COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 4

5/3/2011

Exercises 7.1 - 7.9 + 7.11 (R. Hill)

Problem 1. Consider the linear code over \mathbb{F}_{11} with parity-check matrix

	[1	1	1	1	1	1	1	1	1	1	1
H =	1	2	3	4	5	6	7	8	9	Х	.
	1 ²	2 ²	3 ²	4 ²	5^{2}	6 ²	7^{2}	8 ²	9 ²	X ²	

a) Find the parameters [n,k,d] of this code. [SUGESTION : First show that in any field $\mathbb K$

$$\begin{vmatrix} 1 & 1 & 1 \\ a_1 & a_2 & a_3 \\ a_1^2 & a_2^2 & a_3^2 \end{vmatrix} = (a_3 - a_1)(a_2 - a_1)(a_3 - a_2), \forall a_1, a_2, a_3 \in \mathbb{K}].$$

b) Write a generating matrix for the code;

c) (i) Describe a decoding algorithm for this code that can correct 1 error and detect 2 errors in any position.

(ii) Apply that algorithm to decode the received vectors

x = 0204000910; y = 0120120120.

Problem 2. The analogous problem to the previous one for the linear code over \mathbb{F}_{11} with parity-check matrix

Decode also the received vector

$$z = 1204000910.$$

Remark: In Chapter 11 of R. Hill, read about this problem and futher generalizations.

Problem 3. a) Study in detail and explain the solution to Exercise 7.10 in R. Hill.

b) Find a different way to solve that exercise.

c) Find a [7, K] linear code with the largest possible rate which can correct the following error vectors: 1000000,1000001,1100001,1100011,1110011,1110111 and 1111111.