COMBINATÓRIA E TEORIA DE CÓDIGOS HOMEWORK 2

 $(deadline \ 18/3/2011)$

Justify all your answers.

- 1. Problem 1 in Exercise List 3: (The field \mathbb{F}_{2^4})
 - (a) Show that the polynomial $x^4 + x + 1$ is irreducible in $\mathbb{F}_2[x]$.
 - (b) Define $\mathbb{F}_{2^4} = \mathbb{F}_2[x]/\langle x^4 + x + 1 \rangle$ by identifying its elements and by sketching the addition and multiplication tables.
 - (c) Find a primitive element in \mathbb{F}_{2^4} .
- 2. Let V be a vector subspace of \mathbb{F}_q^n , with dimention $1 \le k \le n$.
 - (a) How many vectors does V contain?
 - (b) How many distinct bases does V have?
- 3. (a) Show that \mathbb{F}_{q^m} is a vector space over \mathbb{F}_q , with the vector sum and product by a scalar defined via the operations in \mathbb{F}_{q^m} .
 - (b) Let $f(x) \in \mathbb{F}_q[x]$ be an irreducible polynomial in $\mathbb{F}_q[x]$, with degree m, and let $\alpha \in \mathbb{F}_{q^m}$ be a root f(x). Show that $\{1, \alpha, \alpha^2, \ldots, \alpha^{m-1}\}$ is a basis of \mathbb{F}_{q^m} over \mathbb{F}_q .
- 4. Let $\langle \cdot, \cdot \rangle_H : \mathbb{F}_{q^2}^n \times \mathbb{F}_{q^2}^n \longrightarrow \mathbb{F}_{q^2}$ be defined by

$$< \mathfrak{u}, \mathfrak{v} >_{\mathsf{H}} = \sum_{\mathfrak{i}=1}^{\mathfrak{n}} \mathfrak{u}_{\mathfrak{i}} \mathfrak{v}_{\mathfrak{i}}^{\mathsf{q}}$$
,

where $u = (u_1, \ldots, u_n), v = (v_1, \ldots, v_n) \in \mathbb{F}_{q^2}^n$. Show that $\langle \cdot, \cdot \rangle_H$ is an inner product in $\mathbb{F}_{q^2}^n$. Remark: $\langle \cdot, \cdot \rangle_H$ is the *hermitian inner product*. The *hermitian dual* of a linear code C is defined as

$$C^{\perp_{\mathsf{H}}} = \{ v \in \mathbb{F}_{q^2}^n : \langle v, c \rangle_{\mathsf{H}} = \emptyset \quad \forall c \in \mathsf{C} \}.$$

- 5. Recall that $\mathbb{F}_4 = \mathbb{F}_2[x]/\langle x^2 + x + 1 \rangle = \{0, 1, \alpha, \alpha^2\}$, where α is a root of $x^2 + x + 1 \in \mathbb{F}_2[x]$. Show that the following linear codes over \mathbb{F}_4 are self-dual with respect to the hermitian inner product defined in the previous problem:
 - (a) $C_1 = \langle (1,1) \rangle \subset \mathbb{F}_4^2$,
 - (b) $C_2 = \langle (1,0,0,1,\alpha,\alpha), (0,1,0,\alpha,1,\alpha), (0,0,1,\alpha,\alpha,1) \rangle \subset \mathbb{F}_4^6$

Are these self-dual codes with respect to the euclidean inner product?