COMBINATÓRIA E TEORIA DE CÓDIGOS

Homework 3 (deadline 5/4/2013, in class)

1. For each $x \in \mathbb{F}_{q^{m}}$, we define its trace by $\operatorname{Tr}(x)=\sum_{i=0}^{m-1} x^{q^{i}}$.
(a) Show that $(a+b)^{q^{i}}=a^{q^{i}}+b^{q^{i}}$ for all $a, b \in \mathbb{F}_{q^{m}}$ and $i \in \mathbb{N}$.

Sugestion: First show that $(a+b)^{p}=a^{p}+b^{p}$, where p is the characteristic of $\mathbb{F}_{q^{m}}$.
(b) Justify that, for all $a \in \mathbb{F}_{q^{m}}, a \in \mathbb{F}_{q} \subset \mathbb{F}_{q^{m}}$ if and only if $a^{q}=a$.
(c) Show that $\operatorname{Tr}(x) \in \mathbb{F}_{q}$ for all $x \in \mathbb{F}_{q^{m}}$.
(d) Show that $\operatorname{Tr}: \mathbb{F}_{q^{m}} \longrightarrow \mathbb{F}_{q}$ is a linear aplication over \mathbb{F}_{q}.
(e) If C is a $[N, K, D]$ linear code over $\mathbb{F}_{q^{m}}$, we define the trace code by

$$
\operatorname{Tr}(C)=\left\{\left(\operatorname{Tr}\left(x_{1}\right), \ldots, \operatorname{Tr}\left(x_{N}\right)\right):\left(x_{1}, \ldots, x_{N}\right) \in C\right\}
$$

Show that $\operatorname{Tr}(C)$ is a q-ary linear code, with length N and dimension $k \leq m K$.
2. Consider the linear code $C=\left\langle\left(\alpha, \alpha^{2}, \alpha^{4}, 1, \alpha^{3}, \alpha^{6}, \alpha^{5}\right)\right\rangle$ over $\mathbb{F}_{8}=\mathbb{F}_{2}[\alpha]$, where $\alpha^{3}=1+\alpha$.
(a) Find the parameters of C.
(b) Determine a generator matrix for the trace code $\operatorname{Tr}(C)$.
(c) Find the parameters of the dual code $\operatorname{Tr}(C)^{\perp}$.
(d) Is $\operatorname{Tr}(C)$ a self-orthogonal or a self-dual code?

If C is a linear code over $\mathbb{F}_{q^{m}}$, we define the subfield subcode by

$$
\left.C\right|_{\mathbb{F}_{q}}=C \cap \mathbb{F}_{q}^{N}
$$

You can use, without proof, that the subfield subcode $\left.C\right|_{\mathbb{F}_{q}}$ is linear over \mathbb{F}_{q}.
(e) Determine a generator matrix for the dual code C^{\perp} and for the subfield subcode $\left.\left(C^{\perp}\right)\right|_{\mathbb{F}_{2}}$.
(f) Verify that $\left.\left(C^{\perp}\right)\right|_{\mathbb{F}_{2}}=\operatorname{Tr}(C)^{\perp}$.

Note: This relation between the trace code and the subfield subcode holds for any linear code C over $\mathbb{F}_{q^{m}}$, it's the Delsarte Theorem.
3. (a) For a q-ary linear code, with lenght n and minimum distance d, show that the vectors $x \in \mathbb{F}_{q}^{n}$ with weight $\mathrm{w}(x) \leq\left\lfloor\frac{d-1}{2}\right\rfloor$ are coset leaders of distinct cosets of this code.
(b) Let C be a perfect code with $\mathrm{d}(C)=2 t+1$. Show that the only coset leaders of C are the ones determined in part (a).
(c) Assuming that the perfect code C in part (b) is binary, let \widehat{C} be the code obtained from C by adding a parity-check digit, i.e.,

$$
\widehat{C}=\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{F}_{2}^{n+1}:\left(x_{1}, \ldots, x_{n}\right) \in C, \sum_{i=1}^{n+1} x_{i}=0\right\}
$$

Show that the weight of any coset leader of \widehat{C} is less or equal than $t+1$.
4. Let C be the linear code over $\mathbb{F}_{3}=\{0,1,2\}$, with the following parity-check matrix

$$
H=\left[\begin{array}{llllllll}
1 & 2 & 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 & 2 & 1
\end{array}\right]
$$

(a) Find the parameters $[n, k, d]$ for C.
(b) Find a generator matrix for C.
(c) Show that C corrects all simple errors with magnitude 1 and all the double errors of the form

$$
\begin{array}{cccc}
a a 000000, & 0 a a 00000, & 00 a a 0000, & 000 a a 000, \\
0000 a a 00, & 00000 a a 0, & 000000 a a & \text { and } \quad a 000000 a,
\end{array}
$$

where $a \in\{1,2\}$.
(d) Decode the following received vectors

$$
y=11111112 \quad \text { and } \quad z=11211200
$$

