COMBINATÓRIA E TEORIA DE CÓDIGOS Homework 6

(deadline 6/6/2011)
Justify all your answers.

1. Let $C=\operatorname{Ham}(3,2)$ be the binary Hamming code with redundancy 3 and generator polynomial $\mathrm{g}(\mathrm{t})=1+\mathrm{t}+\mathrm{t}^{3}$.
(a) Find the parameters and the generator polynomial of $\mathrm{C}^{(3)}$.
(b) Show that $C^{(3)}$ corrects all burst- m errors with $m \leq 3$.
(c) Using the Burst Error Trapping Algorithm, decode the following received vector

$$
y(t)=t+t^{3}+t^{5}+t^{7}+t^{8}+t^{9}+t^{11} .
$$

2. Let C be the binary linear code with the following parity-check matrix

$$
H=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Find the minimum distance $\mathrm{d}(\mathrm{C})$, and determine the code capacity for detecting and correcting random errors. Show also that C detects all burst- m errors with $m \leq 3$.
3. A q-ary cyclic code, with length n, is called degenerate if there is $r \in \mathbb{N}$ such that r divides n and each code word is of the form $c=c^{\prime} c^{\prime} \cdots c^{\prime}$ with $c^{\prime} \in \mathbb{F}_{q}^{r}$, i.e., each code word consists in n / r identical copies of a sequence c^{\prime} with length r.
(a) Let C be the code in the previous exercise. Show that the ponctured code, in the last coordinate, of the dual code C^{\perp} is a degenerate cyclic code, and determine its generator polynomial.
(b) Determine all degenerate, cyclic and binary codes with length 9, writing the generator polynomials and the corresponding r-sequences.
4. Let C be the Reed-Solomon code over \mathbb{F}_{8} with generator polynomial $g(t)=(t-\alpha)\left(t-\alpha^{2}\right)(t-$ α^{3}), where $\alpha \in \mathbb{F}_{8}$ is a root of $1+t+t^{3}$.
(a) Justifify that α is a primitive element in \mathbb{F}_{8}.
(b) Find the parameters of C .
(c) Find the parameters of the dual code C^{\perp}.
(d) Find the parameters of of the extended code $\widehat{\mathrm{C}}$.
(e) Find the parameters of the concatenation code $C^{*}=\phi^{*}(C)$, where $\phi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{2}^{3}$ is the linear map defined by $\phi(1)=100, \phi(\alpha)=010$ and $\phi\left(\alpha^{2}\right)=101$.
5. A linear code C is self-orthognal if $\mathrm{C} \subseteq \mathrm{C}^{\perp}$. Determine the generator polynomial of all self-orthogonal Reed-Solomon codes over \mathbb{F}_{16}. Which of these codes are self-dual?

