COMBINATÓRIA E TEORIA DE CÓDIGOS Exercise List 8

9/5/2011

- 1. Show that the interleaved code of degree s, $C^{(s)}$, is equivalent to the sum code $C \oplus \cdots \oplus C$ of s copies of C. Conclude that $dist(C^{(s)}) = dist(C)$.
- 2. Let C = Ham(3, 2) be the binary Hamming code with redundancy 3 and generator polynomial $g(t) = 1 + t + t^3$.
 - (a) Find the parameters and the generator polynomial of $C^{(3)}$.
 - (b) Show that $C^{(3)}$ corrects all burst-m errors with $m \leq 3$.
 - (c) Using the Burst Error Trapping Algorithm, decode the following received vector

$$y(t) = t + t^3 + t^5 + t^7 + t^8 + t^9 + t^{11}$$
.

- 3. A q-ary cyclic code, with length n, is called *degenerate* if there is $r \in \mathbb{N}$ such that r divides n and each code word is of the form $c = c'c' \cdots c'$ with $c' \in \mathbb{F}_q^r$, i.e., each code word consists in n/r identical copies of a sequence c' with length r.
 - (a) Show that the interleaved code $C^{(s)}$ of a repetition code C is degenerate.
 - (b) Show that the generator polynomial of a degenerate cyclic code with lenth n is of the form

$$g(t) = a(t)(1 + t^{r} + t^{2r} + \dots + t^{n-r})$$
.

- (c) Show that a cyclic code with lenght n and check polymonial h(t) is degenerate if and only if there is $r \in \mathbb{N}$ such that r divides n and h(t) divides $t^r 1$.
- 4. Let C be the binary linear code with the following parity-check matrix

 $H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} .$

- (a) Find the minimum distance dist(C), and determine the code capacity for detecting and correcting random errors.
- (b) Show that C detects all burst-m errors with $m \leq 3$.

- (c) Let C' be the ponctured code, in the last coordinate, of the dual $codeC^{\perp}$. Show that C' is a degenerate cyclic code, and determine its generator polynomial.
- 5. Determine all degenerate, cyclic and binary codes with length 9, writing the generator polynomials and the corresponding r-sequences.
- 6. Let α be a root of $1 + t^2 + t^3 \in \mathbb{F}_2[t]$ and consider the map $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ defined by $\phi(a_1 + a_2\alpha + a_3\alpha^2) = (a_1, a_2, a_3)$, where $a_1, a_2, a_3 \in \mathbb{F}_2$. Consider the linear code

$$A = \langle (\alpha + 1, \alpha^2 + 1, 1) \rangle$$

over \mathbb{F}_8 . What are the parameters of $\phi^*(A)$?

7. Let α be a root of $1+t+t^2\in \mathbb{F}_2[t].$ Consider the linear code

$$A = \langle (1,1), (\alpha, 1+\alpha) \rangle ,$$

over \mathbb{F}_4 , and the binary code $B = \{0000, 1100, 1010, 0110\}$. Let $\phi : \mathbb{F}_4 \to B$ be the map defined by $\phi(1) = 1100$ e $\phi(\alpha) = 1010$. What are the parameters $C = \phi^*(A)$?

- 8. Write a generator matrix and a parity-check matrix for a Reed-Solomon code [6,4], and determine its minimum distance.
- 9. Determine the generator polynomial of a Reed-Solomon over \mathbb{F}_{16} with dimension 11. Write a parity-check matrix for that code.
- 10. Show that the dual of a Reed-Solomon code is a Reed-Solomon code.
- 11. Let C be the q-ary Reed-solomon code with generator polynomial

$$g(t) = (t - \alpha^{a})(t - \alpha^{a+1}) \cdots (t - \alpha^{a+\delta-1})$$

Show that $c(t) \in \mathbb{F}_q[t]/\langle t^{q-1}-1 \rangle$ is a code word if and only if $c(\alpha^i) = 0$ for all $i = a, \ldots, a + \delta - 1$.

12. Consider the code over \mathbb{F}_{11} with generator matrix

In Exercise List 6, you have already justified that this code is equivalent to a cyclic code C. Determine the generator polymonial and conclude that C is a Reed-Solomon code.

13. Generalize the previous exercise for a [q-1,k] code, over \mathbb{F}_q , with generator matrix

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \alpha^3 & \cdots & \alpha^{q-2} \\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \cdots & \alpha^{2(q-2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{k-1} & \alpha^{2(k-1)} & \alpha^{3(k-1)} & \cdots & \alpha^{(q-2)(k-1)} \end{bmatrix}$$

where α is a primitive element in \mathbb{F}_q .

- 14. Let C be the Reed-Solomon code over \mathbb{F}_8 with generator polynomial $g(t) = (t \alpha)(t \alpha^2)(t \alpha^3)$, where $\alpha \in \mathbb{F}_8$ is a root of $1 + t + t^3$.
 - (a) Justifify that α is a primitive element in \mathbb{F}_8 .
 - (b) Find the parameters of C.
 - (c) Find the parameters of the dual code C^{\perp} .
 - (d) Find the parameters of of the extended code \widehat{C} .
 - (e) Find the parameters of the concatenation code $C^* = \phi^*(C)$, where $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ is the linear map defined by $\phi(1) = 100$, $\phi(\alpha) = 010$ and $\phi(\alpha^2) = 101$.
- (a) Write the generator polynomial for a Reed-Solomon code C, with parameters [7,2].
 - (b) Let α be a root of $1 + t + t^3 \in \mathbb{F}_2[t]$ and consider the map $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ defined by $\phi(a_0 + a_1\alpha + a_2\alpha^2) = (a_0, a_1, a_2)$. Find the parameters of $C^* = \phi^*(C)$.
 - (c) Let $\hat{\varphi} : \mathbb{F}_8 \to \mathbb{F}_2^4$ be defined by $\hat{\varphi}(a_0 + a_1\alpha + a_2\alpha^2) = (a_0, a_1, a_2, a_0 + a_1 + a_2)$. Find the parameters of $C' = \hat{\varphi}^*(C)$.
 - (d) What can you say about the capacity of C^{*} and C' for correcting random errors and/or burst errors?
- 16. Consider the Reed-Solomon code C over \mathbb{F}_8 with the following generator polynomial:

$$g(t) = (t-\alpha)(t-\alpha^2)(t-\alpha^3)(t-\alpha^4) = \alpha^3 + \alpha t + t^2 + \alpha^3 t^3 + t^4 \;,$$

where we identify \mathbb{F}_8 with the quotient $\mathbb{F}_2[t]/\langle 1+t+t^3 \rangle$, and $\alpha \in \mathbb{F}_8$ is a root of $1+t+t^3$.

- (a) Find the parameters [n, k, d] de C.
- (b) Apply The Error Trapping Algorithm to decode the following received vectors $y = (0, 1, 0, \alpha^2, 0, 0, 0)$ and $z = (0, \alpha^3, 0, 1, \alpha^3, 1, 1)$.
- (c) Let $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ be a linear isomorphism over \mathbb{F}_2 . What can you say about the capacity of the concatenation code $C^* = \phi^*(C)$ for correcting burst errors?