REDUCED, TAME, AND EXOTIC FUSION SYSTEMS
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ABSTRACT. We define here two new classes of saturated fusion systems, reduced fusion
systems and tame fusion systems. These are motivated by our attempts to better understand
and search for exotic fusion systems: fusion systems which are not the fusion systems of
any finite group. Our main theorems say that every saturated fusion system reduces to a
reduced fusion system which is tame only if the original one is realizable, and that every
reduced fusion system which is not tame is the reduction of some exotic (nonrealizable)
fusion system.

When G is a finite group and S € Syl (G), the fusion category of G is the category Fg(G)
whose objects consist of all subgroups of S, and where

Morfs(G)(P) Q) = HOII]G(P, Q) d:ef {Cg € Hom(P,Q) |g € Gu ng_l S Q} .

This provides a means of encoding the p-local structure of G: the conjugacy relations among
the subgroups of the Sylow p-subgroup S. An abstract “saturated fusion system” over a finite
p-group S is a category whose objects are the subgroups of S, whose morphisms are certain
monomorphisms of groups between the subgroups, and which satisfies certain conditions
formulated by Puig [Pg2] and stated here in Definition 1.1. In particular, for any finite G as
above, Fg(G) is a saturated fusion system. A saturated fusion system is called realizable if
it is isomorphic to the fusion system of some finite group G, and is called exotic otherwise.

It turns out to be very difficult in general to construct exotic fusion systems, especially
over 2-groups. This says something about how close Puig’s definition is to the properties of
fusion systems of finite groups.

This paper is centered around the problem of identifying exotic fusion systems. A first
step towards doing this was taken in [OV2], where two of the authors developed methods for
listing saturated fusion systems over any given 2-group. However, it quickly became clear
that in order to have any chance of making a systematic search through all 2-groups (or
p-groups) of a given type, one must first find a way to limit the types of fusion systems
under consideration, and do so without missing any possible exotic ones.

This leads to the concept of a reduced fusion system. A saturated fusion system is reduced if
it contains no nontrivial normal p-subgroups, and also contains no proper normal subsystems
of p-power index or of index prime to p. These last concepts will be defined precisely in
Definitions 1.2 and 1.21; for now, we just remark that they are analogous to requiring a
finite group to have no nontrivial normal p-subgroups and no proper normal subgroups of
p-power index or of index prime to p. Thus it is very far from requiring that the fusion
system be simple in any sense, but it is adequate for our purposes.

The second concept which plays a central role in our results is that of a tame fusion
system. Roughly, a fusion system F is tame if it is realized by a finite group G for which all
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automorphisms of F are induced by automorphisms of G. The precise (algebraic) definition
is given in Definition 2.5. In terms of classifying spaces, F is tame if it is realized by a finite
group G such that the natural map from Out(G) to Out(BG7) is split surjective, where
Out(BGQ) is the group of homotopy classes of self homotopy equivalences of the space BGQ.

For any saturated fusion system JF over a finite p-group S, there is a canonical reduction
ted(F) of F (Definition 2.1). The analogy for a finite group G with maximal normal p-
subgroup @ would be to set Gy = Cx(Q)/Q, and then let ted(G) < Gy be the smallest
normal subgroup such that Go/ted(G) is p-solvable. Our first main theorem is the following.

Theorem A. For any saturated fusion system F over a finite p-group S, if ted(F) is tame,
then F is also tame, and in particular F is realizable.

Thus Theorem A says that reduced fusion systems detect all possible exotic fusion systems.
If one wants to find all exotic fusion systems over p-groups of order < p* for some p and k,
then one first searches for all reduced fusion systems over p-groups of order < p* which are
not tame, and then for all other fusion systems which reduce to them.

The proof of Theorem A uses the uniqueness of linking systems associated to the fusion
system of a finite group, and through that depends on the classification of finite simple
groups. In order to make it clear exactly which part of the result depends on the classification
theorem and which part is independent, we introduce another (more technical) concept, that
of “strongly tame” fusion systems (Definition 2.9). Using the classification, together with
results in [O1] and [O2], we prove that all tame fusion systems are strongly tame (Theorem
2.10). (In fact, the definition of “strongly tame” is such that any tame fusion system which
we're ever likely to be working with can be shown to be strongly tame without using the
classification.) Independently of that, and without using the classification theorem, we prove
in Theorem 2.20 that F is tame whenever ted(F) is strongly tame; and this together with
Theorem 2.10 imply Theorem A.

Alternatively, one can also avoid using the classification theorem by restating Theorem A
in terms of fusion systems together with associated linking systems.

Albert Ruiz has constructed examples [Rz] which show that the reduction of a tame fusion
system need not be tame, and in fact, can be exotic. So there is no equivalence between the
tameness of F and tameness of ted(F). The next theorem does, however, provide a weaker
converse to Theorem A, by saying that for every non-tame reduced fusion system, there is
some associated exotic fusion system in the background.

Theorem B. Let F be a reduced fusion system which is not tame. Then there is an exotic
fusion system whose reduction is isomorphic to F.

As remarked above, reduced fusion systems can be very far from being simple in any sense.
For example, a product of reduced fusion systems is always reduced (Proposition 3.4). The
next theorem handles reduced fusion systems which factor as products.

Theorem C. FEach reduced fusion system F over a finite p-group S has a unique maximal
factorization F = Fy X -+ X F,, as a product of indecomposable fusion systems F; over
subgroups S; < S. If F; is tame for each i, then F is tame.

Here, “unique” means that the indecomposable subsystems are unique as subcategories,
not only up to isomorphism. By Theorem C, in order to find minimal reduced fusion systems
which are not tame, it suffices to look at those which are indecomposable. In practice, it
seems that any reduced indecomposable fusion system which is not simple (which has no
proper normal fusion subsystems in the sense of Definition 1.18 or of [Asch, §6]) has to be
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over a p-group of very large order. The smallest example of this type we know of is the
fusion system of AgQ As, over a group of order 217,

Using these results and those in [OV2] as starting point, we have started to undertake a
systematic computer search for reduced fusion systems over small 2-groups. So far, while
details have yet to be rechecked carefully, we seem to have shown that each reduced fusion
system over a 2-group of order < 512 is the fusion system of a finite simple group, and is
tame. We hope to be able to extend this soon to 2-groups of larger order.

What we really would like to find is an example of a realizable fusion system which is not
tame. It seems very likely that such a fusion system exists, but so far, our attempts to find
one have been unsuccessful.

The theorems stated above will all be proven in Sections 2 and 3: Theorems A and B
as Theorems 2.20 and 2.6, and Theorem C as Proposition 3.6 and Theorem 3.7. They are
preceded by a first section containing mostly background definitions and results, and are
followed by a fourth section with examples of how to prove certain fusion systems are tame.

All three authors would like to thank Copenhagen University for its hospitality, when
letting us meet there for 2-week periods on two separate occasions. We would also like to
thank Richard Lyons for his help with automorphisms of certain sporadic groups.
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1. FUSION AND LINKING SYSTEMS

We first collect the basic results about fusion and linking systems and their automorphisms
which will be needed in the rest of the paper. Most of this is taken directly from earlier
papers, such as [BLO2], [BCGLO1], [BCGLO2] and [O3].

1.1. Background on fusion systems.

We first recall very briefly the definition of a saturated fusion system, in the form given
in [BLO2]. In general, for any group G and any pair of subgroups H, K < G, Homg(H, K)
denotes the set of all homomorphisms from H to K induced by conjugation by some element
of G. When G is finite and S € Syl (G), Fs(G) (the fusion category of G) is the category
whose objects are the subgroups of S, and where for each pair of objects Morzy ) (P, Q) =
Homg (P, Q).

A fusion system over a finite p-group S is a category F, where Ob(F) is the set of all
subgroups of S, such that for all P,Q) < S,
Homg(P, Q) € Homz(P, Q) C Inj(P, Q);

and each ¢ € Homz(P, Q) is the composite of an isomorphism in F followed by an inclusion.
Here, Inj(P, Q) denotes the set of injective homomorphisms from P to Q). If F is a fusion
system over a finite p-subgroup S, then two subgroups P, () < S are F-conjugate if they are
isomorphic as objects of the category F.

Definition 1.1 ([Pg2], see [BLO2, Definition 1.2]). Let F be a fusion system over a finite
p-group S.
o A subgroup P < S is fully centralized in F if |Cs(P)| > |Cs(P*)| for each P* < S which
15 F-conjugate to P.

o A subgroup P < S is fully normalized in F if |Ns(P)| > |Ng(P*)| for each P* < S which
15 F-conjugate to P.

o F is a saturated fusion system if the following two conditions hold:
(I) (Sylow axiom) For each P < S which is fully normalized in F, P is fully cen-
tralized in F and Autgs(P) € Syl,(Autz(P)).

(IT) (Extension axiom) If P < S and ¢ € Homxz(P,S) are such that o(P) is fully
centralized in F, and if we set
N, ={g € Ns(P) | pegp™" € Auts(o(P))},
then there is o € Homz(N,, S) such that o|p = .
If G is a finite group and S € Syl,(G), then the category Fs(G) is a saturated fusion
system (cf. [BLO2, Proposition 1.3]).

We now list some classes of subgroups of S which play an important role when working
with fusion systems over S. Here and elsewhere, for any fusion system F over a finite p-group
S, we write for each P < S,

Outz(P) = Autz(P)/Inn(P) < Out(P) .

Definition 1.2. Fiz a prime p, a finite p-group S, and a fusion system F over S. Let P < S
be any subgroup.

e P is F-centric if Cs(P*) = Z(P*) for each P* which is F-conjugate to P.
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P is F-radical if O,(Outz(P)) = 1; i.e., if Outz(P) contains no nontrivial normal
p-subgroups.

P is central in F if P < S, and every morphism ¢ € Homxz(Q, R) in F extends to a
morphism @ € Homz(PQ, PR) such that p|p = Idp.

P isnormal in F (P < F)if P S, and every morphism ¢ € Homz(Q, R) in F extends
to a morphism ¢ € Homz(PQ, PR) such that o(P) = P.

P is strongly closed in F if no element of P is F-conjugate to an element of S\P.

Z(F) < Z(S) and O,(F) < S denote the largest subgroups of S which are central in F
and normal in F, respectively.

It follows directly from the definitions that if P, and P, are both central (normal) in F,
then so is P, P,. This is why there always is a largest central subgroup Z(F), and a largest
normal subgroup O,(F).

Several forms of Alperin’s fusion theorem have been shown for saturated fusion systems,
starting with Puig in [Pg2, §5]. The following version suffices for what we need in most of
this paper. A stronger version will be given in Theorem 4.1.

Theorem 1.3 ([BLO2, Theorem A.10]). For any saturated fusion system F over a finite
p-group S, each morphism in F is a composite of restrictions of automorphisms in Autz(P),
for subgroups P which are fully normalized in F, F-centric, and F-radical.

The following elementary result is useful for identifying subgroups which are centric and
radical in a fusion system.

Lemma 1.4. Let F be a saturated fusion system over a finite p-group S. If P < S is
F-centric and F-radical, then there is no g € Ng(P)\P such that ¢, € O,(Autz(P)).
Conversely, if P < S is fully normalized in F, and there is no g € Ng(P)\P such that
cg € Op(Autz(P)), then P is F-centric and F-radical.

Proof. Assume P is F-centric and F-radical. Fix g € Ng(P) such that ¢, € O,(Autz(P)).
Then O,(Outxz(P)) = 1 since P is F-radical, so ¢, € Inn(P), and g € P-Cg(P) = P since P
is F-centric. This proves the first statement.

Now assume P is fully normalized in F. If P is not F-centric, then Cs(P) £ P (since P
is fully centralized), and hence there is g € Ng(P)\P with ¢, = 1. If P is not F-radical,
then O,(Outz(P)) # 1. This subgroup is contained in each Sylow p-subgroup of Outz(P),
and in particular is contained in Outg(P). Thus each nontrivial element of O,(Outz(P)) is
induced by conjugation by some element of Ng(P)~\P. OJ

Proposition 1.5. Let F be a saturated fusion system over a finite p-group S. For any
normal subgroup Q@ < S, Q is normal in F if and only if Q) is strongly closed and contained
i all subgroups which are centric and radical in F.

Proof. This is shown in [BCGLO1, Proposition 1.6]. Note, however, that wherever “F-
radical” appears in the statement and proof of that proposition, it should be replaced by
“F-centric and F-radical”. O

Lemma 1.4 shows the importance of being able to identify elements of the subgroup
O,(Autz(P)). The following, very well known property of automorphisms of p-groups is
useful in many cases when doing this.
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Lemma 1.6. Fix a prime p, a finite p-group P, and a group A < Aut(P) of automorphisms
of P. Assume 1l =Py < P, <--- < P, = P is a sequence of normal subgroups such that
a(P) = P, for allaw € A and all i. For1 < i <m, let ¥;: A —— Aut(FP;/P,_1) be the
homomorphism which sends a € A to the induced automorphism of P;/P,_1. Then for all
a€ A, ac Oy(A) if and only if V;(a) € Op(¥;(A)) for alli=1,...,m.

Proof. Set U = (¥y,...,V,,), as a homomorphism from A to [[*, Aut(P;/P,_1). Then
Ker(¥) is a p-group (cf. [G, Corollary 5.3.3]). If ¥;(a) € O,(¥;(A)) for all : = 1,...,m,
then ¥(a) € O,(V(A)), and so a € O,(A). Conversely, if a € O,(A), then clearly ¥,(a) €
O,(¥;(A)) for all 1. O

Another elementary lemma which is frequently useful when working with centric and
radical subgroups is the following:

Lemma 1.7. Let P and Q be p-subgroups of a finite group G such that P < Ng(Q) and
Q £ P. Then Nop(P) Z P, and (Q N Ng(P)) £ P.

Proof. Since P normalizes @), QP is also a p-group, and QP = P by assumption. Hence
Nop(P) = P (cf. [Szl, Theorem 2.1.6]). Since Ngp(P) = P-(Q N Ngp(P)), we have
(Q N Nop(P)) £ P. D

We also need to work with certain quotient fusion systems. When F is a saturated fusion
system over S and @) < S is strongly closed in F, we define the quotient fusion system F /@
over S/Q by setting

Homz/o(P/Q, R/Q) = Im[Homz(P, R) — Hom(P/Q, R/Q)]
for all P, R < S containing Q).

Proposition 1.8. Let F be a saturated fusion system over a finite p-group S, and let Q < .S
be a strongly closed subgroup. Then F/Q is a saturated fusion system. For each P < S
containing Q, P is fully normalized in F if and only if P/Q is fully normalized in F/Q. If
Q s central in F, then P < F if and only if P/Q < F/Q.

Proof. By [O1, Lemma 2.6], F/Q is a saturated fusion system, and P is fully normalized if
and only if P/@Q is. So it remains only to prove the last statement.

By Proposition 1.5, P is normal in F if and only if it is strongly closed in F, and contained
in each subgroup which is F-centric and F-radical. For P < S containing @), clearly P is
strongly closed in F if and only if P/@ is strongly closed in F/Q.

We apply the criterion in Lemma 1.4 for detecting subgroups which are centric and radical.
Let p: Autz(P) —— Autr/o(P/Q) be the homomorphism induced by projection. Then p
is surjective by definition of F/Q. For a € Autx(P), we have a|g = Idg since @ is central
in F, so by Lemma 1.6, o € O,(Autx(P)) if and only if p(a) € O,(Autz,q(P/Q)).

If @ < R < S, and R* is F-conjugate to R and fully normalized in F, then R*/Q is
F/Q-conjugate to R/Q and fully normalized in F/Q. So by Lemma 1.4, R and R* are
centric and radical in F if and only if R/Q) and R*/Q) are centric and radical in F/@Q. Upon
combining this with the above criterion for normality, we see that P < F if and only if

P/Q 2 F/Q. O
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1.2. Background on linking systems.

We next define abstract linking systems associated to a fusion system F. We use the
definition given in [O3], which is more flexible in the choice of objects than the earlier
definitions in [BLO2] and [BCGLO1]. This definition also differs slightly from the one given
in [BCGLO1, Definition 3.3], in that we include a choice of inclusion morphisms as part of
the data in the linking system. All of these definitions are, however, equivalent, aside from
having greater freedom in the choice of objects.

For any finite group G and any S € Syl (G), let Ts(G) denote the transporter category of
G the category whose objects are the subgroups of S, and where for all P, Q) < S,
def

MOITS(G)(P7Q) - NG(Pa Q) = {g S G‘ng—l < Q} .

If H is a set of subgroups of S, then Ty (G) C Ts(G) denotes the full subcategory with object
set H.

Definition 1.9 ([O3, Definition 3]). Let F be a fusion system over a finite p-group S. A
linking system associated to F is a finite category L, together with a pair of functors

Tob(z) (S)

satisfying the following conditions:

0

L—— F,

(A) ODb(L) is a set of subgroups of S closed under F-conjugacy and overgroups, and includes
all subgroups which are F-centric and F-radical. Each object in L is isomorphic (in
L) to one which is fully centralized in F. Also, ¢ is the identity on objects, and 7 is
the inclusion on objects. For each P,QQ € Ob(L) such that P is fully centralized in
F, Cs(P) acts freely on Morz(P, Q) via 0p and right composition, and wpg induces a
bijection
Mor,(P,Q)/Cs(P) ——— Homz(P, Q) .

(B) For each P,QQ € Ob(L) and each g € Ng(P,Q), mpg sends dpg(g) € Morz(P, Q) to
¢y € Homz (P, Q).

(C) For all ¢ € Mor,(P,Q) and all g € P, the diagram

P—".Q
5P(9)J J(CSQ(WW)(Q))
P—" 50
commutes in L.

If L* is another linking system associated to F with the same set of objects as L, then an

isomorphism of linking systems is an isomorphism of categories L — = L£* which commutes
with the structural functors: those coming from Topz)(S) and those going to F.

Note that we do not assume in this definition that F is saturated, since we want to at least
be able to talk about linking systems associated to F without first proving F is saturated.
This leads to some pretty exotic examples; for example, a linking system could be empty. In
practice, however, we only work with linking systems associated to saturated fusion systems.

A p-local finite group is defined to be a triple (S,F, L), where F is a saturated fusion
system over a finite p-group S, and where L is a centric linking system associated to F (i.e.,
one whose objects are the F-centric subgroups of .S).
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For P < @ in Ob(L£), we usually write 1% = dp (1), and regard this as the “inclusion”
of P into ). The definition in [BCGLO1, Definition 3.3] of a (quasicentric) linking system
does not include these inclusions, but it is explained there how to choose inclusions in a
way so that a functor d: Topz)(S) — £ can be defined in a unique way with the above
properties ([BCGLO1, Lemma 3.7]). Note also that because the above definition includes a
choice of inclusions, condition (D), in [BCGLO1, Definition 3.3] is not needed here.

We have defined linking systems to be as flexible as possible in the choice of objects, but
one cannot avoid completely discussing quasicentric subgroups in this context. First recall
the definition of the centralizer fusion system (cf. [BLO2, §2] or [AKO, §1.5]): if F is a
fusion system over a finite p-group S and @ < S, then Cx(Q) is the fusion system over
Cs(Q) for which

Home, )(P, R) = {¢ € Homz(P, R) | ¢ = ¢|p, ¢ € Homz(PQ, RQ), ¢lo =1dg}.

This is a special case of the normalizer fusion systems which will be defined in Section 1.4.
If F is saturated and @ is fully centralized in F, then Cx(Q) is also saturated (cf. [AKO,
Theorem 1.5.5]).

Definition 1.10. (a) For any finite group G, a p-subgroup P < G is G-quasicentric if
OP(Cq(P)) has order prime to p.

(b) For any saturated fusion system F over a finite p-group S, a subgroup P < S is F-
quasicentric if for each P* which is fully centralized in F and F-conjugate to P, Cx(P*)
is the fusion system of the p-group Cs(P*). Equivalently, for each such P* and each
Q < P*-Cg(P*) containing P*, {o € Autz(Q) | a|p» = 1d} is a p-group.

The equivalence of the two definitions in (b) is shown in [AKO, Lemma II1.4.6(a)].

For any saturated fusion system F, the set of F-quasicentric subgroups is closed under F-
conjugacy and overgroups (see [AKO, Lemma I11.4.6(d)]). So a quasicentric linking system
as defined in [BCGLO1, §3] is a linking system in the sense defined here.

Fix a finite group G and S € Syl (G), and set F = Fg(G). Then a subgroup P < S is
G-quasicentric if and only if it is F-quasicentric (cf. [AKO, Lemma I11.4.6(e)]). For any set
H of G-quasicentric subgroups of S, define L#(G) to be the category with object set H, and
where for each P,Q € H,

MOTL?;(G)(P;Q) = Na(P,Q) /0" (Ca(P)).

Composition is well defined, since for each g € Ng(P,Q), g7'Qg > P, so ¢7'C5(Q)g <
Cq(P), and thus g7'OP(Ce(Q))g < OP(Cg(P)). When H is closed under F-conjugacy and
overgroups and contains all subgroups of S which are F-centric and F-radical, then L¥(G)
is a linking system associated to F. When H is the set of F-centric subgroups of S, we write

L5(G) = LH(G).

Proposition 1.11. The following hold for any linking system L associated to a saturated
fusion system F over a finite p-group S.

(a) For each P,Q) € Ob(L), the subgroup E(P) & Ker[Autz(P) —— Autz(P)] acts freely
on Mor,(P, Q) via right composition, and wpg induces a bijection
Mor (P, Q)/E(P) ——— Homx(P, Q) .

(') A morphism ¢ € Mor(L) is an isomorphism if and only if 7(¢) € Mor(F) is an
1somorphism.
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(b) For every morphism v € Morz(P,Q), and every Py,Qo € Ob(L) such that Py < P,
Qo < Q, and ©(¢Y)(Fy) < Qo, there is a unique morphism |p, o, € Morz(Fo, Qo) (the
“restriction” of 1) such that 1) o Lﬁo = Lgo o V| py.Qo-

(b")  For each P,Q) € Ob(L) and each v € Morg(P,Q), if we set Qo = w(¢)(P), then there
is a unique o € Isor (P, Qo) such that ¢ = Lgo o y.

(¢) The functor ¢ is injective on all morphism sets.
(d) If P € Ob(L) is fully normalized in F, then 6p(Ns(P)) € Syl (Autz(P)).

(e) Let P,Q,P,Q € Ob(L) and 1 € Morz(P,Q) be such that P Q9 P and Q < Q. Then
there is a morphism ¢ € Morz(P, Q) such that Y|pg = v if and only if

WgeP 3heQ suchthat 1§otodp(g)=0,q(h)o0. (1)

If such a morphism U emists, then it is unique.
(f) All morphisms in L are monomorphisms and epimorphisms in the categorical sense.

(g) All objects in L are F-quasicentric.

Proof. Most of this is contained in [O3, Proposition 4]. Point (a’) follows from (a), which
implies that if ¢ € Morg(P, P) and mp(1)) = Idp, then 9 is an automorphism. Point

(b’) is a special case of (b), where vy & Y|pg, is an isomorphism by (a’). In (e), the

implication that the existence of ¢ implies (1) follows from axiom (C) in Definition 1.9

(where h = 7(¥)(g))- O

We will also have use for the following “linking system version” of Alperin’s fusion theorem.

Theorem 1.12. For any saturated fusion system F over a finite p-group S and any linking
system L associated to F, each morphism in L is a composite of restrictions of automor-
phisms in Autz(P), where P is fully normalized in F, F-centric, and F-radical.

Proof. Using Theorem 1.3 together with Proposition 1.11(a), we are reduced to proving the
theorem for automorphisms in E(P) = Ker[Aut;(P) —— Autz(P)] for P € Ob(L). If P
is fully centralized, then E(P) = {0p(g) | g € Cs(P)} by axiom (A), and each element dp(g)
is the restriction of dg(g) € Aut,(S). If P is arbitrary, and @ is fully centralized in F and
F-conjugate to P, then there is some ¢ € Iso.(P, Q) which satisfies the conclusion of the
theorem (choose any ¢ € Isoz(P, @), write it as a composite of restrictions of automorphisms,
and lift each of those automorphisms to £). Then each element of E(P) has the form
¥ 10g(g) for some g € Cs(Q), and hence satisfies the conclusion of the theorem. O

1.3. Automorphisms of fusion and linking systems.

Recall that for any linking system L associated to a fusion system F over S, and any
pair P < @ of objects in £, the inclusion of P into () is the morphism Lg = dpg(l) €
Mor,(P, Q). By Proposition 1.11(b’), each morphism in £ splits uniquely as the composite
of an isomorphism followed by an inclusion.

