Combinatória e Teoria de Códigos Exercises from the notes

Chapter 1

1.1. The following binary word

encodes a date. The encoding method used consisted in writing the date in 6 decimal digits (e.g. 290296 means February 29th, 1996), then converting it to a number in base 2 (e.g. 290296 becomes 1000110110111111000), and enconding the binary number using the rule

 $\{0,1\}^2 \longrightarrow \mathcal{C} \subset \{0,1\}^6$ $00 \longmapsto 000000$ $01 \longmapsto 001110$ $10 \longmapsto 111000$ $11 \longmapsto 110011$

The received word contains 3 unknown digits (which were deleted) and it may also contain some switched digits.

- (a) Find the deleted bits.
- (b) How many, and in which positions, are the wrong bits?
- (c) Which date is it?
- (d) Repeat the problem switching the bits in positions 15 and 16.
- 1.2. Consider the binary code {01101,00011,10110,1100}. Using minimum distance decoding, decode the following received words:
 - (a) 00000;
 - (b) 01111;
 - (c) 01101;
 - (d) 11001.
- 1.3. Consider a binary channel with the following error probabilities

P(1 received | 0 sent) = 0, 3 and P(0 sent | 1 sent) = 0, 2.

For the binary code $\{000, 100, 111\}$, use maximum likelihood decoding, to decode the received words

- (a) 010;
- (b) 011;
- (c) 001.
- 1.4. Prove that, for a symmetric binary channel, with crossover probability $p < \frac{1}{2}$, the minimum distance and maximum likelihood decoding schemes coincide.
- 1.5. What is the capacity of a code, with minimum distance d, for detecting and correcting errors simultaneously? Illustrate with examples.
- 1.6. Discuss the capacity of a code, with minimum distance d, for correcting erasure errors, and for correcting symbol errors and erasure errors *simultaneously*. Prove your statements carefully and illustrate with examples.

1.7. (A HAMMING Code) We encode a message vector with 4 binary components $m = m_1 m_2 m_3 m_4$, $m_i \in \{0, 1\}$, as a code word with 7 binary components $c = c_1 c_2 c_3 c_4 c_5 c_6 c_7$, $c_j \in \{0, 1\}$, defined by

 $c_3 = m_1$; $c_5 = m_2$; $c_6 = m_3$; $c_7 = m_4$

and the other components are chosen so that

- c_4 : such that $\alpha = c_4 + c_5 + c_6 + c_7$ is even
- c_2 : such that $\beta = c_2 + c_3 + c_6 + c_7$ is even
- c_1 : such that $\gamma = c_1 + c_3 + c_5 + c_7$ is even.

Check that with this coding scheme we get a code which corrects an error in any position. If we receive the vector $x = x_1 x_2 x_3 x_4 x_5 x_6 x_7$, we compute

$$\left.\begin{array}{l} \alpha = x_4 + x_5 + x_6 + x_7\\ \beta = x_2 + x_3 + x_6 + x_7\\ \gamma = x_1 + x_3 + x_5 + x_7 \end{array}\right\} \mod 2 \ ;$$

 $\alpha\beta\gamma$ is the binary representation of the *j* component in which the error occured. If $\alpha\beta\gamma = 000$ we assume no error occured.

Study this example carefully.

- 2.1. Show that $A_q(n,d) < A_{q+1}(n,d)$.
- 2.2. Show that, up to equivalence, there are precisely n binary codes with lenght n containing two words.
- 2.3. Show that $A_2(5,4) = 2$ and $A_2(8,5) = 4$.
- 2.4. (a) Prove Proposition 2.8, i.e., show that (i) d(x,y) = w(x-y) and (ii) $d(x,y) = w(x) + w(y) 2w(x \cap y)$, for all $x, y \in \mathbb{Z}_2^n$.
 - (b) With a counter-example, show that part (ii) of Proposition 2.8 is not true, in general, for vectors in \mathbb{Z}_3^n , n > 1.
- 2.5. Using Lemma 2.12, verify that the volume of the balls with radius n in \mathcal{A}_q^n is q^n .
- 2.6. Show that, if there is a perfect code C with parameters $(n, M, d)_q$, then $A_q(n, d) = M$ and equality holds in the Hamming Estimate.
- 2.7. Justify the statements in Example 2.20 by solving the following questions:
 - (a) Verify that a single word code satisfies equality in the Hamming Estimate.
 - (b) For $C = \mathcal{A}_q^n$, compute the packing radius $\rho_e(C)$ and the covering radius $\rho_c(C)$. Verify that C satisfies the equality in the Hamming Estimate.
 - (c) Repeat part (b) for the binary repetition codes with odd length.
- 2.8. Show that, in the definition of a perfect code, it isn't necessary to assume that the minimum distance is odd. That is, show that, if C has even minimum distance, then $\rho_e(C) < \rho_c(C)$.
- 2.9. Prove the binary and q-ary Plotkin Estimates: (a) For a (n, M, d) binary code C with n < 2d, show that

$$M \leq \left\{ \begin{array}{ll} \frac{2d}{2d-n} & \text{if } M \text{ is even} \\ \frac{2d}{2d-n} - 1 & \text{if } M \text{ is odd} \end{array} \right.$$

(b) For q-ary codes, show that

$$A_q(n,d) \le \frac{d}{d-\theta n}$$
,

where $d > \theta n$ and $\theta = \frac{q-1}{q}$.

2.10. (a) Given two vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_m)$, we define

$$(u|v) = (u_1, \ldots, u_n, v_1, \ldots, v_m)$$
.

Let C_1 and C_2 be binary codes with parameters (n, M_1, d_1) and (n, M_2, d_2) , respectively. The *Plotkin Construction* of the codes C_1 and C_2 is the code defined by

$$C_1 * C_2 = \{(u|u+v) : u \in C_1, v \in C_2\}.$$

Show that the parameters of $C_1 * C_2$ are $(2n, M_1M_2, d)$, where $d = \min\{2d_1, d_2\}$.

(b) The important family of Reed-Muller binary codes can be obtained as follows:

$$\begin{cases} \mathcal{RM}(0,m) = \{\vec{0},\vec{1}\} & \text{the binary repetition code with length } 2^m \\ \mathcal{RM}(m,m) = (\mathbb{Z}_2)^{2^m} \\ \mathcal{RM}(r,m) = \mathcal{RM}(r,m-1) * \mathcal{RM}(r-1,m-1) , \quad 0 < r < m \end{cases}$$

for $r, m \in \mathbb{N}_0$, where $C_1 * C_2$ denotes the Plotkin Construction obtained from the codes C_1 and C_2 .

Study this family of codes by showing that the parameters of RM(r,m) are: $n = 2^m$, $M = 2^{\delta(r,m)}$, where $\delta(r,m) = \sum_{i=0}^r {m \choose i}, d = 2^{m-r}$.

