COMBINATÓRIA E TEORIA DE CÓDIGOS Homework 6

(deadline 6/6/2011)

Justify all your answers.

- 1. Let C = Ham(3,2) be the binary Hamming code with redundancy 3 and generator polynomial $g(t) = 1 + t + t^3$.
 - (a) Find the parameters and the generator polynomial of $C^{(3)}$.
 - (b) Show that $C^{(3)}$ corrects all burst-m errors with $m \leq 3$.
 - (c) Using the Burst Error Trapping Algorithm, decode the following received vector

$$y(t) = t + t^3 + t^5 + t^7 + t^8 + t^9 + t^{11}$$

2. Let C be the binary linear code with the following parity-check matrix

 $H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} \ .$

Find the minimum distance d(C), and determine the code capacity for detecting and correcting random errors. Show also that C detects all burst-m errors with $m \leq 3$.

- 3. A q-ary cyclic code, with length n, is called *degenerate* if there is $r \in \mathbb{N}$ such that r divides n and each code word is of the form $c = c'c' \cdots c'$ with $c' \in \mathbb{F}_q^r$, i.e., each code word consists in n/r identical copies of a sequence c' with length r.
 - (a) Let C be the code in the previous exercise. Show that the ponctured code, in the last coordinate, of the dual code C^{\perp} is a degenerate cyclic code, and determine its generator polynomial.
 - (b) Determine all degenerate, cyclic and binary codes with length 9, writing the generator polynomials and the corresponding r-sequences.
- 4. Let C be the Reed-Solomon code over \mathbb{F}_8 with generator polynomial $g(t) = (t-\alpha)(t-\alpha^2)(t-\alpha^3)$, where $\alpha \in \mathbb{F}_8$ is a root of $1 + t + t^3$.
 - (a) Justifify that α is a primitive element in \mathbb{F}_8 .
 - (b) Find the parameters of C.
 - (c) Find the parameters of the dual code C^{\perp} .
 - (d) Find the parameters of of the extended code \widehat{C} .
 - (e) Find the parameters of the concatenation code $C^* = \phi^*(C)$, where $\phi : \mathbb{F}_8 \to \mathbb{F}_2^3$ is the linear map defined by $\phi(1) = 100$, $\phi(\alpha) = 010$ and $\phi(\alpha^2) = 101$.
- 5. A linear code C is *self-orthognal* if $C \subseteq C^{\perp}$. Determine the generator polynomial of all self-orthogonal Reed-Solomon codes over \mathbb{F}_{16} . Which of these codes are self-dual?