As usual, an equivalence of small categories is a functor ®: C —— D which induces a
bijection between the sets of isomorphism classes of objects and bijections between each pair
of morphism sets. It is not hard to see that for each such equivalence, there is an “inverse”
U: D —— C such that both composites ® o ¥ and ¥ o & are naturally isomorphic to the



10 KASPER ANDERSEN, BOB OLIVER, AND JOANA VENTURA

identities. In particular, the quotient monoid Out(C) of all self equivalences of C modulo
natural isomorphisms of functors is a group.

Definition 1.13 ([BLO2, §8]). Let F be a saturated fusion system over a finite p-group S,
and let L be a linking system associated to JF.

(a) An automorphism [ € Aut(S) is fusion preserving if for each P,QQ < S and each
¢ € Homz(P,Q), (Blos@)¢(Blrsw)) " lies in Homg(B(P), 3(Q)). In particular, each
such  normalizes Autx(S). Let Aut(S,F) be the group of all fusion preserving auto-
morphisms of S, and set Out(S,F) = Aut(S, F)/Autz(S). Note that Out(S,F) is a
subquotient of Out(S).

(b) An equivalence of categories a: L —— L is isotypical if a(dp(P)) = da(p)(a(P)) for
each P € Ob(L).

(c) Let Outiy, (L) be the group of classes of isotypical self equivalences of L modulo natural
1somorphisms of functors.

(d) Let Auttlyp(ﬁ) be the group of isotypical equivalences of L which send inclusions to
inclusions.

Since Out (L) is a group by the above remarks, and is finite since Mor(£) is finite, Outyy, (L)
is a submonoid of a finite group and hence itself a group. Another proof of this, as well as

a proof that Autfyp(ﬁ) is a group, will be given in Lemma 1.14.

One of the main results in [BLO2| (Theorem 8.1) says that for any p-local finite group
(S, F, L), Outyyp(£) = Out(|£])): the group of homotopy classes of self homotopy equiva-
lences of |£]). This helps to explain the importance of Out, (L), among other groups of
automorphisms of (S, F, £) which we might have chosen.

The next lemma gives an alternative description of Outyy,(£), and also of Out(G) —
descriptions which will be useful later. For each £ associated to F over S, and each v €
Autz(S), let ¢, € Aut{ (L) be the automorphism which sends P € Ob(L) to v(P) =

typ

7(7)(P), and sends ¢ € Mor,(P, Q) to (V]g@)) o ¥ o (V| ppy) ™. This is clearly isotypical,
since for g € P € Ob(L), ¢y(6p(9)) = 6yp)(m(7)(g)) by axiom (C). For P < @ in Ob(L), ¢,
(@) (L).

+(P) by definition of restriction, and thus ¢, € Aut!

Q
sends ¢ to ¢ typ

Lemma 1.14. (a) For any saturated fusion system F over a finite p-group S, and any
linking system L associated to F, the sequence

% Autg(S) —22 Auttlyp

is exact. All elements of Autfyp(ﬁ) are automorphisms of L, and hence Aut{yp([,) and
Outyyp (L) are both groups.

1 —— Z(F)

(L) — Outyyp(L) — 1

(b) For any finite group G and any S € Syl,(G), the sequence

incl grrcg

1 — Z(G) — Ng(S) —— Aut(G, S) —— Out(G) —— 1
is exact, where Aut(G, S) = {a € Aut(G) |a(S) = S}.

Proof. (a) Each equivalence of £ (isotypical or not) sends S to itself, since S is the only
object which is the target of morphisms from all other objects.

If a € Autfyp(ﬁ), then for each P € Ob(L), apg sends (3 to Lg(P), and ap sends dp(P)

to da(p)(a(P)). Hence ag sends dg(P) to ds(a(P)), and thus determines the action of o on
Ob(L). In particular, a permutes the objects of £ bijectively, and hence is an automorphism
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of £. This proves that Aut{yp(ﬁ) is a group; and that Outy,(L) is also a group if the above
sequence is exact.

We next show that each isotypical equivalence a: £ —— L is naturally isomorphic to
an isotypical equivalence which sends inclusions to inclusions. For each P € Ob(L), let
a(ty) = Lg( pyow(P) be the unique decomposition of a(13) as a composite of an isomorphism
w(P) € Isog(a(P),B(P)) followed by an inclusion (Proposition 1.11(b’)). In particular,
w(S) =1d. Let 8 be the automorphism of £ which on objects sends P to §(P), and which
on morphisms sends ¢ € Morz(P, Q) to w(Q) o a(p) o w(P)~ in Morg(B(P), 5(Q)). Then
f is isotypical by axiom (C) (and since « is isotypical); it sends inclusions to inclusions by
construction (and since w(S) = Id); and w(—) defines a natural isomorphism from « to 5.

This proves that the natural homomorphism from Auttlyp(ﬁ) to Outyyp (L) is onto. If
a € Auty,, (L) is in the kernel, then it is naturally isomorphic to the identity, via some w(—)
which consists of isomorphisms w(P) € Isoz (P, «(P)) such that for each » € Mor,(P, @),
a(y) o w(P) = w(Q) - 1. Since a sends 13 to Lg(P), w(P) = w(9)|pap), and thus «a is
conjugation by w(S) € Aut,(.5).

Conversely, if v € Aut,(S), then ¢, is naturally isomorphic to Id,, by the natural isomor-
phism which sends P € Ob(L) to v|px(y)(p). This finishes the proof that the above sequence
is exact at Auttlyp(ﬁ).

It remains to show, for v € Aut.(S), that ¢, = Id, if and only if y € 05(Z(F)). Ilf ¢, = Id,,
then since vdg(g)y ™' = d5(g) for all g € S, w(y) = Idg by axiom (C) and the injectivity of
ds. So by axiom (A), there is a € Z(S) such that v = d5(a). For each P,Q € Ob(L) and
each ¢ € Morg(P, @), dg(a) o) = 1o dp(a) implies there is ¢ € Morg((P,a), (@, a)) such
that ¢|pg = ¢ (Proposition 1.11(e)), and 7(¢)(a) = a by axiom (C) and the injectivity of
0. Together with Theorem 1.3, this proves that each morphism in F extends to one which
sends a to itself, and hence that a € Z(F).

Conversely, if a € Z(F), then each ¢ € Mor(£) extends to some ¢ such that 7 ()(a) = a,
¢ commutes with v = dg(a) by axiom (C) again, and so ¢, (¢) = 1. Thus ¢, = Id,.

(b) The natural homomorphism from Aut(G, S) to Out(G) is onto by the Frattini argument
(the Sylow p-subgroups of G are permuted transitively by inner automorphisms). The kernel
of that map clearly consists of conjugation by elements of N¢g(S). O

In particular, the group Aut{yp (L) defined here is the same as that defined in [O3], where
it was defined explicitly as a group of automorphisms of £ rather than of equivalences.

The next lemma describes how elements of Autfyp(ﬁ) induce automorphisms of the as-
sociated fusion system. For f € Aut(S,F), let ¢g € Aut(F) be the automorphism of the
category F which sends P < S to 5(P), and sends ¢ € Mor(F) to S8~

Lemma 1.15 ([O3, Proposition 6]). Let £ be a linking system associated to a saturated

fusion system F over a finite p-group S, with structure functors Towc)(S) L T F
Fiz o € Aut{yp(ﬁ). Let 5 € Aut(S) be such that a(ds(g)) = ds(B(g)) for all g € S. Then
B € Aut(S, F), a(P) = p(P) for P € Ob(L), and Toax = cgo.

Proof. See [O3, Proposition 6] (and note that F is, in fact, assumed to be saturated in
the proof of that proposition). The relation a(P) = B(P) is not in the statement of the
proposition, but it is shown in its proof. It is really part of the statement Toa = cgom (since
7 is the inclusion on objects). O
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Lemma 1.15 motivates the following definition. For any saturated fusion system F over a
finite p-group S, and any linking system £ associated to F, define

fig: Aut! (L) ——— Aut(S, F)

typ
by setting ig(a) = 65" o ag o dg € Aut(S) for a € Aut,(£). By Lemma 1.15, Im(fiz) <
Aut(S, F). For v € Aut,(S), uig(cy) = m(y) € Autz(S) by axiom (C) in Definition 1.9. So
by Lemma 1.14(a), i, induces a homomorphism
i Outiyy (L) —— Out(S, F)

by sending the class of « to that of fiz(«). When £ = L#(G) for some finite group G and
some set of objects H, we write g = iz and puX = p, for short. When £ = L(G) is the
centric linking system, we write g = jiz and pug = pir.

Lemma 1.16. For any linking system L associated to a saturated fusion system F, Ker (i)
s a finite p-group.

Proof. Assume F is a fusion system over the finite p-group S. Since L is a finite category,

Aut{,,(£) and Outyy, (L) are finite groups. So it suffices to prove that each element of
Ker(y,) has p-power order.
Fix o € Aut{,(£) such that [a] € Ker(uz). Thus fig(e) € Autz(S), and fig(a) = 7(7)

for some v € Autz(S). So upon replacing o by ¢ o o, we can assume o € Ker(fiz).

Thus aglsesy = Id. Since o sends inclusions to inclusions, apls,py = Id for all P €
Ob(L). Assume also that P is F-centric. For each ¢ € Aut.(P), ¥ and a(y) have the
same conjugation action on dp(P), so Y 'a(¥) € Caw,(p)(0p(P)) < 6p(Z(P)). Hence
a(y) = ¢¥dp(g) for some g € Z(P), and o*(v)) = 1dp(g*) for all k since « is the identity on
dp(P).

Choose m > 0 such that g?" =1 for all g € S. Then o?” is the identity on Aut,(P) for
each P € Ob(L) which is F-centric. So by Theorem 1.12, o™ = Id,. O

The kernel of uy will be studied much more closely in Proposition 4.2.
Since we will need to work with linking systems with different sets of objects associated
to the same fusion system, it will be important to know they have the same automorphisms.

Lemma 1.17. Fiz a saturated fusion system F over a finite p-group S. Let Lo C L be a
pair of linking systems associated to F. Set Ho = Ob(Ly) and H = Ob(L), and assume
Ho C H are both Aut(S, F)-invariant. Then restriction defines an isomorphism

iyl

Outtyp(;C) —_— Outtyp(ﬁo).

1%

Proof. Using axiom (A), one sees that £y must be a full subcategory of £. Set P = H~\H.
We can assume, by induction on |H| — |Ho|, that all subgroups in P have the same order.
Thus all morphisms in £ between subgroups in P are isomorphisms.

Since Hy is Aut(S, F)-invariant and L, is a full subcategory, there is a well defined re-

striction homomorphism
Autl (L) —=— Autl(Lo).

By assumption, H, contains all subgroups which are F-centric and F-radical. Hence The-
orem 1.12 implies that all morphisms in £ are composites of restrictions of morphisms in
Ly. Since each a € Aut{yp(ﬁ) sends inclusions to inclusions, it also sends restrictions to
restrictions, and hence «|, = Id,, only if @ = Id;. Thus Res is injective. We next show it
is surjective, and hence an isomorphism.
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Let P, C P be a subset consisting of one fully normalized subgroup from each F-conjugacy
class in P. For each P € P,, dp(Ns(P)) € Syl (Autz(P)) by Proposition 1.11(d), so there
is a unique P < Ng(P) such that §p(P) = O,(Autz(P)). Since P ¢ Hy, P is either not
F-centric or not F-radical. In either case, P = P by Lemma 1.4. By Proposition 1.11(e),
each ¢ € Aut,(P) extends to a unique automorphism 72 € Autg(ﬁ).

Let v: P —— P, be the map which sends P to the unique subgroup v(P) € P, which
is F-conjugate to P. For each P € P, 0,(p)(Ns(v(P))) € Syl,(Aut,(v(P))) by Proposition
1.11(d) (and since v(P) is fully normalized), and hence there is Ap € Isoz (P, v(P)) such that

Apdp(Ns(P))Ap' < 8,(p)(Ns(v(P))) .

By Proposition 1.11(e) again, Ap extends to a unique Ap € Mor,(Ng(P), Ng(v(P))). When
P € P, (sov(P)=P), weset \p = Idp, and hence Ap = Idyy(p).

Fix any ag € Aut{, (Lo); we want to extend ap to £. By Lemma 1.15, o induces some
B € Aut(S, F), and ag(P) = B(P) for all P € Hy. So define a(P) = (P) for P € H; this
is possible since H is Aut(S, F)-invariant by assumption. By Lemma 1.15 again, for each
P,Q € Hy and each ¢ € Morg, (P, Q), m(ao(¢)) = cs(m(¥)) = B(m ()8~ . In other words,

¥ € Morg(P,Q), g € P, w(¢)(g) = h € Q@ = m(ao(¥))(B(g)) = B(h) - (2)

We next define o on isomorphisms between subgroups in P. Fix P, P, € P and ¢ €
Isos (P, Py), and set P, = v(P) = v(P;). There is a unique 9. € Autg(P.) such that
P = /\1321 o, o Ap,, and we set

a(®) = (a0Ap)a(enaen) o (@0 |atryarn) o (@A) la@ar,)) -

Note that Xpl, :\\P2, and 12* are all in Mor(Ly), since all subgroups strictly containing sub-
groups in P are in Hy = Ob(Ly) by assumption. Also, the restrictions are well defined (for
example, 7(ao(Ap,))(a(F;)) = a(P")) by (2).

Recall that ‘H and H, are both closed under overgroups and JF-conjugacy. Hence each
morphism in £ not in £, factors uniquely as an isomorphism between subgroups in P followed
by an inclusion (Proposition 1.11(b’)), and thus the above definitions extend to define « as
a map from Mor(L) to itself. This clearly preserves composition of isomorphisms between
subgroups in P. To prove that « is a functor, it remains to show it preserves composites
of inclusions followed by isomorphisms in L£y. This means showing, for each P, P, € P,
each P, S )y, and each ¢ € Iso. (P, P») which extends to ¢ € Morg, (Q1, Q2), that a(y) =
o(@)]a(p),a(p)- Since No,(P;) = P;, we can assume P; < Q; for i = 1,2. Set P, = v(P)) =
v(P,) again, and set R; = W(Xpi)(Qi) = P,.. Then P, < R; since P, < );. We saw that v
factors in a unique way ¢ = )\;,21 othyoAp, for 9, € Aut,(P,). We also have p = )\;,21 o PxoAp,,
where A\p, = XpAQi’Ri and ¢, € Morg,(Ry, Ry). Thus ag(Ap,) is a restriction of O[(](:\\pi>
(1 =1,2), and hence an extension of a(Ap,).

It remains to show a(1),) is the restriction of a(p.). By definition, a(1),) is the restriction
to a(Py) of ap(thy), where ¥, € AutL(I/D:). Set T; = (73:, R;). By Proposition 1.11(e),
since 1, € Autg(P,) extends to 12* € Autﬁ(ﬁ) and to ¢, € Morg(Ry, Ry), there is p, €
Mor (T}, T3) which extends both . and ¢,. Hence ap(ps) extends both ao(zz*) and g (¢«)
(all of these are in L), and thus «(1),) is a restriction of each of the latter. This finishes

the proof that « is a functor. By construction, « is isotypical, sends inclusions to inclusions,
and extends ag; and thus Res is surjective.
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We have now shown that restriction defines an isomorphism from Autfyp(ﬁ) to Auttlyp(ﬁo).
By Lemma 1.14(a), the outer automorphism groups of £ and L, are defined by dividing out

by conjugation by elements of Aut,(S). Hence the induced homomorphism

Oty (L) —— Outyyy(Lo)

is also an isomorphism. O

1.4. Normal fusion subsystems.

Let F be a saturated fusion system over a finite p-group S. By a (saturated) fusion
subsystem of F over a subgroup Sy < S, we mean a subcategory Fy C F whose objects are
the subgroups of Sy, and which is itself a (saturated) fusion system over Sy.

The following definition of a normal fusion subsystem is the same as that of a weakly
normal fusion subsystem in [AKO, §1.6]. We have dropped the word “weakly” here, since
the extra condition for being normal in the sense of Aschbacher (JAKO, Definition 1.6.1])
will not be needed.

Definition 1.18. Let F be a saturated fusion system over a finite p-group S, and let Fo C F
be a saturated fusion subsystem over So < S. Then Fy is normal in F (Fo < F) if

(i) So is strongly closed in F;

(i) for each P,Q < Sy and each ¢ € Homz(P,Q), there are a € Autx(Sy) and ¢y €
Hom g, (a(P), Q) such that ¢ = @y o a|papy; and

(iii) for each P,Q < Sy, each ¢ € Homgz, (P,Q), and each B € Autz(Sy), BB~ €
Hompz, (B(P), 5(Q)).

The above definition is equivalent to Puig’s definition [Pg2, § 6.4], and also to Aschbacher’s
definition of an F-invariant subsystem [Asch, § 3], except that they do not require the subsys-
tem to be saturated. See [Pg2, Proposition 6.6], [Asch, Theorem 3.3], and [AKO, Proposition
1.6.4] for proofs of the equivalence of these and other conditions.

We next list some of the basic properties of normal fusion subsystems, starting with the
following technical result.

Lemma 1.19. Fix a saturated fusion system F over a finite p-group S. Let Fy C F be
a fusion subsystem (not necessarily saturated) over the subgroup Sy < S, which satisfies
conditions (i-iii) in Definition 1.18. Assume Py < Sy is Fo-centric and fully normalized
in F, and Outg,(Py) N O,(Outx (Py)) = 1. Then there is P < S which is F-centric and
F-radical and such that PN Sy = F.

Proof. Set
P = {.Z' € Ns(Po) | Cy € Op(Aut]:(Po))} .
If z € PN Sy, then ¢, € Op(Autz(Fp)) NAutg, (Py) = Op(Autg, () (Autz () is normal

Py is Fo-centric. Thus P NSy = F,.

By construction, Ng(P) = Ng(Fp). So if @ if F-conjugate to P and Qg = @ N Sp, then
|INs(Q)] < |Ns(Qo)| < |[Ns(F)| = |Ns(P)| since Py is fully normalized in F and F-conjugate
to QQp. This proves that P is fully normalized in F.

Now, Autg(Py) > O,(Autz(F)) since Fy is fully normalized in F. So Autp(Fy) =
O,(Autz(F)), and hence this is normal in Autz(Fp). By the extension axiom, the restric-
tion homomorphism Autyz(P) —— Autz(Fp) is surjective, and thus sends O,(Autz(P))
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into Op,(Autz(Fy)). So for all # € Ng(P) such that ¢, € O,(Autz(P)), ¢, € O,(Autx(F)),
and hence z € P. Since P is fully normalized, it is F-centric and F-radical by Lemma
1.4. O

The following is our main lemma listing properties of normal pairs of fusion systems.
Recall that O,(F) is the largest normal p-subgroup of the fusion system F.

Lemma 1.20. Fiz a saturated fusion system F over a finite p-group S, and let Fo < F be
a normal fusion subsystem over the normal subgroup Soy < S. Then the following hold.

(a) FEach F-conjugacy class contains a subgroup P < S such that P and P NSy are both
fully normalized in F, and P N Sy is fully normalized in Fy.

(b)  For each P,Q < Sy and each ¢ € Isor(P,Q), pAutz (P)p~" = Autx, (Q).

(c) The set of Fo-centric subgroups of Sy, and the set of Fy-radical subgroups of Sy, are
both invariant under F-conjugacy.

(d) If P < S is F-centric and F-radical, then P N Sy is Fo-centric and Fy-radical. Con-
versely, if Py < Sy is Fo-centric, Fo-radical, and fully normalized in F, then there is
P < S which is F-centric and F-radical, and such that PN Sy = F,.

(e) Op(Fo) is normal in F, and O,(Fy) = O,(F) N Sp.

Proof. Throughout the proof, whenever P < S, we write Py = P N .S, for short.

(a) Fix @ < S. By [BLO2, Proposition A.2(b)], there are subgroups R < S and Py <
So which are fully normalized in F, and morphisms ¢ € Homz(Ng(Q), Ng(R)) and ¢ €
Homz(Ng(Ro), Ns(Fp)) such that ¢(Q) = R and ¢(Ry) = Fy. Set P = ¢(R) (note that
PN Sy = Py since Sy is strongly closed). Since Ng(R) < Ng(Ryp), P is also fully normalized
in F. Also, P =10 ¢(Q) is F-conjugate to Q.

By [BLO2, Proposition A.2(b)] again, if P7 is F-conjugate to Py, then there is a morphism
in F from Ng(FPy) to Ng(Fy) which sends Py to Py. In particular, |Ng,(Fy)| < |Ns, (),
and hence P, is also fully normalized in F.

(b) Fix P,Q < Sy and ¢ € Isor(P,Q). By condition (ii) in Definition 1.18, there are
a € Autx(Sy) and g € Isog (a(P), Q) such that ¢ = ¢y o a|pqp). Hence

@Auh}—o(P)Qp—l = poAutz, (a(P))9051 = Aut]:o(Q> )
where the first equality holds by condition (iii) in Definition 1.18.

(c) Fix P < Sy, let P be the F-conjugacy class of P, and let Py be its Fy-conjugacy class.

If P is Fy-centric, then Cg,(P*) = Z(P*) for all P* € Py. For all R € P, there is a €
Aut£(Sp) such that a(R) € Py (condition (ii) in Definition 1.18), and hence Cg,(R) = Z(R).
Since this holds for all subgroups in P, all of these subgroups are JFy-centric.

Now assume P is Fy-radical; then O,(Outg, (P*)) =1 for all P* € Py. If R € P, and a €
Autz(Sp) is such that a(R) € Py, then by condition (iii) in Definition 1.18, conjugation by
a sends Out g, (R) < Outz(R) isomorphically to Out g, (a(R)). Since O,(Outg ((R))) = 1,
O,(Outg,(R)) = 1. So all subgroups in P are Fy-radical.

(d) The second statement was shown in Lemma 1.19. It remains to prove the first.

Assume P is F-centric and F-radical. We must show that Py is Fy-centric and JFy-radical.
By (c), this is independent of the choice of P in its F-conjugacy class, and hence by (a),
it suffices to prove it when Fy is fully normalized in Fy. By (b), Autg, (P) is normal in
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Autx(F), and hence
Op(Autz, (F)) < Op(Autz(Fy)) -

Let T be the subgroup of all x € Ng,(Fp) such that ¢, € O,(Autg, (F)). If 2 € TNNg(P),
then ¢, € O,(Autz(Fp)), and ¢, induces the identity on P/F, since [z, P] < PN[Sy, P] < .
Thus ¢, € Op(Autz(P)) by Lemma 1.6, and = € P by Lemma 1.4 since P is centric and
radical in F.

Thus T'N Ng(P) < Fy. Also, P normalizes T' by construction, so T' < Fy by Lemma 1.7.
Hence F is centric and radical in Fy by Lemma 1.4 again.

(e) Set @ = O,(Fop) and R = O,(F) for short. To prove that Q < F and Ry = @, it suffices
to show that Q < F and Ry < Fy. We apply Proposition 1.5, which says that a subgroup is
normal in a saturated fusion system if and only if it is strongly closed and contained in all
subgroups which are centric and radical. Since an intersection of strongly closed subgroups
is strongly closed, Ry is strongly closed in F and hence in Fy.

If P < S is F-centric and F-radical, then Py is Fy-centric and Fy-radical by (d), so
P> P, > Q. If Fyis Fy-centric and Fy-radical, then the same holds for each subgroup in
its F-conjugacy class by (c). So by (d), there is P* < S which is F-centric and F-radical
with Bj F-conjugate to Fy; P* > R, and hence Fj and F, both contain Rj.

