COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 8

9/5/2011

1. Show that the interleaved code of degree $s, C^{(s)}$, is equivalent to the sum code $C \oplus \cdots \oplus C$ of s copies of C. Conclude that $\operatorname{dist}\left(C^{(s)}\right)=\operatorname{dist}(C)$.
2. Let $C=\operatorname{Ham}(3,2)$ be the binary Hamming code with redundancy 3 and generator polynomial $g(t)=1+t+t^{3}$.
(a) Find the parameters and the generator polynomial of $\mathrm{C}^{(3)}$.
(b) Show that $C^{(3)}$ corrects all burst-m errors with $m \leq 3$.
(c) Using the Burst Error Trapping Algorithm, decode the following received vector

$$
y(t)=t+t^{3}+t^{5}+t^{7}+t^{8}+t^{9}+t^{11}
$$

3. A q-ary cyclic code, with length n, is called degenerate if there is $r \in \mathbb{N}$ such that r divides n and each code word is of the form $c=c^{\prime} c^{\prime} \cdots c^{\prime}$ with $c^{\prime} \in \mathbb{F}_{q}^{r}$, i.e., each code word consists in n / r identical copies of a sequence c^{\prime} with length r.
(a) Show that the interleaved code $\mathrm{C}^{(s)}$ of a repetition code C is degenerate.
(b) Show that the generator polynomial of a degenerate cyclic code with lenth n is of the form

$$
g(t)=a(t)\left(1+t^{r}+t^{2 r}+\cdots+t^{n-r}\right)
$$

(c) Show that a cyclic code with lenght n and check polymonial $h(t)$ is degenerate if and only if there is $r \in \mathbb{N}$ such that r divides n and $h(t)$ divides $t^{r}-1$.
4. Let C be the binary linear code with the following parity-check matrix

$$
H=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(a) Find the minimum distance $\operatorname{dist}(\mathrm{C})$, and determine the code capacity for detecting and correcting random errors.
(b) Show that C detects all burst- m errors with $m \leq 3$.
(c) Let C^{\prime} be the ponctured code, in the last coordinate, of the dual code ${ }^{\perp}$. Show that C^{\prime} is a degenerate cyclic code, and determine its generator polynomial.
5. Determine all degenerate, cyclic and binary codes with length 9, writing the generator polynomials and the corresponding r-sequences.
6. Let α be a root of $1+t^{2}+t^{3} \in \mathbb{F}_{2}[t]$ and consider the map $\phi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{3}$ defined by $\phi\left(a_{1}+a_{2} \alpha+a_{3} \alpha^{2}\right)=\left(a_{1}, a_{2}, a_{3}\right)$, where $a_{1}, a_{2}, a_{3} \in \mathbb{F}_{2}$. Consider the linear code

$$
A=\left\langle\left(\alpha+1, \alpha^{2}+1,1\right)\right\rangle
$$

over \mathbb{F}_{8}. What are the parameters of $\phi^{*}(A)$?
7. Let α be a root of $1+t+t^{2} \in \mathbb{F}_{2}[t]$. Consider the linear code

$$
A=\langle(1,1),(\alpha, 1+\alpha)\rangle
$$

over \mathbb{F}_{4}, and the binary code $B=\{0000,1100,1010,0110\}$. Let $\phi: \mathbb{F}_{4} \rightarrow B$ be the map defined by $\phi(1)=1100$ e $\phi(\alpha)=1010$. What are the parameters $C=\phi^{*}(A) ?$
8. Write a generator matrix and a parity-check matrix for a Reed-Solomon code $[6,4]$, and determine its minimum distance.
9. Determine the generator polynomial of a Reed-Solomon over \mathbb{F}_{16} with dimention 11. Write a parity-check matrix for that code.
10. Show that the dual of a Reed-Solomon code is a Reed-Solomon code.
11. Let C be the q-ary Reed-solomon code with generator polynomial

$$
g(t)=\left(t-\alpha^{a}\right)\left(t-\alpha^{a+1}\right) \cdots\left(t-\alpha^{a+\delta-1}\right) .
$$