- 3.1. (a) Verify that the tables in Examples 3.21 and 3.22 are correct. (b) Write a (ring) isomorphism between $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ and $\mathbb{F}_2[t]/\langle t^2 + t \rangle$.
- 3.2. Find a primitive element in each of the following fields: \mathbb{F}_5 , \mathbb{F}_{11} and \mathbb{F}_{13} .
- 3.3. The field \mathbb{F}_{2^4} :
 - (a) Show that the polynomial $t^4 + t + 1$ is irreducible in $\mathbb{F}_2[t]$.
 - (b) Define $\mathbb{F}_{2^4} = \mathbb{F}_2[t]/\langle t^4 + t + 1 \rangle$ by identifying its elements and by sketching the addition and multiplication tables.
 - (c) Find a primitive element in \mathbb{F}_{2^4} .
- 3.4. List all irreducible polynomials in $\mathbb{F}_2[t]$ with degrees 2, 3 and 4.
- 3.5. Let I(p,n) be the number of irreducible monic polynomials of degree n in $\mathbb{F}_p[t]$.
 - (a) Show that $I(p, 2) = {p \choose 2}.$ $p(p^2 - 1)$

(b) Show that
$$I(p,3) = \frac{p(p^2 - 1)}{2}$$

- (c) Study Section 2.2 in the Apendix A for a proof of a formula for I(p, n).
- 3.6. Let \mathbb{F} be a field with characteristic p, with p a prime number. Show that \mathbb{F} is a vector space over \mathbb{F}_p . Conclude that the order of any finite field is a power of a prime number.
- 3.7. (a) Justify that the polynomials $t^3 + t + 1$ and $t^3 + t^2 + 1$ are irreducible in $\mathbb{F}_2[t]$.
 - (b) Justify that both quotients $A = \mathbb{F}_2[t]/\langle t^3 + t + 1 \rangle$ and $B = \mathbb{F}_2[t]/\langle t^3 + t^2 + 1 \rangle$ are isomorphic to the field \mathbb{F}_8 , and write an isomorphism $\phi: A \longrightarrow B$. [Sugestion: Let $\alpha \in A$ be a root of $1 + t + t^3$ and $\beta \in B$ be a root of $1 + t^2 + t^3$. Find a relation between α and β or, more precisely, find a root of $1 + t^2 + t^3$ in A.]
 - (c) For the description A of \mathbb{F}_8 , determine a primitive element. Justify that A is a vector space over \mathbb{F}_2 and write a basis.
- 3.8. Let V be a vector subspace of \mathbb{F}_q^n , with dimension $1 \leq k \leq n$.
 - (a) How many vectors does V contain?
 - (b) How many distinct bases does V have?
- 3.9. (a) Determine the number of nonsingular n×n square matrices with entries in a finite field Fq.
 (b) What is the probability P(q, n) of a n×n matrix over Fq being nonsingular?
- 3.10. Consider the vector space \mathbb{F}_q^n over \mathbb{F}_q . Denote by $\begin{bmatrix} n \\ k \end{bmatrix}_q$ the number of k dimensional subspaces of \mathbb{F}_q^n :
 - (a) Show that

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q^n - 1)(q^{n-1} - 1) \cdots (q^{n-k+1} - 1)}{(q^k - 1)(q^{k-1} - 1) \cdots (q - 1)} \ .$$

(b) Show that

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q + q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_q.$$

(c) Justify that

$$\lim_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k} \, .$$

- 3.11. (a) Show that \mathbb{F}_{q^m} is a vector space over \mathbb{F}_q , with the vector sum and product by a scalar defined via the operations in \mathbb{F}_{q^m} .
 - (b) Let $f(t) \in \mathbb{F}_q[t]$ be an irreducible polynomial in $\mathbb{F}_q[t]$, with degree m, and let $\alpha \in \mathbb{F}_{q^m}$ be a root f(t). Show that $\{1, \alpha, \alpha^2, \ldots, \alpha^{m-1}\}$ is a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .
- 3.12. Let V be a finite dimensional vector space over \mathbb{F}_{q^m} .
 - (a) Show that V is also a vector space over \mathbb{F}_q and

$$\dim_{\mathbb{F}_{q}}(V) = m \dim_{\mathbb{F}_{q}m}(V) ,$$

where $\dim_{\mathbb{F}}(V)$ denotes the dimension of V as an \mathbb{F} -vector space.

- (b) Let $\{v_1, \ldots, v_k\}$ be a basis of V over \mathbb{F}_{q^m} , and $\{\alpha_1, \ldots, \alpha_m\}$ be a basis of \mathbb{F}_{q^m} over \mathbb{F}_q . Show that $\{\alpha_i v_j : i = 1, \ldots, m; j = 1, \ldots, k\}$ is a basis of V over \mathbb{F}_q .
- 3.13. Let V and W be vector subspaces of \mathbb{F}_q^n . Show that the sum V + W (defined by $V + W = \{v + w \in \mathbb{F}_q^n : v \in V, w \in W\}$), and the intersectione $V \cap W$ are vector spaces. Show also that the sum V + W is the vector space generated by V and W.

3.14. Let $\langle \cdot, \cdot \rangle_H \colon \mathbb{F}_{q^2}^n \times \mathbb{F}_{q^2}^n \longrightarrow \mathbb{F}_{q^2}$ be defined by

$$\langle u, v \rangle_H = \sum_{i=1}^n u_i v_i^q \; ,$$

where $u = (u_1, \ldots, u_n), v = (v_1, \ldots, v_n) \in \mathbb{F}_{q^2}^n$. Show that $\langle \cdot, \cdot \rangle_H$ is an inner product in $\mathbb{F}_{q^2}^n$. Remark: $\langle \cdot, \cdot \rangle_H$ is the *hermitian inner product*. The *hermitian dual* of a linear code C is defined as

$$C^{\perp_H} = \{ v \in \mathbb{F}_{q^2}^n : \langle v, c \rangle_H = 0 \quad \forall c \in C \} .$$

3.15. Recall that $\mathbb{F}_4 = \mathbb{F}_2[t]/\langle t^2 + t + 1 \rangle = \{0, 1, \alpha, \alpha^2\}$, where α is a root of $t^2 + t + 1 \in \mathbb{F}_2[t]$. Show that the following linear codes over \mathbb{F}_4 are self-dual with respect to the hermitian inner product defined in the previous problem:

(a) $C_1 = \langle (1,1) \rangle \subset \mathbb{F}_4^2$, (b) $C_2 = \langle (1,0,0,1,\alpha,\alpha), (0,1,0,\alpha,1,\alpha), (0,0,1,\alpha,\alpha,1) \rangle \subset \mathbb{F}_4^6$. Are these self-dual codes with respect to the euclidean inner product?