It remains to prove that @ is strongly closed in F. Fix F-conjugate elements g, h € S such
that g € @; we must show h € (). Since Sy is strongly closed in F (since Fo < F), h € Sp.
Fix ¢ € Isor((g), (h)) with ¢(g) = h. Since Fy < F, there are morphisms y € Autz(Sy)

and ¢g € Isox, ((g), (x"1(h))) such that ¢ = x o @g. Then ¢’ o wo(g) € Q, and h = x(¢').
The invariance condition (iii) in Definition 1.18 implies that x sends a normal subgroup of

Fo to another normal subgroup. Thus x(Q)-@Q is also normal in Fy, so x(Q) = @ since @ is
the largest subgroup of Sy normal in Fy, and thus h = x(¢’) € Q. O

We now turn to the specific examples of normal fusion subsystems which we work with
in this paper. We first look at those of p-power index and of index prime to p. Two other
definitions are first needed. For any saturated fusion system F, the focal subgroup foc(F)
and the hyperfocal subgroup hyp(F) are defined by

foc(F) = (s7't|s,t € S are F-conjugate) = (s 'a(s)|s € P < S, a € Autz(P))
hyp(F) = (s 'a(s)|s € P < S, a € OP(Autx(P))) .
Note that in [BCGLO2], we wrote O%(S) = hyp(F).

The following definition also includes many fusion subsystems which are not normal.

Definition 1.21 ([BCGLO2, Definition 3.1]). Let F be a saturated fusion system over a
finite p-group S, and let Fo C F be a saturated fusion subsystem over a subgroup Sy < S.

(a) Fo has p-power index in F if hyp(F) < Sy < S5, and Autx (P) > OP(Autx(P)) for all
P < Sp.

(b) Fo has index prime to p in F if Sy = S, and Autz,(P) > O (Autx(P)) for all P < S.

Recall that despite the terminology, these are not analogous to subgroups of a finite group
of p-power index or index prime to p. Instead, they are analogous to subgroups which contain
a normal subgroup having appropriate index.

The following theorem gives a complete description of all such fusion subsystems.

Theorem 1.22 ([BCGLO2, Theorems 4.3 & 5.4]). The following hold for any saturated
fusion system F over a finite p-group S.
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(a) For each subgroup Sy < S containing the hyperfocal subgroup hyp(F), there is a unique
fusion subsystem Fy over Sy of p-power index in F. Thus F contains a proper fusion
subsystem of p-power index if and only if hyp(F) S S, or equivalently foc(F) S S.

(b) There is a subgroup I' < Outx(S) with the following properties. For each subsystem
Fo C F of index prime to p, Outg, (S) > I'. Conversely, for each H < Outz(S5)
containing I', there is a unique subsystem Fo C F of index prime to p with Outg,(S) =
H.

Proof. The only part not shown in [BCGLO2] is that hyp(F) < S implies foc(F) < S. By
Theorem 1.3,

foc(F) = (s*a(s)|s € P < S, P fully normalized in F, a € Autz(P)) .

Since Autz(P) = OP(Autz(P))-Autg(P) when P is fully normalized, and since s~'a(s) €
[S,S] when s € P and a € Autg(P), we have foc(F) = hyp(F)-[S,S]. Also, hyp(F) < S
implies there is Q < S such that [S:Q] = p and bhyp(F) < Q. Then [S,S] < @ since S/Q is
abelian, and hence foc(F) < Q < S. O

In the situation of Theorem 1.22, a fusion subsystem of p-power index is normal in F
exactly when its underlying p-group is normal in .S, and a fusion subsystem Fy C F of index
prime to p is normal in F exactly when Autz, (S) is normal in Autz(.S) (cf. [AKO, Theorems
[.7.4 and 1.7.7(c)]). But in fact, we will only be concerned here (in Proposition 1.25(a,b))
with the minimal such fusion subsystems, defined as follows.

Definition 1.23. For any saturated fusion system F over a finite p-group S, OP(F) and
OP' (F) denote the unique minimal saturated fusion subsystems of p-power index over hyp(F),
or of index prime to p over S, respectively.

We next recall the definitions of the normalizer fusion systems NX(Q) (cf. [Pg2, §2.8] or
[BLO2, Definitions A.1, A.3]). For any group G, any subgroup ¢ < G, and any K < Aut(Q),
define

NG (Q) = {9 € No(Q) | cyle € K} .
For example, Ngut(Q)(Q) = Ng(Q) is the usual normalizer, and Ngd}(Q) = Cg(Q) is the
centralizer.

Let F be a saturated fusion system over a finite p-group S, and fix ) < § and K <
Aut(Q). We say Q is fully K-normalized if for each Q* which is F-conjugate to @) and each

¢ € Isor(Q,Q%), INK(Q)| > |N§K“’_1(Q*)|. Let NX(Q) be the fusion system over NZ(Q)
defined by setting, for all P, R < NX(Q),
Homy ) (P, R) = {¢ € Homz(P, R) | 3¢ € Homz(PQ, RQ),
Ple= 3(Q) =Q, ¢loe K} .
As special cases, Cx(Q) = N_{Fld}(Q) and Nx(Q) = Nﬁut(Q)(Q). By [Pg2, Proposition 2.15]

or [AKO, Theorem 1.5.5], if @ is fully K-normalized in F, then NX(Q) is a saturated fusion
system. If K > Inn(Q), then Q is normal in NE(Q) by definition.

This construction is motivated by the following proposition.

Proposition 1.24 ([AKO, Proposition 1.5.4]). Fiz a finite group G and S € Syl,(G), and
set F = Fs(G). For Q < S and K < Aut(Q), Q is fully K-normalized in F if and only if
N(Q) € Syl,(NE(Q)). When this is the case, then N (Q) = Fyx ) (NE(Q))-
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We now give some examples of normal fusion subsystems: examples which will be impor-
tant later in the paper. The most obvious example is the inclusion Fg,(Gy) € Fs(G) when
Go < G are finite groups and Sy = S N Gy, but this case will be handled later (Proposition
1.28).

Proposition 1.25. The following hold for any saturated fusion system F over a finite p-
group S.

(a) OP(F) < .F.
(b) OY(F) < F.
(c) For each Q < F and each K < Aut(Q), NX(Q) < F.

Proof. (a,b) See [AKO, Theorems 1.7.4 & 1.7.7].

(c) Assume g,h € S are F-conjugate. Since ) < F, thereis ¢ € Homz((Q, g), (Q, h)) such

that ©(g) = h and ¢(Q) = Q. Set vy = p|lg € Autx(Q). Then ¢, = pocypy " in Autz(Q).
Since K < Aut(Q), g € NE¥(Q) (ie., ¢, € K) if and only if h € NE(Q). This proves that

NE(Q) is strongly closed in F.

Set Auth (Q) = K N Autg(Q) and AutX(Q) = K N Autz(Q). Fix P,R < NX(Q) and
¢ € Homz(P,R). Since Q < F, there is ¢ € Homzg(QP,QR) such that g|p = ¢ and
P(Q) = Q. Set vy = Plg € Autz(Q). Since K < Aut(Q) and Auts(Q) € Syl,(Autz(Q)),
Aut§ (Q) € Syl (AutF(Q)). Since poAut§ (@), is contained in Aut’(Q) (again since K
is normal), there is xy € Aut’(Q) such that

(xpo)Autg (Q)(xpo) ™" = Autg (Q) -

By the extension axiom, there is ¢ € Homz(NE(Q)-Q, S) such that @|g = xpo. Further-
more, p(NE(Q)) = NX(Q) since x¢o normalizes Auts (Q).

Set Py = §(P), 1 = Go(@lrg.me) " € Home(PQ, RQ), and ¢ = U] p, 5. Then g = x ",
so ¢ € Homyx (o) (P1, R), and ¢ = ¢ o ¢|pp,. This proves condition (ii) in Definition 1.18.

The last condition — the subsystem NE(Q) is invariant under conjugation by elements of
Autz(NF(Q)) — is clear. O

We just showed that OP (F) is normal in F for any F. The following lemma can be
thought of as a “converse” to this.

Lemma 1.26. Assume Fy < F is a normal pair of fusion systems over the same finite
p-group S. Then Fy has index prime to p in F, and thus Fy D OV (F).

Proof. If P,Q < S are F-conjugate, then by condition (ii) in Definition 1.18, P is Fq-
conjugate to a(Q) for some a € Autx(5). Since |Ns(Q)| = |[Ns(a(Q))|, this shows that P
is fully normalized in F; if and only if it is fully normalized in F.

If P < S is fully normalized in Fy (and hence in F), then Autg, (P) contains Autg(P) €
Syl,(Autz(P)). Also, since Autz,(P) is normal in Autz(P) by Lemma 1.20(b), Autg, (P
contains OP (Autz(P)). Since this property depends only on the isomorphism class of P in
Fo, it holds for all P < S. So Fy has index prime to p in F by Definition 1.21(b). O

1.5. Normal linking subsystems.

The following definition of a normal linking subsystem seems to be the most appropriate
one for our needs here; it is also the one used in [O3]. In the following definition (and
elsewhere), whenever we say that Lo C L is a pair of linking systems associated to Fo C F
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(or Ly is a linking subsystem), it is understood not only that L, is a subcategory of L,
but also that the structural functors for £y are the restrictions of the structural functors

Tob(z) (S) LT Ffor L.

Definition 1.27. Fix a pair of saturated fusion systems Fo C F over finite p-groups Sy < .S
such that Fo < F, and let Lo C L be a pair of associated linking systems. Then Ly is normal
in L (Lo <L) if

(i) Ob(L)={P <S|PnNSyeOb(Ly)}:

(i) for all P,Q € Ob(Ly) and 1p € Morz(P,Q), there are morphisms v € Aut,(Sy) and
Yy € Morz, (v(P), Q) such that 1 = 1y o | pyp); and

(iii) for all v € Aut(Sy) and ¢ € Mor(Ly), yiy~! € Mor(Ly).

Here, for P,Q € Ob(Lo), and ¢ € Morg, (P, Q), we write y(P) = m(v)(P), 7(Q) = 7(7)(Q),
and

YWY =oa@ o ¥ o (Ypar) € Morz(y(P),7(Q))
for short. For any such pair Lo < L, the quotient group L/Lq is defined by setting

L/Lo = Aute(So)/Aut e, (So).

Also, Ly is centric in L if for each v € Aut,(Sy)NAute,(So), there is ¢ € Mor(Ly) such
that iy~ # 1.

In the situation of Definition 1.27, we will sometimes say that £y < L is a normal pair of
linking systems associated to Fo < F, or just that (So, Fo, Lo) < (S, F, L) is a normal pair.

One source of normal pairs of linking systems is a normal pair of finite groups; at least,
under certain conditions.

Proposition 1.28. Fiz a pair Go < G of finite groups, choose S € Syl,(G), and set Sy =
SN Gy € Syl,(Go). Then Fs,(Go) < Fs(G). Assume in addition that Ho and H are sets
of subgroups of Sy and S, respectively, such that ﬁ?ot’ (Go) and LE(G) are linking systems
associated to Fs,(Go) and Fs(G), and such that H = {P < S|P NSy € Ho}. Then
ﬁ?gi()o(Go) < LE(G).

Proof. Fix P,Q < Sy and g € Ng(P,Q). Then gSyg~! is another Sylow p-subgroup of Gy,
so there is some h € Gy such that (h71g)Sy(h~tg)™* = Sp. Set a = h7'g; thus g = ha
where a € Ng(Sy) and h € Goy. Thus ¢; = ¢ 0 ¢, € Homg(P,Q), where ¢, € Autg(Sy)
and ¢, € Homg,(aPa™!, Q). This proves condition (ii) in the definition of a normal fusion

system; and condition (ii) in Definition 1.27 follows in a similar way. The other conditions
clearly hold. ([l

When (S, Fo, Lo) < (S, F,L) is a normal pair, then for each v € Aut,(Sy), we let
¢y € Aut(Ly) denote the automorphism which sends P to v(P) = 7(y)(P) and sends ¢ €
Morz, (P, Q) to (Y|on@) o ¥ o (V| papy) . The next lemma describes how to tell, in terms
only of the fusion system F, whether or not cs4 = Idg, for g € S (6 = ds,).

When L is a linking system associated to F, and A < F, we say that an automorphism
a of L is the identity modulo A if for each P,Q € Ob(L) which contain A and each ¢ €
Morz(P,Q), a(P) = P, a(Q) = Q, and a(¢) = 1 o dp(a) for some a € A.

Lemma 1.29. Let (Sy, Fo, Lo) < (S, F, L) be a normal pair such that all objects in L are
F-centric. Fix A < Fy. Then for g € S, c5q € Aut(Ly) is the identity modulo A if
and only if [g,S0] < A, and for each P,Q < Sy and ¢ € Morx,(P,Q), ¢ extends to some
© € Morz((PA, g),(QA, g)) such that p(g) € gA.
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Proof. Fix g € S. Set v = dg,(g) and B = (g, A) for short.

Assume ¢, € Aut(Ly) is the identity modulo A. Then [g,Sy] < A since [y,0s,(s)] €
ds,(A) for s € Sy (and dg, is injective by Proposition 1.11(c)). Since Fy is generated by
morphisms between objects of £y which contain A (by Theorem 1.3 and Proposition 1.5,
and since A < Fy), it suffices to prove the extension property for such morphisms. Fix
P,Q € Ob(Ly) such that A < P and A < @, fix ¢ € Homg (P, Q), and choose a lifting of ¢
to 1 € Morg, (P, Q). By assumption, dg(g) o ¥ o dp(g)~! =1 0 dp(a) for some a € A. So by
Proposition 1.11(e), there is a unique morphism ¢ € Mor,(PB, @B) such that ¢|pg = 1,
and dgp(g) o ¥ o dpp(ag)™" = 1 by the uniqueness of the extension. Set p = 7w(¢); then
¢ € Homz(PB,QB), ¢|p = ¢, and p(ag) = g (so p(g) € gA) by axiom (C).

Now assume [g, Sp] < A, and g has the above extension property: each ¢ € Homg, (P, Q)
extends to ¢ € Homz(PB,QB) such that p(g) € gA. We claim ¢, € Aut(Ly) is the
identity modulo A. Since [g,Sy] < A, gPg~' = P for all P € Ob(Ly) which contain
A. Fix ¢ € Morg, (P, Q), where A < P,). By assumption, 7(¢) extends to some ¢ €
Homz(PB,QB) such that $(g) € gA, and this lifts to ¢ € Morz(PB,QB). Since P is
F-centric, 1Z|p7Q = 1 o dp(x) for some z € Z(P). Upon replacing ¥ by o dpp(x)~! and p
by poc,!, we can assume ’L/p\|p’Q = 1). By axiom (C), the conjugation action of dg(g) fixes 12
modulo dpp(A), and hence ¢, € Aut(Ly) sends 9 into 1 o Ip(A). O

The next lemma describes another way to construct normal pairs of linking systems.

Lemma 1.30. Fix a normal pair of fusion systems Fo < F over p-groups Sy < S. Let H,
be a set of subgroups of Sy such that

e Hy is closed under F-conjugacy and overgroups, and contains all subgroups of Sy which
are Fo-centric and Fy-radical; and
o« H L {P < S|PNSye€ Hy} is contained in the set of F-centric subgroups.
Assume F has an associated centric linking system L°. Let L C L be the full subcategory
with object set H. Let Ly C L be the subcategory with object set Hy, where for P,Q € H,,

MOl"gO(P, Q) = ‘W € MOIE<P’ Q) |7T<¢) € HOIIl]:O (P, Q)} . (3)

Then Lo < L is a normal pair of linking systems associated to Fo < F. For any such pair
Ly < L with Ob(Ly) = Ho and Ob(L) = H, Lo is centric in L.

Proof. Since Ob(L) is closed under F-conjugacy and under overgroups, and contains all
subgroups which are F-centric and F-radical by Lemma 1.20(d) and the assumptions on
Ho, L is a linking system associated to F. Since all objects in Ly are F-centric, they are
also Fo-centric, and hence fully centralized in Fy. Axiom (A) for £y thus follows from axiom
(A) for L, together with the assumptions on Hy = Ob(Ly). Axioms (B) and (C) for £
follow immediately from those for £, and £ is thus a linking system associated to Fy.

Condition (i) in Definition 1.27 holds by assumption, while conditions (ii) and (iii) follow
from (3) and since Fy is normal in F. Thus £, < L.

Fix any such pair £y, < £ associated to Fop < F. Assume v € Aut,(Sp) is such that
byt = 4 for each 1 € Mor(Ly). Since v(ds,(9))y ! = ds,(7(7)(g)) for g € Sy by axiom
(C) for the linking system L, m(y) = Idg,. Since Sy € Hy is F-centric, this means that
v = dg,(2) for some z € Z(Sp), and in particular, that v € Aut,,(Sp). So Ly is centric in
0

o
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We now list the examples of normal pairs of linking systems which motivated Definition
1.27, and which we need to refer to later.

Proposition 1.31. Let F be a saturated fusion system over the finite p-group S, let Fo < F
be a normal fusion subsystem over Sy < S, and let Hy be a set of subgroups of Sy. Assume
that F has an associated centric linking system L, and that one of the following three
conditions holds.

(a) Fo = OP(F), So = hyp(F), and H, is the set of Fo-centric subgroups of Sy.
(b) Fo=O0V(F), Sy =S, and Hy is the set of Fo-centric subgroups of Sp.

(c) For some normal p-subgroup @ < F and some normal subgroup K < Aut(Q) containing
Inn(Q), Fo = NX(Q), So = NE(Q), and H, is the set of all Fo-centric subgroups of Sy
which contain ().

Set H={P < S|PNSy € Ho}. Then there is a normal pair of linking systems Ly < L
associated to Fo < F with Ob(Ly) = Ho and Ob(L) = H. For any such normal pair Lo < L,
Ly is centric in L in cases (b) and (c), and in case (a) if Z(F) = 1. Furthermore, in cases
(a) and (b), and in case (c) if Q = O,(F) and K = Inn(Q), Ho is Aut(Sy, Fo)-invariant, H
is Aut(S, F)-invariant, and Lo < L can be chosen such that Ly is Autfyp(ﬁ)—mvam'ant.
Proof. In all cases, Fy < F by Proposition 1.25. Also, Ho is Aut(Sy, Fo)-invariant and H is
Aut(S, F)-invariant: this is clear in cases (a) and (b), and holds in case (¢) when @ = O,(F)
(since @ = O,(Fp) by Lemma 1.20(e)).

(a) Set Sy = bhyp(F), Fo = OP(F), and Ho = Ob(F§). By [BCGLO2, Theorem 4.3(a)],
a subgroup of Sy is Fyp-quasicentric if and only if it is F-quasicentric. In particular, every
Fo-centric subgroup of Sy is F-quasicentric and hence all subgroups in ‘H are F-quasicentric.
By Lemma 1.20(d), H contains all subgroups which are F-centric and F-radical. By Lemma
1.20(c), Ho is closed under F-conjugacy, so H is closed under F-conjugacy (and it is clearly
closed under overgroups). Hence if £9 O L is the quasicentric linking system which contains
L€ constructed in [BCGLO1, Proposition 3.4], then the full subcategory £ C L7 with object
set H is also a linking system associated to F.

By [BCGLOZ2, Proposition 2.4], there is a unique map A: Mor(£?) —— S/Sy which sends
composites to products and inclusions in £? to the identity, and such that A\(ds(g)) = [¢] for
all g € S. By [BCGLO2, Theorem 3.9], there is a p-local finite group (Sp, F{, Lo) where for
P,Q € Ob(Ly),

Morg, (P, Q) = {¢ € Morz«(P, Q) [A(¥) = 1} . (4)
Furthermore, F is constructed using [BCGLO2, Proposition 3.8] (cf. the proof of [BCGLO2,

Theorem 3.9]), and hence (by part (b) of that proposition) it has p-power index in F. Thus
Fiy = Fo by Theorem 1.22(a).

Now, Ob(Ly) = H, since Ly is a centric linking system. Condition (i) in Definition 1.27
holds for £y C £ by definition of H, condition (iii) (yLoy ™t = Ly for v € Autz(Sp)) holds
by construction, and condition (ii) holds since )\\550(5) is surjective. So Ly < L.

We next check that Lo is Aut/,,(£)-invariant. Fix a € Aut{,,(£) and set 8 = fiz(a) €
Aut(S, F). Then (Sy) = Sp since Sy = hyp(F), and Blg, € Aut(Sy, Fo) by the uniqueness
of Fo (Theorem 1.22(a) again). Since a(P) = G(P) for P € Ob(Ly) (Lemma 1.15), « sends

Ob(Ly) = H, to itself. By Lemma 1.17, a = & for some & € Aut/, (£9), Ao = So) (where

typ

B € Aut(S/Sp) is induced by ) by the uniqueness of A, and hence a(Mor(Lg)) = Mor(Ly)
by (4).
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Now let £y < L be any normal pair of linking systems associated to Fy < F with these
objects. Assume Z(F) = 1; we must show Ly is centric in £. Assume 7 € Aut,(Sp) is such
that yyy~! = 1 for each 1» € Mor(Ly). Since v(ds,(g))y ™ = ds,(7(7)(g)) for g € Sy by
axiom (C) for the linking system L, m(vy) = Idg,. So by axiom (A) (and since Sy is fully
centralized in F), v = dg,(h) for some h € Cs(Sp).

Let H < Cg(Sp) be the subgroup of all h such that the conjugation action of dg,(h) on
Ly is trivial. The p-group £/Ly = Autz(Sy)/Aut,(So) acts on dg,(H) = H by conjugation.
Let Hy be the fixed subgroup of this action. Note that Hy < Z(S) since H, is fixed by
d5,(S) < Autg(Sp). Fix h € Hy, and set 4 = dg(h). Let 7(P) and y»5~! be as in Definition
1.27, but this time for all P € Ob(L) and ¥ € Mor(L). For P € Ob(L), ¥(P) = hPh™! = P.
Also, 7y~ = 1 for all ¥ € Aut,(Sy) by definition of Hy, y93~! = 9 for ¢ € Mor(Ly)
by definition of H, and hence conjugation by ¥ is the identity on morphisms in £ between
subgroups in Hy by condition (ii) in Definition 1.27. By Proposition 1.11(f), for each P, Q €
H, the restriction map from Mor,(P, Q) to Mor,(P N Sy, @ N Sp) is injective, and hence
ypy~t = 1) for all ¢p € Morz(P, Q). Thus conjugation by ¥ = dg(h) is the identity on £, and
so h € Z(F) =1 by Lemma 1.14(a). Since Hy = 1 is the fixed subgroup of an action of the
p-group L/L on the p-group H, H = 1, and so L is centric in L.

(b) Set Fy = O (F). By [BCGLO2, Proposition 3.8(c)], a subgroup of S is Fy-centric if
and only if it is F-centric. So upon letting Hy = H be the set of all F-centric subgroups
of S, the hypotheses of Lemma 1.30 are satisfied. By the lemma, there is a normal pair
Ly 4 L of linking systems associated to Fy < F with object set Hy = H; and for any such
pair, Lo is centric in £. By the explicit description of £y (formula (3) in Lemma 1.30), £y

is Autfyp (£)-invariant.

(¢) Fix Q@ € F and Inn(Q) < K < Aut(Q), and set Sy = NE(Q) and Fy = NE(Q). Let
Ho be the set of all Fy-centric subgroups of Sy which contain (). We first check that all
subgroups in H = {P < S| PNSy € Hy} are F-centric; it suffices to show this for subgroups
in Hy. By Lemma 1.20(c) (and since Fy < F), the set of Fy-centric subgroups, and hence
also the set H,, are closed under F-conjugacy. For each P € Hy, Cs(P) < Cs(Q) < Sy since
P > @, and hence Cs(P) = Cs,(P) = Z(P) since P is Fp-centric. Since this holds for all
subgroups F-conjugate to P, we conclude that P is F-centric.

