





Grupos

1. Grupos e monodides: definicoes basicas

1.1.1.
1.1.2.

1.1.3.

1.1.4.

1.1.5.

1.1.6.
1.1.7.

Exercicios

Prove Proposition 1.2.

Let G be a semigroup. Show that G is a group iff the following conditions hold:

(i) de€ G Va € G ea = a (left identity) and

(ii) Ya € G 3b € G ba = e (left inverse).
Sugestion: Assuming (i) and (ii), first show that a®> = a = a = e.
Show that the set {f: {1,...,n} — {1,...,n} | f is bijective}, with composition, is a
group which is not abelian if n > 2 — See Example 1.7.
Let o0 € S,,. Show that
(a) Jo1,..., 0 disjoint cycles' s.t. ¢ =010y
(b) If 0 € S, is a cycle, then o is a product of transpositions.
Let D3 be the set of an equilateral triangle isometries (plane isometries that leave the
triangle invariant) with the operation of composition. Let 0,7 € D3 be, respectively, a
reflexion w.r.t a symmetry axis and a rotation of 27 /3. Show that each element of D3
can be written uniquely as o*77,7=0,1, 7 =0,1, 2.
Let G be a group s.t. a®> =1 for all @ € G. Show that G is abelian.

Let G be a finite group containing an even number of elements. Show that it exists
a€G\{1} st a®=1.

Lo 7 € Sy are disjoint if {i | c(3) i} N{i|7(}) #i} =@

}—‘I



9 1. Grupos

2. Operacoes definidas por passagem ao quociente

Exercicios

1.2.1. Show that Z,, is an abelian monoid for the operation defined by:
ab := ab,
and the distributive property holds:
a(b+c¢) = ab+ ac.

1.2.2. Consider the additive group (Q, +) and show that:
(a) the relation defined by a ~ b < a — b € Z is a congruence relation, i.e., it’s an
equivevalence relation that preserve the group operation;
(b) the set of equivalence classes Q/Z is an infinite abelian group.

1.2.3. Let p be a prime number and define Z(p>) C Q/Z by
Z(p™) = {L%] GQ/Z|aEZ,n20} )

Show that Z(p™) is an infinite group with the sum of Q/Z.



Exercicios 3

3. Homomorfismos de grupos

1.3.1.

1.3.2.
1.3.3.
1.3.4.
1.3.5.
1.3.6.
1.3.7.

1.3.8.

1.3.9.

1.3.10.

1.3.11.
1.3.12.

1.3.13.

Exercicios

Let f : G — H be a group homomorphism. Show that f(1g) = 1y and f(a™!) = f(a)~!
for all @ € G. Give an example that shows that the first property is false if G or H are
monoids which are not groups.

Show that a group G is abelian iff f : G — G, f(x) = 27! is an automorphism.
Show that D3 = Ss.
Prove Proposition 3.8.
Show that all subgroups of Z are the ones in Example 3.9.
Show that the set {c € S, | o(n) = n} is a subgroup of \S,, isomorphic to Sp,_i.
Let f: G — H be a group homomorphism and let J < H. Define
1) ={zeqG| f(z)e J}
Show that f~1(J) < G.

Let G be a group and let Aut(G) be the set of automorphism of G. Show that Aut(G)
is a group with operation given by composition.

(See Exercise 1.1.4.)

(a) Let o € S,,. Show that o € A, iff

o =0y ---0,, where g; are transpositions = r is even.
(b) Show that, if o;,7; € S,, are transpositions, then
010, =T1T1-+Ts = 1 and s are both even or odd.

Let G be a group and let H; < G, i € I.

(a) Prove Proposition 3.19, i.e., show that N;e;H; < G.
(b) Show that, in general U;cyH; is not a group.

Prove Theorem 3.23.

(a) Let G be the group, with matrix multiplication, generated by the complex matrices

A:[O 1] and B:[Q Z]

-1 0 1 0
where 72 = —1. Show that G is a nonabelian group with 8 elements. o
Sugestion: Verify that BA = A3B, so any element in Qg has the form A’B’. Verify
also that A* = B* =1 := (1) (1) is the identity in G.

(b) Show that Hg := {#1, +i,+j, £k} C H is a group, where H is the set of quaternions.
(c) Let Qs = {(a,b | a®? = b a* = 1,bab~! = a~1). Show that G = Hg = Qs.
Each of these groups is called quaternion group, which is usually denoted by Qg.

Show that the additive subgroup Z(p>) of Q/Z (see Exercise 1.2.3) is generated by the

e {[H] Inen).



1. Grupos

4. Grupos ciclicos

1.4.1.

1.4.2.

1.4.3.

1.4.4.

1.4.5.

1.4.6.

1.4.7.

1.4.8.
1.4.9.
1.4.10.

1.4.11.
1.4.12.

1.4.13.

Exercicios

(a) Show that Aut(Z) = Zs.

(b) Show that Aut(Z,,) = (Z,,,-), m € N. Sugestion: What are the generators of Z,,?

(c) Let G be a cyclic group. Conclude that Aut(G) is an abelian group. Is Aut(G) always
cyclic?

Prove Proposition 4.8.

Let G be a group and a,b, ¢ € G. Show that |a| = |a™!|, |ab| = |ba| and |cac™!| = |a].

Let G be an abelian group, a,b € G with |a| = n and |b|] = m. Show that G contains an

element of order lem(n, m).
Sugestion: Consider first the case when ged(n, m) = 1.

Let G be an abelian group of order pq with p and ¢ relatively prime. Assuming that there
exists a,b € G s.t. |a| = p and |b| = ¢, show that G is cyclic.

Let f : G — H be a homomorphism, let a € G s.t. f(a) has finite order in H. Show that
either |a| is infinite or |f(a)| divides |a|.

0

(a) Consider the group G = GL2(Q). Show that A = L

01} has order 4 and B =

-1 —
(b) Conversely, show that the additive group? Zs x Z contains nonzero elements a and b
of infinite order s.t. a 4+ b has finite order.

[ 0 1 ] has order 3, but AB has infinite order in G.

Prove Proposition 4.9.

Prove Proposition 4.10.

Consider again the group Z(p>) of Exercise 1.2.3 and let H < Z(p>°). Show the following

statements:

(a) Any elemnts in Z(p) has finite order p”, for some n > 0.

(b) If at least one elemnet in H has order p* and no element in H has order greater than
p*, then H is the cyclic group generated by [#] and so H = Z,.

(c) If the set of the orders of all elements in H does not have an upper bound, then
H = 7(p™).

(d) The only proper subgroups of Z(p™) are the cyclic groups C,, = <[ﬁ]), n € N.
Moreover, (0) = Cp < C; < Cy < ---.

(e) Let x1,x9,... be elements of an abelian group G s.t. |z1]| = p, pre = 1, pr3 = T2,
vy PTpgi = Zp, .... The subgroup generated by x;, with ¢ > 1, is isomorphic to
Z(p™).

Sugestion: Verify that the map given by x; — [i] is well-defined and is an isomor-

. pl
phism.

Show that a group which has only finitely many subgroups is finite.

For an abelian group G we define T = {g € G | |g| is finite}. Show that T is a subgroup?
of G. Is the abelian hypothesis necessary?

Let G be an infinite group. Show that G is cyclic iff G is isomorphic to any of its proper
subgroups.

2If G and H are groups, the set G x H is a group for the operation defined componentwise, and identity (15, 1g).

3This subgroup is called torsion subgroup of G and it is also denoted by Tor(G).



Exercicios 5

5.

Classes laterais esquerdas, quociente por um
subgrupo

1.5.1.
1.5.2.
1.5.3.

1.5.4.
1.5.5.

1.5.6.
1.5.7.

1.5.8.