- 4.1. Let C be a [n,k] linear code over \mathbb{F}_q . For each $i \in \{1,\ldots,n\}$, show that either $x_i = 0$ for all $x = (x_1,\ldots,x_n) \in C$, or C contains $\frac{|C|}{q} = q^{k-1}$ words with $x_i = a$, for $a \in \mathbb{F}_q$ fixed.
- 4.2. Let C be a binary linear code. Show that either all words in C have even weight, or half of them have even weight and the other half odd weight.
- 4.3. Let C be a [n, k, 2t + 1] binary code and let $C' = \{x \in C : w(x) \text{ is even}\}$ be the subcode of C consisting of the even weighted words.
 - (a) Show that C' is a linear code.
 - (b) Find the dimension of C'. Justify carefully your answer.
- 4.4. Write a generating matrix, a parity-check matrix, and the parameters [n, k, d] for the smallest linear code over \mathbb{F}_q containing the set S, when
 - (a) $q = 3, S = \{110000, 011000, 001100, 000110, 000011\};$
 - (b) $q = 2, S = \{10101010, 11001100, 11110000, 01100110, 00111100\}.$
- 4.5. Let C be a linear code with length $n \ge 4$. Let H be a parity-check matrix for C such that its columns are distinct and have odd weight. Show that $d(C) \ge 4$.
- 4.6. (a) For a q-ary linear code, with lenght n and minimum distance d, show that the vectors x ∈ Fⁿ_q with weight w(x) ≤ ⌊ d-1/2 ⌋ are coset leaders of distinct cosets of this code.
 (b) Let C be a perfect code with d(C) = 2t + 1. Show that the only coset leaders of C are the
 - (b) Let C be a perfect code with d(C) = 2t + 1. Show that the only coset leaders of C are the ones determined in part (a).
 - (c) Assuming that the perfect code C in part (b) is binary, let \widehat{C} be the code obtained from C by adding a parity-check digit, i.e.,

$$\widehat{C} = \left\{ (x_1, \dots, x_n, x_{n+1}) \in \mathbb{F}_2^{n+1} : (x_1, \dots, x_n) \in C , \sum_{i=1}^{n+1} x_i = 0 \right\} .$$

Show that the weight of any coset leader of \widehat{C} is less or equal than t + 1.

4.7. Consider the linear code over \mathbb{F}_{11} with parity-check matrix

(a) Find the parameters [n, k, d] of this code. [Suggestion: First show that in any field \mathbb{K}

$$\begin{vmatrix} 1 & 1 & 1 \\ a_1 & a_2 & a_3 \\ a_1^2 & a_2^2 & a_3^2 \end{vmatrix} = (a_3 - a_1)(a_2 - a_1)(a_3 - a_2) , \qquad \forall a_1, a_2, a_3 \in \mathbb{K} \end{vmatrix}.$$

- (b) Write a generating matrix for the code.
- (c) Describe a decoding algorithm for this code that can correct 1 error and detect 2 errors in any position.
- (d) Apply that algorithm to decode the received vectors

$$x = 0204000910$$
 e $y = 0120120120$.

4.8. Solve the analogous problem to the previous one for the linear code over \mathbb{F}_{11} with parity-check matrix

[1	1	1	1	1	1	1	1	1	1]	
1	2	3	4	5	6	$\overline{7}$	8	9	X	
1^{2}	2^2	3^2	4^2	5^2	6^{2}	7^2	8^2	9^2	X^2	
1^{3}	2^3	3^3	4^{3}	5^3	6^{3}	7^3	8^3	9^3	$\begin{array}{c} X \\ X^2 \\ X^3 \end{array}$	

Decode also the received vector z = 1204000910.

- 4.9. Find a [7, K] linear code with the largest possible rate which can correct the following error vectors: 1000000,1000001,1100001,1100011,1110011,1110111 and 1111111.
- 4.10. Consider a linear code C over $\mathbb{F}_3 = \{0, 1, 2\}$ with parity-check matrix

$$H = \begin{bmatrix} 2 & 1 & 2 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 & 0 & 0 \end{bmatrix}$$

- (a) Determine the [n, k, d] parameters of C.
- (b) Find a generator matrix in standard form for the code C.
- (c) What is the capacity of C for correcting erasure errors? Give a detailed justification.
- (d) Explain what to do with the following received words

$$x = 2101??$$
, $y = 1???12$ e $z = ???210$.

- 4.11. Prove Proposition 4.29. Show that, for a perfect code, we also have that $\alpha_i = 0$ for all i > t.
- 4.12. (a) Show that the ISBN minimum distance is 2.
 - (b) How many words in ISBN end with the symbol $X \in \mathbb{F}_{11}$?
 - (c) How many words in ISBN end with the symbol $a \in \{0, 1, \ldots, 9\} \subset \mathbb{F}_{11}$?
 - (d) Let C be the linear code over \mathbb{F}_{11} defined in Example 4.33 and let $C' \subset C$ be the subcode defined by

$$C' = \{ x \in C : x_i \neq X \mid \forall i = 1, ..., 10 \}.$$

Show that |C'| = 82644629.

[Sugestion: use the Inclusion-Exclusion Principle and Exercise 4.1.]

- 5.1. Check the equalities (5.2) in Example 5.3.
- 5.2. If there is a $[n, k, d]_q$ code, show that there is also a [n r, k r, d] code for any $1 \le r \le k 1$.
- 5.3. Given a $[n, k, d]_q$ code C,
 - (a) is there always a [n+1, k, d+1] code?
 - (b) is there always a [n+1, k+1, d] code?
- 5.4. (a) Let G_1 and G_2 be generating matrices for the q-ary linear codes C_1 and C_2 , respectively. show that

$$G = \begin{bmatrix} G_1 & 0\\ 0 & G_2 \end{bmatrix}$$

is a generating matrix for the sum code $C_1 \oplus C_2$.

- (b) Write a parity-check matrix for $C_1 \oplus C_2$ in terms of parity-check matrices H_1 and H_2 for C_1 and C_2 , respectively.
- 5.5. Repeat the previous exercise for the Plotkin construction:
 - (a) If C_1 and C_2 are linear codes, show that $C_1 * C_2$ is also linear.
 - (b) Let G_1 and G_2 be generating matrices for the q-ary linear codes C_1 and C_2 , respectively, both with length n. Show that

$$G = \begin{bmatrix} G_1 & G_1 \\ 0 & G_2 \end{bmatrix}$$

is a generating matrix for $C_1 * C_2$.

- (c) If H_1 and H_2 are parity-check matrices for C_1 and C_2 , respectively, write a parity-check matrix for $C_1 * C_2$ in terms of H_1 and H_2 .
- 5.6. Consider the linear codes C_1 and C_2 over \mathbb{F}_q , with length n and dimensions $\dim(C_i) = k_i$, i = 1, 2, and define

$$C = \{(a+x, b+x, a+b+x) : a, b \in C_1, x \in C_2\}.$$

- (a) Show that C is a lienar code with parameters $[3n, 2k_1 + k_2]$.
- (b) Write a generating matrix for C in terms of generating matrices G_1 and G_2 for C_1 and C_2 , respectively.
- (c) Write a parity-check matrix for C in terms of parity-check matrices H_1 and H_2 for C_1 and C_2 , respectively.
- 5.7. Let C be a $[n, k, d]_2$ linear code, with $k \ge 2$, and let $c \in C$, with $d \le w(c) < n$, be such that

$$G_{k \times n} = \begin{bmatrix} - & c & - \\ & G'_{(k-1) \times n} & \end{bmatrix}$$

is a generating matrix for C. If $c_{i_1} = c_{i_2} = \cdots = c_{i_{n-w}} = 0$ are the zero components of c, consider the submatrix of G'

$$G'_{1} = \begin{bmatrix} g'_{1i_{1}} & g'_{1i_{2}} & \cdots & g'_{1i_{n-w}} \\ \vdots & \vdots & \ddots & \vdots \\ g'_{(k-1)i_{1}} & g'_{(k-1)i_{2}} & \cdots & g'_{(k-1)i_{1n-w}} \end{bmatrix} .$$

The code with G'_1 as a generator matrix is called the *Residual Code* RES(C, c).