We just saw that Hy is closed under F-conjugacy, and it is clearly closed under over-
groups. Since ) < Fy, each subgroup of Sy which is Fy-centric and Fy-radical contains ()
by Proposition 1.5, and thus lies in Hy. So by Lemma 1.30, there is a normal pair £y < £
of linking systems associated to Fy < F with object sets Hy and H, and for any such pair,
Ly is centric in £. If Q = O,(F) and K = Inn(Q), then @ = O,(F;) by Lemma 1.20(e), and
so Fo is Aut(S, F)-invariant. Hence Ly is Auttlyp(ﬁ)—invariant by the explicit description of

Lo in Lemma 1.30. O

2. REDUCED FUSION SYSTEMS AND TAME FUSION SYSTEMS

Throughout this section, p denotes a fixed prime, and we work with fusion systems over
finite p-groups. We first define reduced fusion systems and the reduction of a fusion system.
We then define tame fusion systems, and prove that a reduced fusion system is tame if every
saturated fusion system which reduces to it is realizable (Theorem B). We then make a
digression to look at the existence of linking systems in certain situations, before proving
that all fusion systems whose reduction is tame are realizable (Theorem A). We thus end up
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with a way to “detect” exotic fusion systems in general while looking only at reduced fusion
systems.

2.1. Reduced fusion systems and reductions of fusion systems.

We begin with the definition of a reduced fusion system, and the reduction of an (arbitrary)
fusion system. See Proposition 1.8 and the discussion before that for the definition and
properties of quotient fusion systems.

Definition 2.1. A reduced fusion system is a saturated fusion system F such that
o F has no nontrivial normal p-subgroups,
o F has no proper normal subsystem of p-power indez, and
e F has no proper normal subsystem of index prime to p.
Equivalently, F is reduced if O,(F) =1, OP(F) = F, and O (F) = F.
For any saturated fusion system F, the reduction of F is the fusion system ved(F) defined
as follows. Set Fo = Cr(Op(F))/Z(Oy(F)), and let Fo 2 Fy 2 Fo D --- D Fp, be such that

Fi = OP(F;_1) if i is odd, F; = OV (Fi_1) if i is even, and OP(Fy,) = OP (Fn) = Fpm. Then
ted(F) = Fpn.

Fix any F, and set () = O,(F) for short. By definition of centralizer fusion systems, every
morphism in Cz(Q) extends to a morphism in F which is the identity on @), and hence to a
morphism in Cx(Q) which is the identity on Z(Q). This proves that Z(Q) is always central
in Cx(@), and hence that Fy = C£(Q)/Z(Q) is well defined as a fusion system.

What is important in the last part of the definition of ved(F) is that we give an explicit
procedure for successively applying OP(—) and OF'(—), starting with Jp, until neither makes
the fusion system any smaller. It seems likely that the final result ted(F) is independent of
the order in which we apply these reductions, but we have not shown this, and do not need
to know it when proving the results in this section.

Clearly, for these definitions to make sense, we want ted(F) to always be reduced.

Proposition 2.2. The reduction of any saturated fusion system is reduced.

For later reference, we also state the following, more technical result, which will be proven
together with Proposition 2.2.

Lemma 2.3. Let F be a saturated fusion system. Set Q = O,(F) and Fo = Cx(Q)/Z(Q).
Let Fo D F1 D -+ D Fpy = ved(F) be such that for each i, F; = OP(Fi_1) or F; = O (Fi_y).
Then Oy(F;) =1 for each 0 < i < m.

Proof. Fix F, and let @ < F and the F; be as above. Since Cx(Q) < F by Proposition
1.25(c), O,(Cx(Q)) < O,(F) = @ by Lemma 1.20(e). Hence O,(Cx(Q)) = Z(Q). We
just saw that Z(Q) is central in C'x(Q). So by Proposition 1.8, a subgroup P/Z(Q) <
Cs(Q)/Z(Q) is normal in Cx(Q)/Z(Q) only if P I Cx(Q). Thus O,(Fy) = Z(Q)/Z(Q) = 1.

By definition, OP(ted(F)) = O (ted(F)) = ted(F). By Proposition 1.25(a,b), F; < F;_;
for each @ > 1. So by Lemma 1.20(e) again, O,(F;) =1 if O,(Fi—1) = 1. Since O,(Fp) = 1,
this proves that O,(F;) = 1 for each . In particular, O,(ted(F)) = 1, and hence ted(F) is
reduced. O

A saturated fusion system F is constrained if there is a normal subgroup @) < F which is
F-centric (cf. [BCGLO1, §4]).
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Proposition 2.4. For any saturated fusion system F, ved(F) = 1 (the fusion system over
the trivial group) if and only if F is constrained.

Proof. 1f F is constrained, then clearly ted(F) = 1. Conversely, assume F is a fusion system
over a finite p-group S such that ted(F) = 1. Set Q = O,(F) and Fy = Cx(Q)/Z(Q).
If Fo =1, then Cx(Q) is a fusion system over Z(Q), and hence Cs(Q) = Z(Q). So Q is

F-centric, and hence F is constrained in this case.

If Fo # 1, then there is a sequence of fusion subsystems 1 = F, & Frnt & -+ G Fo
such that for each i, Fi,, = OP(F;) or Fi1q = OP (F;). By Lemma 2.3, O,(F;) = 1 for each
0 <4 < m. Since F,,_1 # 1, it is a fusion system over a p-group S,,_; # 1, 50 OP (Fpo_1) # 1
(it is over the same p- group) which implies OP(F,,—1) = 1. Thus bt)p( 1) = 1 by
Definition 1.21(a), so there are no nontrivial automorphisms of order prime to p in F,, 1,
and F,,_1 is the fusion system of the p-group S,,_1. This is impossible, since it would imply

Op(Fm-1) = Sm—1 # 1, and we conclude F = 1. O

2.2. Tame fusion systems and the proof of Theorem B.
Assume F = Fg(G) for some finite group G' with S € Syl (G). Let H be an Aut(G, 5)-
invariant set of G-quasicentric subgroups of S such that £ of L¥(G) is a linking system

associated to F (i.e. H is closed under overgroups and contains all F-centric F-radical
subgroups). Define the homomorphism

Rg:Aut(G, ) —— Aut (L)

as follows. For 8 € Aut(G,S), k%(B) sends P to B3(P) and sends [a] € Morg(P,Q) (for
a € Na(P,Q)) to [5(a)].

For any g € Ng(9), k¥ sends ¢, € Aut(G S) to ¢y € Auttyp(ﬁ), where [g] € Aut.(S) is
the class of g. Thus by Lemma 1.14, % induces a homomorphism

ki Out(G) ——— Outyyp (L)
by sending the class of 3 to the class of K¥(8). When £ = L(G) is the centric linking
system of G, we write kg = kit and kg = k2t for short.
Note that when F = Fg(G) and £ = L#(G) as above, itorg: Aut(G,S) — Aut(S, F)

is the restriction homomorphism.

Definition 2.5. A saturated fusion system F over S is tame if there is a finite group G
which satisfies:

e 5 €Syl(G) and F = Fs(G); and
o kg Out(G) —— Outyy, (LS(G)) is split surjective.

In this situation, we say F is tamely realized by G.

The condition that kg be split surjective was chosen since, as we will see shortly, that
is what is needed in the proof of Theorem B. In contrast, Theorem A would still be true
(with essentially the same proof) if we replaced “split surjective” by “an isomorphism” in
the above definition.

By Lemma 1.17, Outyy, (L4 (G)) = Outyy, (LH(G)) for any Aut(S, F)-invariant set of ob-
jects H (which satisfies the conditions for L#(G) to be a linking system). Hence Ker(xX) =
Ker(kg), and k¥ is (split) surjective if and only if k¢ is.
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By [BLO1, Theorem B, k¢ is split surjective if and only if the natural map from Out(G)
to Out(BG)) is split surjective, where Out(BG)) is the group of homotopy classes of self
equivalences of BG7). So this gives another way to formulate the definition of tameness.

It is natural to ask whether a tame fusion system F can always be realized by a finite
group G such that kg is an isomorphism. We know of no counterexamples to this, but do
not know how to prove it either.

We are now ready to prove Theorem B: every reduced fusion system which is not tame is
the reduction of some exotic fusion system. This is basically a consequence of the definition
of tameness, together with [O3, Theorem 9] which gives a general procedure for constructing
extensions of linking systems.

Theorem 2.6. Let F be a reduced fusion system which is not tame. Then there is an exotic
fusion system F whose reduction is isomorphic to F.

Proof. 1f F is itself exotic, then we take F = F. So assume F is the fusion system of a finite
group, and hence that F has at least one associated centric linking system £. Assume L
is chosen such that |Outyy,(£)] is maximal among all centric linking systems associated to
F. (All such linking systems are isomorphic to each other by [BLO2, Proposition 3.1] and
Theorem A in [O1, O2], but since those results use the classification of finite simple groups,
we will not use them here.) Since F is not tame, it is not the fusion system of any finite
group H for which kg is split surjective.

Since Z(F) = 1 (F is reduced), we can identify Aut,(S) as a normal subgroup of Aut{yp (L)
via its conjugation action on £ (Lemma 1.14(a)). Thus Outyy,(£) = Autfyp(ﬁ)/Autg(S).
Let A be any finite abelian p-group on which Outyy, (L) acts faithfully, and let

v: Aut! (L) —— Aut(A)

typ
denote the given action. Thus Ker(v) = Aut.(95).

Set Sp = A x S and Fy = A X F (= Fa(A) x F). We refer to the beginning of Section 3,
or to [BLO2, §1], for the definition of the product of two fusion systems. Set Lo = A x L:
the centric linking system associated to Fy whose objects are the subgroups A x P < Sy for
P € Ob(L), and where Mor,,(A x P,A x Q) = A x Morz(P, Q).

Set 'y = Autr, (Sg) = A x Autz(S). Set T' = A x Aut!,

typ
with respect to the action v of Autfyp(ﬁ) on A. Thus I'y embeds as a normal subgroup of
I', and I'/T'y = Outyyp(L£). To avoid confusion, an element ¢ € Aut,(S) will be written ¢y,

when regarded as an element of I'y < T'.

(£): the semidirect product taken

We claim the given I-action on £, satisfies the hypotheses of [O3, Theorem 9]. This means
checking that the following diagram commutes:

conj

A x Auty(S) =Ty —— Autt[yp(ﬁo) = Aut!

typ
-
incll / J/(QHQAXS)
conj

(L) =T —— Aut(I'y) ,

(Ax L)

A % Aut!

typ

where 7 sends (a,v) € A % Autfyp(ﬁ) to (v(vy),7v) € Aut{yp(A x L). For ¢ € Autg(S),
v(cy) = Idy, so 7(a,cy) = (Id, ¢y), which shows that the upper triangle commutes. As for
the lower triangle, for (a,7v) € I' and (b, ¢y) € Dy,

T(CL, 7) (bu Cdf) - (V(’y)(b)7 C"/(dﬁ)) - (l/(’}/)(b)a, Cy(xp) © ’Y) (aa ’7)_1 - (a7 7) (bu C¢)(CL7 V)_l
since ¢ = Yocy oy t); and thus the lower triangle commutes.
v(¥) ¥
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Fix S € Syl,(I'). We identify Sy = O,(I'y) (via ds,), and hence Sy < S. Since
CF(So):CF(AXS):CI‘O(AXS):AXCAutL (S):AXZ<S)

is a p-group, and since all objects in Ly are Fy-centric by construction, [O3, Theorem 9|
shows that there exists a saturated fusion system F over S and an associated linking system

L such that (Sy, Fo, Lo) < (S, F, £) and Aut;(Sp) = I' with the action on Ly given by 7. In
particular,

Autz(So) = Autr(So) = {(¥(7), ic(7)) |7 € Aut, (L)} - (1)

Assume F is realizable: the fusion system of a finite group G. Since A is central in Fo,
O,(Fo)/A is normal in Fy/A = F by Proposition 1.8. Since O,(F) =1 (F is reduced), this
shows that O,(F;) = A. By Lemma 1.20(e) we then get A < F. By Proposition 1.24 we
have F = ]:,(@) = F5(Ng(4)). Upon replacing G by N- 5(A), we may assume A < G.

Set Gy = Cz(A) and G = Gp/A. Assume the following two statements hold:

(i) A= 0O,(F) and Cx(A) = Fo.
(ii) The composite

conj

¢: Autz(A) 2 G/Gy —— Out(G) —=Z— Outey, (L5(G))
is injective.
We now finish the proof of the theorem, assuming (i) and (ii).

By (i), C2(0p(F))/Z(0p(F)) = Fo/A = F. Since OP(F) = OV (F) = F, this shows
ted(F) = F. Also, Sy = Cz(A) € Syl (Cz(A)) since Fy = C(A). Hence by Proposition
1.24 (applied with K = 1), Fo = C%(A) = Fs,(Cz(A)), and so

F = Fo/A= Fsa(Go/A) = Fs(G) .

By condition (i) in Definition 1.18 (applied to Fy < F), and since A < F and A < Sy, each
¢ € Autz(A) has the form ¢ = g o alsa for some a € Autz(Sp) = Autr(Sp) and some
o € Autg,(A). Also, Autz (A) =1 by definition, and thus
Autg(A) = Autz(A) = Autp(A) = T'/Ty = Outyyp,(£)

So by (ii), there is a homomorphism s from Outyy,(£) to Out(G) such that kgos is injective.
Since £ was chosen with |Outy,(£)| maximal, kg o s is an isomorphism, so kg is split
surjective, contradicting the assumption that F is not tame. We conclude that F is exotic
(and ved(F) = F).

It remains to prove (i) and (ii).

Proof of (i): For each P € Ob(L), Py = PN Sy € Ob(Ly) since Lo I L, 50 Py = A x Q
for some @ < S which is F-centric. Then Cy(P) < Cg(A) = SNCr(A) =SNTy = S, so
gg(P)ig A x Z(Q) < P. Since this holds for all subgroups F-conjugate to P, all objects in
L are F-centric.

Set B = O,(F). We already saw that A = O,(F,). Hence BN Sy = A by Lemma 1.20(e).
Since B < S and Sy 9 S, it follows that [B, Sy] < A.

Since A < Fy and B < F, each ¢ € Homg, (P,Q) can be extended to a morphism
¢ € Homz(PB,QB) such that p|ps € Homz,(PA,QA) and p(B) = B. Then ¢|4 = Id4.
Hence for each g € B, g and »(g) have the same conjugation action on A, and g~ '¢(g) €
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Cp(A) = BN Cg(A) = BN Sy = A. By Lemma 1.29, c55) = 7(ds,(9)) € Auttyp(ﬁo) is the
identity modulo A, and thus g € A by definition of 7. So B = O,(F) = A.

Since C’é(A) = Sy, Fo and C’f(A) are both fusion systems over Sy. Also, Fq C C’f(A)
since A is central in Fo. To see that Cz(A) = Fo, fix P,Q < So and ¢ € Home (a)(P, Q).
By definition, ¢ extends to ¢ € Hom= (AP AQ) with p(A) = A and |4 = Id4. Since
Fo < F, condition (ii) in Definition 1.18 shows that there are a@ € Autz(Sp) and ¢y €
Homz, (a(AP), AQ) such that © = g o a|apaar). For each a € A, ala) = ¢, (p(a)) = a,
and thus a|4 = Id4. Hence

a € {B € Autz(Sy) | Bla =1da} = {Ida} x Autz(S) = Autz,(Sp) ,
where the first equality holds by (1) (and since jiz(Autg(S)) = Aut;(S)) Thus a €
Autz, (Sp), so p € Mor(Fp), and hence also ¢ € Mor(Fy). This proves that C=(A4) = F.
Proof of (ii): Set
L' =L4(G),  L5=LE(Go) =L, (Go), and L =LHG),

where Ho = Ob(L) and H = Ob(L). Note that (Sy, Fo, L) < (S, F,L*) by Proposition
1.28. Let ¢j: G —— Aut(G) denote the conjugation action of G on G. Set

H = {g € Nz(S) | Ka(ci(g)) =1dg-} and T=HNS.

We first claim 7" = A. By [BCGLO2, Theorem 6.8], £j/A is a centric linking system
associated to Fy/A = F. Hence the natural functor £{/A —— L* (induced by the pro-
jection Go —— @) is an isomorphism, since it commutes with the structure functors. So
for g € S, g € T if and only if c5 € Autfyp(ljg) is the identity modulo A, in the sense
of Lemma 1.29. We showed in the proof of (i) that each P € Ob(L*) = Ob(L) is F-
centric. Hence by Lemma 1.29, applied to both normal pairs (Sy, Fo, Lo) < (S, F, L) and
(So,]:o, L) < (S,F.L7), g € T if and only if csq) € Aut{,,(Lo) is the identity modulo A;

, induces the identity on £. By definition of S < T' = A x Aut/, (£), this is the case
exactly when g € A.

typ

Thus H is a normal subgroup of Ng(Sp) whose intersection with its Sylow p-subgroup S
is A. It follows that H/A has order prime to p. We claim that H < G,. Fix h € H of
order prime to p. Then cj(h) € Aut(G) acts via the identity on S = Sy/A, so [h, S| < A.
Hence by (1), en = (v(7),1ds) € Autz(Sp) for some v € Auttyp(ﬁ) such that v € Ker(jiz).
Since Ker(p,) is a p-group by Lemma 1.16 and h has order prime to p, v € Autz(S), so
v(v)=1¢€ Aut(A), and h € Gy. Thus H = OP(H)-A < G.

Fix g € G such that ¢, € Ker(¢). Recall we are only interested in g modulo Cz(A) = Go.

Since G = Go-Ng(So) by the Frattini argument, we can assume g normalizes Sp. Thus
ka([ci(g)]) = 1 in Outyy,(L¥), so Ka(cj(g)) = ¢, for some v € Autz«(S). Let h € Ng(S5)
be such that v = [h] and lift A to he Ne¢,(So). Upon replacing g by E’lg, we can assume
ka(ci(g)) = Idg+, and thus g € H < Gy. Hence ¢, = Idy, € is injective, and this finishes the
proof of (ii). O

2.3. Strongly tame fusion systems and linking systems for extensions.

We are now ready to start working on the proof of Theorem A. As stated in the introduc-
tion, this proof uses the vanishing of certain higher limit groups, and through that depends
on the classification of finite simple groups. In order to have a clean statement which does
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not depend on the classification (Theorem 2.20), we first define a certain class of finite groups
which in fact (by the classification) includes all finite groups.
The obstruction groups for the existence and uniqueness of centric linking systems asso-

ciated to a given saturated fusion system are higher derived functors for inverse limits taken
over the centric orbit category of the fusion system. We begin by defining this category.

Definition 2.7. Let F be a fusion system over a finite p-group S, and let F¢ C F be the
full subcategory whose objects are the F-centric subgroups of S. The centric orbit category

O(F°) of F is the category with Ob(O(F¢)) = Ob(F¢), and where

Moro(r) (P, Q) = Inn(Q)\Homx(P, Q)

for any pair of objects P,Q < S. In particular, Autore)(P) = Outz(P) for each P. If
Fo C F¢ is any full subcategory, then O(Fy) denotes the full subcategory of O(F€) with the
same objects as Fy.

We need the following technical result about higher limits over these orbit categories.

Lemma 2.8. Let F be a saturated fusion system over a finite p-group S. Let H C Ob(F¢)
be any subset which is closed under F-conjugacy and overgroups, and let F* C F¢ be the full
subcategory with object set H. Fiz a functor F: O(F°¢)® —— Z,)-mod. Assume, for each
P € Ob(F°)\H, that either O,(Outz(P)) # 1, or some element of order p in Outz(P) acts
trivially on F(P). Let Fy: O(F¢)°® —— Zp-mod be the functor where Fo(P) = F(P) if
P € H and Fy(P) = 0 otherwise. Then

Um"(F) = Um"(Fp) = U (Flogwne) -
O(F*) O(F¢) O(FH)

Proof. Let Fy C F be the subfunctor defined by setting Fy(P) = F(P) if P ¢ H and
Fy(P) = 0 otherwise. Thus Fy = F/F;. By [O1, Lemma 2.3], LiLnZ(P)(Fl) = 0 if certain
graded groups A*(Outz(P); F(P)) vanish for each P € Ob(F¢)\H. By [JMO, Proposition
6.1(ii)], this is the case whenever O,(Outz(P)) # 1, or some element of order p in Outz(P)
acts trivially on F'(P). This proves the first isomorphism.

For any category C, let C-mod be the category of contravariant functors from C to abelian
groups. Let E be the functor “extension by zero” from O(F’)-mod to O(F¢)-mod. Since
H C Ob(F°) is closed under F-conjugacy and overgroups, F is right adjoint to the restriction
functor. Thus E sends injectives to injectives. So for ® in O(F’)-mod, Liinz(fﬂ)(é) &~

@Z(fc)(E(Q)). Since Fy = E(F|oF#)er ), the second isomorphism now follows. O

For any saturated fusion system JF over a finite p-group S, let
Zr: O(F)® ——— Zp)-mod
be the functor which sends an object P of F¢ to Z(P) = Cg(P). For each ¢ € Homz(P, @),
Zr(lel) = ¢ Mz 2(Q) — Z(P).

By [BLO2, Proposition 3.1], the obstruction to the existence of a centric linking system asso-
ciated to F lies in @2( Fc)(Z;), and the obstruction to its uniqueness lies in l(yg?o( fc)(Z;).
The main results in [O1] and [O2] state that these groups vanish whenever F is the fusion
system of a finite group G.

We also need to work with the following closely related categories and functors. For any
finite group G, let O,(G) be the p-subgroup orbit category of G as defined in [O2] and [O1].
Thus Ob(O,(G)) is the set of p-subgroups of G, and Morp, ()(P,Q) = Q\Na(P, Q). Let
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Zg: Op(G)°® —— Ab be the functor Z¢(P) = Z(P)if Z(P) € Syl,(Ca(P)) and Z5(P) = 0
otherwise. For H < G, let ZH C Zg be the subfunctor ZH (P) = Z¢(P) N H.

Definition 2.9. Fiz a prime p.

(a) Let E(p) be the class of all nonabelian finite simple groups L with the following property.
For each finite group G, and each pair of subgroups H I K < G both normal in G such
that K/H = L™ for some m > 1, imgp(G)(zg/zg) =0 fori>2.

(b) Let &(p) be the class of all finite groups G all of whose nonabelian composition factors
lie in £(p).

(¢) A saturated fusion system F over a finite p-group S is strongly tame if it is tamely
realizable by a group G € &(p).

In fact, by results in [O1, O2], all finite groups are in &(p) for each p.

Theorem 2.10. For each prime p, the class E(p) contains all nonabelian finite simple groups,
and the class &(p) contains all finite groups. Hence all tame fusion systems are strongly tame.

Proof. The last two statements follow immediately from the first one and the definitions. So
we need only show that £(p) contains all nonabelian finite simple groups.

Assume p is odd. By [O1, Proposition 4.1] (and its proof), a nonabelian finite simple
group L with S € Syl (L) lies in E(p) if there is a subgroup @ < X.(S) which is centric in
S (ie., Cs(Q) < @) and not Aut(L)-conjugate to any other subgroup of S. Here, X.(5)
is a certain subgroup of S defined in [O1, §§3-4]. By [O1, Propositions 4.2-4.4] (and the
classification theorem), all nonabelian finite simple groups have this property, and thus they

all lie in E(p)

If p = 2, then by [O2, Proposition 2.7], a nonabelian finite simple group L is contained in

£(2) if it is contained in the class £22(2) defined in [O2, Definition 2.8]. By [02, Theorems
5.1, 6.2, 7.5, 8.13, & 9.1] and the classification theorem, all nonabelian finite simple groups
are contained in £22(2). O

Theorem 2.10 together with Theorem 2.20 will imply Theorem A. From now on, for the
rest of the section, we avoid using the classification theorem by assuming whenever necessary
that our groups are in &(p) and applying the following lemma.

Lemma 2.11. Fiz a finite group G with Sylow subgroup S € Syl,(G), and set F = Fs(G).
Assume G € &(p). Then the following hold.

(a) If G is a finite group with G < G, then LO ZG) =0 for each i > 2.

(b) If G = Gy x Gy, then G € B(p) if and only if Gl,Gg € 6(p). If HIG and G/H is
p-solvable, then H € &(p) if and only if G € &(p).

(c) Let L be a linking system associated to F such that all subgroups in H o Ob(L) are
F-centric. Then L= LH(G).

(d) The homomorphism pig: Outyy,(LG(G)) —— Out(S, F) defined in Section 1.3 is sur-
jective.

