COMBINATÓRIA E TEORIA DE CÓDIGOS HOMEWORK 3

(deadline 1/4/2011)

Justify all your answers.

1. Let C be a linear code with length $n \geq 4$. Let H be a parity-check matrix for C such that its columns are distinct and have odd weight. Show that $d(C) \geq 4$.
2. (a) For a q-ary linear code, with lenght n and minimum distance d, show that the vectors $x \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ with weight $\mathrm{w}(\mathrm{x}) \leq\left\lfloor\frac{\mathrm{d}-1}{2}\right\rfloor$ are coset leaders of distinct cosets of this code.
(b) Let C be a perfect code with $d(C)=2 t+1$. Show that the only coset leaders of C are the ones determined in part (a).
(c) Assuming that the perfect code C in part (b) is binary, let $\widehat{\mathrm{C}}$ be the code obtained from C by adding a parity-check digit, i.e.,

$$
\widehat{\mathrm{C}}=\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{F}_{2}^{n+1}:\left(x_{1}, \ldots, x_{n}\right) \in C, \sum_{i=1}^{n+1} x_{i}=0\right\}
$$

Show that the weight of any coset leader of $\widehat{\mathrm{C}}$ is less or equal than $\mathrm{t}+1$.
3. Consider a linear code C over $\mathbb{F}_{3}=\{0,1,2\}$ with parity-check matrix

$$
H=\left[\begin{array}{llllll}
2 & 1 & 2 & 1 & 1 & 0 \\
1 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 0 & 2 & 0 & 0
\end{array}\right]
$$

(a) Determine the $[n, k, d]$ parameters of C.
(b) Find a generator matrix in standard form for the code C .
(c) What is the capacity of C for correcting erasure errors? Give a detailed justification.
(d) Explain what to do with the following received words

$$
x=2101 ? ?, \quad y=1 ? ? ? 12 \quad \text { e } \quad z=? ? ? 210 .
$$

4. Problem 3(c) in Exercise List 4: Find a [7, k] binary linear code, with the largest possible rate, which can correct the following error vectors: 1000000, 1000001, 1100001, 1100011, 1110011, 1110111 and 1111111.