- (a) Justify that we can always choose a codeword satisfying the same conditions as c.
- (b) Show that, for a fixed $c \in C$, the code RES(C, c) does not depend on the matrix G'.

- (c) Show, with examples, that $\operatorname{RES}(C, c)$ depends on the chosen word c and, even if w(c) = cw(c'), in general we have $\operatorname{RES}(C,c) \neq \operatorname{RES}(C,c')$ and, moreover, these codes may not be equivalent.
- (d) Now fix $c \in C$, with w(c) = w(C) = d. Show that $\operatorname{RES}(C, c)$ is a [n-d, k-1, d'] code with $d' \ge \left\lceil \frac{d}{2} \right\rceil$
- (e) Define

$$n^*(k,d) = \min\{n \in \mathbb{N} : \exists \text{ a binary } [n,k,d] \text{ code}\},\$$

and show that

$$n^*(k,d) \ge \sum_{i=0}^{k-1} \left\lceil \frac{d}{2^i} \right\rceil$$
 .

- (f) Show that the binary simplex codes (the dual of the binary Hamming codes Definition 6.1) satisfy the equality in the inequality in part (e).
- 5.8. Let α be a root of $1 + t^2 + t^3 \in \mathbb{F}_2[t]$ and consider the map $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ defined by $\phi(a_1 + a_2\alpha + a_3\alpha) = 0$ $(a_3\alpha^2) = (a_1, a_2, a_3)$, where $a_1, a_2, a_3 \in \mathbb{F}_2$. Consider the linear code

$$A = \langle (\alpha + 1, \alpha^2 + 1, 1) \rangle$$

over \mathbb{F}_8 . What are the parameters of $\phi^*(A)$?

5.9. Let α be a root of $1 + t + t^2 \in \mathbb{F}_2[t]$. Consider the linear code

$$A = \langle (1,1), (\alpha, 1+\alpha) \rangle$$

over \mathbb{F}_4 , and the binary code $B = \{0000, 1100, 1010, 0110\}$. Let $\phi : \mathbb{F}_4 \to B$ be the map defined by $\phi(1) = 1100$ and $\phi(\alpha) = 1010$. What are the parameters $C = \phi^*(A)$?

- 5.10. Consider the linear code $A = \langle (1, \alpha^2, 0), (\alpha, 0, 1) \rangle$ over $\mathbb{F}_4 = \mathbb{F}_2[\alpha]$ (where $\alpha^2 = 1 + \alpha$) and the binary linear code $B = \langle 1010, 0101 \rangle$. Let A^* be the concatenation of A and B with respect to the lienar function $\phi : \mathbb{F}_4 \longrightarrow \mathbb{F}_2^4$ defined by $\phi(1) = 1010$ and $\phi(\alpha) = 1111$.
 - (a) Write a basis for the code A^* .
 - (b) Find the parameters [n, k, d] for the code A^* .

- 6.1. Let C be the binary Hamming code Ham(3,2) in Example 6.2. Decode the received vectors y = 1101101 and z = 1111111.
- 6.2. Let C be a Ham(5,2) code and assume that column j of the parity-check matrix is a binary representation of the integer j. Find the parameters of C and decode the received vector $y = \vec{e}_1 + \vec{e}_3 + \vec{e}_{15} + \vec{e}_{20}$, where \vec{e}_i is the vector with a 1 in the *i*-th coordinate and 0 in all the others.
- 6.3. Write the parameters and a parity-check matrix H for Ham(2,5). Using your matrix H, decode the received vector $y = 3\vec{e}_1 + \vec{e}_3 + 2\vec{e}_4$.
- 6.4. Write the parameters and a parity-check matrix for Ham(3, 4).
- 6.5. Describe a decoding algorithm for the extended Hamming code $\operatorname{Ham}(r,2)$ that corrects any simple error and detects double errors simultaneously.
- 6.6. Let C be the binary code with the following parity-check matrix

$$H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- (a) Determine the [n, k, d] parameters of the code C.
- (b) Show that C can be used to correct all errors with weight 1 and all errors with weight 2 with a nonzero *n*-th component. Can this code correct simultaneously all these errors plus a few more with weight 2?
- (c) Describe a decoding algorithm that corrects all errors mentioned in part (b), and decode the received vector y = 10111011.
- 6.7. (a) Show that

$$\mathcal{RM}(r,m)^{\perp} = \mathcal{RM}(m-r-1,m), \,\forall \, 0 \le r < m.$$

- (b) Show that $\mathcal{RM}(1,m)$ contains a unique word of weight 0, namely the zero word, a unique word of weight 2^m , namely the word whose components are all 1, and $2^{m+1} - 2$ words of weight 2^{m-1} .
- (c) Show that $\mathcal{RM}(1,m)$ is equivalent to the dual of an extended binary Hamming code.
- (d) Conclude that the words in the dual of a Hamming code of redunduncy r are all equidistant and have weight 2^{r-1} .
- 6.8. For each binary vector $x \in \mathbb{F}_2^n$, consider the corresponding vector $x^* \in \{+1, -1\}^n$ obtained by replacing each zero component by the real number +1 and each 1 by -1.
 - (a) Show that, if $x, y \in \mathbb{F}_2^n$, then, using the euclidean inner product in \mathbb{R}^n ,

$$\langle x^*, y^* \rangle = n - 2 \operatorname{d}(x, y) \; .$$

In particular, if $x, y \in \mathbb{F}_2^{2h}$ with d(x, y) = h, then $\langle x^*, y^* \rangle = 0$. (b) Let $\mathcal{RM}(1, m)^{\pm} = \{c_1^*, c_2^*, \dots, c_{2^{m+1}}^*\}$ be the code obtained replacing each codeword $c \in$ $\mathcal{RM}(1,m)$ by its ± 1 version c^* . Show that:

(i)
$$c^* \in \mathcal{RM}(1,m)^{\pm} \Rightarrow -c^* \in \mathcal{RM}(1,m)^{\pm}$$

(ii) $\langle c_i^*, c_j^* \rangle = \begin{cases} 2^m & \text{se } c_i^* = c_j^* \\ -2^m & \text{se } c_i^* = -c_j^* \\ 0 & \text{se } c_i^* \neq \pm c_j^* \end{cases}$

- (c) Apply part (b) to justify the following decoding algorithm: If y is the received vector, compute the inner products $\langle y, c_i^* \rangle$, for $i = 1, \ldots, 2^{m+1}$, and decode y by the codeword c_j^* which maximizes these products.
- 6.9. Justify that the Hamming codes Ham(2, q), with redundancy 2, are MDS codes.
- 6.10. Let $\mathbb{F}_4 = \{0, 1, \alpha, \alpha^2\}$, where α is a root of $1 + t + t^2$. Let C be a linear code over \mathbb{F}_4 with generating matrix

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & \alpha & \alpha^2 \end{bmatrix}$$

Write a generating matrix for the dual code C^{\perp} . Show that C and C^{\perp} are MDS codes.