Proof. (a) Let 1 = Go < Gy < --- 4 Gy, = G be a sequence of subgroups, all normal in

G, such that for each r, G,,1/G, is a minimal nontrivial normal subgroup of G/G,. By [G,
Theorem 2.1.5], each quotient G,.1/G, is a product of simple groups isomorphic to each
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other. By [O2, Proposition 2.2|, if G,1/G, is abelian, then @gp(@c)(zgr“/zgr) = 0 for

all i > 1. Thus (a) follows immediately from the definition of E(p), together with the exact
sequences
lim' (28 /287) —— lim'(25'/Z25") — lm'(Z25'/Z¢")

0p(G) 0p(G) Op(G)
forall0 <r<s<t<mandalli>2.

(b) The first statement is immediate, since a simple group is a composition factor of
G = G1 x Gy if and only if it is a composition factor of G; or of G3. When H < G and
G/ H is p-solvable, then the only simple groups which could be composition factors of G but
not of H are C, and simple groups of order prime to p. So we need only show that every

nonabelian simple group of order prime to p lies in E(p)

Fix such a simple group L, and assume H < K < G (where H < G), and K/H = L™ for
some m. Then ZH = Z& since K/H has order prime to p; and thus L € £(p).

(c,d) By (a), applied with G = G, @ép(G)(Zg) = 0. So by [BLO1, Theorem E|, pg is
onto. This proves (d).

Now let £ be a linking system associated to F, set H = Ob(L), and assume H C Ob(F*).
Since H contains all subgroups of S which are F-centric and F-radical, O,(Outz(P)) # 1
for P € Ob(F°)\H. Hence

Bmo ) (Zrlogry) = Mg . (25) 2 img, ) (Z6) = 0,

where the first isomorphism holds by Lemma 2.8, the second by [O1, Lemma 2.1], and the
third group was just shown to vanish in the proof of (d). So by the same argument as that
used in the proof of [BLO2, Proposition 3.1], all linking systems associated to F with object
set H are isomorphic. In particular, £ = £¥(G), and this proves (c). O

The following is the main technical result in this subsection, and will be needed in the
proof of Theorem A. Given Fy < F satisfying certain technical assumptions, and given a
linking system L, associated to JFy, we want to find £ associated to F such that £, < L.
It is natural to ask why this cannot be done using [O3, Theorem 9|, where conditions are
explicitly set up to construct extensions of fusion and linking systems. There seem to be two
difficulties with that approach. First, the hypotheses of Proposition 2.12 are very different
from those in [O3], and it is not clear how to convert from the one to the other. But more
seriously, even if one does manage to do that and construct an extension (F', L') of (Fo, Lo),
it is not clear how to prove that F' = F; i.e., that £’ really is a linking system associated to

F.

Proposition 2.12. Let F be a saturated fusion system over a finite p-group S, and let
Fo C F be one of the following saturated fusion subsystems over Sy < S:

(a) Fo=OP(F), or
(b) Fo = O"(F), or
(c) Fo=NE(Q) for some Q < F and some K < Aut(Q) containing Inn(Q).

Assume Fy is strongly tame. Then there is a centric linking system associated to JF.

Proof. In all cases (a), (b), and (c), Fo < F by Proposition 1.25.
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Since Fg is strongly tame, we can choose a finite group Gy € &(p) such that Sy € Syl (Gy),
Fo = Fs,(Gyo), and kg, is split surjective. We first claim that

/jGo o %Go: Aut(Go, So) —_— Aut(S(), fo) is onto. (2)

As noted in Section 2.2, this composite is defined by restriction. Since Gy € &(p), ug,
is surjective by Lemma 2.11(d). Also, kg, is split surjective by assumption. Thus ev-
ery element of Out(Sp, Fo) = Aut(Sy, Fo)/Aute,(Sy) extends to an element of Out(Gy) =
Aut(Go, So)/Autng, (sy)(Go), and hence the map in (2) is onto.

Define
A= {OZ € Aut(G(),So) ‘ O./|SO c Aut]:(So)} .

We just showed that every element in Autxz(Sp) is the restriction of some element in A. Fix
Sa € Syl,(A) which surjects onto Auts(Sp) under the restriction map to Autz(Sp). Set

G=GyxA and S=5,xSa.
Thus S € Sylp(@).
Now set S =S5, F; =F, S = § and Fp = fg(é) We claim, for each Py, Qg < Sy, that

HOTHB(PO, Qo) = Hom]ﬁ(POa Qo) & Homf(Po, Qo)

Homs, (Pp, Qo) = Homg, (P, Qo) = Homs( Py, Qo) -
We have already remarked that JFg ﬁA}" = Fi, and Fy < F, by Proposition 1.28 since
they are the fusion systems of Gy < G. Hence by condition (ii) in Definition 1.18, each
¢ € Hompg, (P, Q) (for i = 1,2 and P,@Q < Sp) is the composite of a morphism in Fy and the
restriction of a morphism in Autg,(Sy). Furthermore,
Allt]:2 (S()) = Aut@(So) = <AutG0 (So) s Resgg(A» = Aut].'l(So)
by (2), and the first line in (3) now follows. The second holds since Autg,(Sy) = Autg(Sp)
by definition of Sy = Sy x Sa.
We next claim that for all Py < Sy,
Py is fully centralized in Fo <= P, is fully centralized in F; = F . (4)

By (3), the Fi- and Fy-conjugacy classes of Py are the same, and Autg,(Sy) = Autg(Sp).
Hence for each )y which is F;-conjugate to P,
1Cs, (Qo)]
1Cs, (So)l

and so |Cg, (Fy)| is maximal if and only if |Cg,(Fp)| is maximal.

(3)

|Cs,(Qo)]

}{a € Auts(50) ‘a|QO N Id}{ 1Cs,(So)|

We want to compute lim (9 ) (Z7,) by comparing it with limg oF Z;Q) To do this, we

first define in Step 1 certain full subcategories F C Ff, and an 1ntermed1ate category C

which can be used to compare O(F;) with O(F; ) Certain properties of the “comparison
functors” ®;: O(F;}) —— C are stated and proven in Step 2. In Step 3, we define certain
subfunctors Z; C Zz on O(Ff), and prove that @&F{)(Zl) o ]@g(@(zg) using the
intermediate categories O(F;) and C to compare them. Finally, in Step 4, we prove that
@Z(IC)(ZQ) = 0 for * > 2, and then show that @Z(P)(Z]:) = @Z(IC)(ZQ for x > 1 by
2 1
analyzing individually the three cases (a)—(c).
Throughout the rest of the proof, whenever P < S} or P < S5, we write Py = P N Sp.

Step 1: Let F C F; (i = 1,2) be the full subcategories with objects

Ob(F}) = {P <5 ‘ Cs,(Qo) < Q for all @ Fi-conjugate to P}.
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All objects in F; are F;-centric; i.e., F; C Ff. Also, if P < S; is F;-conjugate to an object
in F, then P € Ob(F}).

We next construct a category C which acts as intermediary between the orbit categories
of F; and F;. It will be a subcategory of a larger category C, defined by setting

~

Ob(C) = {(P, K) ‘ Py < Sy is Fo-centric and fully centralized in F,
Inn(FRy) < K < Autg(FRy)}

and
MOI‘é\((Po, K)J (QOJ L)) - L\{SO S HOII'If(P(), QO) ‘ QOK - LSO}
Here, we regard ¢ K and L as subsets of Homz(FPp, Qo).

Define functors

Dy o)

O(F7) 4% O(F3)
by setting ®;(P) = (P, Autp(Fy)) and ®i([¢]) = [p|p] for P,Q € Ob(Fy) and ¢ €
Homgz: (P, Q). Since restriction sends Inn(Q) to Autg(Qo) for @ € Ob(F), ®; is well
defined on morphisms if it is defined on objects.

To see that ®; is well defined on objects, fix P € Ob(F}), and set K = Autp(Fp). Then
Inn(Fy) < Autp(Fy) < Autg(F), since P > Py, and since Autg(Fy) = Autg,(F) by (3). By
Lemma 1.20(a), P is F;-conjugate to some ) such that @) is fully normalized in F; and in
Fo. Hence P, is Fp-centric by Lemma 1.20(c). Also, |Cs,(FP)| = |Cp(P)| = |Co(Qo)| =
|C's,(Qo)| by definition of Ob(F}), and so Fy is fully centralized in F; (hence in F by (4))

~

since Q) is fully centralized in F;. Thus (P, K) € Ob(C).

We claim that Im(®;) = Im(®P3). In what follows, when Py < Sy and K < Aut(F,), we
set NEX(Py) ={g € Ns(Ry)|c, € K}. Then

P € Ob(F}) and ®;(P) = (P, K) = P =Ng§(R) (5)
since P > Cg,(Py) by definition of Ob(F}).

Assume (Py, K) € Ob(C), and set P, = NE(Fy) for i = 1,2. Then P, > Py and K =
Autp,(Fy), since Inn(Fy) < K < Autg(Fp) by assumption. Also, P, NSy = N& (Py) =
P,N Sy, so PLNSy = Fy if and only if P, NSy = Fy, and we assume this is the case
since otherwise (P, K) is in the image of neither functor ®; by (5). By assumption, Py
is fully centralized in F, and hence in F; by (4). So for each () which is F;-conjugate to
P;, |Cs,(Qo)| < |Cs,(Py)| = |Cp(Py)| = |Co(Qo)|, where the last equality holds since any
¢ € Isor,(P;, Q) induces an isomorphism of pairs (P, Py) = (Q, Qo). Thus Cs,(Qo) < Q.
This proves that P; € Ob(F;), and hence that ®;(P;) = (P, K) for i = 1, 2.

Now fix objects (Fy, K) and (Qo, L) in Im(®;), and choose ¢y € Homgz(Fy, Qo) such
that ¢oK C Lygg. Thus [po] € Morg((Fo, K),(Qo, L)). If [po] = ®s([¢]) for some ¢ €
Homz: (P, Q) (i = 1 or 2), then ¢(P) € Ob(F}), so ¢o([o) is fully centralized in F (since

Di(p(P)) = (po(Fo), Autyp)(¢o(Fo))) € Ob(C)), and hence in F; and F, by (4). So we
assume this from now on.

Set P, = N&(Py) and Q; = N&(Qo): these are both in Ob(F;) by (5). Set Ry = ¢o(Fy),
let ¢o € Isor(Py, Ry) be the restriction of g, and set M = ¢oK ¢y < Autrz(Ry). Then
woK ¢y C L|g, € Homg(Ry,Qo), and so M < Autg(Ry) = Autg,(Ry). By the extension
axiom for F;, ¢o extends to some ¢; € Homg, (P;, S;), and [¢o] € Im(®P;) if and only if
@; can be chosen with ¢;(F;) < @Q;. Now, M = Aut,,(p,)(Ro) since K = Autp,(F), so
Di(@i(P)) = (Ro, M), and o;(P;) = N{'(Ry) by (5). Hence ¢;(P;) < Q; if and only if for all
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a € Autg, (Sy),
a(Ry) =Rpand a|g, e M = «a(Qo) = Qo and a|g, € L .
Since Autg, (Sp) = Autg,(So) by (3), [¢o] € Im(®,) if and only if [po] € Im(Dy).
Now set € = Im(®;) = Im(®;) C C. Since the ®; are injective on objects by (5), this is a
subcategory of C. From now on, we regard the ®; as functors to C.
Step 2: For each i = 1,2, and each P € Ob(F}), set
T';(P) = Ker [Out, (P) — Aute(Py, Autp(Fy))]
= Ker[Outz, (P) — Naur(py) (Autp(Pp))/Autp(By)]
where R is induced by restriction. We claim that, for each i =1, 2,
(i) ®;: O(F;) — C is bijective on objects and surjective on morphism sets;
(ii) I';(P) has order prime to p for all P; and
(iii) whenever 1, v’ € Moro(zs)(P, Q) are such that ®;(1)) = ('), there is x € I';(P) such
that ' = o x.
Point (i) follows from (5) and the definition of C in Step 1.

When proving (ii), it suffices to consider the case where P is fully normalized in F;. If
g € Ng,(P) is such that [¢,] € I';(P), then ¢,|p, € Autp(Fy); and since Cg,(Fp) < P, this
implies g € P and [¢g] =1 € I';(P) < Outg,(P). Thus Outg, (P) is a Sylow p-subgroup of
Outz (P) and intersects trivially with I';(P) < Outg,(P), so |I';(P)| is prime to p.

It remains to prove (iii). Assume 9,v" € MoroFx) (P, Q) are such that ®;(¢)) = ®;(v").
Fix ¢, ¢" € Homz: (P, Q) such that ¢ = [¢] and ¢' = [¢']. Then ¢|p, = c40¢’|p, for some ¢, €
Autg(Qo); i.e., for some g € Q). So upon replacing ¢’ by ¢, 0 ¢ (this time with ¢, € Inn(Q)),
we can assume g o ©lp, = ¢'|p,- Since P € Ob(F;), we have Cg,(vo(Fo)) < @(P), so

p(P) = {g € Ns,(¢o(P0)) | ¢g € poAutp(Po)gy '} = &' (P).

Hence there is a unique 5 € Autz, (P) such that ¢’ = po5; and also f|p, = Id. So ¢/’ = ¥o[f]
in Moro(z» (P, Q), where [8] € T';(P).

Step 3: Define functors
Z;: O(f;.C)Op —_— Z(p)—mod and Ze: CP —» Z(p)—mod

by setting Z;(P) = Z(P) NSy = Cypy(P) and Z¢(Q, K) = Cyg)(K) (the subgroup of
elements of Z(Q) fixed pointwise by K). Morphisms are sent in the obvious way. Set
Ziw = ZiloFryor-

We claim that

Im*(Z;) = lim"(2;,) = Im"(Z¢) = LIm"(2,5.) = lm"(Z;). (6)
O(F¥) O(F7) ¢ O(F3) O(F3)
Since Z;,, = Z¢ o ®; by definition, the second and third isomorphisms follow from points
(i-iii) in Step 2 and [BLO1, Lemma 1.3].

We prove the other isomorphisms in (6) using Lemma 2.8. Fix i = 1,2. We already saw in
Step 1 that Ob(F}) is closed (inside Ob(Ff)) with respect to F;-conjugacy. If P < @Q < S;
and P € Ob(F}), then for each @* which is F;-conjugate to @, if we set P* = ¢(P) < Q*
for some ¢ € Isoz (Q,Q*), then Cg,(F;) < P* implies Cg, (@) < Q*, and so @ € Ob(F}).

Thus Ob(F}) is closed with respect to overgroups.

7
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For each object P in Ff not in F;, there is P* F;-conjugate to P such that Cs,(F;) £ P*.
By Lemma 1.7, there is g € NSZ(P*)\P* which centralizes Pj. Thus [¢,] € Outz (P*) is

a nontrivial element of p power order which acts trivially on Z;(P*). So by Lemma 2.8,
Q-o fc LO Z,,) for each ¢ = 1,2; and this finishes the proof of (6).

Step 4: By [O1, Lemma 2.1} and Lemma 2.11(a),

. def ~
]-(L 1(1;3 ( —)NSp) = Op(G)(ZGO) =0
for j > 2. Hence by (6), @O(IC)(ZQ =0 for j > 2 (recall F = F;).
We claim that for j > 2,

lim’(Z7) = lim’ (2)). (7)
O(F°) O(F°)
Set Z = Zr /2, for short; thus 2/,7\(P) = Z(P)/(Z(P)NSy) for each P. If Fy = OP'(F), then
(7) holds since Sy = S and hence Zz = Z;. If Fy = NX(Q) for some @ < F and some
K < Aut(Q), then Z(P) = 0 for each P € Ob(F*¢) which contains @), in particular for each
subgroup which is F-centric and F-radical (Proposition 1.5); and (7) holds by Lemma 2.8.
Assume Fy = OP(F). For each P € Ob(F°), let Hp < Outz(P) be the kernel of the
Outz(P)-action on Z(P) = Z(P)/(Z(P)NSy). By definition of Sy = hyp(F), Hp contains
OP(Outz(P)), and thus Outx(P)/Hp is a p-group. So for j > 1,

0 if p||Hp|
0 if p { |Outz(P)|
A (Outz(P)/Hp; Z(P)) =0 otherwise

N (Out#(P); Z(P))

12

by [JMO, Proposition 6.1]: by point (ii) of the proposition in the first case, by point (i) i
the second, and by points (iii) and (ii) in the third. So by [O1, Lemma 2.3], 13—0(]&)(2) =
for all j > 1, and (7) also holds in this case.

We now conclude that @J Z;) 0 for all j > 2. So by [BLO2, Proposition 3.1],
there is a (unique) centric hnkmg system L¢ associated to F. O

n
0

2.4. Proof of Theorem A.

We want to show that if ved(F) is tame, then so is F. The proof splits naturally into
two parts. We first show, under certain additional hypotheses, that if 7y < F and Fy is
tame, then F is tame. Afterwards, we show (again under additional hypotheses) that F is
tame if F/Z(F) is tame. In both cases, this means proving that certain homomorphisms
are split surjective, by first constructing an appropriate pullback square of automorphism
groups, and then applying the following elementary lemma.

Lemma 2.13. If the following square of groups and homomorphisms
Al *) AQ
|, |
B — By

1s a pullback square, and [ is split surjective, then « is split surjective. 0

We first work with normal subsystems. We first recall some convenient notation. When
P is a p-centric subgroup of a finite group G (i.e., an Fg(G)-centric subgroup when P <
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S € Syl (G)), we set C(P) = OP(Cg(P)). Thus C(P) has order prime to p, and Cg(P) =
Z(P) x C,(P).
For any normal pair (S, Fo, Lo) < (S, F, L), let

p= ﬁﬁo s Autg(Sg) —— Autt[yp(ﬁo)

be the homomorphism which sends v € Aut.(Sy) to ¢,. Here, ¢, € Aut{yp(ﬁo) sends an
object P to 7(v)(P) and sends ¢ € Motz (P, Q) to (Ylgm@) ° ¥ o (Y pa(yp)) ™" (well
defined by Definition 1.27). Let

p=pz,: L/Loy e Outiyp(Lo)
=Aut,(So)/Autzy(So) :Aut{yp(ﬁo)/{cy | vEAutL,(So)}

be the homomorphism induced by p, which sends [y] to the class of ¢,. This is analogous
to the conjugation homomorphism G /Gy —— Out(Gy) for a pair of groups Gy < G. For
example, L is centric in £ (see Definition 1.27) if and only if pfo is injective.

We next show that when Fy < F have associated linking systems £y < L, where L is
centric in £ and JFy is realizable, then under some extra conditions, F is also realizable.

Lemma 2.14. Fix a normal pair (So, Fo, Lo) < (S, F, L) such that Ly is centric in L. Set
Ho = Ob(Ly) and H = Ob(L), and assume Hy is Aut(Sy, Fo)-invariant. Assume there is a
finite group Go such that

(a) So € Syl,(Go), Fo = Fs,(Go), and Lo = LE(Go);

(b) Z(Gy) = Z(Fo); and

(c) there is a homomorphism p: L/Ly —— Out(Gy) such that
/igg op = pfoz L/Ly — Outyyp(Lo) -

Then F = Fs(G) and L = LE(G) for some finite group G such that S € Syl,(G), Go 4 G,
G/Gy = L/Ly, and such that the extension realizes the given outer action p of G/Gy = L/ Ly
on Gy.

Proof. We construct the group G in Step 1, and prove that L¥(G) 2 £ and Fs(G) = F in
Step 2. Throughout the proof, we identify £y with L’ 2(Go)-

Step 1: Consider the following diagram whose rows are exact by Lemma 1.14:

1 —— Z(Go) — N¢, (So) o, Aut(Gy, Sp) SELLE. Out(Gy) —— 1

1 —— Z(Fo) —— Aute, (So) —2 Autl (L) — 2 Outiyp(Lo) — 1 |

typ

Here, A sends g € Ng,(So) to its class in Autg,(So) = Na,(50)/Cq, (So). The first and third
squares clearly commute. The second square commutes since for g € N¢,(So), K sends ¢, to

the automorphism [a] — [gag ™| = ¢),(g)(a). By definition of &k = /igg,
E(B)(Mo(g)) = 2o(B(9)) for all # € Aut(Go, So), g € N, (So) - (9)

Set Aut(Go, So)5 = pri ' (p(L/Ly)). Since Ly is centric in £, p = pf, sends L/ Ly injectively
into Outyyp(Lo). Hence & sends p(L/Ly) injectively into Outiy,(Lo). So by a diagram chase
in (8), Ng,(So) is the pullback of Aut(Go, Sy); and Autg,(Sy) over Auttyp(ﬁo).



36 KASPER ANDERSEN, BOB OLIVER, AND JOANA VENTURA
Let H be the group which makes the following square a pullback:

H % Aut(Go, So)ﬁ

Jf J{E (10)

AutL(SO) —> Auttyp(ﬁo) .

For each o € Aut,(Sy), p(a) € pry ' (p(L/Ly)) by definition, and hence lifts to an element of
Aut(Gy, Sp);. This proves that A is onto. By comparison with the middle square in (8), we
can identify Ng,(Sp) with A7 (Aut,,(Sg)) < H. Thus
H/NGO(S()) == H/HO = Aut£<50>/Aut£0(So) == £/£0 y (1].)
where we set Hy = Ng,(Sp), regarded as a subgroup of Gy and of H.
We claim that for all h € H and a € H,,

@(h)(a) = hah™ € Hy . (12)

Since (10) is a pullback, it suffices to prove (12) after applying ¢ and after applying A. It
holds after applying A (or Ag) since

Mo(p(h)(a)) = E(p(h))(No(a)) = pA(R)) (No(a)) = A(R)Ao(@)A(h) ™" = Ao(hah™") :
the first equality by (9), the second by the commutativity of (10), and the third since p is
defined by conjugation in L. Since ¢|p, is also defined to be conjugation,

p((h)(a) = conya) = P(h) o cao @(h) ™ = () o p(a) o p(h) ™" = p(hah™) .
This finishes the proof of (12).

We want to construct a group G with Gy < G, G/Gy = L/Ly, and Ng(So) = H. To do
this, first set [' = Gy x H: the semidirect product with the action of H on Gy given by ¢
as deﬁned in (10). Elements of I' are written as pairs (g, h) for ¢ € Gy and h € H. Thus
(g,h)(g', 1) = (g-p(h)(g'), hK'). Set N = {(a,a™')|a € Hy}. For a,b € Hy,

(a,a™")(b,07") = (a-p(a™)(b),a™'b7") = (a-a™ba,a™07") = (ba, (ba)™') € N,
where the second equality holds by (12). Thus N is a subgroup. For g € G and a € Hy,

(9: D(a,a™ ) (g, 1) = (ga,a ) (g™, 1) = (gap(a™")(g™"),a7t)

= (gaa”'g7a,a7) = (a,a7") 5

where p(a™')(g7') = a !¢ 'a since by construction, ¢|g, is the conjugation homomorphism
of (8). Thus (g, 1) normalizes (centralizes) N. For h € H and a € H,,

(L, 7)(a,a™)(1, k)7 = (p(h)(a), ha™")(1,h7") = (¢(h)(a), (hah™") ") € N
by (12), and thus (1, k) also normalizes N. This proves that N < T,

Now set G =T'/N, and regard Gy and H as subgroups of G. By construction, G = GoH,
GoNH = Hy = Ng,(5), Go < G, and G/Gy = H/Hy = L/L (the last isomorphism by
(11)). Also, H < N¢(Sp), and since [H:Ng,(So)] = [G:Go] > [Na(So):Ng,(So)], we have
H = N¢(Sp). The outer conjugation action of G/Gqy on Gy is induced by ¢. Consider the
following diagram

G/Go g]‘I/]‘Io 4 Out(Go)

%‘/)\ / J{ﬁ (13)

£/ Lo % Aute(S)/Autz, (Sp) —— Outiyp(Lo)
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where » and A are induced by ¢ and A and the square commutes by (10), and where the
lower triangle commutes by condition (c¢). Then Im(p) < Im(p) by definition of Aut(Gy, So)5,
and x sends Im(p) isomorphically to Im(pZ, ) since pZ, is injective. Thus the upper triangle

in (13) commutes, so the outer conjugation action of G/Gy on Gy is equal to p via our
identification G/Gy = L/ L.

By comparison of (8) and (10), we see that
Ker()\) = Ker()\o) = C/G’O(SO) .

