COMBINATÓRIA E TEORIA DE CÓDIGOS HOMEWORK 4

(deadline 29/4/2011)

Justify all your answers.

- 1. Let C_1 e C_2 be q-ary linear codes with parameters $[n, k_1, d_1]$ and $[n, k_2, d_2]$, respectively.
 - (a) Show that $C_1 * C_2$ (the Plotkin construction) is a linear code.
 - (b) If G_1 and G_2 are generator matrices for C_1 and C_2 , respectively, write a generator matrix for $C_1 * C_2$ in terms of G_1 and G_2 .
 - (c) If H_1 and H_2 are parity-check matrices for C_1 and C_2 , respectively, write a parity-check matrix for $C_1 * C_2$ in terms of H_1 and H_2 .
- 2. Let C be the binary code with the following parity-check matrix

H =	0	0	0	1	1	1	1	0	
	0	1	1	0	0	1	1	0	
	1	0	1	0	1	0	1	0	•
	1	1	1	1	1	1	1	1	

- (a) Determine the [n, k, d] parameters of the code C.
- (b) Show that C can be used to correct all errors with weight 1 and all errors with weight 2 with a nonzero n-th component. Can this code correct simultaneously all these errors plus a few more with weight 2?
- (c) Describe a decoding algorithm that corrects all errors mentioned in part (b), and decode the received vector y = 10111011.
- 3. Let C be a q-ary MDS code with parameters [n, k], where k < n.
 - (a) Show that there is a q-ary MDS code with lenght n and dimention n k.
 - (b) Show that there is a q-ary MDS code with lenght n-1 and dimension k.
- 4. Consider the vector space $V=\mathbb{F}^3_{\mathfrak{a}}.$
 - (a) Show that V contains $\frac{q^3-1}{q-1} = q^2 + q + 1$ 1-dimensional vector subspaces.
 - (b) Show that V contains $\frac{q^3}{q-1} = q^2 + q + 1$ 2-dimensional vector subspaces.
 - (c) Let \mathcal{P} be the set of 1-dimentional vector subspaces and let \mathcal{B} be the set of 2-dimentional vector subspaces. Show that \mathcal{P} (as the set of points) and \mathcal{B} (as the set of blocks), with the relation $P \in \mathcal{P}$ belongs to $B \in \mathcal{B}$ if P is a subspace of B, define a Steiner system $S(2, q+1, q^2+q+1)$. Since the number of points and the number of blocks are the same, this Steiner system is called a 2-dimentional projective geometry (or a projective plane) of order q, and its denoted by PG(2, q) or $PG_2(q)$.
- 5. For any code C, we define $A_i = \#\{x \in C : w(x) = i\}$. Determine the numbers A_i for the extended Golay code G_{24} . [Sugestion: Show that $\vec{1} \in G_{24}$.]