COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 5

Exercises $8.1-8.12+9.1-9.11$ (R. Hill)

1. a) Exercise 5.12 in Hill;
b) If G_{1} e G_{2} are generator matrices for the codes C_{1} and C_{2}, respectevely, write a generator matrix for $C_{1} * C_{2}$ (Plotkin construction) in terms of G_{1} and G_{2}. [First, find the number or columns and rows of G.]
c) Denote by $G(r, m)$ the generator matrix of $\mathcal{R} \mathcal{M}(r, m)$. Write a recursive definition for these matrices. [Consider separately the cases $r=0, r=m$ and $0<r<m$.]
2. a) Show that

$$
\mathcal{R} \mathcal{M}(\mathrm{r}, \mathrm{~m})^{\perp}=\mathcal{R} \mathcal{M}(\mathrm{m}-\mathrm{r}-1, \mathrm{~m}), \forall 0 \leq \mathrm{r}<\mathrm{m}
$$

b) Show that $\mathcal{R} \mathcal{M}(1, m)$ contains a unique word of weight 0 , namely the zero word, a unique word of weight 2^{m}, namely the word whose components are all 1 , and $2^{m+1}-2$ words of weight 2^{m-1}.
c) Show that $\mathcal{R} \mathcal{M}(1, m)$ is equivalent to the dual of an extended binary Hamming code.
d) Conclude that the dual of a Hamming code is a simplex code, that is, conclude that the words in the dual of a Hamming code of redunduncy r are all equidistant and have weight 2^{r-1}.
3. For each binary vector $\mathrm{x} \in \mathbb{F}_{2}^{n}$, consider the corresponding vector $\mathbf{x}^{*} \in\{+1,-1\}^{n}$ obtained by replacing each zero component by the real number +1 and each 1 by -1 .
a) Show that, if $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{2}^{n}$, then, using the euclidean inner product in \mathbb{R}^{n},

$$
\left\langle\mathrm{x}^{*}, \mathrm{y}^{*}\right\rangle=\mathrm{n}-2 \mathrm{~d}(\mathrm{x}, \mathrm{y})
$$

In particular, if $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{2}^{2 h}$ with $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{h}$, then $\left\langle\mathrm{x}^{*}, \mathbf{y}^{*}\right\rangle=0$;
b) Let $\mathcal{R} \mathcal{M}(1, m)^{ \pm}=\left\{\mathbf{c}_{1}^{*}, \mathbf{c}_{2}^{*}, \ldots, \mathbf{c}_{2^{m+1}}^{*}\right\}$ be the code obtained replacing each codeword \mathbf{c} in $\mathcal{R} \mathcal{M}(1, m)$ by its ± 1 version \mathbf{c}^{*}. Show that:
(i) $\mathbf{c}^{*} \in \mathcal{R} \mathcal{M}(1, m)^{ \pm} \Rightarrow-\mathbf{c}^{*} \in \mathcal{R} \mathcal{M}(1, m)^{ \pm}$;
(ii)

$$
\left\langle\mathbf{c}_{i}^{*}, \mathbf{c}_{j}^{*}\right\rangle=\left\{\begin{array}{lll}
2^{m} & \text { if } & \mathbf{c}_{i}^{*}=\mathbf{c}_{j}^{*} \\
-2^{m} & \text { if } & \mathbf{c}_{i}^{*}=-\mathbf{c}_{j}^{*} \\
0 & \text { if } & \mathbf{c}_{i}^{*} \neq \pm \mathbf{c}_{j}^{*}
\end{array}\right.
$$

c) Apply part b) to justify the following decoding algorithm: If \mathbf{y} is the received vector, compute the inner products $\left\langle\mathbf{y}, \mathbf{c}_{\mathfrak{i}}^{*}\right\rangle$, for $\mathfrak{i}=1, \ldots, 2^{m+1}$, and decode y by the codeword \mathbf{c}_{j}^{*} which maximizes these products.
4. Let C be a $[n, k, d]_{2}$ binary linear code, with $k \geq 2$, and let $\mathbf{c} \in C$, with $d \leq w(c)<n$, be such that

$$
G_{k \times n}=\left[\begin{array}{ccc}
- & \mathbf{c} & - \\
& G_{(k-1) \times n}^{\prime} &
\end{array}\right]
$$

is a generator matrix for C.

If $\boldsymbol{c}_{\mathfrak{i}_{1}}=\boldsymbol{c}_{\mathfrak{i}_{2}}=\cdots=\boldsymbol{c}_{\mathfrak{i}_{n-w}}=0$ are the zero components of \mathbf{c}, consider the submatrix of G^{\prime}

$$
G_{1}^{\prime}=\left[\begin{array}{cccc}
g_{1 i_{1}}^{\prime} & g_{1 i_{2}}^{\prime} & \cdots & g_{1 i_{n-w}}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
g_{(k-1) i_{1}}^{\prime} & g_{(k-1) i_{2}}^{\prime} & \cdots & g_{(k-1) i_{1 n-w}}^{\prime}
\end{array}\right]
$$

The code with G^{\prime} as a generator matrix is called the Residual Code RES(C, c).
a) Justify that we can always choose a codeword satisfying the same conditions as \mathbf{c};
b) Show that, for a fixed $\mathbf{c} \in C$, the code $\operatorname{RES}(C, \mathbf{c})$ does not depend on the matrix G^{\prime};
c) Show, with examples, that $\operatorname{RES}(\mathrm{C}, \mathbf{c})$ depends on the chosen word \mathbf{c}, and, even if $\mathrm{w}(\mathbf{c})=\mathrm{w}\left(\mathbf{c}^{\prime}\right)$, in general we have $\operatorname{RES}(\mathrm{C}, \mathbf{c}) \neq \operatorname{RES}\left(\mathrm{C}, \mathbf{c}^{\prime}\right)$ and, moreover, these codes may not be equivalent.
d) Now fix $\mathbf{c} \in C$ with $w(\mathbf{c})=w(C)=d$. Show that $\operatorname{RES}(C, c)$ is a $\left[n-d, k-1, d^{\prime}\right]$ code with $\mathrm{d}^{\prime} \geq\left\lceil\frac{\mathrm{d}}{2}\right\rceil$;
e) Define

$$
n^{*}(k, d)=\min \{n \in \mathbb{N}: \exists \text { a binary }[n, k, d] \text { code }\}
$$

and show that

$$
n^{*}(k, d) \geq \sum_{i=0}^{k-1}\left\lceil\frac{d}{2^{i}}\right\rceil
$$

f) Show that the binary simplex codes (the dual of the binary Hamming codes) satisfy the equality in the inequality in part e).

