COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 4

$$
5 / 3 / 2011
$$

Exercises 7.1-7.9 + 7.11 (R. Hill)
Problem 1. Consider the linear code over \mathbb{F}_{11} with parity-check matrix

$$
H=\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & X \\
1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} & 7^{2} & 8^{2} & 9^{2} & X^{2}
\end{array}\right]
$$

a) Find the parameters $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ of this code. [SUGESTION : First show that in any field \mathbb{K}

$$
\left.\left|\begin{array}{ccc}
1 & 1 & 1 \\
a_{1} & a_{2} & a_{3} \\
a_{1}^{2} & a_{2}^{2} & a_{3}^{2}
\end{array}\right|=\left(a_{3}-a_{1}\right)\left(a_{2}-a_{1}\right)\left(a_{3}-a_{2}\right), \forall a_{1}, a_{2}, a_{3} \in \mathbb{K}\right]
$$

b) Write a generating matrix for the code;
c) (i) Describe a decoding algorithm for this code that can correct 1 error and detect 2 errors in any position.
(ii) Apply that algorithm to decode the received vectors

$$
\mathrm{x}=0204000910 ; \quad \mathrm{y}=0120120120
$$

Problem 2. The analogous problem to the previous one for the linear code over \mathbb{F}_{11} with parity-check matrix

$$
\mathrm{H}=\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & X \\
1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} & 7^{2} & 8^{2} & 9^{2} & X^{2} \\
1^{3} & 2^{3} & 3^{3} & 4^{3} & 5^{3} & 6^{3} & 7^{3} & 8^{3} & 9^{3} & X^{3}
\end{array}\right]
$$

Decode also the received vector

$$
\mathrm{z}=1204000910
$$

Remark: In Chapter 11 of R. Hill, read about this problem and futher generalizations.

Problem 3. a) Study in detail and explain the solution to Exercise 7.10 in R. Hill.
b) Find a different way to solve that exercise.
c) Find a $[7, K]$ linear code with the largest possible rate which can correct the following error vectors: $1000000,1000001,1100001,1100011,1110011,1110111$ and 1111111.

