COMBINATÓRIA E TEORIA DE CÓDIGOS HOMEWORK 4

(deadline 29/4/2011)
Justify all your answers.

1. Let C_{1} e C_{2} be q-ary linear codes with parameters [$\left.n, k_{1}, d_{1}\right]$ and $\left[n, k_{2}, d_{2}\right]$, respectively.
(a) Show that $\mathrm{C}_{1} * \mathrm{C}_{2}$ (the Plotkin construction) is a linear code.
(b) If G_{1} and G_{2} are generator matrices for C_{1} and C_{2}, respectively, write a generator matrix for $\mathrm{C}_{1} * \mathrm{C}_{2}$ in terms of G_{1} and G_{2}.
(c) If H_{1} and H_{2} are parity-check matrices for C_{1} and C_{2}, respectively, write a parity-check matrix for $\mathrm{C}_{1} * \mathrm{C}_{2}$ in terms of H_{1} and H_{2}.
2. Let C be the binary code with the following parity-check matrix

$$
\mathrm{H}=\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

(a) Determine the $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ parameters of the code C .
(b) Show that C can be used to correct all errors with weight 1 and all errors with weight 2 with a nonzero n-th component. Can this code correct simultaneously all these errors plus a few more with weight 2 ?
(c) Describe a decoding algorithm that corrects all errors mentioned in part (b), and decode the received vector $y=10111011$.
3. Let C be a q-ary MDS code with parameters [$n, k]$, where $k<n$.
(a) Show that there is a q-ary MDS code with lenght n and dimention $n-k$.
(b) Show that there is a q-ary MDS code with lenght $n-1$ and dimention k.
4. Consider the vector space $V=\mathbb{F}_{q}^{3}$.
(a) Show that V contains $\frac{q^{3}-1}{q-1}=q^{2}+q+1$ 1-dimentional vector subspaces.
(b) Show that V contains $\frac{q^{3}-1}{q-1}=q^{2}+q+12$-dimentional vector subespaces.
(c) Let \mathcal{P} be the set of 1-dimentional vector subspaces and let \mathcal{B} be the set of 2-dimentional vector subspaces. Show that \mathcal{P} (as the set of points) and \mathcal{B} (as the set of blocks), with the relation $P \in \mathcal{P}$ belongs to $B \in \mathcal{B}$ if P is a subspace of B, define a Steiner system $S\left(2, q+1, q^{2}+q+1\right)$. Since the number of points and the number of blocks are the same, this Steiner system is called a 2-dimentional projective geometry (or a projective plane) of order q, and its denoted by $\operatorname{PG}(2, q)$ or $\mathrm{PG}_{2}(\mathrm{q})$.
5. For any code C, we define $A_{i}=\#\{x \in C: w(x)=i\}$. Determine the numbers A_{i} for the extended Golay code G_{24}. [Sugestion: Show that $\overrightarrow{1} \in \mathrm{G}_{24}$.]