- 6.11. Show that the only binary MDS codes are the trivial ones.
- 6.12. Let C be a q-ary MDS code with parameters [n, k], where k < n.
 - (a) Show that there is a q-ary MDS code with length n and dimension n k.
 - (b) Show that there is a q-ary MDS code with length n-1 and dimension k.
- 6.13. In each of the two cases below, show that the linear code C over \mathbb{F}_q with parity-check matrix H is MDS, where $\mathbb{F}_q = \{0, a_1, a_2, \dots, a_{q-1}\}$ and (a)

$$H = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_{q-1} \\ a_1^2 & a_2^2 & \alpha_3^2 & \cdots & a_{q-1}^2 \\ \vdots & \vdots & \vdots & & \vdots \\ a_1^{r-1} & a_2^{r-1} & a_3^{r-1} & \cdots & a_{q-1}^{r-1} \end{bmatrix} , \quad 1 \le r \le q-2 ;$$

$$H = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 & 0 \\ a_1 & a_2 & a_3 & \cdots & a_{q-1} & 0 & 0 \\ a_1^2 & a_2^2 & \alpha_3^2 & \cdots & a_{q-1}^2 & \vdots & \vdots \\ \vdots & \vdots & \vdots & & \vdots & 0 & 0 \\ a_1^{r-1} & a_2^{r-1} & a_3^{r-1} & \cdots & a_{q-1}^{r-1} & 0 & 1 \end{bmatrix} , \quad 1 \le r \le q-1 .$$

6.14. Let C be the code over $\mathbb{F}_4 = \{0, 1, \alpha, \alpha^2\}$ (where $\alpha^2 = 1 + \alpha$) with parity-check matrix

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & \alpha & \alpha^2 & 0 & 1 & 0 \\ 1 & \alpha^2 & \alpha & 0 & 0 & 1 \end{bmatrix} \ .$$

Show that C is a MDS code.

Try to generalize this example, or justify that it can not be done, to obtain a code over an arbitrary field \mathbb{F}_q , with length q + 2 and redundancy $3 \le r \le q - 1$.

- 7.1. Let $x, y \in \mathbb{F}_q^n$.
 - (a) Show that $w(x y) \ge w(x) w(y)$.

(b) Show that d(x, y) = w(x) - w(y) if and only if x covers y.

(These properties were used in the proof of Theorem 7.12.)

7.2. Consider the vector space $V = \mathbb{F}_q^3$.

- (a) Show that V contains $\frac{q^3-1}{q-1} = q^2 + q + 1$ 1-dimentional vector subspaces. (b) Show that V contains $\frac{q^3-1}{q-1} = q^2 + q + 1$ 2-dimentional vector subspaces.
- (c) Let \mathcal{P} be the set of 1-dimensional vector subspaces and let \mathcal{B} be the set of 2-dimensional vector subspaces. Show that \mathcal{P} (as the set of points) and \mathcal{B} (as the set of blocks), with the relation $P \in \mathcal{P}$ belongs to $B \in \mathcal{B}$ if P is a subspace of B, define a Steiner system $S(2, q+1, q^2+q+1).$ Note: Since the number of points and the number of blocks are the same, this Steiner

system is called a 2-dimensional projective geometry (or a projective plane) of order q, and it is denoted by PG(2,q) or $PG_2(q)$.

- 7.3. From the extended Golay code G_{24} , construct a Steiner system S(5, 8, 24).
- 7.4. (Generalization of the previous exercise.) Let C be a binary perfect code with length n and minimum distance 2t + 1. Show that there is a Steiner system S(t + 2, 2t + 2, n + 1).
- 7.5. Show that a q-ary Hamming code $\operatorname{Ham}(r,q)$ contains

$$A_3 = \frac{q(q^r - 1)(q^{r-1} - 1)}{6}$$

words with weight 3.

- 7.6. How many words with weight 7 are there in G_{23} ?
- 7.7. How many words with weight 5 are there in G_{11} ?
- 7.8. For any code C, we define $A_i = \#\{x \in C : w(x) = i\}$. Determine the numbers A_i for the extended Golay code G_{24} . [Suggestion: Show that $\vec{1} \in G_{24}$.]

8.1. (a) Show that the *cyclic shift* $\sigma : \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^n$ defined by

$$\sigma(x_1,\ldots,x_{n-1},x_n)=(x_n,x_1,\ldots,x_{n-1})$$

is a bijective linear function.

- (b) Show that the code C is cyclic if and only if $\sigma^i(C) = C$ for all $i \in \mathbb{Z}$.
- 8.2. (a) Show that (2, t) is not a principal ideal in Z[t].
 (b) Show that (x, y) is not a principal ideal in the ring of two variable polynomials¹ F_q[x, y].
- 8.3. For a fixed $a \in \mathbb{F}_q$, show that the set $I = \{f(t) \in \mathbb{F}_q[t] : f(a) = 0\}$ is an ideal in $\mathbb{F}_q[t]$. Determine a generator for I.
- 8.4. The ideals in the following questions are ideals in the ring $R_n = \mathbb{F}_q[t]/\langle t^n 1 \rangle$. Assuming that $g(t)|t^n 1$ in $\mathbb{F}_q[t]$, show that
 - (a) $\langle f_1(t) \rangle \subset \langle f_2(t) \rangle$ if and only if $f_2(t)$ divides $f_1(t)$ in R_n ;
 - (b) $\langle f(t) \rangle = \langle g(t) \rangle$ if and only if there exists $a(t) \in \mathbb{F}_q[t]$ such that $f(t) \equiv a(t)g(t) \pmod{t^n 1}$ and gcd(a(t), h(t)) = 1, where $h(t)g(t) = t^n - 1$;
- 8.5. Factorize $t^7 1$ in $\mathbb{F}_2[t]$ and identify all cyclic binary codes with length 7.
- 8.6. Classify all cyclic codes with length 4 over \mathbb{F}_3 . Conclude that the ternary Hamming code $\operatorname{Ham}(2,3)$ is not equivalent to a cyclic code.
- 8.7. (a) Write $t^{12} 1$ as a product of irreduble polynomials in $\mathbb{F}_3[t]$.
 - (b) How many ternary cyclic codes of length 12 are there?
 - (c) Determine the integers k for which there is a ternary [12, k] cyclic code.
 - (d) How many ternary [12,9] cyclic codes are there?
- 8.8. Let C be a binary cyclic code with generator polynomial g(t).
 - (a) Show that, if t 1 divides g(t), then all code words have even weight.
 - (b) Assuming that C has odd length, show that C contains a word with odd weight if and only if the vector $\vec{1} = (1, ..., 1)$ is a code word.
- 8.9. (a) Determine the generator polynomial and the dimension of the smallest binary cyclic code which contains the word $c = 1110010 \in \mathbb{F}_2^7$.
 - (b) Write a generating matrix, the check polinomial and the parity-check matrix for the code your code in part (a).
- 8.10. (a) Determine the generator polynomial and the dimension of the smallest ternary cyclic code which contains the word c = 212110.
 - (b) What's the minimum distance of that code? Justify your answer.
- 8.11. Let C be a cyclic code, with length n, with generator polynomial g(t). Show that, if $C = \langle f(t) \rangle$, i.e., if f(t) is a generator for the ideal C, then $g(t) = \gcd(f(t), t^n 1)$. In particular, conclude that the generator polynomial of the smallest cyclic code, with length n, containing f(t) is $g(t) = \gcd(f(t), t^n 1)$.
- 8.12. If g(t) is the generator polynomial of a cyclic code, show that $\langle g(t) \rangle$ and $\langle \bar{g}(t) \rangle$ are equivalent codes. Conclude that the code generated by the check polynomial of a cyclic code C is equivalent to the dual code C^{\perp} .