In particular, Ker(A) has order prime to p. Also, dg,(S) is a Sylow p-subgroup of Aut,(.Sy)
by Proposition 1.11(d). Fix any Sylow p-subgroup of A7(ds,(5)), and identify it with S via
dg! o A. Since [G:H] = [Gy:Hy) is prime to p, we also have S € Syl (G).

Step 2: Set F' = Fg(G) for short. By Proposition 1.28, Fy = Fg,(Go) is normal in F'.
So by Lemma 1.20(d), H = Ob(L) contains all subgroups of S which are F’-centric and
F'-radical.

We next show that all subgroups in ‘H are G-quasicentric. Since overgroups of G-quasicentric
subgroups are G-quasicentric, it suffices to prove this for P € Hy. Fix such P, and assume
it is fully centralized in F’'. We must show that O, (Cq(P)) = OP(Cg(P)); i.e., that Ce(P)
contains a normal subgroup of order prime to p and of p-power index. Define

Pp: Ng(P) e AHtL(P)
as follows. Fix g € Ng(P), write g = goh for some gy € Gy and h € H = Ng(Sp), and set
Dp(9) = [g0] o A(h)|pppn-1, where [go] € Morg,(hPh™!, P) is induced by the identification
Ly = E?OO(GO). If g = goh = g\h' where go, g, € Go and h,h' € H, then a aof 9o tgh =hh'"t €
Hy, so gy = goa, h = ah’, and

[90] o A(h) | phpn— = [go] o AM(a)|wpr—1npn-1 o AI) | pprpn—1 = [goa] o A(B')| s prr—1-

Thus ®p(g) is well defined, independently of the choice of gy and h, and &g, = A\. Moreover,
Pp|ng(p) = dp, since A|g = dg,: S —— Aut,(P) by the identification of S as a subgroup of
H. To see that ®p is a homomorphism, it suffices to check that

(hgoh™"] = A(h) o [go] o A(R) ! (14)
for each gy € Gy and h € H, and this follows from the commutativity of (10).

We next claim that the composite mp o ®p: Ng(P) —— Autxz(P) sends g € Ng(P)
to ¢, € Aut(P). Set g = goh as above. By definition of the linking system E?OO(GO),
Tp(Pp(90)) = mp([g0]) = ¢go- By (14) and axiom (C) for the linking system L, 7g,(A(h)) €
Autz(Sp) is conjugation by h, and hence it is also conjugation by h on P < Sy < H. This
proves the claim.

Since Fo 4 F, Fo < F', and Autz(Sy) = Autz(Sp), the F- and F'-conjugacy classes of
any subgroup @ < Sy are the same. It follows that H is closed under F’-conjugacy, and that
P is fully centralized in F. Hence

e Ker[Aut,(P) 2 Autz(P)] = dp(Cs(P));

o Op|ny(p) = 0p is injective by Proposition 1.11(c);
o Ker(mpo®p) = Cq(P) since mp o Pp(g) = ¢,4; and
e Cs(P) € Syl (Cq(P)) by [BLO2, Proposition 1.3].

Hence Ker(®p) is a normal subgroup of C(P) of order prime to p, and Cg(P)/Ker(®p) =
Cs(P) is a p-group. It follows that Ker(®p) = OP(Cg(P)), and thus that P is G-quasicentric.
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Set £' = L#(G). We have now shown that H satisfies the conditions which ensure that
L' is a linking system associated to Fs(G). By Proposition 1.28 again, £’ contains £, as
a normal linking subsystem. Also, Aut. (Sy) = H/Ker(\) = Aut,(Sp) since OP(Cq(Sy)) =
Ker(®g,) = Ker(A), and they have the same action on £y (under this identification) by the
commutativity of (10).

Now, Caut,(s0)(S0) = d5,(Cs(S0)) by axioms (C) and (A) (and since S is fully centralized
in F). Each P € H, is F-quasicentric by Proposition 1.11(g), and hence satisfies the second
condition in Definition 1.10(b). (A priori, this condition only holds when P € H, is fully
centralized in F, but it is easily extended to arbitrary subgroups in Hy.) Thus conditions
(2) and (3) in the statement of [O3, Theorem 9] hold, where I' = Aut,(Sp) and 7 = p. So
by the uniqueness statement in that theorem, F = F" and £ = L' O

In order to compare tameness of Fy and of F when (Sy, Fo, Lo) < (S, F, L), we need to
compare the automorphisms of Ly with those of £. This is done in the following lemma. For
any normal pair £y < £ of linking systems, we set

Autz(Lo) = pg, (Autz(So)) = {cy | v € Autz(So)} < Auti, (Lo)

typ

Outﬁ(ﬁo) = p§0<£/£0> = Autﬁ(ﬁo)/AutE()(E()) S Outtyp(ﬁo) .

Lemma 2.15. Fiz a pair of finite groups Gy < G, let Sy < S be Sylow p-subgroups of
Go < G, and set Fy = Fs,(Go) and F = Fs(G). Assume Z(Go) = Z(Fy). Let Ho and H
be sets of subgroups such that

def

def
Ly =

LE(Go) and L= LEG)
are linking systems associated to Fy and F, respectively. Assume
Lo< L, Lg is centric in L and L/Ly=G/Gy .

Assume also Hy is Aut(Sy, Fo)-invariant, and H is Aut(S, F)-invariant. Then the following
square

Out(G, Gy) i Otteyp (£, Lo)

Rll Rgl (15)

Noui(co) (Outa(Go))/Outa(Go) —— Nowtey(zo) (Ot (Lo))/Outz(Lo)

is a pullback. Here, Out(G, Go) < Out(G) and Outy, (L, Ly) < Outyy, (L) are the subgroups
of classes of automorphisms which leave Gy and Ly invariant, respectively, k is the restriction
of k%, k* is induced by ligg, and Ry and Ry are induced by restriction.

Proof. By the Frattini argument, G = G¢-Ng(Sp) (all subgroups G-conjugate to Sy are
Go-conjugate to Sp). Hence G/Gy = N¢(Sy)/Ng,(So), while

L/Lo % Auts(So)/Aute,(So) = (Na(S0)/OP(Ce(S0))) / (Neo (S0)/Ci, (S0))

(and Sy is G-quasicentric since it is an object of the linking system £ = L¥(G)). Since
G /Gy = L] Ly, it follows that OP(Cg(Ss)) = Cg, (So). Also, for each g € C(Go) < Nea(So),
lg] € Aut(Sp) acts trivially on £y under conjugation, so [g] € Autg,(Sy) since Ly is centric
in £, and hence g € GGy. We have now shown that

O"(Co(So)) = Cly(So)  and  CalGy) = Z(Gy) . (16)
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Step 1: We first show the following square is a pullback:

Aut(G, G(), SC&O(S())) —> Autfyp(ﬁ, Eo)

Resll ) ReSQl (17)

NAut(Go,So)(AUtG(GO, So)) —= NAut{yp(ao)(Aut£<£0)) .

Here, Aut(G, Go, S-C, (So)) is the group of automorphisms of G' which send both Gy and
S-Cf, (So) to themselves and Aut{, (£, Lo) < Aut{
leave £, invariant.

Both Res; and Res; are defined by restriction. Each a € Aut(G, Gy, S-Cg, (So)) leaves
So x Cg,(So) = Go N (S-Cf,(So)) invariant, and hence also leaves Sy invariant. Clearly,
| Aut(Go,50) Dormalizes Autg(Go, Sp). To see that Res; maps to the normalizer, fix o €
Aut! (L, Ly) and v € Aut,(Sy), and set 0g = oz, € Autl (Lo). Then

typ typ

(L) is the subgroup of elements which

006405 = Colr)s (18)
(using Lemma 1.15 to show this holds on objects), and thus oy normalizes Aut,(Lo).

The homomorphism kg is the restriction of T{gg, which is defined since Hy is Aut(Sy, Fo)-
invariant. Since Egg maps Autg(Go, Sp) onto Autz(Ly), it sends the normalizer of Autg(Go, Sp)
into the normalizer of Aut,(Ly).

Defining K requires more explanation. For a € Aut(G, Gy, S-Cg, (S0)), a(S) is a Sy-
low p-subgroup of S-Cf, (So), so a(S) = hSh™! for some h € Cf, (Sp). Hence ¢;,' o a €
Aut(G, Gy, S) and we define 5(a) = &(c;' o a) € Aut{ (L, Lo). If I € Cf, (So) with
a(S) = WSK™' then h™'H € Cg,(So) N Ng(S). Since Sy is strongly closed in F, the
restriction homomorphism

Ng(S)/Cé(S) = AutL(S) EE—— Autﬁ(So) = Ng(S())/Cé;O(So)

is injective by Proposition 1.11(f). It follows that h='h’ € CL(S), so kH(cp-11s) = 1 since
CL(S) < OP(Cg(P)) for each P < S. Thus & is well defined, and it is easily seen to be
a homomorphism. Since conjugation by any element of Cg, (So) induces the identity in

Aut typ(/jo) (and since Resy o k¥ = T{Z‘g o Res; as maps from Aut(G, Gy, S) to Autfyp(ﬁo)),
square (17) commutes.

Next consider the following commutative diagram:

1— 7 GO —> Ng(So) ;) Autg(G(], So) —1

Aolg'—ﬂg} l% (19>
1— Z(Fo) ., Aut,(Sp) 2 Autp(Ly) — 1.

Here, cj; and cj, are induced by conjugation, and k; is the restriction of k. Both rows in
(19) are exact: the first since Ker(cj;) = Cq(Go) = Z(Gy) by (16); and the second since
Ker(cj,) < Autg,(So) (Lo is centric in £) and hence Ker(cj,) = Z(Fp) by Lemma 1.14(a).
Thus the right hand square in (19) is a pullback square.

Fix automorphisms

a € Nauw(Go,s0) (Auta(Go, So)) and Y € Aut! (L, Loy)

typ

such that x|z, = Ko(a). Then x(Sp) = So, so xs, is an automorphism of Aut,(Sy) =
N (S0)/Cly (S0) by (16).
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We first construct § € Aut(Ng(Sp)) such that for each g € Ng(Sy), cpg) = acga™ in
Aut(Gy) and xs,([g]) = [B(g)] in Aut,(Sp). Consider the following automorphisms

¢o € Aut(Autg(Go, So)), Xs, € Aut(Autz(S)), CRo(a) = Cy € Aut(Autz(Ly))
of groups in the pullback square in (19). We want to define  as the pullback of ¢, and
X$o over ¢y. For v € Autz(Sy), ¢, (cia(7)) = XCyX ' = ¢y(y) = Ca(xs, (7)) (using (18)) and
thus cj, o X5, = ¢y o Cj. By a similar (but simpler) computation, K1 o ¢o = Cgy(a) © k1; and

hence these three automorphisms pull back (via the pullback square in (19)) to a unique
B € Aut(Ng(Sp)). Thus for g € Ng(Sy),

[B(9)] = xs5([9]) € Aute(So) and cjy(B(g)) = caocii(g) = aca™ € Aut(Go) . (20)

Now, xs,(ds,(50)) = ds,(S0) and xs,(0s,(S)) = ds,(S) since x is isotypical and sends inclu-
sions to inclusions (and hence restrictions to restrictions). Since Aut,(Sp) = Nea(S0)/Cg, (So)
by (16), (20) implies that 3 sends Sy x C¢, (o) to itself and sends S-C¢;, (So) to itself. In
particular, 5(Sy) = Sp.

Now, for all g € Ng,(So),
Mo(a(9)) = [a(g)] = Fola)([g]) = xs,(lg]) € Autz(So) (Fo(e@) = Xxleo)

and

le o a(g) = Ca(g) = gOéil - Autg(Go, S(]) .
Thus Ao(a(g)) = M(5(g)) and cj,(a(g)) = ¢j;(B(g)) by comparison with (20); and hence
a(g) = B(g) by the pullback square in (19). This proves that a|ng, (sy) = Blng, (s0)-

We already saw that G = Go-Ng(So). Define a € Aut(G, Gy, S-Cg, (So)) by setting
a(goh) = a(go)B(h) for go € Go and h € Ng(So). Since a|ng, (so) 5|NG (So)» this is well
defined as a bijective map of sets. For all go, gj € Go and h,h’ € Ng(S)),

a(goh-goh') = algo-cn(gy)-hh') = a(go)a(en(go)) B(RN')
= a(go)camy(a(gy)) B(hR') = algo) B(h)a(ge) B(R) = a(goh)a(goh'),

1

where the third equality follows from the condition cgy = acya™. It now follows that

a € Aut(G,Gy). Also, @ sends S-Cy, (Sp) to itself since 3 does.

By construction, Res;(@) = alg, = a. We claim that k(a) = x. Since alg, = a and
Xlzo, = Ko(a), R(@) and x define the same action on L, (by the commutativity of (17)).
Choose h € Cf;, (Sp) = OP(Ci(So)) with a(S) = hSh™". For g € Ng(So),

(@) (lg]) = Ré (e, < @)(lg]) = [ "alg)h] = [a(g)] = [B(9)] = x([g]) € Autz(So)
by (20) and since @y s,) = 8. Hence k(@) and x define the same action on Aut,(Sp). Since
Ly and Aut(Sp) generate the full subcategory L|<g,, k(@) and x are equal after restriction
to this subcategory.

We just showed that xs,([s]) = k(@)s,([s]) for s € S. So by Proposition 1.11(f), xs([s]) =
k(@)s([s]) in Autz(S). Lemma 1.15 now implies that x(P) = k(@) (P) for P € Ob(L). Since
both k(&) and x send inclusions to inclusions, and since the restriction map from Mor, (P, Q)
to Morz(P N Sy, Q N Sy) is injective for all P,Q € H by Proposition 1.11(f) again, it now
follows that (&) = x.

To prove (17) is a pullback, it remains to show K x Res; is injective. So assume a €
Aut(G, Go, S-Cg, (So)) is such that &g, = Idg, and k(@) = Id;. For each g € G, caq) =
¢, € Aut(Gy), and hence g~ 'a(g) € Ca(Go) = Z(Gp) by (16). Since r(a) = Idg, a
induces the identity on Aut,(Sy) = Na(So)/Cg, (So) (see (16) again). Since G = Go-Ng(So)
and alg, = Id, g'a(g) € Cg,(So) for all g € G. Finally, Cf, (So) N Z(Go) = 1 because
Z(Gy) = (]-'0) < Sp is a p-group, and we conclude that & = Idg.
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Step 2: We are now ready to prove (15) is a pullback. Fix elements
[a] € Nouwao) (Outa(Go))/Outa(Go) and [x] € Outyyp (L, Lo)

such that x*([e]) = R([x]), and choose liftings o € Aut(Go, Sp) and x € Aut/, (L, Ly).
Then « normalizes Autg(Gy), and hence also normalizes Autg(Go, Sp).

Since x*([a]) = Ra([x]), X|zo = Ro(@) o cly) for some element x € Ng(Sy) (where [z] €
Aut,(Sp) is the class of x). Upon replacing a by ao ¢, € Aut(Gy), we can arrange that
X|zo = Ko(ar). Hence o and x pull back to an element of Aut(G, Gy, S-Cg, (So)) by Step 1,
and so [a] and [x] pull back to an element of Out(G, Gy).

To see that this pullback is unique, fix [y] € Out(G,Gy) such that Ri([7]) = 1 and
k([y]) = 1, and choose v € Aut(G, Gy) which represents [y]. Then v(S) = ¢gSg~! for some
g € G, and upon replacing ~ by cg_1 o7, we can assume y(S) = S. Also, k() = ¢y, for some
y € Ng(S); and upon replacing v by 7o ¢, !, we can assume #(y) = Id;. Now, y|g, = cx
for some h € Ng(Sp), and ¢y = Idg,. Hence h € Gy since Ly is centric in £, and so
h € CGO(SO) = Z(S()) X CéO(SO)

Write b = hihg, where hy € Z(Sy) and hy € Cg (So). Thus [h] = [hi] € Autg,(So),
and hy € Z(Fy) = Z(Gy) since cp) = Idg, (see Lemma 1.14(a)). Thus v|q, = cp = ca,
in Aut(Gg) Since [S, hg] S [S, O/GO(SO)] S C,GO(SQ), Chy € Allt(G, Go,S'C/GO(So)). AISO,
K(ch,) = Id by definition of & (and since hy € Cg (So)). Thus v = ¢, since (17) is a
pullback, and so [y] = 1 in Out(G, Gy). O

We are finally ready to prove:

Proposition 2.16. Let (Sy, Fo, Lo) < (S, F, L) be a normal pair such that Ly is centric
in L, Ob(Ly) and Ob(L) are Aut(Sy, Fo)- and Aut(S, F)-invariant, respectively, and Ly
18 Autfyp(ﬁ)—mvariant. Assume Fy is tamely realized by some finite group Go such that
So € Syl (Go), Z(Go) = Z(Fo), and Ly = ng(EO)(GO). Then F is tamely realized by a finite
group G such that S € Syl,(G), Go < G and G /Gy = L/ L.

Proof. Set H = Ob(L) and Hy = Ob(Ly). By assumption, Fy = Fs,(Go), and kg, is split
surjective. Also, Ly =2 L’?OO(GO) by assumption, and we identify these two linking systems.
By Lemma 1.17, Outyy,(Lo) = Outtyp(E?OS(Go)) = Outyyp(L£5,(Go)), where Hg is the set of
Fo-centric subgroups in Hy. Choose a splitting

51 Outyyyp(Lo) = Outyyp (L5, (Go)) —— Out(Gy)
for /igg, and set

p=sopg: L)Ly —— Outyyp(Lo) — Out(Gy)

By Lemma 2.14, there is a finite group G such that S € Syl (G), Go < G, F = Fs(G),
L = LEG), G/Gy = L/Ly, and such that the outer action of G/Gy on Gy is equal to
p via this last isomorphism. In particular, s sends Outz(Lo) = Im(pZ,) isomorphically to
Outg(Go) = Im(p).

Since Ly is Auty, (£)-invariant by assumption, Outyy,, (L, L£o) = Outyy,(L). So by Lemma
2.15, the following is a pullback square:

Out(G, Gy) = Outyyp (L)

Rll R{ (21)

Nout(GO)(Outg(Go))/Outg(Go) L) NOuttyp(Lo) (Outg(ﬁo))/outg(ﬁo)
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where x* is induced by Iigg Since the splitting s of Iigg sends Out,(Ly) isomorphically to
Outg(Go), it induces a splitting s* of k*. Since (21) is a pullback, s* induces a splitting of
k= Kf|out(c.cy) (Lemma 2.13). By Lemma 1.17, Outyy,(£) = Outyy,(£5(G)), and so F is
tamely realized by G. 0

We next turn to central extensions of fusion and linking systems. In the following lemma,
when L is a linking system associated to F over the p-group S, and A < S, we set

Aut! (£, A) = {a € Aut! (L) ]as(ds(A)) = 6s(A)},

typ typ

and let Outy,, (£, A) be its image in Outyy,(L).

Lemma 2.17. Fiz a finite group G' and a central p-subgroup A < Z(G). Choose S € Syl (G),
and set G = GJA and S = S/A € Sylp(é). Set F = Fs(G), F = ]:3(@) and
H={P<S|P>A, P/Ais F-centric} .

Then H contains all subgroups of S which are F-centric and F-radical, all subgroups in ‘H

are F-centric, and hence L &t LE(G) is a linking system associated to F. If, furthermore,
Z(G) = Z(F), then the following square is a pullback:

HH
Out(G, A) —=2— Outyyp (£, A)

bk

Out(G) ——— Outyyy(L) |

where L = Ecg(é), ’ﬁG{,A s defined analogously to kg, and vy and vy are induced by the

projections G — G and L — L.

Proof. We first prove the statements about # = Ob(L). If P € H, then P is F-centric since

A < Pand P/Ais F-centric (cf. [BCGLO2, Lemma 6.4(a)]). Now assume P < S is F-centric
and F-radical; we must show P € H. Since P is F-centric, A < Cg(P) < P. For z € S
with vA € C5(P/A), ¢, induces the identity on A and on P/A. Hence ¢, € Op(Autz(P))
by Lemma 1.6, so z € P by Lemma 1.4. This proves Cg(P/A) < P/A. Since this argument

applies to all subgroups F-conjugate to P, we conclude that P/A is F-centric, so P € H.

Consider the following diagram (with homomorphisms defined below):

(¥1,r1)

] —— Hom(Q, A) ———— Aut(G, S, A) — Aut(G, ) x Aut(A)

%T Fl Fmd (23)

1 ——— Hom(m(|Z]), 4) —— Autly, (£, A) = Autl,,

(L) x Aut(A) .

Here, v; and v5 are induced by the projection G —— G and r; and ry by restriction to A,
and Aut(G, S, A) < Aut(G) is the subgroup of automorphisms which leave both S and A
invariant. Also, k; = Eg 4 (defined analogously to k¢), and Ky = Kz. The right hand square
clearly commutes.

For € Hom(G, A) and g € G, \(6)(g9) = g-6(gA). For any morphism v € Mor (P, Q),

let [@] € m1(|£]) be the class of the loop based at the vertex S, formed by the edges ¢, v,

and 13, (in that order). For § € Hom(7,(|£]), A), A2(B) is the automorphism of £ which is
the identity on objects, and sends ¢ € Morz(P, Q) (with image 1) € Mor;(P/A,Q/A)) to
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Yo dp(B([¥])). It follows immediately from these definitions that for i = 1,2, \; is injective
and (7;,7;) o \; s trivial.

Since A is a finite abelian p-group, Hom(m(X), A) = H'(X;A) = H'(X); A) for any
“p-good” space X (the second isomorphism by [BK, Definition I.5.1]). Also, |£] is p-good
by [BLO2, Proposition 1.12], BG is p-good since it has finite fundamental group (cf. [BK,

Proposition VIL.5.1]), and Béﬁ o~ ]Z!Q by [BLO1, Proposition 1.1]. We thus get an isomor-
phism

7: Hom(G, A) = Hl(Bé;\;A) =, H1(|Z|;,\;A) — Hom(my(|£]), A) .

Alternatively, by [BCGLO2, Theorem B|, i (|£])/OP(mi(|£])) = S/byp(F), where for an
infinite group I', OP(I") denotes the intersection of all normal subgroups of p-power index.
By the hyperfocal subgroup theorem for groups [Pgl, §1.1], G/OP(G) = S/hyp(F); and
these isomorphisms induce an isomorphism

7: Hom(G, A) ——— Hom(S/byp(F), A) —— Hom(m(|L]), A) .

By either construction, 7 makes the left hand square in (23) commute.

An element o € Ker(vy,7;) is an automorphism of G which induces the identity on A and
on G = G/A, and since A < Z(G), any such automorphism has the form a(g) = g-5(gA)
for some unique § € Hom(G, A). Thus the top row in (23) is exact.

Similarly, an element o € Ker(y,75) is an isotypical automorphism of £ which sends

inclusions to inclusions and induces the identity on £ and on A. Since £ — L is bijective
on objects (by definition), « induces the identity on objects in £, and on morphisms it has

the form a(¢) = ¥ o 5(¢) for some [5: Mor(L) —— A which preserves composition and

sends inclusions to the identity. Such a § is equivalent to a homomorphism from (|£]) to
A (cf. [OV1, Proposition A.3(a)]), so @ = Ay(f3), and thus the second row in (23) is exact.

We are now ready to prove that (22) is a pullback. Fix automorphisms a € Aut(G, S) and

B € Auty,, (L, A) such that rz([a]) = 15([]). Then 75(8) = Fa() o ¢y for some z € Né(é)
which induces [z] € Autz(g). So upon replacing a by @ o ¢,, we can assume Rry(a) = 5(5).

Consider the following diagram:

1 A G G 1
|
Elm(ﬁ) la gla
\I/ J—
1 A G G 1

We want to find @ € Aut(G) which makes the two squares commute. This means showing
that the class [G] € H?(G; A) is invariant under the automorphism of H?(G; A) induced by
r9(B) and a. But 8 € Aut{, (L) induces an automorphism v = Bslsq(s) € Aut(S, F) (see

typ
Lemma 1.15). Also, v[a = Bs|la = r2(8), 7 induces the automorphism (7»(83))gls = alg

- ~ 2 S‘|5‘
on S, and thus [S] € H?(S; A) is invariant under these automorphisms of S and A. Since
H?(G; A) injects into H?(S; A) under restriction, this proves that [G] is also invariant, and
hence that there is an automorphism a € Aut(G, S, A) as desired.