Show that $c(t) \in \mathbb{F}_{q}[t] /\left\langle t^{q-1}-1\right\rangle$ is a code word if and only if $c\left(\alpha^{i}\right)=0$ for all $i=a, \ldots, a+\delta-1$.
12. Consider the code over \mathbb{F}_{11} with generator matrix

$$
G=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & X
\end{array}\right]
$$

In Exercise List 6, you have already justified that this code is equivalent to a cyclic code C. Determine the generator polymonial and conclude that C is a Reed-Solomon code.
13. Generalize the previous exercise for a $[q-1, k]$ code, over \mathbb{F}_{q}, with generator matrix

$$
G=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \alpha & \alpha^{2} & \alpha^{3} & \cdots & \alpha^{q-2} \\
1 & \alpha^{2} & \alpha^{4} & \alpha^{6} & \cdots & \alpha^{2(q-2)} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & \alpha^{k-1} & \alpha^{2(k-1)} & \alpha^{3(k-1)} & \cdots & \alpha^{(q-2)(k-1)}
\end{array}\right]
$$

where α is a primitive element in \mathbb{F}_{q}.
14. Let C be the Reed-Solomon code over \mathbb{F}_{8} with generator polynomial $g(t)=$ $(t-\alpha)\left(t-\alpha^{2}\right)\left(t-\alpha^{3}\right)$, where $\alpha \in \mathbb{F}_{8}$ is a root of $1+t+t^{3}$.
(a) Justifify that α is a primitive element in \mathbb{F}_{8}.
(b) Find the parameters of C.
(c) Find the parameters of the dual code C^{\perp}.
(d) Find the parameters of of the extended code \widehat{C}.
(e) Find the parameters of the concatenation code $C^{*}=\phi^{*}(C)$, where $\phi: \mathbb{F}_{8} \rightarrow$ \mathbb{F}_{2}^{3} is the linear map defined by $\phi(1)=100, \phi(\alpha)=010$ and $\phi\left(\alpha^{2}\right)=101$.
15. (a) Write the generator polynomial for a Reed-Solomon code C, with parameters [7, 2].
(b) Let α be a root of $1+t+t^{3} \in \mathbb{F}_{2}[t]$ and consider the map $\phi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{3}$ defined by $\phi\left(a_{0}+a_{1} \alpha+a_{2} \alpha^{2}\right)=\left(a_{0}, a_{1}, a_{2}\right)$. Find the parameters of $C^{*}=\phi^{*}(C)$.
(c) Let $\hat{\phi}: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{4}$ be defined by $\hat{\phi}\left(a_{0}+a_{1} \alpha+a_{2} \alpha^{2}\right)=\left(a_{0}, a_{1}, a_{2}, a_{0}+a_{1}+a_{2}\right)$. Find the parameters of $C^{\prime}=\hat{\phi}^{*}(C)$.
(d) What can you say about the capacity of C^{*} and C^{\prime} for correcting random errors and/or burst errors?
16. Consider the Reed-Solomon code C over \mathbb{F}_{8} with the following generator polynomial:

$$
g(t)=(t-\alpha)\left(t-\alpha^{2}\right)\left(t-\alpha^{3}\right)\left(t-\alpha^{4}\right)=\alpha^{3}+\alpha t+t^{2}+\alpha^{3} t^{3}+t^{4}
$$

where we identify \mathbb{F}_{8} with the quotient $\mathbb{F}_{2}[t] /\left\langle 1+t+t^{3}\right\rangle$, and $\alpha \in \mathbb{F}_{8}$ is a root of $1+t+t^{3}$.
(a) Find the parameters $[n, k, d]$ de C.
(b) Apply The Error Trapping Algorithm to decode the following received vectors

$$
y=\left(0,1,0, \alpha^{2}, 0,0,0\right) \quad \text { and } \quad z=\left(0, \alpha^{3}, 0,1, \alpha^{3}, 1,1\right)
$$

(c) Let $\phi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{3}$ be a linear isomorphism over \mathbb{F}_{2}. What can you say about the capacity of the concatenation code $\mathrm{C}^{*}=\phi^{*}(\mathrm{C})$ for correcting burst errors?