Exercicios

Prove Proposition 5.2.
Prove Theorem 5.7 when G is infinite.
Let G be a finite group. Show that the following statements are equivalent:
(i) |G| is prime;
(ii) G # {1} and G contains no proper subgroups;
(iii) G = Z,, for some prime p.
Let a € Z and p be a prime number s.t. p{a. Show that a?~! =1 (mod p).
Show that, up to isomorphism, there are only two groups of order 4, namely Z4 and
ZQ X ZQ.
Sugestion: use Lagrange Theorem to conclude that a group of order 4, which is not cyclic,
consists of the identity and three elements of order 2.
Let H, K subgroups of the group GG. Show that HK is a subgroup of G iff HK = KH.

Let G be a group of order p*m, where is p a prime and ged(p,m) = 1. Let H < G be of
order p* and K < G of order p?, where 0 < d < k, s.t. K ¢ H. Show that HK is not a
subgroup of G.

If H and K are subgroup of finite index in the group G s.t. [G : H] and [G : K| are
relatively prime, show that G = HK.



1. Grupos

6. Subgrupos normais; grupo quociente

1.6.1.
1.6.2.
1.6.3.
1.6.4.
1.6.5.
1.6.6.
1.6.7.

1.6.8.

1.6.9.

1.6.10.

1.6.11.

Exercicios

Let H < G s.t. [G: H|] =2. Show that H < G.

Prove Proposition 6.7.

Show that H < G/N iff H = K/N where K <G and N < K.

Let {N; | i € I} be a family of normal subgroups in G. Show that N;c;V; < G.
Let H < Sy be the subgroup of permutations o s.t. o(4) =4. Is H normal in Sy?
Show that all subgroups of QJg are normal.

Let G be a finite group, let H < G with |H| = n. If H is the unique subgroup of G with
order n, show that H <1 G.

The dihedral group is defined as D,, := (a,b | |a] = n, |b| = 2,bab = a~'). Show that

(a) |Dy| = 2n;

(b) (a) < D,, and D, /{a) = Zs.

Let G be the subgroup S,, (n > 3) geranerated by the permutations 0 = (12 --- n) e

_ 2n)Bn—-1)---(5 5+2) if n is even
2n)Bn—1)-- (L 2 4+ 1) ifnis odd

(a) Show that* G = D,,. (See the previous exercise for the definition of D,,.)
Sugestion: Consider first the cases n = 4 and n = 5, then generalize for an arbitrary
n.

(b) Is G normal in S,,?

(a) Given examples of subgroups H and K of Dy s.t. H <1 K and K < Dy but H 4 Dy.

(b) If H is a cyclic subgroup of G and H <1 G, show that any subgroup of H is normal in
G. (Compare with the previous part.)

Let H < Z(p>) s.t. H # Z(p>), show that Z(p>°)/H = Z(p>).

Sugestion: If H = ([p%]), let z; = [ﬁ] and use Exercise 1.4.10(e).

41f we consider a regular polygon with n edges with the vertices labeled consecutively from 1 to n, this description of
Dy, corresponds to describing the symmetries of this poligon via permutations of the vertices, namely, o is a rotation by
an angle of 27”, and 7 is a reflection w.r.t a “diameter”.



Exercicios 7

7. Teoremas de isomorfismo

8. Produto directo e produto semidirecto de grupos

1.8.1.
1.8.2.
1.8.3.

1.8.4.

1.8.5.
1.8.6.

1.8.7.

1.8.8.

Exercicios

Show that Zﬁ = Zg X ZQ.

Show that S3 = Z3 X Zs.

Let N<Gand K <Gst. NNK ={1} and NK =G.
(a) Show that G/N = K.

(b) Is it always true that G = N x K?

Let N1 <« G and Ny <1 Gs.
(a) Show that N1 x Na <Gy x G2 and

G Gy GixGo
N1 NQ Nl X NQ’
with an isomorphism v defined by ¢ ([g1], [g92]) = [(91, 92)]
(b) Let m: G1 x Go — G1/Ny X Ga3/Na; (g1,92) — ([91],[g92]).- Show that ¢ o 7 is the

. . . Gl XGQ
canonical projection G1 x Gy — N

Identifying N with N x {1g}, show that N <N x H.
Let G be a group and N <G, H < Gst. NN H = {1}.
(a) Show that the map
v: H — Aut(N)
hw—cp,

where ¢, (n) = hnh~! for all n € N, is a group homomorphism.

(b) Show that ¢ : N x H — G, ¥(n, h) = nh, is an injective group homomorphism whose
image is NH. If ¢ is also surjective, i.e. G = NH, we say that G is the internal
semidirect product of N and H and we write G = N x H.

Consider the subgroups N = ((12)(34), (13)(24)) and H = {0 € S4 | 0(4) = 4} of 4.

Show that N <15y and Sy = N x H. Conclude that Sy = (Zg X Za) % Ss.

Show that Qg is not the internal semidirect product of proper subgroups.



1. Grupos

9. Accoes de grupos

1.9.1.
1.9.2.

1.9.3.

1.9.4.
1.9.5.
1.9.6.
1.9.7.
1.9.8.
1.9.9.

1.9.10.

1.9.11.

1.9.12.

1.9.13.
1.9.14.
1.9.15.

1.9.16.

Exercicios

Prove Proposition 9.4.

Let 0 = (i1 i3 --- i) € S, be a cycle. Show that To7~! = (7(i1) 7(i2) --- 7(i,)), for all
TES,.

Determine the conjugacy classes in S,.

Sugestion: Use Exercise 1.9.2, and recall that any permutation is the product of disjoint
cycles. Conclude that twos permutations are conjugate in 5, iff they have the same type
of factorization into disjoint cycles.

Let G be a group. Show that C(G) < G.

Show that C(H x K) = C(H) x C(K).
Determine C(Qs), C(D4) and C(Ds).

Let n € N s.t. n > 2. Show that C(S,) = (1).
Show that, if G/C(G) is cyclic, then G is abelian.

Let G be a group and H < G. Prove the following properties:

(a) Cg(x) = Ca({(x)) for all z € G;

(b) Ca(H) < Na(G);

(c) H < Ng(H);

(d) If H< K < Gand H< K, then K < Ng(H).

Let G be a group containing an element a € G which has exactly two conjugates. Show
that G contains a proper normal subgroup N # {1}.

Let G be a group. An automorphism f € Aut(G) is inner if
JgeG VzeG st flx)=gzg "
We denote by Inn(G) the set of all inner automorphisms of G.
(a) Show that Inn(G) < Aut(G).
(b) Show that Inn(G) = G/C(G).
If H < G, show that the quotient group Ng(H)/Cq(H) is isomorphic to a subgroup of
Aut(H).
Give an example of an automorphism of Zg which is not an inner automorphism.
Show that the center of Sy is C(S4) = {1} and conclude that Sy = Inn(Sy).
Let G be a group containing a proper subgroup of finite index. Show that G contains a
proper normal subgroup of finite index.

Let G be a group of order |G| = pn with p > n, p prime, and let H < G s.t. |H| = p.
Show that H <1 G.



Exercicios 9

10. Teoremas de Sylow

1.10.1.
1.10.2.

1.10.3.

1.10.4.

1.10.5.

1.10.6.

1.10.7.

1.10.8.
1.10.9.
1.10.10.
1.10.11.

Exercicios

Let G and N <G s.t. N and G/N are p-groups. Show that G is a p-group.

Show that any group of order p?, with p prime, is abelian.
Sugestion: Use Exercise 1.9.8.

Let G be a finite p-group and let be H <G be such that H # {1}. Show that HNC(G) #
{1}.

Let G be a finite p-group, i.e., |G| = p". Show that G contains a normal subgroup of
order pk, for each 0 < k < n.

Let G be a finite group s.t. P is a normal Sylow p-subgroup of G, and Let f : G — G
be a homomorphism. Show that f(P) < P.

