COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 3

$5 / 3 / 2011$

Exercises 3.1-3.14 + 4.1-4.6 (R. Hill)

Problem 1. (The field $\mathbb{F}_{2^{4}}$)
a) Show that the polynomial $x^{4}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$.
b) Define $\mathbb{F}_{2^{4}}=\mathbb{F}_{2}[x] /\left\langle\chi^{4}+x+1\right\rangle$ by identifiying its elements and by sketching the addition and multiplication tables.
c) Find a primitive element in $\mathbb{F}_{2^{4}}$.

Problem 2. Let $I(p, n)$ be the number of irreducible monic polynomials of degree n in $\mathbb{F}_{p}[x]$.
a) Show that

$$
\mathrm{I}(\mathrm{p}, 2)=\binom{\mathrm{p}}{2}
$$

b) Show that

$$
\mathrm{I}(\mathrm{p}, 3)=\frac{\mathrm{p}\left(\mathrm{p}^{2}-1\right)}{3}
$$

${ }^{*} \mathbf{c}$) There is a general formula for $\mathrm{I}(\mathrm{p}, \mathrm{n})$. If you are interested in that, try to find that formula and how to prove it. It allows us to show that $I(p, n)>0$ for all primes p and for all positive integers n and, as a consequence, we can built finite fields of orders $q=p^{n}$.

Problem 3.

Consider the vector space $(\mathrm{GF}(\mathrm{q}))^{n}$
a) Denote by $\left[\begin{array}{l}n \\ k\end{array}\right]_{\mathrm{q}}$ the number of k dimentional subspaces of $\left.(\mathrm{GF})(\mathrm{q})\right)^{n}$:
(i) Show that

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}
$$

(ii) Show that

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q} ;
$$

(iii) Justify that

$$
\lim _{\mathrm{q} \rightarrow 1}\left[\begin{array}{l}
\mathrm{n} \\
\mathrm{k}
\end{array}\right]_{\mathrm{q}}=\binom{\mathrm{n}}{\mathrm{k}} ;
$$

b) (i) Determine the number of nonsingular $n \times n$ square matrices with entries in a finite field $G \mathbb{F}(q)$;
(ii) What's the probability $P(q, n)$ of a $n \times n$ matrix over $G \mathbb{F}(q)$ being nonsingular?
$\left.{ }^{*}\right)($ iii $)$ For q fixed, show that

$$
\lim _{n \rightarrow \infty} P(q, n)=c(q)
$$

exists and $0<c(q)<1$. (For $q=2, c(2) \simeq 0,2887$.)

