COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 2

2/3/2011

Exercises 2.2 - 2.4, 2.6 - 2.11 (R. Hill)

Problem 1. a) Exercises 2.17 and 2.19 in R. Hill;

b) (Generalization of 2.19) The important familly of Reed-Muller binary codes can be obtained as follows:

 $\begin{array}{l} \forall \, r, m \in \mathbb{N}_0: \left\{ \begin{array}{l} \mathsf{RM}(0,m) = \{\vec{0},\vec{1}\} & \text{the binary repetition code with length } 2^m \\ \mathsf{RM}(m,m) = \left(\mathbb{F}_2\right)^{2^m} \\ \mathsf{RM}(r,m) = \mathsf{RM}(r,m-1) \ast \mathsf{RM}(r-1,m-1) \ , \quad 0 < r < m \end{array} \right. \end{array}$

where $C_1 * C_2$ denotes the Plotkin Construction obtained from the codes C_1 and C_2 .

Study this family of codes by showing that the parameters of RM(r,m) are: $n = 2^m$, $M = 2^{\delta(r,m)}$, where $\delta(r,m) = \sum_{i=0}^r \binom{m}{i}$, $d = 2^{m-r}$.

Problem 2. a) Exercises 2.20 - 2.22 in R. Hill;

b) (Generalization of the Plotkin Bound) For q-ary codes, show that

$$A_{q}(n,d) \leq \frac{d}{d-\theta n}$$
,

where $d > \theta n$ and $\theta = \frac{q-1}{q}$.