Let P be a Sylow p-subgroup of G
(a) Show that Ng(Ng(P)) = Ng(P).
(b) Show that, if H < G contains Ng(P), then Ng(H) = H.
Let Dg = (a,b | |a| = 6,|b] = 2,bab~' = a~') be the symmetry group of a regular
hexagon, where a € Dy is a rotation of 7/3 and b € Dg is a reflexion
(a) Show that p(a) = (1 2345 6) and p(b) = (1 2)(3 6)(4 5) define an injective
homomorphism ¢ : Dg — Sg and so
Dg=((123456),(12)(36)(45)) < Se.
(b) Find the Sylow subgroups of D.
Find the Sylow subgroups of Dg,, where p is an odd prime.
Find the Sylow 2-subgroups and 3-subgroups of S3 and Sy.
Find the Sylow p-subgroups of A5 and Sg.

If |G| = p™q, with p > ¢ prime numbers, show that G contains a unique normal subgroup
with index gq.
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1. Grupos

Exercicios

11. Os Teoremas de Sylow como teoremas de
estrutura
12. Teoria de estrutura de groups: grupos
nilpotentes e grupos resoluveis
1.12.1. Prove Proposition 11.8.
1.12.2. Prove Proposition 12.2.
1.12.3. Let G be a group of order 45. Determine the number of Sylow p-subgroups for each
prime, and justify that G is abelian, in particular, nilpotent.
1.12.4. Prove Corollary 12.10.
1.12.5. Let G be a finite nilpotent group and N <G s.t. N # {1}. Show that NNC(G) # {1}.
1.12.6. (a) Prove that a finite group is nilpotent iff any maximal proper subgroup of G is normal.
(b) Conclude that the index of any maximal proper subgroup is a prime number.
Sugestion: Use Exercise 1.10.6.
1.12.7. For which n > 3 is D,, a nilpotent group?
1.12.8. Prove Proposition 12.15.
1.12.9. Let N < G. Show that [N,G] < N.
1.12.10. Prove Proposition 12.23.
1.12.11. Prove Proposition 12.28.
1.12.12. Compute the derived group G in the following cases:

(a) G =5, (for n > 3),
(b) G = Ay,
(¢) G = D,.



Exercicios 11

13. Séries normais e subnormais

1.13.1.

1.13.2.

1.13.3.

1.13.4.
1.13.5.
1.13.6.

1.13.7.

1.13.8.

Exercicios

Show that there are no simple groups of order 20.
Sugestion: Count the Sylow p-subgroups.

Let G be group and N <1 G a normal subgroup.

(a) Show that, if N and G/N are solvable groups, G is solvable.

(b) Give an example of a group G and a subgroup N <G s.t N and G/N are nilpotent
groups but G is not nilpotent.

Let G = Gy > G1 > -+ > G be a subnormal series of a finite group G. Show that

n—1
G| = (H |Gi/Gi+1|> Gl
1=0

Show that an abelian group has a composition series iff is finite.
Show that any solvable group with a composition series is finite.
Show that any group or order p?q, where p and ¢ are prime, is solvable.
Let G be the subgroup of (H*,-) generated by a = e3 and b = j.
(a) Find the subgroups C(G) and G®, for k > 1, and decide if G is nilpotent and/or
solvable.
(b) Determine a composition series for G and identify its factors.
Sugestion: Verify that |a| = 6, |b| = 4 and bab~! = a~!; justify that any element in G
can be written in the form a"b® with r,s > 0.
Let G = GL,(R) and consider the following subgroups:
H ={A € G| A is upper triangular},
K ={A € G| A is upper triangular with 1’s in the diagonal},
D = {A € G| A is diagonal}.
Prove the following statements:
(a) K is nilpotent.
(b) K < H and H/K = D.
(c) H is solvable. Sugestion: Use the previous part and Exercise 1.13.2(a).






Anéis

1. Definicoes basicas

Exercicios

2.1.1. Consider the abelian group G = Z @ Z. Show that End(G) is a non commutative ring.

2.1.2. Let G be a group. Show that Z(G) is a ring. Give an example of a Z(G) containing zero
divisors.

2.1.3. Let H the quaternion ring and recall that Hg = {£1, i, +j, +k} is a group. What’s the
difference between the ring H and the group ring R(Hg)?

2.1.4. (Freshman’s dream.) Let A be a commuatative ring with prime characteristic p. Show
that (a & b)P" = a?" £ b*", for n > 0.

2.1.5. Let A be a commutative ring with prime characteristic p. Show that f: A — A, f(a) = a?
is a ring homomorphism.

2.1.6. An element a in a ring A is said to be nilpotent if a™ = 0 for some n. Show that in a
commuatative ring A, if a and b are nilpotent, then a + b is also nilpotent. Show that
this result can be false if the ring is not commutative.

'_lI
w
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2. Anéis

2. Ideais e anéis quociente

2.2.1.
2.2.2.

2.2.3.

2.2.4.
2.2.5.

2.2.6.

2.2.7.

2.2.8.

2.2.9.

2.2.10.

2.2.11.
2.2.12.

Exercicios

Give an example of a ring A and a € A such that {zay | z,y € A} is not an ideal.
Show that the set Jj = {A € M,(R) | ATe; = 0, for i # k:}, with fixed k =1,...,n,is a
right ideal but not a left ideal.

Prove Proposition 2.9, i.e., if {I} | k € K} are (left, right) ideals in a ring A, show that
Nrer I 1s a (left, right) ideal.

Prove Proposition 2.15.

Show that a ring A is a division ring iff A contains no proper left ideal. Sugestion: Use
Exercise 1.1.2.

Let A be a commuative ring and let N be the set of nilpotent elements in A (see Exercise
2.1.6)

(a) Show that N is an ideal.

(b) Show that A/N contains no nonzero nilpotent elements.

Let A be a commutative ring and let I C A be an ideal. We define the radical of I by
rad(I) ={a € A|Ins.t. a" € I}.

(a) Show that rad(I) is an ideal.
(b) Show that rad([/) is the intersection of all prime ideals in A that contain I.

Let A be a ring and let B = M,,(A) be the ring of n x n matrices with entries in A. Show
that J C B is an ideal iff J = M, (I) (set of matrices with entries in I) for some ideal
ICA.
Sugestion: Given J, define I as the set of elements of A which are the (1, 1)-entry in some
matrix X € J and use the elementary matrices E; j whose (i, j)-entry is 1 and all others
are 0. Verify that F; j X Ey; = 2, F;;, where X = [z].
Let D be a division ring and let A = M, (D).
(a) Show that A contains no proper ideals, i.e., {0} is a maximal ideal.
Sugestion: use the previous exercise.

(b) Show that A contains zero divisors. Conclude that

(i) S = S/{0} is not a division ring;

(ii) {0} is a prime ideal which does not satisfy condition (2.1) in Lemma 2.25.
Let f : A — B be a surjective ring homomorphism and let K = ker f. Prove the following
statements.
(a) If P C A is a prime ideal containing K, then f(P) C B is a prime ideal.
(b) If Q C B is a prime ideal, then f~'(Q) C A is a prime ideal which contains K.
(¢) The following correspondence is bijective

{P C A prime ideal s.t. K C P} — {Q C B prime ideal}
P— f(P)
(d) Given an ideal I C A, any prime ideal in A/I is of the form P/I where P C A is a
prime ideal containing /.
Determine all prime ideals and maximal ideals in the ring Z,,

Let A be a commutative ring and let I C A be an ideal contained in a finite union of prime
ideals, i.e., I C PLU---U P, where P; is prime. Show that I C P; for any ¢ =1,...,n.
Sugestion: Assume that I N P; ¢ U;;P; for some j and let a; € (I NF;)\ (Uiz; P).
Verify that a = a1 + asas---ap, € I but a ¢ PLU---U P,.