¹This holds in $\mathbb{K}[x, y]$, with \mathbb{K} any field.

8.13. Suppose that, in $\mathbb{F}_2[t]$,

$$t^n - 1 = (t - 1)g_1(t)g_2(t)$$

- and that $\langle g_1(t) \rangle$ and $\langle g_2(t) \rangle$ are equivalent codes. Show that:
- (a) If c(t) is a code word in $\langle g_1(t) \rangle$ with odd weight w, then
 - (i) $w^2 \ge n;$
 - (ii) If, moreover, $g_2(t) = \overline{g}_1(t)$, then $w^2 w + 1 \ge n$.
- (b) If n is an odd prime number, $g_2(t) = \overline{g}_1(t)$ and c(t) is a code word in $\langle g_1(t) \rangle$ with even weight w, then
 - (i) $w \equiv 0 \pmod{4}$;
 - (ii) $n \neq 7 \Rightarrow w \neq 4$.
- (c) Show that the binary cyclic code with length 23 generated by the polynomial $g(t) = 1 + t^2 + t^4 + t^5 + t^6 + t^{10} + t^{11}$ is a perfect code [23, 12, 7] the binary Golay Code.
- 8.14. (a) Let g(t) be the generator polynomial of a binary Hamming code Ham(r, 2), with $r \ge 3$. Show that the parameter of $C = \langle (t-1)g(t) \rangle$ are $[2^r - 1, 2^r - r - 2, 4]$. [Suggestion: apply exercise 8.8.]
 - (b) Show that the code C can be used to correct all adjacent double errors.
- 8.15. (Generalization of the previous exercise.) Let $C = \langle (t+1)f(t) \rangle$ be a binary cyclic code with length n, where $f(t) \mid t^n 1$, but $f(t) \nmid t^k 1$, for $1 \leq k \leq n 1$. Show that C corrects all simple errors and also the adjacent double errors.
- 8.16. Consider binary cyclic code with length n = 15 generated by the polynomial $g(t) = 1 + t^3 + t^4 + t^5 + t^6$.
 - (a) Justify that g(t) is indeed the generator polynomial of this code.
 - (b) Write a generator matrix, the check polynomial and a parity-check matrix for this code.
 - (c) Write a generator matrix in the form $G = \begin{bmatrix} R & I \end{bmatrix}$ for this code and the corresponding parity-check matrix.
 - (d) Use systematic coding to encode the message vector m = 010010001.
 - (e) Given that this code has minimum distance d(C) = 5, decode the received vector y = 010011000111010, and carefully justify your procedure.
- 8.17. (a) Verify that $g(t) = 2 + t^2 + 2t^3 + t^4 + t^5$ divides $t^{11} 1$ in $\mathbb{F}_3[t]$.
 - (b) Let C be the ternary cyclic code generated by g(t). Knowing that it's a $[11, 6, 5]_3$ code, use the Error Trapping Algorithm to decode the received vector y = 20121020112.
 - (c) What is the proportion of errors with weight 2 which are not corrected by this algorithm?
- 8.18. Consider the binary cyclic code [15, 5, 7] with generator polynomial $g(t) = 1 + t + t^2 + t^4 + t^5 + t^8 + t^{10}$.
 - (a) Justify that the Error Trapping Algorithm can correct all error vectors with weight ≤ 3 except for $\hat{e} = 100001000010000$ and its cyclic shifts $\sigma^{j}(\hat{e})$.
 - (b) Decode the received vector y = 111101010011101.
 - (c) (i) Complete this algorithm so that it also corrects the errors of the form \hat{e}^{j} , j = 0, 1, 2, 3, 4. [Sugestion: Note that the syndrome of $\hat{e}(t)$ is $1 + t^5 + \rho(t)$, where $\rho(t)$ is the remainder of the division of t^{10} by g(t).]
 - (ii) Decode the received vector y' = 111000111100100.
- 8.19. Consider again the binary cyclic with length n = 15 with generator polynomial $g(t) = 1 + t^3 + t^4 + t^5 + t^6$ as in Exercise 8.16.
 - (a) Verify that, although this is a code with minimum distance 5, it corrects up to burst 3-errors. Explain carefully the meaning of that statement and justify your answer.
 - (b) Decode the received vector y = 011100000111000 using the Burst-Error Trapping Algorithm.

- 8.20. Show that the interleaved code of degree $s, C^{(s)}$, is equivalent to the sum code $C \oplus \cdots \oplus C$ of s copies of C. Conclude that $d(C^{(s)}) = d(C)$.
- 8.21. Finish the proof of Theorem 8.52 (a): Let C be a q-ary linear code and let $x^{(s)}$ and $y^{(s)}$ be the vectors obtained by interleaving $x_1, \ldots, x_s \in C$ and $y_1, \ldots, y_s \in C$, respectively. Show that
 - (i) $x^{(s)} + y^{(s)}$ is the result of interleaving the vectors $x_1 + y_1, \ldots, x_s + y_s$;
 - (ii) $ax^{(s)}$ is the result of interleaving the vectors ax_1, \ldots, ax_s , where $a \in \mathbb{F}_q$.
- 8.22. Let C = Ham(3, 2) be the binary Hamming code with redundancy 3 and generator polynomial $g(t) = 1 + t + t^3$.
 - (a) Find the parameters and the generator polynomial of $C^{(3)}$.
 - (b) Show that $C^{(3)}$ corrects all *m*-burst errors with $m \leq 3$.
 - (c) Using the Burst Error Trapping Algorithm, decode the following received vector

$$y(t) = t + t^3 + t^5 + t^7 + t^8 + t^9 + t^{11}$$
.

