COMBINATÓRIA E TEORIA DE CÓDIGOS

TPC 3 (para entregar na aula de 4/4/2014)

- A. Para cada $x \in \mathbb{F}_{q^m}$, definimos o seu traço por $\operatorname{Tr}(x) = \sum_{i=0}^{m-1} x^{q^i}$.
 - (a) Mostre que $(a+b)^{q^i}=a^{q^i}+b^{q^i}$ para quaisquer $a,b\in\mathbb{F}_{q^m}$ e $i\in\mathbb{N}$. Sugestão: Mostre primeiro que $(a+b)^p=a^p+b^p$, onde p é a característica de \mathbb{F}_{q^m} .
 - (b) Justifique que, para qualquer $a \in \mathbb{F}_{q^m}$, $a \in \mathbb{F}_q \subset \mathbb{F}_{q^m}$ se e só se $a^q = a$.
 - (c) Mostre que $Tr(x) \in \mathbb{F}_q$ para todo o $x \in \mathbb{F}_{q^m}$.
 - (d) Mostre que $\operatorname{Tr}: \mathbb{F}_{q^m} \longrightarrow \mathbb{F}_q$ é uma aplicação linear sobre \mathbb{F}_q .
 - (e) Se C é um código linear [N, K, D] sobre \mathbb{F}_{q^m} , definimos o código traço por

$$Tr(C) = \{(Tr(x_1), \dots, Tr(x_N)) : (x_1, \dots, x_N) \in C\}$$
.

Mostre que Tr(C) é um código linear q-ário, de comprimento N e dimensão $k \leq mK$.

- B. Considere $\mathbb{F}_{16} = \mathbb{F}_2[t]/\langle t^4 + t + 1 \rangle$, i.e., $\mathbb{F}_{16} = \mathbb{F}_2[\alpha]$ onde $\alpha^4 = \alpha + 1$.
 - (a) Justifique que $t^4 + t + 1$ é irredutível em $\mathbb{F}_2[t]$.
 - (b) Identifique \mathbb{F}_4 como subcorpo de \mathbb{F}_{16} .
 - (c) Determine um polinómio $f(t) \in \mathbb{F}_4[t]$ tal que $\mathbb{F}_{16} = \mathbb{F}_4[t]/\langle f(t) \rangle$.
- 1. Considere o código linear $C = \langle (\alpha, \alpha^2, \alpha^4, 1, \alpha^3, \alpha^6, \alpha^5) \rangle$ sobre $\mathbb{F}_8 = \mathbb{F}_2[\alpha]$, onde $\alpha^3 = 1 + \alpha$.
 - (a) Indique os parâmetros de C.
 - (b) Determine uma matriz geradora do código traço $\mathrm{Tr}(C)$.
 - (c) Indique os parâmetros do código dual $\text{Tr}(C)^{\perp}$.
 - (d) Será Tr(C) um código auto-ortogonal ou auto-dual?

Se C é um código linear sobre \mathbb{F}_{q^m} , definimos o subcódigo subcorpo por

$$C|_{\mathbb{F}_q} = C \cap \mathbb{F}_q^N$$
.

- (e) Justifique que o subcódigo subcorpo $C|_{\mathbb{F}_q}$ é linear sobre \mathbb{F}_q .
- (f) Determine uma matriz geradora para o código dual C^{\perp} e para o subcódigo subcorpo $(C^{\perp})|_{\mathbb{F}_2}$.
- (g) Verifique que $(C^{\perp})|_{\mathbb{F}_2} = \operatorname{Tr}(C)^{\perp}$.

Nota: Esta relação entre os códigos traço e subcorpo é válida para qualquer código linear C sobre \mathbb{F}_{q^m} , é o Teorema de Delsarte.

2. Exercícios 4.6, 4.9 e 4.10.

Obervação:

- Cotações: os exercícios em 1 e 2 valem 20 pontos no total, os exercícios bónus A e B valem 4 pontos extra.
- Pode usar os resultados do exercício bónus A na resolução de outros problemas, mesmo que não o resolva.