Exercicios 15

3. Conjuntos parcialmente ordenados: lema de Zorn

4. Produto de anéis

Exercicios

2.4.1. Let A and B be rings. Show that (A x B)* = A* x B*.

2.4.2. Let A and B be rings, and let K be an ideal in A x B.
(a) Justify that I = {a € A| (a,0) € K} is an ideal in A and J = {b € B | (0,b) € K}
is an ideal in B.
(b) Given (a,b) € K, show that (a,0) € K and (0,b) € K.
(c) Show that K =1 x J. So any ideal A x B is of this form.
(d) Generalize the previous part for ideals in the product ring A; x - -+ x A,.

2.4.3. Let A and B be rings, let I C A and J C B be ideals. Show that (A x B)/(I x J) =
(A/I) x (B x J), via a ring isomorphism.
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2. Anéis

5. Anéis Comutativos

6. Factorizacao em anéis comutativos

2.6.1.

2.6.2.

2.6.3.

Exercicios

Let D be a uf.d. and let d € D\ {0}. Show that there exists only a finite number of
principal ideals which contain the ideal (d).

(Even in a integral domain, there can be irreducible elements which are not prime.)

Consider the ring
Z|V=5] = {m+nvV—=5|m,n € L}

and the map N : Z[\/—5] — Z given by

N(m +nv=5) = (m +nv—=5)(m — nv/—5) = m? + 5n? .
Prove the following statements:
(a) Ya,b € Z[\/—5] N(ab) = N(a)N(b);
(b) N(a) =0« a=0;
(¢) a € Z[v/—5]* < N(a) = £1;
(d) 3,2+ /=5 are irreducible in Z[/—5].
Since 32 = 9 = (2++/—5)(2—+v/=5), conclude that the elements 3,2++/—5 are irreducible
but not prime.

Determine the prime elements and the irreducible elements in Z5.
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7. Factorizacao em dominios integrais

8. Dominios Euclidianos

2.8.1.

2.8.2.

2.8.3.

Exercicios

Show that Z[i] := {n+mi | n,m € Z} C C is an eucledian domain for ¢(n+mi) = n?+m?,

by answering the following questions:

(a) Show that ¢ is a multiplicative map, i.e., ¢(ab) = p(a)p(b) for all a,b € Z[i] and
deduce property (i) in the definition.

(b) Given k,a € Z, with a > 0, show that there exists ¢, € Z such that k = qa + r,
where |r| < .

(¢) Prove property (ii) where a € N and b = n + mi € Z[i].
Sugestion: use the previous part to obtain n = ¢gia + r1 and m = gea + ro, and
consider ¢ := q1 + qoi and 7 = r1 + 79i.

(d) Prove property (ii) for a,b € Z[i].
Sugestion: if a = z + yi € Z[i] \ {0}, then aa = 2? + y? € N (where @ = x — yi) and
use the previous part with aa and ba.

Determine the units in the ring Z[i].

Sugestion for an “efficient” solution: describe the units in Z[i] using the application ¢ of

the previous exercise.

Let A be a principal ideal commutative ring. Show that any set X C A, X # &, has a
greatest common divisor.
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9. Localizacao

Exercicios

2.9.1. Let A be a commutative ring and let S be a multiplicative subset. Show that § € S—1A
is invertible iff (a) NS # @.
2.9.2. Determine S~'Z,, for n > 2, where S = {a € Z,, | a # 0, a is not a zero divisor}.
2.9.3. Let A= Zg and S = {1,2,4}. Show that S is a multiplicative set and S™1A & Z3.
2.9.4. Let A be a commutative ring and S a multiplicative subset such that S C A*. Show that
ws: A— S71A p(a) = 1, is an isomorphism.
2.9.5. Show that
(a) Frac(Frac(A)) = Frac(A) for any integral domain A;
(b) Frac(k) = k for any field k.
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10. Ideais de S~ 'A

2.10.1.
2.10.2.
2.10.3.
2.10.4.

2.10.5.

2.10.6.

2.10.7.

2.10.8.
2.10.9.
2.10.10.

2.10.11.

Exercicios

Prove Proposition 10.2.
Prove Proposition 10.3.
Prove Proposition 10.4.

Let D be a p.i.d. and let S C D be a multiplicative set such that 0 ¢ S. Show that
S™'Dis a p.i.d.
Show that an integral domain D is a u.f.d. iff any nonzero prime ideal contains a
principal nonzero prime ideal.
Sugestion for proving (<): First show the following statements.
(i) Let S=D*U{p1 - pn | n €N,p1...,p, € D primes}. Then S is a multiplicative
set such that, if ab € S, thena € S and b € S.
(ii) If S C D is a multiplicative set (with 0 ¢ S), then for any x € D such that
() NS = & there exists a prime ideal P C D such that () C P and PN S = @.
Sugestion: use the caracterization of prime ideals in S~'D.

Let D be a u.f.d and S C D a multiplicative set such that 0 ¢ S. Show that S~!D is a
u.f.d.
Sugestion: Use Exercise 2.10.5.

Let p € Z be a prime number. What’s the relation between the quotient ring Z, = Z/(p)
and the localization Z,y = S~'Z, where S =Z\ (p)?

Prove Proposition 10.10.

Let p € Z be a prime number. Show that A = {¢ € Q| p{ b} is a local ring.

Let f: A — B be a non-zero ring homomorphism. Show that, if A is local, then f(A)
is also local.

Let A be a commutative ring and let N be the ideal of the nilpotent elements in A (see
Exercise 2.2.6). Show that N is the intersection of all prime ideals in A.

Sugestion to prove that N contains the intersection of all prime ideals: Given r € A\ N,
find a prime ideal P C A such that » ¢ P by considering the localization S~!'A, where
S:{T‘n’TLENQ}.
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2. Anéis

11.

Anéis de polinémios

2.11.1.

2.11.2.

2.11.3.

2.11.4.

2.11.5.

Exercicios

Let A = Ms(Z).

(a) Given any matrix M € A, show that (z + M)(z — M) = 2% — M? in Alz].

(b) Give an example of matrices M, N € A such that (N + M)(N — M) # N? — M?.
Conclude that Proposition 11.16 might be false if the rings are not commutative.
(Universal property of the polinimial ring A[x1, ..., z,], when A is not necessarely com-
mutative.) Let A, B be rings and ¢ : A — B be a ring homomorphism such that

d4b1,...,b, € B Vi,j Vae A blb]:b]bl and go(a)bzzbzgo(a)

(a) Show that there exists a unique homomorphism ¢ : A[zy,...,x,] — B such that
Pla = ¢ and @(z;) = b;.

(b) Show that the previous property determines the ring Alzy,...,x,] up to isomor-
phism.

Let A be a commutative ring. If f = a,z™ 4+ -+ + a1 + ag is a zero divisor in Alz],
show that there is b € A\ {0} such that ba,, = --- = bag = 0.

Let A be a commutative ring and let S be multiplicative subset of A. Show that
S7H(Ala]) = (ST A)[2].

Let A be a commuative ring and a € A. Show that ax + 1 is invertible in A[x] iff a is
nilpotent in A.
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12. Séries formais

2.12.1.

2.12.2.

2.12.3.
2.12.4.

Exercicios

Let A be a ring. Show that, for n > 1,

(a) Mp(A)lz] = My (Alz]);

(b) My (A)[[2]] = My (A[l]]).

Justify the following statements:

(a) The polinomial x 4+ 1 is a unit in Z[[z]], but not in Z|[x].

(b) the polinomial 2 + 3z + 2 is irreducible in Z[[x]], but not in Z[x].
If k is a field, show that k[[z]] is a local ring. Is k[z] a local ring?

Let k be a field. Show that:
(a) Any f € k[[z]] \ {0} can be written as f = x*u with k € Ny and u € k[[z]]*.
(b) The ideals in k[[z]] are {0} and (z*), with k € Ny, thus k[[z]] is a p.i.d.
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2. Anéis

13. Factorizacao em anéis de polinémios

2.13.1.

