COMBINATÓRIA E TEORIA DE CÓDIGOS

Homework 3 (deadline 5/4/2013, in class)

- 1. For each $x \in \mathbb{F}_{q^m}$, we define its trace by $\operatorname{Tr}(x) = \sum_{i=0}^{m-1} x^{q^i}$.
 - (a) Show that $(a+b)^{q^i} = a^{q^i} + b^{q^i}$ for all $a, b \in \mathbb{F}_{q^m}$ and $i \in \mathbb{N}$. Suggestion: First show that $(a+b)^p = a^p + b^p$, where p is the characteristic of \mathbb{F}_{q^m} .
 - (b) Justify that, for all $a \in \mathbb{F}_{q^m}$, $a \in \mathbb{F}_q \subset \mathbb{F}_{q^m}$ if and only if $a^q = a$.
 - (c) Show that $\operatorname{Tr}(x) \in \mathbb{F}_q$ for all $x \in \mathbb{F}_{q^m}$.
 - (d) Show that $\operatorname{Tr} : \mathbb{F}_{q^m} \longrightarrow \mathbb{F}_q$ is a linear application over \mathbb{F}_q .
 - (e) If C is a [N, K, D] linear code over \mathbb{F}_{q^m} , we define the *trace code* by

 $\operatorname{Tr}(C) = \{(\operatorname{Tr}(x_1), \dots, \operatorname{Tr}(x_N)) : (x_1, \dots, x_N) \in C\}.$

Show that Tr(C) is a q-ary linear code, with length N and dimension $k \leq mK$.

- 2. Consider the linear code $C = \langle (\alpha, \alpha^2, \alpha^4, 1, \alpha^3, \alpha^6, \alpha^5) \rangle$ over $\mathbb{F}_8 = \mathbb{F}_2[\alpha]$, where $\alpha^3 = 1 + \alpha$.
 - (a) Find the parameters of C.
 - (b) Determine a generator matrix for the trace code Tr(C).
 - (c) Find the parameters of the dual code $\operatorname{Tr}(C)^{\perp}$.
 - (d) Is Tr(C) a self-orthogonal or a self-dual code?

If C is a linear code over \mathbb{F}_{q^m} , we define the subfield subcode by

$$C|_{\mathbb{F}_q} = C \cap \mathbb{F}_q^N$$
.

You can use, without proof, that the subfield subcode $C|_{\mathbb{F}_q}$ is linear over \mathbb{F}_q .

- (e) Determine a generator matrix for the dual code C^{\perp} and for the subfield subcode $(C^{\perp})|_{\mathbb{F}_2}$.
- (f) Verify that $(C^{\perp})|_{\mathbb{F}_2} = \operatorname{Tr}(C)^{\perp}$.

Note: This relation between the trace code and the subfield subcode holds for any linear code C over \mathbb{F}_{q^m} , it's the Delsarte Theorem.

- 3. (a) For a q-ary linear code, with lenght n and minimum distance d, show that the vectors $x \in \mathbb{F}_q^n$ with weight $w(x) \leq \lfloor \frac{d-1}{2} \rfloor$ are coset leaders of distinct cosets of this code.
 - (b) Let C be a perfect code with d(C) = 2t + 1. Show that the only coset leaders of C are the ones determined in part (a).
 - (c) Assuming that the perfect code C in part (b) is binary, let \widehat{C} be the code obtained from C by adding a parity-check digit, i.e.,

$$\widehat{C} = \left\{ (x_1, \dots, x_n, x_{n+1}) \in \mathbb{F}_2^{n+1} : (x_1, \dots, x_n) \in C, \sum_{i=1}^{n+1} x_i = 0 \right\}.$$

Show that the weight of any coset leader of \widehat{C} is less or equal than t+1.

4. Let C be the linear code over $\mathbb{F}_3 = \{0, 1, 2\}$, with the following parity-check matrix

$$H = \begin{bmatrix} 1 & 2 & 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 2 & 1 \end{bmatrix}$$

- (a) Find the parameters [n, k, d] for C.
- (b) Find a generator matrix for C.
- (c) Show that C corrects all simple errors with magnitude 1 and all the double errors of the form

aa000000 ,	0aa00000 ,	00aa0000 ,	000 <i>aa</i> ()00 ,
0000aa00 ,	00000aa0 ,	000000aa	and	a000000a ,

where $a \in \{1, 2\}$.

(d) Decode the following received vectors

y = 11111112 and z = 11211200.