . . , x, y, z} do not contain the words sim, riso, mal and
cabe?

A.4. How many integer solutions to x1 + x2 + x3 + x4 = 21 are there if:
(a) xi ≥ 0, i = 1, 2, 3, 4;
(b) 0 ≤ xi ≤ 8, i = 1, 2, 3, 4;
(c) 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 6, 3 ≤ x3 ≤ 8, 4 ≤ x4 ≤ 9.

A.5. Determine the number of monic polynomials of degree n in Fq[t] without roots in Fq, where
Fq is a field with q elements.

A.6. (a) How many integers n between 1 and 15000 satisfy gcd(n, 15000) = 1?
(b) How many integers n between 1 and 15000 have a common divisor with 15000?

A.7. Compute φ(n) and µ(n) for: (i) 51, (ii) 82, (iii) 200, (iv) 420 and (v) 21000.

A.8. Find all positive integers n ∈ N such that
(a) φ(n) is odd;
(b) φ(n) is a power of 2;
(c) φ(n) is a multiple of 4.

A.9. Show that φ(nm) = nm−1φ(n), for n,m ∈ N.

A.10. Prove the following properties of the Euler function:
(i) if p is prime, then φ(p) = p− 1 and φ(pk) = pk − pk−1;
(ii) if n = ab with gcd(a, b) = 1, then φ(n) = φ(a)φ(b).

And use them to show that

φ(n) = n−
r∑
i=1

n

pi
+

∑
1≤i<j≤r

n

pipj
+ · · ·+ (−1)r

n

p1 · · · pr
= n

r∏
i=1

(
1− 1

pi

)
,

where n = pe11 p
e2
2 · · · perr , with p1, . . . , pr distinct prime numbers and ei ≥ 1.

A.11. Write the power series for
1

1− ax
, a 6= 0, that is, compute the inverse of 1 − ax in the ring

Z[[x]] (or in R[[x]]).

A.12. Use formal derivatives and induction to show that

1

(1− x)k
=
∞∑
n=0

(
k − 1 + n

n

)
xn , for all k ∈ N .

A.13. A die is rolled 12 times. What is the probability that the sum is 30?

A.14. Zé wants to buy n blue, red or white marbles (the shop has a large stock in each color). In
how many ways can Zé choose n marbles so that he buys an even number in blue?

A.15. Ana, Bernardo, Carla and David organized a barbeque and bought 12 steaks and 16 sardines.
In how many ways can they share the steaks and sardines if:
(a) Each of them gets at least a steak and two sardines.



(b) Bernardo gets at least a steak and three sardines, and each of the other friends gets at
least two steaks but no more than five sardines.

A.16. Let f0(x) be the generating function for the sequence 1, 1, 1, . . . and, for k ≥ 1, let fk(x) be
the generating function for 0k, 1k, 2k, 3k, . . .. We have already shown that f0(x) = 1

1−x . Now
show that

fk(x) = x
(
fk−1(x)

)′
for k ≥ 1 .

Write the functions f1, f2 and f3 explicitly.

A.17. Show that log
( 1

1− x

)
=
∞∑
n=1

xn

n
.

A.18. Using generating functions, solve the following recurrence relation:
a0 = 1,

a1 = 2,

an = 2an−2, n ≥ 2.

A.19. Using generating function, find the general term of the Fibonacci sequence{
a0 = a1 = 1,

an = an−1 + an−2, for n ≥ 2 .

A.20. Let dn be the determinant of the following n× n (n ≥ 1) matrix

An =



2 −1 0 0 · · · 0 0
−1 2 −1 0 0

0 −1 2
. . .

. . .
...

0 0
. . .

. . .
. . . 0 0

...
. . .

. . . 2 −1 0
0 0 −1 2 −1
0 0 · · · 0 0 −1 2


.

Find a recurrence relation for dn and solve it.

A.21. Repeat the previous exercise for the matrix obtained from An
(a) replacing 2 by 3, and −1 by

√
2;

(b) replacing 2 by 0 and keeping the −1 entries.

A.22. Find a recurrence relation for sn =
∑n

i=0 i
2 and solve it.

A.23. An order k homogeneous linear recurrence relation with constant coeficients is of the form

c0an + c1an−1 + c2an−2 + · · ·+ ckan−k = 0 (n ≥ k) ,

where c0, c1, . . . , ck ∈ R are constants, and c0 6= 0. The characteristic polynomial of the
recurrence relation is defined by

p(x) = c0x
k + c1x

k−1 + · · ·+ ck−1x+ ck ∈ R[x],

and its roots are called characteristic roots.
(a) Show that the general solution of a first order recurrence relation is an = a0r

n, n ≥ 0,
where r = − c1

c0
, i.e., r is the root of the associated characteristic polynomial.

(b) Study the homogeneous quadratic (of second order) case by proving the following state-
ments:



(i) If the characteristic roots r1 and r2 are real and distinct, then the general solution is

an = A(r1)
n +B(r2)

n ,

where A,B ∈ R are constants, i.e., (r1)
n and (r2)

n are two linearly independent solu-
tions.

(ii) If there is only one characteristic root r ∈ R (of multiplicity 2), then the general solution
is

an = Arn +Bnrn ,

where A,B ∈ R are constants.
(iii) If there are two complex roots r1, r2 ∈ C, then r1 and r2 are complex conjugates and

the general solution is

an = A(r1)
n +B(r2)

n ,

where A,B ∈ C are constants (as in the real case). Show also that, if a0, a1 ∈ R, then
A and B are complex conjugates and an ∈ R, for all n ≥ 0.
[Sugestion: recall that any z ∈ C \ {0} can be written as z = ρ(cos(θ) + i sen(θ)) and
(cos(θ) + i sen(θ))n = cos(nθ) + i sen(nθ).]

(c) Generalize part (b) for relations of order k:
(i) Show that, if r ∈ R is a characteristic root with multiplicity m, then it contributes with

a(r)n = A0r
n +A1nr

n +A2n
2rn + · · ·+Am−1n

m−1rn ,

for the general solution, where A0, A1, . . . , Am−1 ∈ R are constants.
(ii) If r ∈ C is a complex characteristic root with multiplicity m, what is the contribution

of r and of its conjugate r̄ to the general solution?

A.24. Using the previous exercise, solve the following recurrence relations:
(a) an = 2an−1 + 3an−2, n ≥ 2, and a0 = 3, a1 = 5;
(b) 4an − 4an−1 + an−2 = 0, n ≥ 2, and a0 = 5, a1 = 4;
(c) an − 2an−1 + 2an−2 = 0, n ≥ 2, and a0 = a1 = 4;
(d) an = an−1 + 5an−2 + 3an−3, n ≥ 3, and a0 = a1 = 3, a2 = 7.