2.13.2.

2.13.3.

2.13.4.

2.13.5.

Exercicios

Let D be an integral domain and ¢ € D be an irreducible element. Show that the ideal

(x,¢) C D[z] is not principal. So D]z] is not a p.i.d.

Show that the following rings are not p.i.d.:

(a) Z[z];

(b) klz1,...,zy], where k is a field and n > 2.

Let f =Y a;x' € Z[z] and p € Z be a prime. Let f =" a;2* € Z,[z].

(a) Show that, if f is monic and f is irreducible in Z,[z] for some prime p, then f is
irreducible in Zx].

(b) Give an example that shows that the previous part is false if f is not a monic
polinomial.

(¢) Generalize part (a) for polinomials with coefficients in a u.f.d.

(a) Let A be a commutative ring, let b € A and ¢ € A*. Show that there is a unique
automorphism of A[z] such that x — cx+b and whose restriction to A is the identity
id4. Determine its inverse.

(b) Let D be an integral domain and let ¢ € Aut(D[z]) be such that ¢|p = idp. Show
that ¢ is of the form described in (a).

Let k be a field. Show that x and y are relatively prime (i.e. ged(z,y) = 1) in k[z,y],
but kfz,y] = (1) 2 (z) + (y)-



Categorias

1. Definicao e exemplos

Exercicios

3.1.1. Let f : X — Y be an isomorphism in the category C. Show that there is a unique
mormophism g: Y — X s.it. fog=idy and go f =idx.

3.1.2. Show that the Definition 1.14 of isomorphism in the categories Grp, Ring, Vect coincide
with the definition given before. I.e., show that f : X — Y is a morphism in the category
C such that there is a morphism g : ¥ — X satisfying f og =idy and go f = idx iff f
is a bijection, where C is any of the categories Grp, Ring, Vecty.

3.1.3. Show that, in the category Cg defined in Examplo 1.10, each morphism is an isomorphism,
an epimorphism and a monomorphism.

l\DI
w
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2. Produtos e coprodutos

Exercicios

3.2.1. Let (S, {¢j}jer) be a product of the family {A; | j € I} in C. Show that (5, {¢;}jer) is a
coproduct in CP.

3.2.2. Prove Theorem 2.8.

3.2.3. Show that, in the category Set of sets, any family {A4; | j € I} has a coproduct.
Sugestion: Consider

T4 = {(a,5) € (UjerAi) x I | a € A;}

jel
with the “inclusion” ¢j : A; — [[;c; A;j given by a — (a,j). The set [;; A; is called
disjoint union of the sets A;.
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3. Objectos universais

Exercicios

3.3.1. Show that the trivial group {1} is a final and initial object in the category Grp.

3.3.2. Show that the trivial ring {0} is a final object and Z is an initial object in the category
Ring.

3.3.3. Show that an object T is terminal in the category C iff T is initial in C°P.

3.3.4. Given a category C, define a category D where the initial objects of D correspond to the
coproducts in C.
Sugestion: Example 3.5.
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3. Categorias

4. Functores e transformacoes naturais

3.4.1.

3.4.2.

3.4.3.
3.4.4.

Exercicios

Show that to give a contravariant functor from C to D is equivalent to giving a covariant
functor T': C°P — D°P,

Let G and H be groups and let f : G — H be a group homomorphism.

(a) Show that C': Grp — Grp defined by G + [G,G] and f +— f|ig,q is a functor.

(b) Show that @ : Grp — Grp given by G — G/|G,G], where Q(f) : G/|G,G] —
H/[H, H] is the group homomorphism induced by f, is a functor.

(c) Show that the canonical projections 7g : G — G/[G,G] define a natural trans-
formation between the identity functor id : Grp — Grp and the “quotient by the
commutator” functor @) : Grp — Grp of the previous part.

Show that there is no functor Grp — Ab which assigns the center C(G) to each group G.
Let Ob(C) be the set od pairs (A4, S), where A € Ob(CRing) and S C A is a multiplicative
set, and let

home((A4,5), (B, R)) := {f € homcring(A, B) | f(S) C R} .

(a) Show that C is a category.

(b) Show that F(A,S) = S~1A defines a functor F : C — CRing.

(c) Let E : C — CRing be the forgetful functor defined by E(A,S) = A in the objects
of C. Show that the homomorphisms ¢g5 : A — S~1A, ps(a) = 7, define a natural
transformation between the functors £ and F.



Modulos

1. Definicao e exemplos

2. Homomorfismos e quocientes

4.2.1.

4.2.2.
4.2.3.

4.2.4.

4.2.5.

Exercicios

In the category Mod4 we have the notions of isomorphism, epimorphism and monomor-
phism — see Definitions 1.14 and 1.16 in Chapter 3. Given f € homy (M, N), show that:
(a) f is an isomorphism iff f is bijective;

(b) f is an monomorphism iff f is injective;

Sugestion for (=): consider the inclusion g: ker f — M and the zero aplication for
/

g
(¢) f is an epimorphism iff f is surjective.
Sugestion for (=-): considere the canonical projection h: N — N/im f and the zero
aplication for h'.

Let M be a cyclic A-module. Show that there exists a left ideal I C A s.t. M = A/I.
An A-module, M # {0}, is called simple if the only submodules are {0} and M. Prove
the following statements:

(a) Any simple module is cyclic.

(b) Is M is simple, then any endomorphism! of M is either zero or an isomorphism.

Let M and N be A-modules. Show that:

(a) homy (M, N) is an abelian group for the sum f + ¢ defined by (f + g)(v) = f(v) +
g(v)VveM;

(b) End (M) :=hom4 (M, M) is aring (with identity) with product given by composition
of maps;

(c) M is a left module over the ring of endomorphisms! End4 (M), where f-v = f(v),
for v.e M and f € homy (M, M).

Let A be a p.i.d, M an A-module and p € A a prime element. Let
pM ={pv|veM} and Mlp] ={veM|pv=0}.
Show that

IAsin groups and rings, an endomorphism of a module M is an homomorphism f: M — M.
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4. Modulos

(a) A/(p) is a field;
(b) pM and M |p] are sunmodules of M;
(¢) M/pM is a vector space over A/(p) with the following product by scalars

(a+ () (v+pM)=av+pM  VacAvelM,;
(d) M|p] is a vector space over A/(p) with product by scalars given by
(a+(p)v=av VacAveM.
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3. Produto directo e soma directa

4. Soma directa interna e somandos directos

4.4.1.

4.4.2.

4.4.3.

4.4.4.

0

4.4.5.

Exercicios

Let f: M — M be a homomorphism of A-modules such that f o f = f. Show that
M =ker f @im f.

Show that the short exact sequence of A-modules, 0 — M; f—1> Moy f—2> M3 — 0 splits iff
is isomorphic to
0— My =5 My & Mz =% Ms — 0.

(Five Lemma.) Consider the following commutative diagram of A-modules

M, f1 M, f2 M, f3 M, fa M
hll h2l ml h4i hsl
Nl g1 NQ 92 N3 g3 N4 94 N5

where the lines are exact sequences. Show that:

(a) if hq is surjective and hg, hy are injective, then hg is injective;

(b) if hs is injective and hg, hy are surjective, then hs is surjective;

(c) if hy, ha, ha, hs are isomorphisms, then hg is also an isomorphism.
)

(a) Given two short exact sequences of A-modules

f1 f2 f3 fa

M, Mo My 0 and 0 M3 My Ms 0,
show that

0 M, f1 M, faof2 M, fa M fs 0

is an exact sequence.
(b) Show that any exact sequence of A-modules can be obtained combining short exact
sequences as in (a).

