# COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 6 

26/4/2011

## Exercises 12.1 - 12.17 in R. Hill

Problem 1.a) Determine the generator polynomial and the dimention of the smallest ternary cyclic code which contains the word $\mathbf{c}=212110$.
b) What's the minimum distance of that code? Justify your answer.

Problem 2. Supose that, in $\mathbb{F}_{2}[\mathrm{t}]$,

$$
t^{n}-1=(t-1) g_{1}(t) g_{2}(t)
$$

and that $\left\langle g_{1}(t)\right\rangle$ and $\left\langle g_{2}(t)\right\rangle$ are equivalent codes. Show that:
a) If $\mathrm{c}(\mathrm{t})$ is a code word in $\left\langle\mathrm{g}_{1}(\mathrm{t})\right\rangle$ with odd weight $w$, then:
(i) $w^{2} \geq \mathrm{n}$;
(ii) If, moreover, $g_{2}(t)=\bar{g}_{1}(t)$, then $w^{2}-w+1 \geq n$.
b) If $n$ is an odd prime number, $g_{2}(t)=\bar{g}_{1}(t)$ and $c(t)$ is a code word in $\left\langle g_{1}(t)\right\rangle$ with even weight $w$, then:
(i) $w \equiv 0(\bmod 4)$;
(ii) $n \neq 7 \Rightarrow w \neq 4$.
c) Show that the binary cyclic code with length 23 generated by the polynomial $\mathrm{g}(\mathrm{t})=1+\mathrm{t}^{2}+\mathrm{t}^{4}+\mathrm{t}^{5}+\mathrm{t}^{6}+\mathrm{t}^{10}+\mathrm{t}^{11}$ is a perfect code $[23,12,7]$ - the binary Golay Code.