Thus (71, 7)(@) = (a, r2(f)). By the commutativity of (23),
(V2,72)(F1(@)) = (Ra(a), r2(B)) = (v2,72)(6).-
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Hence there is y € Hom(G, A) such that A\y(7(x)) = #1(@) o3, and the element a0\ (x) €
Aut(G, S, A) pulls back a € Aut(G, S) and g € Autt[yp(ﬁ, A).

This proves that Out(G, A) surjects onto the pullback in square (22). To prove that it
injects into the pullback, fix @ € Aut(G, S, A) such that k¥([a]) = 1 and v ([a]) = 1.
Upon composing a by an appropriate inner automorphism, we can assume it induces the
identity on G. Thus 7 (@) = ¢z € Auty,, (L) for some x € Ng(S) inducing [z] € Aut.(S),
where cf,) induces the identity on £. This means that 2A € Z(F) (Lemma 1.14(a)), and

hence zA € Z(G) by assumption. So upon replacing @ by @ o c,;! € Aut(G) we have an

automorphism which induces the identity on £ and on G. By the exactness of the rows in
(23) again, & = Id, and this finishes the proof. O

Lemma 2.17 now implies the result we need about tameness.

Proposition 2.18. Fiz a saturated fusion system F over a finite p-group S. Assume
F|Z(F) is tamely realized by the finite group G such that Oy (G) = 1 and Z(G) = Z(F | Z(F)).

Then F is tamely realized by a finite group G such that Z(G) = Z(F) and G/Z(G) = G,
and hence Oy (G) = 1. If G € &(p), then G € &(p).

Proof. Set A= Z(F) and S = S/A for short. By assumption, S € Sylp(é), FJA = .7-"3(@),
Kg is split surjective, Oy (G) =1, and Z(G) = Z(F/A).

By [BCGLO2, Corollary 6.14], the fusion system F is realizable, and by the proof of that
corollary, it is realizable by a finite group G such that S € Syl (G), A < Z(G), and G/A = G.
Hence Oy (G) =1, so Z(G) is a p-group which is central in F. Thus Z(G) = Z(F).

Let £ C LE(G) be the full subcategory whose objects are the subgroups P < S such that
P> A and P/A is F/A-centric, and set £ = E%(G). Then L is a linking system associated

to F by Lemma 2.17, and A = Z(F) is invariant under all automorphisms in Aut{, (L) by
Lemma 1.15. Lemma 2.17 now implies that the following is a pullback square:

Out(G, A) —=— Outyyp (L)

J J

Kz —

Out(G) — Outyyp (L) .

By assumption, g is split surjective. Hence x = K& out(c,a) (H = Ob(L)) is also split

surjective by Lemma 2.13, so k¥ is split surjective. Since Outyy,(£) = Outyy,(L£4(G)) by
Lemma 1.17, this finishes the proof that F is tame.

By construction, G and G have the same nonabelian composition factors. Hence G' € &(p)
if G € &(p). O
One more technical lemma is needed before we can prove Theorem A.

Lemma 2.19. Let F be a saturated fusion system over a finite p-group S. If F is tame,
then there is a finite group G such that Oy (G) =1 and F is tamely realized by G. If F is
strongly tame, then G can be chosen such that in addition, G € &(p).

Proof. Fix any G which tamely realizes F. If F is strongly tame, we assume G e &(p).
Thus S € Syl (G), F = Fs(G), and kg is split surjective. Set G = G/Op,(G), and identify
S with its image in G. Since G is a quotient group of CAJ, G € &(p) if Ge &(p).
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By construction, Fs(G) = ]-"5(@) = F, and Oy (G) = 1. The natural homomorphism
from G onto G induces a homomorphism between their outer automorphism groups and an
isomorphism between their linking systems, and the resulting square

Out(@) —— Out(G)

Oty (L£5(G)) — Outyyy (L£5(G))

commutes. Since kg is split surjective, so is Kq. O

We are now ready to prove Theorem A. Recall that ted(F) denotes the reduction of a
fusion system F (see Definition 2.1).

Theorem 2.20. For any saturated fusion system F over a finite p-group S, if ved(F) is
strongly tame, then F is tame.

Proof. Set Q@ = O,(F), So = Cs(Q)/Z(Q), and Fy = Cr(Q)/Z(Q). Let ved(F) = F,, C
Fm—1 C --- C Fp be a sequence of fusion subsystems, where for each i, F; = OP(F;,_) or
Fi = O”(F;_y). Let S,, < --- < Sj be the corresponding sequence of p-groups: each F; is a
fusion system over ;. By Lemma 2.3, O,(F;) = 1 for each i, and hence Z(F;) = 1 for each
i.

We first show inductively that each of the F; is strongly tame. Fix 1 < ¢ < m, and
assume J; is tamely realized by G; € &(p). By Lemma 2.19, we can assume O, (G;) =
1. Thus Z(G;) is a p-group central in the fusion system F;, and hence Z(G;) = 1 since
Z(F;) = 1. By Proposition 2.12(a,b), there is a centric linking system associated to F;_;.
Hence by Proposition 1.31(a,b), there are linking systems £; < £; ; associated to F; < F;_;
such that £; is a centric linking system (so Ob(L;) is Aut(S;, F;)-invariant), Ob(L;_1) is
Aut(S;_1, F;_1)-invariant, and L; is Autfyp(ﬁi_l)—invarlant. Also, L; is centric in £;,_1 by
Proposition 1.31(a,b) again (and since Z(F;_;) = 1). By Lemma 2.11(c), £; = LS (G;). The
hypotheses of Proposition 2.16 are thus satisfied, and hence F;_; is tamely realized by some
G,;—1 such that G; < G;_y and G;_1/G; = L;_1/L;. In particular, G,_,/G; is p-solvable, and
so Gi_1 € &(p) by Lemma 2.11(b).

Since JF,, was assumed to be tamely realized by some G,, € &(p), we now conclude that
Fo is tamely realized by Gy € &(p). By Lemma 2.19 again, we can assume O, (Gyp) = 1, and

Z(Goy) = 1 since Z(Fy) = 1. Next consider the saturated fusion system F* & N?H(Q)(Q)

over 5* & Q. Cs(Q). Since F* Q4 F by Proposition 1.25(c), O,(F*) = @ by Lemma
1.20(e). Let Z(Q) = Z1(Q) < Z3(Q) < -+ < @ be the upper central series for (). Since
Autz(Q) = Inn(Q), Zi11(Q)/Z:(Q) is central in F*/Z;(Q) for each i. Also, by repeated
application of Proposition 1.8, if P/Z;(Q) = Z(F*/Z;(Q)), then P < F*, and hence P < Q).
Thus Z(F*/Z(Q)) < Z(Q/Zi(Q)) = Z;11(Q)/Z;(Q), and these two subgroups are equal.

In other words, F*/@Q is obtained from F* by sequentially dividing out by its center

until the fusion system is centerfree. Now identify Cs(Q)/Z(Q) with N&™9(Q)/Q in the
canonical way. By definition, each morphism in Cx(Q) extends to a morphism between
subgroups containing () which is the identity on @) and hence lies in F*. Thus Cx(Q)/Z(Q) C
F*/@Q, and the opposite inclusion holds by a similar argument. Hence Fy = Cx(Q)/Z(Q)
is obtained from F* by sequentially dividing out by its center. By repeated application
of Proposition 2.18, F* is tamely realizable by some finite group G* € &(p) such that
Oy (G*) =1and Z(G*) = Z(F*).
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By Proposition 2.12(c), there is a centric linking system associated to F. Hence by
Proposition 1.31(c), there are linking systems £* < L associated to F* < F, where all
objects in L* are F*-centric, Ob(L*) is Aut(S*, F*)-invariant, Ob(L) is Aut(S, F)-invariant,

L* is Aut/,, (£)-invariant, and £* is centric in £. By Lemma 2.11(c) (and since G* € &(p)),

L= Lgl’ (U)(G*). Hence by Proposition 2.16, F is tamely realized by a finite group G. [

3. DECOMPOSING REDUCED FUSION SYSTEMS AS PRODUCTS

If 7, and F; are fusion systems over finite p-groups S; and Sy, respectively, then F; x Fo
is the fusion system over S; x Sy defined as follows. For all P,)Q < 57 x S, if P;,Q; < S;
denote the images of P and ) under projection to S;, then

Homp, x5 (P, Q) = {(9017902)|P } @i € Homz, (P, Qi), (¢1,902)(P) < Q} .

Here, we regard P and @) as subgroups of P; x P and ()7 X (2, respectively. Thus F; X Fo
is the smallest fusion system over S; x Sy for which

Hompz, x5, (P x P, Q1 x Q2) = Homz, (P, Q1) x Homg, (P, Q2)

for each P;,Q; < S;. By [BLO2, Lemma 1.5], F; x F; is saturated if F; and F, are
saturated. We leave it as an easy exercise to check, for any pair of finite groups G, G5 with
Sylow subgroups S; € Syl,(G;), that Fs, «s,(G1 X Ga) = Fg, (G1) X Fs,(G).

We say that a nontrivial fusion system F is indecomposable if it has no decomposition
as a product of fusion systems over nontrivial p-groups. The main result in this section is
Theorem C: every reduced fusion system has a unique decomposition as a product of reduced
indecomposable fusion systems, and the product is tame if each of the indecomposable factors
is tame. The first statement will be proven as Proposition 3.6, and the second as Theorem
3.7.

We first prove the following easy lemma about fusion systems over products of finite
p-groups.

Lemma 3.1. Let Sy, S, be a pair of finite p-groups, and set S = S; X Sy. For each subgroup
P < S which does not split as a product P = Py x Py for P; < S;, there is © € Ng(P)\P
such that ¢, € O,(Aut(P)). Hence for each saturated fusion system F over S, and each
subgroup P < S which is F-centric and F-radical, P = P, X Py for some pair of subgroups
P <S5

Proof. We prove the first statement; the last then follows by Lemma 1.4.

Fix P < S. Fori = 1,2, let P, < 5, be the image of P under projection. Thus P < P, X P,.
Let Zy(P) and Zy(FP;) be the k-th terms in the upper central series for P and Pj; i.e.,
Z\(P) = Z(P) and Zy1(P)/Zx(P) = Z(P/Zr(P)). We claim that for each k,

Zp(P) = PN (Zy(P1) X Z(P)) . (1)

This is clear for £ = 1: an element of P is central only if it commutes with all elements in
Py and all elements in P,. If (1) holds for k, then P/Z,(P) can be identified as a subgroup
of (P1/Zy(Py)) x (P2/Z(Py)) (a subgroup which projects onto each factor), and the result
for Zy.1(P) then follows immediately.

If P S P x P, then choose © € Np yp,(P)NP (see [Szl, Theorem 2.1.6]). By (1),
conjugation by x acts via the identity on each quotient Z;1(P)/Z,(P). So ¢, € O,(Aut(P))
by Lemma 1.6. 0J
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The next lemma gives some basic properties of product fusion systems.

Lemma 3.2. Assume F; and Fy are saturated fusion systems over finite p-groups S; and
Sy. For each i = 1,2, let F| C F; be a saturated fusion subsystem over S. < S;.

(a) If Fl < F; fori=1,2, then F| X F} is normal in Fi X Fa.

(b) If F! has index prime to p in F; for i = 1,2, then F| X Fj has index prime to p in
Fl X .FQ.

Proof. Set S = 51 x Sy, 8" =51 x Sy, F =F1 x Fa, and F' = F| X F.

(a) Since S! is strongly closed in F;, S’ is strongly closed in F.

Fix P,Q < S and ¢ € Homz(P,Q). Let P;,Q; < S, be the images of P and () under
projection to S,. Then ¢ = (p1,p2)|p for some ¢; € Homg (P;,Q;). By condition (ii)
in Definition 1.18, there are morphisms a; € Autz,(S5;) and ¢} € Homz (a;(F;),Q;) such
that ¢; = ¢} o ilpai(p)- Set o = (o, a2) € Autz(S’), and set ¢ = (¢, ¥5)|ap). Then
¢'(a(P)) £ Q, so ¢ € Homz (a(P),Q) and ¢ = ¢’ o &|po(p). This proves condition (ii) for
the pair 7' C F.

Let P,Q < 5" and P;,Q; < S! be as above, and fix ¢ = (¢1,p2)|p € Homz (P, Q) and
B = (b1, 62) € Autz(S"). Then Bip:f;" € Homz (8;(P;), 5;(Q:)) by condition (iii) for the
normal pair F] < F;. Also, BB~ (B(P)) < B(Q), and hence Spf~" € Homz(B(P), B(Q)).
This proves condition (iii) for the pair 7/ C F, and finishes the proof that F’ is normal in

F.

(b) Note that S = S;, since F/ has index prime to p in JF;. Since F, D OV (F;), it suffices
to prove this point when F! = O (F;), and thus when F/ < F; (Proposition 1.25(b)). Hence
F| X Fbis normal in F; X Fy by (a). Since they are fusion systems over the same p-group,
the result now follows by Lemma 1.26. O

We next prove the following criterion for a reduced fusion system to decompose: F factors
as a product of fusion subsystems whenever S factors as a product of subgroups which are
strongly closed in F.

Proposition 3.3. Let F be a saturated fusion system over a finite p-group S = Sy X ---X .S,
where Sy, ..., S, are all strongly closed in F. Set F; = Fls, (i = 1,...,m): the full
subcategory of F with objects the subgroups of S;, regarded as a fusion system over S;. For
each i, let S} = H#i S;, identify S = S; x SF, and let F| C F; be the fusion subsystem over
S; where for P,Q < S;,
HOHI]:Z{(P,Q) = {90 S HOII]]:i(P, Q) ’ (%Ide) S HOHlf(‘P X Sz*7Q X S;)} :
Then F! and F; are saturated fusion systems for each i, O (F;) C FI, and
Flx o x FLCFCFI XX Fr .

[fOp/(}—) = F, then F| = F; for each i, and hence F = Fy X -+ X Fp,.

Proof. Fix i € {1,...,m}. We first claim that
V P,Q <S; and ¢ € Homg, (P, Q), there are 1p € Autx(S]) and x € Autg,(S;) )
such that  (p,%) € Homz(P x S;,Q x S;) and  x|q o € Homz (P, S;) . @)

If p(P) is fully centralized in F, the existence of ¢ follows by the extension axiom, and
since the S; are all strongly closed in F. The general case then follows upon choosing
a € Isor(p(P), R) where R < S; is fully centralized in F, and applying the extension axiom
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to o and to a. By the extension axiom again, this time applied to ¢, there is x such that
(x ', ) € Autz(S), and hence x|q o ¢ € Homyz/(P, S;). This finishes the proof of (2).

Two subgroups of S; are F;-conjugate if and only if they are F-conjugate; and they
cannot be F-conjugate to any other subgroups of S since S; is strongly closed. Also, for
P < S;, [INs(P)| = |Ng,(P)|-|Sf| and |Cs(P)| = |Cs,(P)|-|Sf|. Hence P is fully normalized
(centralized) in F; if and only if it is fully normalized (centralized) in F. By (2), P,@ < S; are
Fi-conjugate only if P is F]-conjugate to a subgroup in the Autz, (S;)-orbit of @), and hence
P is fully normalized (centralized) in F; if and only if it is fully normalized (centralized)
in F/. Also, in the context of axiom (II), N = NZi x S; for all ¢ € Mor(F;), and
N(];,Ids;) = Nf x S¥ for all ¢ € Mor(F/). Axioms (I) and (II) for F; and for F; now follow
easily from the same axioms applied to F; and thus F; and F, are saturated.

Fix P < S;, and choose ¢ € Autz,(P) and a € Autz(P). By (2), there is ¢ € Autz(S;)
such that (¢,), (o, Id) € Autz(P x Sf). Hence (payp™,1d) € Autz(P x SF), pap™' €
Auty/(P), and so Auty (P) is normal in Autyz,(P). When P is fully normalized, Autz (P)
contains Autg, (P) € Syl,(Autz,(P)), and thus Autz(P) > OP (Autz, (P)). Hence F! has
index prime to p in F; (see Definition 1.21), and so F/ 2 O (F;).

Clearly, F contains Fj X --- x F, . By Lemma 3.1 together with Alperin’s fusion theorem
(Theorem 1.3), each morphism in F is a composite of restrictions of automorphisms of
subgroups of the form P, x ... x P, for P; < S;. Since the S; are strongly closed in F, each
such automorphism has the form (¢, ..., ¢,,) for some ¢; € Autz(F;) = Autz,(P;). Hence
for arbitrary P,Q < S, if P;,Q); < S; denote the images of P and () under projection, then
each ¢ € Homz(P, Q) extends to some morphism (g1, ..., ¢,) where ¢; € Homz(P;, Q;).
Since Homz(P;, Q;) = Homg, (P;, Q;), this shows that F C Fj X - -+ X Fp,.

Since F; has index prime to p in F; for each ¢, F| x --- x F/ has index prime to p in
Fi X -+ x Fp, by Lemma 3.2(b), and hence has index prime to p in F. So if O¥ (F) = F,
then F = F| x --- x F| ; and F; = F/ for each i by definition of F;. O

Note that if F is any fusion system (saturated or not) over a finite p-group S = S; X S,
and F factors as a product of fusion systems over S; and Sy, then the factors must be the
fusion subsystems F; = F/ as defined in Proposition 3.3. In other words, if there is any such
factorization, it must be unique.

We next show that a product of reduced fusion systems is reduced.

Proposition 3.4. Fix finite p-groups S1 and Sy and saturated fusion systems F; over S;.
Set F = F1 X Fa. Then

Op(F) = Op(F1) X Op(Fa), OF(F) = OP(F)) x OP(Fy), OF (F) = OV (F) x O (F) .
In particular, F is reduced if and only if F1 and Fo are both reduced.

Proof. Set S = Sy x Sy. The decomposition of O,(F) is clear: if P < S is normal in F, then
so are its projections into S; and Ss, and P; < F; implies P, x P, < F.

The relation “of index prime to p” among fusion systems is transitive (see Definition
1.21), and hence O” (O¥ (F)) = O (F). So by Proposition 3.3, O¥ (F) = F, x F} for some
pair of fusion systems F! over S;. Also, O (F) C O (F) x O (F,) by Lemma 3.2(b), so
F! C O”(F;), and F! has index prime to p in J; since F, x F4 has index prime to p in F.
Thus F| = O¥ (F;).

By definition,

bop(F) = (s 'a(s)|s € P < S, a € OP(Autz(P))) = hyp(F1) x hyp(F2) .
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Since OP(F) is the unique fusion subsystem over hyp(F) of p-power index in F (Theorem
1.22(a)), we have OP(F) = OP(Fy) x OP(Fz).

The last statement is now immediate. O

By definition, every fusion system JF factors as a product of indecomposable fusion systems.
The following lemma is the key step when showing that this factorization is unique (not only
up to isomorphism) when F is reduced.

Lemma 3.5. Let F be a reduced fusion system over a finite p-group S. Assume F =
Fi1 X Fo = F3 X Fy, where each F; is a saturated fusion system over some S; < S. Set
Sij = 5iNS; fori=1,2 and j = 3,4. Then F = Fi3 X Fia X Faz X Fau, where Fi; is a
reduced fusion system over S;;.

Proof. By assumption, the subgroups S; for ¢ € {1,2,3,4} are all strongly closed in F, and
S =51 xSy =53%x8,. Fix z,y € S; which are F-conjugate, and choose ¢ € Homz((z), (y))
which sends z to y. Write x = z3x4 and y = y3y4, where x3,y3 € S3 and x4,y4 € S4. There
are homomorphisms ¢; € Homg, ((x;), (y;)) for i = 3,4 which send z; to y;, and such that ¢ is
the restriction of (3, ¢4). Hence (p3,1dg,)(x) = ysz4, yszs € Sy since S is strongly closed,
and thus mglyg € S13. By a similar argument, x21y4 € Sy, and thus 27ty € Si3 x Si4. This
proves that fOC(Fl) < 513 X 314.

By a similar argument, foc(F2) < Saz X Say. Since F = Fy X Fo, it follows that
fUC(F) = fUC(fl) X fOC(JT"Q) S 513 X 514 X 523 X 524 S S .

Also, foc(F) = S since F is reduced (Theorem 1.22(a)), so S is the product of the 5;;. Since
the intersection of two subgroups which are strongly closed in F is strongly closed in F, F
splits as a product of reduced fusion systems F;; over .S;; by Propositions 3.3 and 3.4 (recall

OP (F) = F since F is reduced). O

This now implies the uniqueness of any decomposition of a reduced fusion system as a
product of indecomposables.

Proposition 3.6. Fach reduced fusion system F over a finite p-group S has a unique fac-
torization F = F1 X --- X F,, as a product of indecomposable fusion systems F; over sub-
groups S; < S. Moreover, the F; are all reduced, and each fusion preserving automorphism
a € Aut(S, F) permutes the factors S;.

Proof. Let F = Fy X -+ X F, = F{ x --- x F/ be two decompositions as products of
indecomposable fusion systems. By Lemma 3.5 applied to the decompositions F = F; X
[Lss Fi = Fi x [I;55 F/, and since F; and F] are indecomposable, either F; = F| and
[Ts0 Fi = [1;5 Fl, or Fy is a direct factor in [, F,. In the latter case, we can assume
by induction on |S| that the decomposition of [, F, is unique, and hence that for some j,
Fi=F;and so [[;,, Fi = [[,4; 7/ (Lemma 3.5 again). By the same induction hypothesis,

this proves that the two decompositions are equal up to permutation of the factors. The
factors F; are all reduced by Proposition 3.4.

Fix o € Aut(S,F). Since S = [[*, «(S;) is a product of subgroups which are strongly
closed in F, F factors as a product of saturated fusion systems over the a(S;) by Propo-
sition 3.3 (and since O (F) = F). So a permutes the factors S; by the uniqueness of the
decomposition. ([l

We are now ready to prove that a product of reduced, indecomposable, tame fusion systems
is tame. Together with Theorem 2.20, this shows that any “minimal” exotic fusion system
is indecomposable as well as reduced.
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Theorem 3.7. Fix a reduced fusion system F over a finite p-group S, and let F = F; X
- X F, be its unique factorization as a product of indecomposable fusion systems. If F; is
tame (strongly tame) for each i, then F is tame (strongly tame).

Proof. Let S = 51 x --+ x S, be the corresponding decomposition of p-groups; i.e., F; is a
fusion system over S;. Assume each F; is tame, and let GG; be a finite group which tamely
realizes J;. Assume also that these are chosen so that G; = G; if F; = F;. Set L; = £§1(Gl)
Set G = Gy X -+ X Gy, L = LE(G), and L= Ly X - x L,,. We identify L with the full
subcategory of £ having as objects those P = P; X --- x P,, where P, € Ob(L;). Note that

~ ~

L is not a linking system, since Ob(L) is not closed under overgroups.
Set m = {1,...,m}. Define

Auty, (L) = {a € Aut],,(£) | as(0s(S;)) = 65(S;) for each i € m} .

typ typ

We first construct a monomorphism

U: Auty (L) —— Aut{yp(ﬁl) X +oe X Auttlyp([,m)
such that for each o € Auty (L), if ¥(e) = (a1, .., ), then oz = [[;em i

To define U, fix a € Autgyp(ﬁ), and let 8 € Aut(S,F) be the induced automorphism of
Lemma 1.15 (i.e., 0s(8(g)) = a(ds(g)) for g € S). Then 5(S;) = S; for each i since dg is
injective. Also, by Lemma 1.15, a(P) = (P) for each P € Ob(L), and moa = czom, where
cs € Aut(F) is conjugation by § (and its restrictions).