The definition of exact sequences in the category of groups is ananlogous to that for
modules, that is, in Defini¢do 4.5 we considere groups and group homomorphisms. Given
the following short exact sequence of groups

(1} —=N—~c—"-H— {1},
show that as seguintes afirmagoes sao equivalentes:
(a) G=N'x H =2 N x H, where N’ = im «, for some subgroup H' < G (see Exercise
1.8.5);
(b) There exists a group homomorphism r: H — G such that §or = idpy;
(c) There exists a group homomorphism [: G — N such that [ o o = idy.
In particular, in the case of one (thus all) of these conditions holds, the group G is
not necessarely isomorphic to the direct sum N @ H, as it happens in the category of
A-modules — compare to the Proposition 4.13.
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4. Modulos

5. Moddulos livres

4.5.1.

4.5.2.

4.5.3.

4.5.4.
4.5.5.
4.5.6.

4.5.7.

Exercicios

Show that, if I # {0} is a bilateral ideal of the ring A, then A/I is not free as an

A-module.

(a) Let A be a commutative ring, so A is a free A-module and any ideal I is a submodule
of A. Show that if the ideal I # {0} is a free module then I is principal.
Sugestion: Show that any subset of I containing at least two elements is linearly
dependent.

(b) Give an example of a commutative ring A and of a principal ideal I # {0} de A such
that I is not a free A-module.

Show that, if A # {0} is a commutative ring such that any submodule of a free A-module

is free, then A is a p.i.d.

Prove Proposition 5.6.
Prove Proposition 5.7.

Let B be aring and let F' be a free B-module with countable basis {e; | i € N}. Considere
the ring A = Endp(F') — see Exercise 4.2.4.
(a) Define fi, fo: F'— F by

fi(ezi—1) = e and fa(e2i—1) =0
Ji(e2;) =0 Ja(e2i) = e; .

Show that {fi, f2} is a basis for A and conclude that A = A% as A-modules.
(b) Conclude that A = A" for any n € N.

Let M be an A-module and let X be a set. Then M = F(X) iff there exists a map
i: X = M s.t. M is a free object generated by (X, ) in Mod 4.
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6.

7.
8.

Caracterizagcao dos moédulos livres; espacos
vectoriais

Anéis de matrizes

Invariancia dimensional

4.8.1.

4.8.2.

4.8.3.

4.8.4.

4.8.5.

Exercicios

(a) Show that dimg C =2 and dimg R = 1.

(b) Show that there is no field k such that R C k£ C C.

Let V and W be vector spaces over a division ring D and let f : V' — W be a linear map.

Show that dimp V' = dimp(ker f) + dimp(im f).

(a) Let V and W be finite dimensional vector spaces over a division ring D s.t. dimp V' =
dimp W and let f: V' — W be a linear map. Show that the following statements are
equivalent:

(i) f is an isomorphism;
(i) f is surjective;
(iii) f is injective.

(b) Give an example that shows that part (a) can be false if V' and W have infinite

dimension.

Let V be a vector space over a division ring D and let W C V be a subspace. Show that:
(a) dimp W < dimp V;

(b) dimp W =dimpV <oco =W =V;

(c) dimp V = dimp W + dimp (V/W).

Considere the real vector space V = Rlz| and let W = {f(x) € V' | f(0) = 0}. Show that
W is a subespace of V' and that W # V. Determine a basis for W and another for V,
and conclude that dimg W = dimg V. Therefore, part (b) in the previous exercise can
be false if the vector spaces have infinite dimensions.
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4. Modulos

9. Moddulos projectivos

4.9.1.

4.9.2.

4.9.3.
4.9.4.
4.9.5.

Exercicios

Given a commutative ring A, A™ has an M, (A)-module struture, by identifyng vectors
in A™ with column matrices, with product by scalars M, (A) x A™ — A™ given by matrix
multiplication (X, v) — Xv.
(a) Show that A" is not a free M, (A)-module.
Sugestion: Verify that {v} is linearly dependent over M, (A) for any v € A™.
(b) Show that A™ is a projective M, (A)-module.
Sugestion: Identify A™ with a submodule N of M, (A) and show that NN is a direct
summand of M, (A).
Let A be a ring. An element e € A is idempotent if e2 = e. Show that, if e € A is
idempotent, Ae is a projective A-module.

Let P; € Mody, i € I. Show that @,
Show that Q is not a projective Z-module.
Let A be a commutative ring. Given two A-modules, P and M, the set hom4 (P, M) has
an A-module structure defined by

(f+9)v) = f(v)+g(v) and  (af)(v) = af(v) YveEP,
with f,g € homy(P, M) and a € A.
(a) Given an A-module homomorphism, g : M — N, we define

g« homy (P, M) — homy (P, N)

by g«(¢) := g o p. Show that the map g, is a homomorphism of A-modules.
(b) Let

P; is projective iff P; is projective Vi € I.

00— 1oy 2o N——0

be a short exact sequence of A-modules.
(i) If P is any A-module, show that

0 — > homa(P, L) —2"> homu(P, M) —*~ homu(P, N)

is an exact sequence.
(ii) Show that g. is surjective iff P is a projective A-module.
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10. Modulos injectivos

Exercicios

4.10.1. Prove Proposition 10.4.

4.10.2. Show that the following statements are equivalent:
(i) any A-module is projective;
(ii) any short exact sequence of A-modules splits;
(iii) any A-module is injective.
4.10.3. Show that any vector space over a division ring D is projective and injective.

4.10.4. Prove the following statements:
(a) no nontrivial finite abelian group is divisible;
(b) no nontrivial free abelian group? is divisible.

4.10.5. Show that the group Z(p>), where p € N is a prime, is divisible.

4.10.6. Let D be a divisible torsion free? abelian group.
(a) Givenn € Z\ {0} and a € D, let b € D be such that nb = a. Show that L -a:=b
induces a product by scalars Q x D — D which, together with the sum in D, define
a Q-vector space struture in D.
(b) Conclude that D = @;c;Q.

2Recall that an abelian group G is free if it is free as a Z-module — see Observation 6.3.
3An abelian group G is torsion free if the subgroup Tor(G) := {g € G | |g| is finite} is the trivial group {0} — see
Exercise 1.4.12.
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11. Produto tensorial

4.11.1.

4.11.2.

4.11.3.

4.11.4.

4.11.5.

4.11.6.
4.11.7.

Exercicios

(a) Let G be an abelian group. Show that G ® Z,, = G/mG,¥V'm > 0.

(b) Show that Z,, ® Z,, = Z4, where d = gcd(m, n).

(c) Let G be a torsion abelian group.* Show that G ®z Q = 0.

(d) Show that Q ®z Q = Q.

Let M and N A-modules and let M’ € M and N’ C N be submodules. Show that

M/M' ®4 N/N'= (M ®4 N)/H ,

where H is the submodule of M ® N generated by v/ ® w and v @ w’ for v/ € M/,

veM,w € N and we N.

Let I and J be ideals in a commutative ring A, let M be an A-module. Show that:

(a) AJIQaM = M/IM, as A-modules, where IM = (av | a € I,v € M) is a submodule
of M;

(b) AJT®aA/J =A/(I+J), as A-modules.

The inclusion map ¢ : Zo — Z4 is an abelian group homomorphism, since Zo < Zj4.

Show that id ®¢: Zo ® Zo — Zo @ Z4 is the null application, however Zs ® Zs # 0 and

Zo Q 7y 75 0.

Give an example of a commutative ring A and A-modules M and N such that:

(a) M ®a N % M ®7 N,

(b) Ju e M ®4 N such that Vve M,\VweN u#vew,

(c) Iv,v e M,w,w' € N such that v£ v w#w andvew=v @w.

Determine H ®r C and H ®r H.

Prove Proposition 11.16.

4G is a torsion abelian group if G = Tor(G) — see Exercise 1.4.12.
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12. Propriedades adicionais do produto tensorial

Exercicios

In the following exercises, A is a commutative ring.

4.12.1.

(%)

4.12.2.