- 8.23. A q-ary cyclic code, with length n, is called *degenerate* if there is $r \in \mathbb{N}$ such that r divides n and each code word is of the form $c = c'c' \cdots c'$ with $c' \in \mathbb{F}_q^r$, i.e., each code word consists of n/r identical copies of a sequence c' with length r.
 - (a) Show that the interleaved code $C^{(s)}$ of a repetition code C is degenerate.
 - (b) Show that the generator polynomial of a degenerate cyclic code with lenth n is of the form

$$g(t) = a(t)(1 + t^r + t^{2r} + \dots + t^{n-r})$$
.

- (c) Show that a cyclic code with lenght n and check polymonial h(t) is degenerate if and only if there is $r \in \mathbb{N}$ such that r divides n and h(t) divides $t^r 1$.
- 8.24. Let C be the binary linear code with the following parity-check matrix

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- (a) Find the minimum distance d(C), and determine the code capacity for detecting and correcting random errors.
- (b) Show that C detects all burst-m errors with m ≤ 3.
 Note: In this exercise, we consider only burst-m errors in the "strict sense", i.e., vectors in the form (0,...,0,1,*,...,*,1,0,...,0) where all nonzero coordenates have indices between i ≥ 1 and i + m 1 ≤ n.
- (c) Let C' be the punctured code, in the last coordinate, of the dual code C^{\perp} . Show that C' is a degenerate cyclic code, and determine its generator polynomial.
- 8.25. Determine all degenerate, cyclic and binary codes with length 9, writing the generator polynomials and the corresponding r-sequences.

- 9.1. Write a generator matrix and a parity-check matrix for a Reed-Solomon code [6, 4], and determine its minimum distance.
- 9.2. Determine the generator polynomial of a Reed-Solomon over \mathbb{F}_{16} with dimension 11. Write a parity-check matrix for that code.
- 9.3. Show that the dual of a Reed-Solomon code is a Reed-Solomon code.
- 9.4. Let C be the Reed-Solomon code over \mathbb{F}_8 with generator polynomial $g(t) = (t-\alpha)(t-\alpha^2)(t-\alpha^3)$, where $\alpha \in \mathbb{F}_8$ is a root of $1 + t + t^3$.
 - (a) Justify that α is a primitive element in \mathbb{F}_8 .
 - (b) Find the parameters of C.
 - (c) Find the parameters of the dual code C^{\perp} .
 - (d) Find the parameters of the extended code \widehat{C} .
 - (e) Find the parameters of the concatenation code $C^* = \phi^*(C)$, where $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ is the linear map defined by $\phi(1) = 100$, $\phi(\alpha) = 010$ and $\phi(\alpha^2) = 101$.
- 9.5. (a) Write the generator polynomial for a Reed-Solomon code C, with parameters [7, 2].
 - (b) Let α be a root of $1 + t + t^3 \in \mathbb{F}_2[t]$ and consider the map $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ defined by $\phi(a_0 + a_1\alpha + a_2\alpha^2) = (a_0, a_1, a_2)$. Find the parameters of $C^* = \phi^*(C)$.
 - (c) Let $\widehat{\phi} : \mathbb{F}_8 \to \mathbb{F}_2^4$ be defined by $\widehat{\phi}(a_0 + a_1\alpha + a_2\alpha^2) = (a_0, a_1, a_2, a_0 + a_1 + a_2)$. Find the parameters of $C' = \widehat{\phi}^*(C)$.
 - (d) What can you say about the capacity of C^* and C' for correcting random errors and/or burst errors?
- 9.6. Consider the Reed-Solomon code C over \mathbb{F}_8 with the following generator polynomial:

$$g(t) = (t - \alpha)(t - \alpha^2)(t - \alpha^3)(t - \alpha^4) = \alpha^3 + \alpha t + t^2 + \alpha^3 t^3 + t^4 ,$$

where we identify \mathbb{F}_8 with the quotient $\mathbb{F}_2[t]/\langle 1+t+t^3\rangle$, and $\alpha \in \mathbb{F}_8$ is a root of $1+t+t^3$. (a) Find the parameters [n, k, d] of C.

- (b) Apply the Error Trapping Algorithm to decode the following received vectors $y = (0, 1, 0, \alpha^2, 0, 0, 0)$ and $z = (0, \alpha^3, 0, 1, \alpha^3, 1, 1)$.
- (c) Let $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ be a linear isomorphism over \mathbb{F}_2 . What can you say about the capacity of the concatenation code $C^* = \phi^*(C)$ for correcting burst errors?
- 9.7. Recall that a linear code C is *self-orthogonal* if $C \subset C^{\perp}$. Determine the generator polynomial of all self-orthogonal Reed-Solomon codes over \mathbb{F}_{16} . Which of these codes are self-dual?
- 9.8. Consider the linear code over \mathbb{F}_{11} with genuing matrix

- (a) Show that this code is equivalent to a cyclic code C.
- (b) Determine the generator polymonial and conclude that C is a Reed-Solomon code.

9.9. (Generalization of the previous exercise.) Let C be a [q-1,k] code, over \mathbb{F}_q , with generator matrix

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \alpha^3 & \cdots & \alpha^{q-2} \\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \cdots & \alpha^{2(q-2)} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & \alpha^{k-1} & \alpha^{2(k-1)} & \alpha^{3(k-1)} & \cdots & \alpha^{(q-2)(k-1)} \end{bmatrix},$$

where α is a primitive element in \mathbb{F}_q and $1 \le k \le q-2$. (a) Show that C is a cyclic code.

- (b) Determine the generator polynomial and conclude that C is a Reed-Solomon code.

Appendix A

- A.1. Prove the Inclusion-Exclusion Principle by induction on the number of the sets E_i , $1 \le i \le r$.
- A.2. How many integers between 1 and 1000 are not divisible by 2, 3, 5, but are divisible by 7?
- A.3. How many permutations of $\{a, b, c, \ldots, x, y, z\}$ do not contain the words sim, riso, mal and cabe?
- A.4. How many integer solutions to $x_1 + x_2 + x_3 + x_4 = 21$ are there if:
 - (a) $x_i \ge 0, i = 1, 2, 3, 4;$

 - (b) $0 \le x_i \le 8, i = 1, 2, 3, 4;$ (c) $0 \le x_1 \le 5, 0 \le x_2 \le 6, 3 \le x_3 \le 8, 4 \le x_4 \le 9.$
- A.5. Determine the number of monic polynomials of degree n in $\mathbb{F}_q[t]$ without roots in \mathbb{F}_q , where \mathbb{F}_q is a field with q elements.
- A.6. (a) How many integers n between 1 and 15000 satisfy gcd(n, 15000) = 1? (b) How many integers n between 1 and 15000 have a common divisor with 15000?
- A.7. Compute $\phi(n)$ and $\mu(n)$ for: (i) 51, (ii) 82, (iii) 200, (iv) 420 and (v) 21000.
- A.8. Find all positive integers $n \in \mathbb{N}$ such that
 - (a) $\phi(n)$ is odd;
 - (b) $\phi(n)$ is a power of 2;
 - (c) $\phi(n)$ is a multiple of 4.
- A.9. Show that $\phi(n^m) = n^{m-1}\phi(n)$, for $n, m \in \mathbb{N}$.
- A.10. Prove the following properties of the Euler function:
 - (i) if p is prime, then $\phi(p) = p 1$ and $\phi(p^k) = p^k p^{k-1}$;
 - (ii) if n = ab with gcd(a, b) = 1, then $\phi(n) = \phi(a)\phi(b)$.

