COMBINATÓRIA E TEORIA DE CÓDIGOS

Homework 4 (deadline 26/4/2013, in class)

1. Let C be a binary, linear and self-dual code.
(a) Show that, if $x, y \in C$ have weight a multiple of 4 , the the weight of $x+y$ is also a multiple of 4 .
(b) Show that either the weight of all words in C is a multiple of 4 , or the weight of half the code words is a multiple of 4 and weight of the other half is even but not divisible by 4 .
(c) Show that $\overrightarrow{1}=(1, \ldots, 1) \in C$.
(d) If the lenght of code C is 6 , determine the minimum distance $\mathrm{d}(C)$.
2. Without listing the code words, determine the number of words with weight 4 in the extended binary Hamming code $\widehat{\operatorname{Ham}}(3,2)$.
3. For any code C we define the weight enumerator polynomial ${ }^{1}$ by $W_{C}(t)=\sum_{i \geq 0} A_{i} t^{i}$, where

$$
A_{i}=\#\{x \in C: \mathrm{w}(x)=i\}
$$

Let $C \subset \mathbb{F}_{2}^{8}$ be a self-dual linear code. Determine all possible weight enumerator polynomials of C. Give an example of a self-dual code for each polynomial you found.
4. Let C be a binary perfect code with length n and minimum distance $2 t+1$. Show that there is a Steiner system $S(t+2,2 t+2, n+1)$.
5. Determine the weight enumerator polynomial of the extended Golay code G_{24}. [Sugestion: Show that $\overrightarrow{1} \in G_{24}$.]
6. Bonus exercise: continuing Exercise 3, show that, if C and C^{\prime} are self-dual binary linear codes of length 8 with the same weight enumerator polynomial, then C and C^{\prime} are equivalent codes.

[^0]
[^0]: ${ }^{1}$ Note that the polynomial $W_{C}(t)$ is just the generating function for the sequence $\left\{A_{i}\right\}_{i \in \mathbb{N}_{0}}$