4.12.3.

4.12.4.

4.12.5.

Let N be an A-module and consider the following short exact sequence of A-modules

0 My e P 0

Show that

0— > N@y M —Ls N My~ Nowy My —>0

is a short exact sequence of A-modules if

(a) the sequence (x) splits; or

(b) N is a free A-module; or

(¢) N is a projective A-module.

Let M be an A-module. Define the dual of M by
M* :=homy (M, A).

Show that M* is an A-module with sum f+g¢ and scalar product® af defined respectively
by

(f+9)(v)=f(v)+g(v)
(af)(v) =af(v) VveM,
where f,g € M* and a € A.

Let M be a free A-module with a basis {e;};c;. Let ef € M* (see Exercise 4.12.2)

defined by €] (e;) = d;5, i.e., €/ (e;) =1 if j =4 and e} (e;) = 0 otherwise.

(a) Show that {e}}ics is a linearly independent set in M*.

(b) Show that, if I is finite, then {e}};cs is a basis for M*.

(c) Give an example that shows that {e}}ic; may not be basis of M*, if I is an infinite
set.

Let M and N be A-modules. Show that (M ®4 N)* = homy (M, N*) (see Exercise
4.12.2).

Let M and N be A-modules.

(a) Let ¢ € M* (see Exercicio 4.12.2) and w € N. Show that o w: M — N, given by
v = @(v)w, is an A-linear map.

(b) Show that a: M*®4 N — homa (M, N) given by p @ W = v, w is an A-linear map.

(c) Show that, if M and N are finitely generated free modules, then the map « in (b)
is an isomorphism.

(d) Conclude that (A™)*®4A™ = Enda(A") = M,(A). (Compare with Example 11.19.)

5If A is not a commutative ring, the dual of a left A-module has a right A-module struture with the product of
f € M* by ascalar a € A given by (fa)(v) = f(v)a. Recall that in the commutative case the left and right module notions

coincide.
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4. Modulos

13. Extensao de escalares

4.13.1.

4.13.2.

4.13.3.

4.13.4.

Exercicios

(Two changes of scalars.) Let A, B,C be commutative rings and a: A - B, f: B — C
be ring homomorphisms. If M is an A-module, show that C ®p (B®4 M) = C ®4 M
as C-modules, i.e., (Mp)c = M¢, where the B-module struture is induced by « and the
C-module structures are induced by 8 in Mg and by fo«a in M.

(Restriction of scalars.) Let A, B be commutative rings and o : A — B be a ring
homomorphism.
(a) Let N be a B-module. Show that a-v := a(a)v, together with the sum in N, defines
an A-module structure in N. This A-module is denoted by Res N.
(b) Show that
homp(B ®4 M, N) = hom (M, Res5 N)
as B-modules.

(Localization of modules.) Let A be a commutative ring and S C A be a multiplicative
subset and consider the ring S™!'A. Given an A-module M define
(v,s) ~ (w,r) & Jz € S such that z(sw —rv) =0,
where (v, s), (w,r) € M x S.
(a) Show that ~ is an equivalence relation M x S.
(b) The equivalence class of (v,s) € M x S is denoted by ¥ and the set of equivalence

classes is denoted by S~1M. Show that S~'M is a S~! A-module with the following

operations:
vV W TV + SW a v av
—_ = — and — ==,
S T sr t s ts
where Y, € S~IM and 7€ S~1A. (In particular, don’t forget to show that the

operations are well-defined.)
a

(c) Since g: A — S7'A, a + % is a ring homomorphism, S~'M has a natural A-

module structure. Show that
e M — STIM va%

is an A-module homomorphism such that pg(a)is(v) = ¥g(av). This homomor-
phism g is the canonical homomorphism of the localization S~'M.

Let A be a commutative ring, S C A a multiplicative set and M an A-module. Con-
sider the localization S™'A of A and S~'M of M, and the canoninal homomorphisms
0s: A — S71A and g: M — S™'M — see Exercise 4.13.3.
(a) Show that

av

a:STMAeAM =S M, Love X
s s
is well-defined and is an isomorphism of S~'A-modules.
(b) Let
¢S—1A,M: M — S_lA XA M
1
v+—><,05(1)®v:1®v7

be the homomorphism associated to the change of scalars induced by ¢g. Show that
aopg-14m = Ys.
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14. Moddulos sobre dominios integrais

4.14.1.

4.14.2.

4.14.3.

4.14.4.
4.14.5.

4.14.6.

Exercicios

Let k be a field, V € Vecty and T' € homy(V, V). Consider the k[z]-module structure
in V described in Example 14.2.5, i.e., with the product by scalars in k[z] induced by
z-v:=T(v), for ve V. If dimy V = n is finite, show that Tory,; V = V.

Sugestion: Consider the vectors v, T(v),...,T™(v).

Let M; D-modules, i € I.

(a) Show that Tor ([I,c; M;) C [T;e; Tor(M;).

(b) Is it always true that Tor ([],c; M;) = [T;c; Tor(M;)?

Considere the following short exact sequence in Modp

0 M-—lonN—2op 0.

(a) Show that

flTor M glTor N

0 —— Tor(M ) — Tor N — Tor P

is an exact sequence.
(b) Give an example of a surjective homomorphism ¢ : M — P such that the restrictions
9|Tor N : Tor N — Tor P is not surjective.

Prove Proposition 14.9(a).

Let D be an integral domain and let M be a free D-module. Show that M is torsion
free. By giving a counter-example, show that the converse is false.

Let D be an integral domain with fraction field K = Frac(D) and let M be a D-

module. Recall that Frac(D) = S7!D with S = D\ {0}, and consider the K-vector

space N = S™1M — see Exercise 4.13.3.

(a) Let 1s : M — S~'M be the canonical homomorphism given by v 1- Show that
ker ¢g = Tor M.

(b) Conclude that ker ¢ = Tor M, where ¢ = ¢ pr: M - K @p M;v = 1®v.
Sugestion: Exercise 4.13.4.
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4. Modulos

15.

Moédulos sobre um d.z.p.

4.15.1.

4.15.2.

4.15.3.

Exercicios

Consider the following elementary operations

a 0| Gii) [a b| Gv)+@Eis) |e 0
0 b 0 b 0 d

where (iv) is applied to the columns. Write ¢, d in terms of a, b and conclude that ¢ | d.
Repeat the exercise for 3 x 3 diagonal matrices.

Determine the invariant factors of the following matrices with entries in Z:

12 0 0 0
020 0 0
A=10 0 150 0 and B = [

0 0 0 18

Prove Theorem 15.11 in the general case, i.e., when N is not necessarily finitely gener-
ated.

4 2 =2
2 -10 6
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16.

Classifificacao de médulos finitamente gerados
sobre d.z.p.

4.16.1.

4.16.2.

4.16.3.

4.16.4.

4.16.5.

4.16.6.

Exercicios

(a) Let D be a p.i.d and M be a finitely generated torsion A-module. Show that
I ={d € D | dM = 0} is a non zero ideal in D. An element a € [ is called g
minimal annihilator of M.

(b) Give an example of a finite abelian group M with minimal annihilator m € Z and
a cyclic subgroup N with order n € N satisfying n | m and n # £1, n # +m such
that N is not a direct summand of M.

Let D be a p.i.d. and let M be a cyclic D-module of order® a € D. Show that:
(a) Given b € D such that a and b relatively prime, then bM = M and M [b] = 0. (See
Exercise 4.2.5 for the definitions of bM and M b].)
(b) If b| ain D, i.e., if bc = a for some ¢ € D, then bM = D/(c) and M[b] = D/(b).
Let M be the module over Z[i] generated by elements x, y whose relations are determined
by (1+1i)x + (2—14)y =0 and 3z + 5y = 0. Write M as a direct sum of cyclic modules.
Let G be the abelian group generated by elements x, y, z whose relations are generated
by
6 +4y =0

dr+4y+122=0

8z 4+ 8y +362=0.
Determine the invariant factors of G.