And use them to show that

$$\phi(n) = n - \sum_{i=1}^{r} \frac{n}{p_i} + \sum_{1 \le i < j \le r} \frac{n}{p_i p_j} + \dots + (-1)^r \frac{n}{p_1 \cdots p_r} = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right) \,,$$

where $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$, with p_1, \ldots, p_r distinct prime numbers and $e_i \ge 1$.

- A.11. Write the power series for $\frac{1}{1-ax}$, $a \neq 0$, that is, compute the inverse of 1-ax in the ring $\mathbb{Z}[[x]]$ (or in $\mathbb{R}[[x]]$).
- A.12. Use formal derivatives and induction to show that

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{k-1+n}{n} x^n , \quad \text{for all } k \in \mathbb{N} .$$

- A.13. A die is rolled 12 times. What is the probability that the sum is 30?
- A.14. Zé wants to buy n blue, red or white marbles (the shop has a large stock in each color). In how many ways can Zé choose n marbles so that he buys an even number in blue?
- A.15. Ana, Bernardo, Carla and David organized a barbeque and bought 12 steaks and 16 sardines. In how many ways can they share the steaks and sardines if: (a) Each of them gets at least a steak and two sardines.

- (b) Bernardo gets at least a steak and three sardines, and each of the other friends gets at least two steaks but no more than five sardines.
- A.16. Let $f_0(x)$ be the generating function for the sequence 1, 1, 1, ... and, for $k \ge 1$, let $f_k(x)$ be the generating function for $0^k, 1^k, 2^k, 3^k, ...$ We have already shown that $f_0(x) = \frac{1}{1-x}$. Now show that

$$f_k(x) = x (f_{k-1}(x))'$$
 for $k \ge 1$.

Write the functions f_1, f_2 and f_3 explicitly.

A.17. Show that $\log\left(\frac{1}{1-x}\right) = \sum_{n=1}^{\infty} \frac{x^n}{n}$.

A.18. Using generating functions, solve the following recurrence relation:

$$\begin{cases} a_0 = 1, \\ a_1 = 2, \\ a_n = 2a_{n-2}, \quad n \ge 2. \end{cases}$$

A.19. Using generating function, find the general term of the Fibonacci sequence

$$\begin{cases} a_0 = a_1 = 1, \\ a_n = a_{n-1} + a_{n-2}, & \text{for } n \ge 2. \end{cases}$$

A.20. Let d_n be the determinant of the following $n \times n$ $(n \ge 1)$ matrix

$$A_n = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & 0 & & & 0 \\ 0 & -1 & 2 & \ddots & \ddots & & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots & 0 & 0 \\ \vdots & & \ddots & \ddots & 2 & -1 & 0 \\ 0 & & 0 & -1 & 2 & -1 \\ 0 & 0 & \cdots & 0 & 0 & -1 & 2 \end{bmatrix}$$

Find a recurrence relation for d_n and solve it.

- A.21. Repeat the previous exercise for the matrix obtained from A_n
 - (a) replacing 2 by 3, and -1 by $\sqrt{2}$;
 - (b) replacing 2 by 0 and keeping the -1 entries.
- A.22. Find a recurrence relation for $s_n = \sum_{i=0}^n i^2$ and solve it.
- A.23. An order k homogeneous linear recurrence relation with constant coefficients is of the form

$$c_0 a_n + c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} = 0 \quad (n \ge k)$$

where $c_0, c_1, \ldots, c_k \in \mathbb{R}$ are constants, and $c_0 \neq 0$. The *characteristic polynomial* of the recurrence relation is defined by

$$p(x) = c_0 x^k + c_1 x^{k-1} + \dots + c_{k-1} x + c_k \in \mathbb{R}[x],$$

and its roots are called *characteristic roots*.

- (a) Show that the general solution of a first order recurrence relation is $a_n = a_0 r^n$, $n \ge 0$, where $r = -\frac{c_1}{c_0}$, i.e., r is the root of the associated characteristic polynomial.
- (b) Study the homogeneous quadratic (of second order) case by proving the following statements:

(i) If the characteristic roots r_1 and r_2 are real and distinct, then the general solution is

$$a_n = A(r_1)^n + B(r_2)^n$$
,

where $A, B \in \mathbb{R}$ are constants, i.e., $(r_1)^n$ and $(r_2)^n$ are two linearly independent solutions.

(ii) If there is only one characteristic root $r \in \mathbb{R}$ (of multiplicity 2), then the general solution is

$$a_n = Ar^n + Bnr^n ,$$

where $A, B \in \mathbb{R}$ are constants.

(iii) If there are two complex roots $r_1, r_2 \in \mathbb{C}$, then r_1 and r_2 are complex conjugates and the general solution is

$$a_n = A(r_1)^n + B(r_2)^n$$
,

where $A, B \in \mathbb{C}$ are constants (as in the real case). Show also that, if $a_0, a_1 \in \mathbb{R}$, then A and B are complex conjugates and $a_n \in \mathbb{R}$, for all $n \ge 0$.

[Suggestion: recall that any $z \in \mathbb{C} \setminus \{0\}$ can be written as $z = \rho(\cos(\theta) + i \operatorname{sen}(\theta))$ and $(\cos(\theta) + i \operatorname{sen}(\theta))^n = \cos(n\theta) + i \operatorname{sen}(n\theta)$.]

- (c) Generalize part (b) for relations of order k:
 - (i) Show that, if $r \in \mathbb{R}$ is a characteristic root with multiplicity m, then it contributes with

$$a_n^{(r)} = A_0 r^n + A_1 n r^n + A_2 n^2 r^n + \dots + A_{m-1} n^{m-1} r^n$$
,

for the general solution, where $A_0, A_1, \ldots, A_{m-1} \in \mathbb{R}$ are constants.

(ii) If $r \in \mathbb{C}$ is a complex characteristic root with multiplicity m, what is the contribution of r and of its conjugate \bar{r} to the general solution?

A.24. Using the previous exercise, solve the following recurrence relations:

- (a) $a_n = 2a_{n-1} + 3a_{n-2}, n \ge 2$, and $a_0 = 3, a_1 = 5$;
- (b) $4a_n 4a_{n-1} + a_{n-2} = 0$, $n \ge 2$, and $a_0 = 5$, $a_1 = 4$;
- (c) $a_n 2a_{n-1} + 2a_{n-2} = 0$, $n \ge 2$, and $a_0 = a_1 = 4$;
- (d) $a_n = a_{n-1} + 5a_{n-2} + 3a_{n-3}$, $n \ge 3$, and $a_0 = a_1 = 3$, $a_2 = 7$.