COMBINATÓRIA E TEORIA DE CÓDIGOS HOMEWORK 2

(deadline 18/3/2011)

Justify all your answers.

1. Problem 1 in Exercise List 3: (The field $\mathbb{F}_{2^{4}}$)
(a) Show that the polynomial $x^{4}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$.
(b) Define $\mathbb{F}_{2^{4}}=\mathbb{F}_{2}[x] /\left\langle x^{4}+x+1\right\rangle$ by identifiying its elements and by sketching the addition and multiplication tables.
(c) Find a primitive element in $\mathbb{F}_{2^{4}}$.
2. Let V be a vector subspace of $\mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$, with dimention $1 \leq \mathrm{k} \leq \mathrm{n}$.
(a) How many vectors does V contain?
(b) How many distinct bases does V have?
3. (a) Show that $\mathbb{F}_{\mathfrak{q}^{m}}$ is a vector space over $\mathbb{F}_{\mathfrak{q}}$, with the vector sum and product by a scalar defined via the operations in $\mathbb{F}_{q^{m}}$.
(b) Let $f(x) \in \mathbb{F}_{q}[x]$ be an irreducible polynomial in $\mathbb{F}_{q}[x]$, with degree m, and let $\alpha \in \mathbb{F}_{q^{m}}$ be a root $f(x)$. Show that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right\}$ is a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}.
4. Let $<\cdot, \cdot>_{\mathrm{H}}: \mathbb{F}_{\mathrm{q}^{2}}^{n} \times \mathbb{F}_{\mathrm{q}^{2}}^{n} \longrightarrow \mathbb{F}_{\mathrm{q}^{2}}$ be defined by

$$
<u, v>_{\mathrm{H}}=\sum_{i=1}^{n} u_{i} v_{\mathrm{i}}^{\mathrm{q}}
$$

where $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{q^{2}}^{n}$. Show that $<\cdot, \cdot>_{\mathrm{H}}$ is an inner product in $\mathbb{F}_{\mathrm{q}^{2}}^{n}$. Remark: $\langle\cdot, \cdot\rangle_{\mathrm{H}}$ is the hermitian inner product. The hermitian dual of a linear code C is defined as

$$
\mathrm{C}^{\perp_{\mathrm{H}}}=\left\{v \in \mathbb{F}_{\mathrm{q}^{2}}^{n}:<v, \mathrm{c}>_{\mathrm{H}}=0 \quad \forall \mathrm{c} \in \mathrm{C}\right\} .
$$

5. Recall that $\mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left\langle x^{2}+x+1\right\rangle=\left\{0,1, \alpha, \alpha^{2}\right\}$, where α is a root of $x^{2}+x+1 \in \mathbb{F}_{2}[x]$. Show that the following linear codes over \mathbb{F}_{4} are self-dual with respect to the hermitian inner product defined in the previous problem:
(a) $\mathrm{C}_{1}=\langle(1,1)\rangle \subset \mathbb{F}_{4}^{2}$,
(b) $C_{2}=\langle(1,0,0,1, \alpha, \alpha),(0,1,0, \alpha, 1, \alpha),(0,0,1, \alpha, \alpha, 1)\rangle \subset \mathbb{F}_{4}^{6}$.

Are these self-dual codes with respect to the euclidean inner product?