Let D be a p.i.d. and let M be a cyclic D-module of order® a € D. Show that:
(a) The order of any cyclic submodule of M divides a.
(b) For any ideal (b) D (a), M contains precisely one cyclic submodule of order b.

Let D be p.i.d. and let M and N be D-modules of orders® a # 0 and b # 0, respectively,
such that a and b are not relatively prime. Show that ged(a,b) and lem(a,b) are the
invariant factors of M @& N.

6The cyclic D-module M = (v) has order a € D if ann(v) = (a) C D.
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4. Modulos

17.
18.

Decomposicao em factores ciclicos primarios

Relacao entre divisores invariantes e elementares

4.18.1.
4.18.2.

4.18.3.

4.18.4.
4.18.5.
4.18.6.

4.18.7.

Exercicios

Let G = Z3/im f, where f: Z? — 72 is given by f(z,y) = 2z +y + 2,32,z + ).
Determine the decomposition of GG into primary cyclic factors.
How many subgroups of order p? does the abelian group Lys ® L2 contain?

(a) What are the elementary divisors of the abelian group Zo @ Zg @ Z157 What are
the invariant factors of that group?
(b) Repeat part (a) for Ziyo ® Zsg ® Zoog ® Z1o0o-
Up to isomorphism, find all abelian groups of orders 32 and 72.
Up to isomorphism, find all abelian groups of oeder n for n < 20.
Let G = Zy, ® Zy,. Show that the invariant factors of the abelian group G are ged(m,n)
and lem(m,n), if ged(m,n) > 1, and mn, if gcd(m,n) = 1.

Let G be a finite abelian group and H < G. Show that G has a subgrupo isomorphic
to G/H.
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19. Unicidade da decomposicao em factores ciclicos
primarios

Exercicios

4.19.1. Prove Proposition 19.3.
4.19.2. Let p,q € D be prime elements. Recall the definitions of bM and M [b] in Exercise 4.2.5
and show that
(a) M(p) = Unen M[p"];
(b) D(p) = {0};
(¢) (D/(¢™))(p) # {0} if and only if ¢ ~ p, where m € N;
(@) p'(D/(p™)) = D/(p=™), for L <m, and p'(D/(p™)) = {0}, for I > m.
Sugestion: Use the results in Exercise 4.16.2.
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4. Modulos

20.
21.

Formas candnicas racionais

Forma canonica de Jordan

Exercicios

4.21.1. Prove Lemma 20.1.
4.21.2. Let k be a field, V a k-vector space and T' € Endy (V). Consider the usal k[z]-module

structure in V' induced by xv = T'(v). Show that
klz] @pg V 2 k] @ V/{z@v -1 Tv|veV})

as k[z]-modules.

4.21.3. Find the Jordan canonical form of the following matrices in My(C):

0 -1 0 0 4 1 1 -1 4 -1 0 -1
1 0 01 03 1 0 0 3 0 0
A=lo 0 10/ BTloos3 of ™ =14 1 3
1 1 01 11 2 2 1 -1 0 2
4.21.4. Let A € M,(R). Show that A is conjugate to a matrix in the form
By
By,
where each B; is either a Jordan block for an eigen value A\; € R, or has the form
A T
A
Bj = J ,
1
A4;
A= |9 b A _ |10
WlthA]_[bj aj],aj,bje]Randb];éO,andI—{0 1

Sugestion: Consider the inclusion M, (R) C M, (C), and find a basis for R” in terms of
a basis for C" which transforms A in its Jordan canonical form J € M, (C). To do that,
consider separate cases for eigen values in R and in C\ R.
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22.

Aplicacoes das formas candnicas e dos factores
invariantes e elementares

4.22.1.

4.22.2.

4.22.3.

Exercicios

Find the conjugation classes in the groups

(a) GL3(C);

(b) GL3(Z2);

(c) GL4(R).

In (b), write explicitly a representative in each class.

Decide if the following pairs of matrices are conjugate in the given groups:
0 0 4 0 0

Y| in GLi(©);
0

@)

(a) 8 and
0

1
and |0

0

= o O

(b) } in GL3(Zs);

[l el ool =l

and

O OO WO o —~OoOOo
O RO PO OO =

—_ O

0
(C) (1) in GL4(Z2).

O OO OO O+ OO
OO P O, O OO OoONN

_ o o O

)
—_
o

0 1
Consider the k-vector space (where k is a field)
ol ke
(F) ™" (9())
with the k[z]-module structure induced by T' € Endy (V') defined by
T(a(z) @ b(z)) = za(x) ® zb(x) ,

for a(x),b(x) € k[z]. Find the invariant and the primary cyclic decompositions of V' as
k[x]-modules when

(a) f(x) = g(x) — 2 — 3 and k = @

(b) f(x) = (z—3)?% g(z) =22 -1 and k = C.

V:







Teoria de
representacao de
grupos

1. Representacoes

6.1.1.

6.1.2.
6.1.3.

6.1.4.

6.1.5.

6.1.6.

6.1.7.

Exercicios

(a) Determine the 1-dimensional real (over R) representations of the group Zg x Zs.
(b) Determine the 1-dimensional real representations of the group Dy.

Sugestion: Compute [Dy, D4] and verify that Dy/[Dy, D4| = Zo X Zo.
Proof Lemmas 1.15 and 1.17.
Let G be a finite group, and let g = > .5 g € k(G). Let W = (g) = {ag € k(G) | a € k}.
Show that TV is a subrepresentaion of the regular representation k(G) which is trivial.

(a) Let G be a finite abelian group and let k be an algebraically closed field. Show that
any irreducible representation of G has dimension 1.

(b) Let G be a cyclic group of order 4 with generator a. Considere the following real
representation V' with action p : G — GL2(R) defined by

0 -1
Show that V is irreducible over R.

Let G = {1¢,a} a cyclic group of order 2 and consider the regular representation R(G).

Let Vi = {zlg +xa € R(G) | x € R} and Vo = {zlg — za € R(G) | x € R}.

(a) Show that V7 and V5 are subrepresentations of the regular representation R(G). What
are the dimensions?

(b) Show that V; is a trivial representation and V3 is equivalent to the sign resentation.

(c) Show that R(G) = Vi & Va.

Let G = {1¢,a} be the cyclic group of order 2 and consider the regular representation

Z2(Q). Let V = {alg + za € Z2(G) | © € Zy}. Show that V is a subrepresentation of

the regular representation Zs(G) which doesn’t have a complement. (Compare with the

previous exercise.)

Let V' # {0} be an irreducible representation of G. Show that there exists a maximal left
ideal I of the ring k(G) such that V = k(G)/I as k(G)-modules.
Sugestion: Apply Schur’s Lemma 1.23.
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6. Teoria de representacao de grupos

2. Caracteres

6.2.1.

6.2.2.
6.2.3.

6.2.4.

6.2.5.
6.2.6.

6.2.7.

Exercicios

Let V and W be two representations of G and “homomorphism” representation U =
homy (V, W) in Example 2.6. Show that U% = homg(V, W).

Show that a complex representation V' is irreducible if and only if (xv, xv) = 1.

Determine if the representations in Examples 1.7 and 1.8 are irreducible over C. If not,
determine their decomposition as a direct sum of irreducible representations.

Determine the complex irreducible representations of the following groups:
(a) Qg = {£1,+i,+j, £k} < H*,

(b) Dy;

(C) D5.
Determine the character table of A4 and Sy.

(a) If V is a 1-dimensional representation and W is an irreducible representations, show
that V ® W is irreducible.

(b) Give an example of a group G and two irreducible representations V, W of G such
that V ® W is not irreducible.

Let V be a finite dimensional representation. Show that V' is irreducible if and only if
V* is irreducible.



