COMBINATÓRIA E TEORIA DE CÓDIGOS

Homework 6 (deadline 24/5/2013, in class)

1. Let $C=\operatorname{Ham}(3,2)$ be the binary Hamming code with redundancy 3 and generator polynomial $g(t)=1+t+t^{3}$.
(a) Find the parameters $[n, k, d]$ of the interleaved code $C^{(3)}$.
(b) Find the generator and the check polynomials of $C^{(3)}$.
(c) Show that $C^{(3)}$ corrects all burst- m errors with $m \leq 3$, but does not correct all burst errors with length 4.
(d) Using the Burst Error Trapping Algorithm, decode the following received vector

$$
y(t)=t+t^{3}+t^{4}+t^{9}+t^{13}
$$

2. Let C be the binary linear code with the following parity-check matrix

$$
H=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Find the minimum distance $\mathrm{d}(C)$, and determine the code capacity for detecting and correcting random errors. Show also that C detects all burst- m errors with $m \leq 3$.
3. Let $C=\left\langle\left(0, \alpha, \alpha^{2}, 1\right),(1,1,1,1)\right\rangle \subset \mathbb{F}_{4}^{4}$, where $\mathbb{F}_{4}=\mathbb{F}_{2}[\alpha]$ with $\alpha^{2}=1+\alpha$.
(a) Determine a generator matrix and the parameters of the concatenation code $C^{*}=$ $\phi^{*}(C)$, where $\phi: \mathbb{F}_{4} \longrightarrow \mathbb{F}_{2}^{2}$ is the \mathbb{F}_{2}-linear aplication defined by $\phi(1)=10$ and $\phi(\alpha)=01$.
(b) Justify that the code C^{*} is equivalent to $\widehat{\operatorname{Ham}}(3,2)^{\perp}$.
4. Let C be a q-ary MDS code with parameters $[n, k]$, where $k<n$.
(a) Show that there is a q-ary MDS code with lenght n and dimention $n-k$.
(b) Show that there is a q-ary MDS code with lenght $n-1$ and dimention k.
5. Let C be the linear code over \mathbb{F}_{7}, with generator matrix

$$
G=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 3^{2} & 3^{3} & 3^{4} & 3^{5}
\end{array}\right]
$$

(a) Show that C is a cyclic code.
(b) Find the generator polynomial of C.
(c) Justify that C is a Reed-Solomon code and find its parameters $[n, k, d]$.

