COMBINATÓRIA E TEORIA DE CÓDIGOS
HOMEWORK 2

(Deadline 18/3/2011)

Justify all your answers.

1. Problem 1 in Exercise List 3: (The field \mathbb{F}_2^4)

 (a) Show that the polynomial $x^4 + x + 1$ is irreducible in $\mathbb{F}_2[x]$.

 (b) Define $\mathbb{F}_2^4 = \mathbb{F}_2[x]/(x^4 + x + 1)$ by identifying its elements and by sketching the addition and multiplication tables.

 (c) Find a primitive element in \mathbb{F}_2^4.

2. Let V be a vector subspace of \mathbb{F}_q^n, with dimension $1 \leq k \leq n$.

 (a) How many vectors does V contain?

 (b) How many distinct bases does V have?

3. (a) Show that \mathbb{F}_{q^m} is a vector space over \mathbb{F}_q, with the vector sum and product by a scalar defined via the operations in \mathbb{F}_{q^m}.

 (b) Let $f(x) \in \mathbb{F}_q[x]$ be an irreducible polynomial in $\mathbb{F}_q[x]$, with degree m, and let $\alpha \in \mathbb{F}_{q^m}$ be a root of $f(x)$. Show that $\{1, \alpha, \alpha^2, \ldots, \alpha^{m-1}\}$ is a basis of \mathbb{F}_{q^m} over \mathbb{F}_q.

4. Let $\langle \cdot, \cdot \rangle_H : \mathbb{F}_q^n \times \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ be defined by

 $\langle u, v \rangle_H = \sum_{i=1}^{n} u_i v_i^q$,

 where $u = (u_1, \ldots, u_n)$, $v = (v_1, \ldots, v_n) \in \mathbb{F}_q^n$. Show that $\langle \cdot, \cdot \rangle_H$ is an inner product in \mathbb{F}_q^n.

 Remark: $\langle \cdot, \cdot \rangle_H$ is the hermitian inner product. The hermitian dual of a linear code C is defined as

 $C^\perp_H = \{ v \in \mathbb{F}_q^n : \langle v, c \rangle_H = 0 \quad \forall c \in C \}.$

5. Recall that $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2 + x + 1) = \{0, 1, \alpha, \alpha^2\}$, where α is a root of $x^2 + x + 1 \in \mathbb{F}_2[x]$. Show that the following linear codes over \mathbb{F}_4 are self-dual with respect to the hermitian inner product defined in the previous problem:

 (a) $C_1 = \langle (1, 1) \rangle \subset \mathbb{F}_4^2$;

 (b) $C_2 = \langle (1, 0, 0, 1, \alpha, \alpha) \rangle \subset \mathbb{F}_4^6$.

 Are these self-dual codes with respect to the euclidean inner product?