COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 6

26/4/2011

Exercises 12.1 - 12.17 in R. Hill

Problem 1.a) Determine the generator polynomial and the dimension of the smallest ternary cyclic code which contains the word c = 212110.

b) What's the minimum distance of that code? Justify your answer.

Problem 2. Suppose that, in $\mathbb{F}_2[t]$,

$$t^n - 1 = (t - 1)g_1(t)g_2(t)$$
,

and that $\langle g_1(t)\rangle$ and $\langle g_2(t)\rangle$ are equivalent codes. Show that:

a) If c(t) is a code word in $\langle g_1(t) \rangle$ with odd weight w, then:

- (i) $w^2 \ge n$;
- (ii) If, moreover, $g_2(t) = \overline{g}_1(t)$, then $w^2 w + 1 \ge n$.

b) If n is an odd prime number, $g_2(t) = \overline{g}_1(t)$ and c(t) is a code word in $\langle g_1(t) \rangle$ with even weight w, then:

- (i) $w \equiv 0 \pmod{4}$;
- (ii) $n \neq 7 \Rightarrow w \neq 4$.

c) Show that the binary cyclic code with length 23 generated by the polynomial $g(t) = 1 + t^2 + t^4 + t^5 + t^6 + t^{10} + t^{11}$ is a perfect code [23, 12, 7] — the binary Golay Code.