Fixi € m, set 57 =[], S; and L7 = [[,; £;, and identify S = S; x S} and L=L;xL
We claim the following:

V1 € Mor(£;), 3 () € Mor(L;) such that a(y, Ids:) = (i(¢), Ids:). (3)
For each ¢ € Mor(L,),
m(a(y,1ds;)) = es(m(¢), Ids;) = (ca(n (1)), Ids;) € Mor(F)

since 3(5;) = S; for all j. Hence by axiom (A), a(y,Ids:) = (a;(1),ds:(2)) for some
a;(¢) € Mor(L;) and some z € Z(S}). In particular, (3) holds when ¢ is an automorphism
of order prime to p. Since a(dp(x)) = dgpy(B(x)) for all P € Ob(L) and all x € Ng(P)
(and since B(S;) = 5;), (3) also holds when ¢ = dp(z) for P < S; and x € Ng,(P). When
P € Ob(L;) is fully normalized in F;, Aut.,(P) is generated by elements of order prime to
p and by its Sylow p-subgroup dp(Ng,(P)) (Proposition 1.11(d)), and hence (3) holds for all
¥ € Autg,(P). Finally, by Theorem 1.12, all morphisms in £; are composites of restrictions
of automorphisms of fully normalized subgroups, and hence (3) holds for all ¢ € Mor(L;).

Now let ; € Aut(L;) be the automorphism defined by sending P € Ob(L;) to 3(P), and
¥ € Mor(L;) to a;(1) as defined in (3). This is clearly a functor, it is isotypical since « is,
and it preserves inclusions since o does. Set W(«) = (aq, ..., qy,). Since each morphism in
L is a composite of restrictions of morphisms of the form (i, 1ds) for ¢; € Mor(L;), the

restriction of a to £ is [[..,, cu.

By construction, ¥ is a homomorphism. If ¥(a) = (Idg,,...,Id., ), then a|z = Id by
the above remarks, a is the identity on objects since ag = Idau,(s) (Lemma 1.15), and

so a = Id; by Theorem 1.12 and since all F-centric F-radical subgroups are objects in C
(Lemma 3.1). Hence VU is injective. Finally, since Autz(S) = [[,.,, Aute,(5;), ¥ induces a

monomorphism o
U Out?, (£) < Autd, (£)/{cc | ¢ € Aute(S)} —— Outyyp(L£1) X -+ X Outyyp (L) -
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Next consider the equivalence relation ~ on m, where ¢ ~ j if G; = G; (equivalently,
F; =2 F;). Fix isomorphisms 7;; € Iso(G;, G;) for all pairs i ~ j of elements in m, such that
Tz](Sz) = Sj, Tii — IdGi, Tji = Tigl, and Tik = TjkoTij whenever ¢ N] ~ k. Let ?ij: El i) Ej
be the induced isomorphism of linking systems. Then conjugation by 7;; sends Outyy,(L;)
to Outyyp(L;). For each i, fix a splitting s;: Outiy,(L£;) —— Out(G;) of kg,, chosen so that
Cry o 8;i = Sjocs, ifinr g

Let ¥ < ¥, be the group of permutations ¢ of m such that o(1) ~ i for each i. For each

o€, let 5, € Aut(G) be the automorphism which sends G; to Gy via 7; .3, and set
or = Eg</0'\g) Thus o, € Aut!

typ
Fix a € Autfyp(ﬁ), and let 5 € Aut(S,F) be the restriction of ag € Aut(Aut,(S))

to S = 0g(S). By Proposition 3.6, there is o € 3, such that 5(S;) = S, for each 1.

Since 3 is fusion preserving, F; = F,(;), and hence i ~ o(i), for each i. Thus o € 3, and

o' o € Auty, (£). So Aut{yp(ﬁ) is generated by Auty, (L) and the 7.

Now let s: Outyy,(£) — Out(G) be the composite

(L) sends each L; to Ly via T »).-

(L) % {5l |0 € S} —2s (Outegp(L1) X -+ X Otttyyp(Ln)) % S

([6cl=0o)

Outyyp(£) = Out?

typ

Lt (Out(Gy) x -+ x Out(G)) % {[56] |0 € S} —" Out(G)

(o—=[oc])

We must show kg o s = Id. Since kg (s([6,])) = ka([Gg]) = [62] for o € &, it will suffice to

show rg(s([a])) = [a] for a € Aut?yp(ﬁ). Let Out’(G) < Out(G) be the subgroup of classes

of automorphisms which leave each G; invariant, and consider the following composite:

Outly, (£) —— T Outuyp(£:) —1 T Out(Gy) = Out’(C)
=1 =1
K ‘ ut0 U m
TR, Outd, (£) —— [ Outuyp(£Ls) -

=1

(L) To Kalowoq) = 1 ke, and ([T xe,) o (I1s:) = Id. This proves
(£). Thus s is

Here, ([ 5:) o ¥ = s|ou0

that W o rg|ouo(q) © 3|out?yp(z:) = W. Since V is injective, kg os = Id on Out?yp
a splitting for k¢, and this finishes the proof that F is tame.
If each F; is strongly tame, then we can choose the G; to all be in the class &(p). Hence

G € 8(p) by Lemma 2.11(b), and F is strongly tame. O

Theorem 3.7 does not say that an arbitrary product of reduced, tame fusion systems is
tame: such a product could conceivably have an indecomposable factor which is not tame.
However, at least when p = 2, a theorem of Goldschmidt implies this is not possible.

Theorem 3.8. Assume p = 2, and let F be a reduced fusion system over a 2-group S.
Assume F = F1 X Fo, where F; is a fusion system over S; and S = Sy X Ss. Then F
1s realizable, tame, or strongly tame if and only if F1 and F5 are both realizable, tame, or
strongly tame, respectively.

Proof. Assume F = Fg(G), where G is a finite group and S € Syl,(G). If F is tame, we
also assume k¢ is split surjective, and if F is strongly tame, we also assume G € &(2). By
Lemma 2.19, we can assume Oy (G) = 1.
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Let G; < G be the normal closure of S; in G. Since F factors as a product F; X F3, the
subgroups S; and S, are strongly closed in F, and hence strongly closed in G in the sense
of [Gd]. So by Goldschmidt’s theorem [Gd, Corollary Al], G; NGy = 1. Thus G; x Gy is
a normal subgroup of odd index in G. Since F = Fg(G) has no proper normal subsystem
of odd index (since it is reduced), Fs(G) = Fs(Gy x Ga) = Fg,(G1) X Fs,(G2). Hence
Fi = Fs,(G;) for i = 1,2 (there can be at most one way to factor F as a product of fusion
systems over the S;), and thus each F; is realizable.

Set £ = L4(G) and £; = L% (G;). Define ®: Aut{ (L1) x Aut{,(£2) — Auty, (L)
as follows. Fix «; € Autfyp(ﬁi) (i = 1,2). Let 5; € Aut(S;,F;) be the corresponding
automorphisms (see Lemma 1.15), and set § = (f1, f2) € Aut(S, F). Thus oy(F;) = Bi(D)
for each P; € Ob(L;) and 7(c;(;)) = Bim(v;)B; " for ¢; € Mor(L;). Define o € Auty (L)
on objects by setting a(P) = B(P) for P € Ob(L). Fix ¢ € Morg(P, @), let P;,Q; < S; be
the images of P and () under projection, and set P= P x P, and @ = (1 X Q2. Since G
and G x G9 have the same fusion system over S, 1) = [g] for some g = (g1, g2) € N (P, Q),
where g; € G;. Then g; € Ng,(P;,Q;), and hence 1 extends to 1 = (11, 1) € Morz(P, Q)
where ¢; = [g;] € Morg, (P;, Q;). Also, m(ai(¥1), az(ihn)) = B(m(¥1), m(¢2))B~" sends B(P)
into B(Q), and we define a(¥)) = (a1(¢1), a2(¥9))|sp) p(q)- Finally, a € Aut{, (£) since

typ
a; € Autfyp(ﬁi), and we set Py, ) = .

Assume F is tamely realized by G, and let s: Outyy,(£) —— Out(G) be a splitting for
kg. For each oy € Autfyp(ﬁl), s([®(a1,1dz,)]) = [y] for some v € Aut(G,S) such that
vls, = Id. Also, v(G3) = G since G; is the normal closure of S, in G, and so 7 induces
7 € Aut(G/Ga, S1). The class [7] € Out(G/Gs) is independent of the choice of v modulo
Inn(G), and hence this gives a well defined homomorphism s; from Outtfyp(ﬁl) to Out(G/Gs).
Also, Fs,(G/Ga) = F/Sy & Fi, so LG (G/Gz) = Ly; and s, is a splitting for rg/q, since
s is a splitting for kg. Thus F; is tame, and F; is tame by a similar argument. If F is
strongly tame, then we can choose G € (2), so G/G; € &(2) (i = 1,2) by Lemma 2.11(b),

and hence F; and F, are strongly tame.

This proves the “only if” part of the theorem. Clearly, F is realizable if both factors
are. If F; and Fy are both (strongly) tame, then we have just shown that each of the
indecomposable factors of F; and F is (strongly) tame, and so F is (strongly) tame by
Theorem 3.7. 0

4. EXAMPLES

We now give three families of examples, to illustrate some of the techniques which can be
used to prove tameness of reduced fusion systems. As an introduction to these techniques,
we first list the reduced fusion systems over dihedral and semidihedral groups and prove
they are all tame. Next, we prove that certain fusion systems studied in [OV2, §4-5] are
reduced and tame; as a way of explaining how the information about these fusion systems
given in [OV2] is just what is needed to prove tameness. As a third example, we prove that
the fusion systems of all alternating groups are tame, and that they are reduced with certain
obvious exceptions.

In general, tameness is shown by examining, for a p-local finite group (S, F, L) realized
by G, the homomorphisms

Out(G) —"%— Outyyy (L) —2<— Out(S, F)
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defined in Sections 2.2 and 1.3. By definition, F is tame if kg is split surjective (for
some choice of G). However, the group Out(S,F) is usually much easier to describe than
Outyyp (L), and the composite g o ke is induced by restriction to S. So we need some way
of describing Ker(uq).

We first recall some definitions. A proper subgroup H < G of a finite group G is strongly
p-embedded if p‘|H|, and for each g € GNH, H N gHg ! has order prime to p. It is not
hard to see that G has a strongly p-embedded subgroup if and only if the poset S,(G) of
nontrivial p-subgroups is disconnected (cf. [HB3, Theorem X.4.11(b)]), but we will not be
using that here.

When F is a saturated fusion system over a finite p-group S, then a proper subgroup P < S
is F-essential if it is F-centric and fully normalized, and Outz(P) contains a strongly p-
embedded subgroup. Thus each F-essential subgroup is fully normalized and F-centric by
definition, and is F-radical since O,(I') = 1 for any group I" which has a strongly p-embedded
subgroup. See, e.g., [Sz2, Theorem 6.4.3] for a proof of this last statement (it is shown there
only for p = 2, but the same proof works for odd primes). The following proposition is
a stronger version of Theorems 1.3 and 1.12, and helps show the importance of essential
subgroups when working with fusion systems.

Theorem 4.1. Let F be any saturated fusion system over a finite p-group S. Let € be the
set of F-essential subgroups of S, and set £, = £ U {S}. Then each morphism in F is
a composite of restrictions of elements of Autz(P) for P € .. If L is a linking system
associated to F, then each morphism in L is a composite of restrictions of elements of
Auty(P) for P € &,.

Proof. The statement about morphisms in F is shown in [Pg2, § 5], and also in [OV2, Corol-
lary 2.6]. The second statement follows from this together with Proposition 1.11(a) (and
since Ob(L) is closed under overgroups). O

The following proposition will be useful when describing Ker(uq), and for determining
whether or not explicit elements in this group vanish. In fact, it applies to help describe
Ker(u,), when £ is an arbitrary linking system (not necessarily induced by a finite group).
For any fusion system JF over S and any P < S, we write

Czpy(Auty(P)) = {9 € Z(P)|a(g) = g for all a € Autz(P)}
and similarly for Cz(p)(Autg(P)) and Cypy(Aut,(P)).

Proposition 4.2. Let F be a saturated fusion system over the finite p-group S, and let L
be a linking system associated to F. Let L° C L be the full subcategory whose objects are the
F-centric objects in L. Each element in Ker(u,) is represented by some o € Auttlyp(ﬁ) such
that ag = Idaw,(s)- For each such «, there are elements gp € Cyzpy(Auts(P)), defined for
each fully normalized subgroup P € Ob(L®), for which the following hold:

(a) ap € Aut(Aut,(P)) is conjugation by dp(gp), and gp is uniquely determined by o mod-
ulo Cyzpy(Autz(P)). In particular, ap = Idaue,(p) if and only if gp € Czpy(Autxz(P)).

(b) Assume P,Q € Ob(L) are both fully normalized in F. If Q = aPa™" for some a € S,
then we can choose gq = agpa™'. More generally, if Q is F-conjugate to P, and there

is ¢ € Iso(P, Q) such that a(¢) = (, then we can choose gg = w(()(gp). In either case,
ap = Idau,(p) of and only if ag = Idau,(@)-

(c) IfQ < P are both fully normalized objects in L, then gp = gq (mod Czq)(Autz(P,Q))),
where Autz(P, Q) is the group of those p € Autx(P) such that o(Q) = Q.



54 KASPER ANDERSEN, BOB OLIVER, AND JOANA VENTURA

(d) Let € be the set of all F-essential subgroups P < S and let & C & be the subset of those
P € & such that Cypy(Autz(P)) = Cyzpy(Auts(P)). Then [of =1 in Outyy, (L) if and
only if there is g € Cz(s)(Autz(S)) such that gp € g-Czpy(Autz(P)) for all P € &.

(e) Let & be as in (d), and let & be the set of all P € & such that P = Cs(E) for some
elementary abelian p-subgroup E < S which is fully centralized in F. Let H be a set of
subgroups of S such that all subgroups in H are JF-centric and fully normalized in F,
and each P € & is F-conjugate to some Q € ENH. Then [a] =1 in Outyyp (L) if and
only if there is g € Cy(g)(Autz(S)) such that gp € g-Cypy(Autz(P)) for all P € H.

Proof. We identify S with d5(S) < Aut.(S) for short. Fix a € Autt[yp(ﬁ) such that [o] €
Ker(uz). Set 8= pig(a); thus 8 € Autz(S). Choose ¢ € Aut,(S) such that 7(¢) = 5. Then
fic(cc) = B by axiom (C) for the linking system £, and so upon replacing a by ao ¢!, we
can arrange that ag is the identity on dg(S5) < Aut,(S). We will show in the proof of (a)
how to arrange that ag = Idau,(s)-

(a) Fix a fully normalized subgroup P € Ob(L¢). Set I' = Aut.(P) for short, and identify
P with 0p(P) < I'. Set Out(I', P) = Aut(I', P)/Inn(I"), where Aut(I', P) < Aut(I') is the
subgroup of automorphisms leaving P invariant. By [OV2, Lemma 1.2], there is an exact
sequence

1 — HY(T/P; Z(P)) —X— Out(T", P) —— No(p)(Outr(P))/Outy(P),

where R is induced by restriction. Since ap € Aut(I') and apls,(vg(p)) = Id, [ap] € Ker(R),
and n~!([ap]) is trivial after restriction to H'(Ng(P)/P; Z(P)). The restriction map from
HY(T'/P; Z(P)) to H'(Ns(P)/P; Z(P)) is injective since dp(Ng(P)) € Syl,(I') (Proposition
1.11(d)), and hence [ap] = 1. Thus ap = cs,(gp) for some gp € Z(P) which is uniquely
determined modulo Cy(p)(I") = Czp)(Autz(P)). Also, gp € Cypy(Autg(P)), since ap is
the identity on dp(Ng(P)).

Set v = d5(gs) € Autz(S). Upon replacing a by oo ¢!, we can arrange that ag = Id.

Y 7
(b) Assume ¢ € Isoz(P, Q) and a(¢) = ¢. Fix ¢ € Autz(Q), and set ¢ = ("1p¢ € Aut,(P).
Set g = m(¢)(gp); then ¢ o dp(gp) o (™' = dg(g) by axiom (C) for a linking system. Hence

ag(y) = ag(Ce¢ ") = Cap(p) ™" = ¢op(gp)edp(gr) "¢ = do(9)vdq(9) ",
and we can choose gg = ¢.

If @ =aPa™! and ( = dpg(a), then a(¢) = ¢ since ag = Id (and since a sends inclusions
to inclusions). So again we can choose gg = c,(gp).

In either case, gp € Cyzpy(Auty(P)) if and only if g € Czg)(Autz(Q)), and hence
ap = 1d if and only if ag = Id.

(c) Assume Q < P, and let Autz(P, Q) be the group of elements 1) € Aut.(P) such that
m(¥)(Q) = Q. Then a commutes with the restriction map

Resg: Aut, (P, Q) —— Aut,(Q)

which is injective by Proposition 1.11(f). So if « acts on Aut,(P,Q) via conjugation by
dp(gp) and on Aut,(Q) via conjugation by dg(gg), they must have the same action on
Autz(P,Q). Since go and gp both lie in Z(Q) > Z(P), we conclude g9 = gp (mod

Czg)(Autz(P,Q))).

(d) By Theorem 4.1, all morphisms in £ are composites of restrictions of elements in
Aut,(P) for P F-essential or P = S. Hence if a # Id,, then since ag = Id by assumption,
ap # Id for some P € €. By (a), gp € Cyp)(Autg(P)) but gp ¢ Czp)(Autz(P)), and so
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P € &. The converse is clear: if @ = Id, then ap = Id and hence gp € Cz(p)(Autx(P)) for
all P € 50.

By Lemma 1.14(a), [a] = 1 in Outy,,(£) if and only if a = ¢ for some § € Aut,(S),
and 8 € Z(Autg(S)) since ag = Id. Since Bos(g) = ds(m(B)(g))p for each g € S by axiom
(C) in Definition 1.9, 7(8) = Ids. Hence = d5(g) for some g € Z(S) by axiom (A), and
g € Cys)(Autz(S)) by axiom (C) again. Thus [o] = 1 if and only if o = ¢s4(g) for some
g € Cys)(Autz(S)), which we just saw is the case exactly when g 'gp € Cy(p)(Autz(P))
for all P € &,.

(e) We first prove that
a=1d; < gp € Cyp(Autg(P)) for all P € H. (1)
The first statement implies the second by (a).

Now assume o # Id;. As was just seen in the proof of (d), there is P € & such that
gp ¢ Czpy(Autz(P)). Assume P is such that |P| is maximal among orders of all such

subgroups. We will show that P € & (possibly after replacing P by another subgroup in its
F-conjugacy class), and that go ¢ Cz)(Autz(Q)) for each @ € & which is F-conjugate
to P. In particular, gg ¢ Cz)(Autz(Q)) for some @ € H, which will prove the remaining
implication in (1).
We first check that
TeOb(L)and |T| >|P| = ar=1d. (2)

If T'=S or T € &, this follows by assumption. If 7" € EX&, then gr € Cyry(Auts(T)) =
Czr)(Autz(T)), and hence ap = Id by definition of gp. Otherwise, each 1) € Aut,(T) is a
composite of restrictions of automorphisms of subgroups in £ U {S} (Theorem 4.1), each of
those automorphisms and its restrictions are sent to themselves by «, and hence a7 (1)) = 1.

We next claim that
for all @) F-conjugate to P, there is ¢ € Isoz(P, Q) such that apg(¢) = C. (3)

Choose any ¢y € Iso(P,Q@). By Theorem 4.1 again, (, is the composite of restrictions of
automorphisms 1; € Aut,(R;) for subgroups R; < S with |R;| > |P|. If we remove from
this composite all ¢; for which |R;| = |P|, we get an isomorphism ¢ € Isoz(P, Q) which is
a composite of restrictions of automorphisms of strictly larger subgroups. We just showed
that ag, (1) = 1; whenever |R;| > |P|, and thus apg(¢) = .

Set E'= Q1 (Z(P)): the p-torsion subgroup of the center Z(P). If E is not fully normalized
in F, then choose ¢ € Homz(Ng(E), S) such that ¢(F) is fully normalized (using [BLO2,
Proposition A.2(b)]). Then ¢(P) is fully normalized since Ns(¢(P)) > ¢(Ng(P)). By (3),
there is ¢ € Isoz(P, ¢(P)) such that apypy(¢) = (. So aypy # Id by (b). Upon replacing
P by ¢(P) and E by ¢(F), we can now assume F and P are both fully normalized.

Set P* = Negp)(P) > P and I' = Autg(P) for short. To simplify notation, we iden-
tify Ng(P) with 6p(Ng(P)). Then E I T, so Cp(£) < I'; and P* € Syl (Cr(F)) since
Ng(P) € Syl,(T') (Proposition 1.11(d)). Also, Cr(Z(P)) < I', and has p-power index in
Cr(E) since each automorphism of Z(P) which is the identity on its p-torsion subgroup
E has p-power order (cf. [G, Theorem 5.2.4]). Hence each Sylow p-subgroup of Cr(E) is
Cr(Z(P))-conjugate to P* = Cnyp)(£). By the Frattini argument,

['= Np(P%)-Cr(Z(P)) . (4)

Since ap # Idr is conjugation by gp € Z(P), ap is the identity on Cr(Z(P)). Hence by
(4), ap is not the identity on Np(P*). By Proposition 1.11(e), each o € Np(P*) extends
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to a € Autg(P*), and thus ap- # Idau,(p+). If Cs(E) 2 P, then P* = Neyg)(P) = P
(cf. [Szl, Theorem 2.1.6]), which would imply ap« = Id by (2). We now conclude that
Cs(F) = P, and hence that P € &,.

Assume Q € & is F-conjugate to P. By (3), there is ¢ € Isoz(P, Q) such that a(¢) = C.
So by (b), ag # Id since ap # Id, and this finishes the proof of (1).

The rest of the proof of (e) is identical to that of (d). O

As one simple application of Proposition 4.2, consider the group G = Ag = PSLy(9) (cf.
[H1, Satz 11.8.14]). Set

Ti=((12)(34),(13)(24)) = 03, Ty =((12)(34),(34)(56)) = C7 ,

and S = (T1,Ty) € Syl,(G), and let F = Fg(G) and L = LG(G). Then € = & =
& = {T1,Tz}. Set g = (56), and consider the automorphism o = Falcg) € Autl (L),
Then a € Ker(jig), since [¢g,S] = 1 (and since fig o kg sends f € Aut(G,S) to fls).
Since [g, No(T1)] = 1, ap, = Idau,(n). Since (12)(34)(56) commutes with Ng(T3) =
(T,(13)(24),(135)(246)), ar, acts on Autz(T2) = Ng(T3) as conjugation by z = (12)(34) €
Z(S). So in the notation of Proposition 4.2, g, = 1 and gr, = x. In both cases,
Czr,)(Autx(T;)) = 1, so the g7, are uniquely determined. Hence by Proposition 4.2(d),
la] = Kke([cy]) represents a nontrivial element in Ker(ue).

If [o] € Ker(ug) is arbitrary, represented by o € Auty,, (£) such that g = Idaye,(s), then
by Proposition 4.2 again, gr, € Z(S) for i = 1,2, and [o] = 1 if and only if g5, = gr,. Thus
Ker(ug) = Cy is generated by kq([cy]) as described above. Using this, and the well known
description of Out(Ag) = C% (see [Sz1, Theorem 3.2.19(iii)]), it is not hard to see that x¢ is

an isomorphism from Out(G) to Outiy,(L).

This example will be generalized in two different ways below: to other groups PSLs(q)
for ¢ = +£1 (mod 8) in Proposition 4.3, and to other alternating groups in Proposition 4.8.

4.1. Dihedral and semidihedral 2-groups.

As our first examples, we list all reduced fusion systems over dihedral and semidihedral
2-groups, and prove they are all tame. The list of all fusion systems over such groups is well
known; it turns out that each of them supports exactly one fusion system which is reduced.

As usual, v,(—) denotes the p-adic valuation: v,(n) = k if p*|n but p"n.

Proposition 4.3. Let S be a dihedral group of order 2% (k > 3). Then there is a unique
reduced fusion system F over S, and it is tame. Let q be a prime power such that vy(¢*—1) =
k+1, set G = PSLy(q), and fix S* € Syly(G). Then S = S* and F = Fg«(G); and kg is
an isomorphism if ¢ = p* ~ for some prime p =5 (mod 8 ).

Proof. Fix a,b € S such that (a) has index two and S = (a,b). For each i € Z, set
T, = (a®*,a'b) = C3. Two subgroups T; and T} are S-conjugate if and only if i = j (mod
9). Set P = {T}|i € Z}.

If P < S is cyclic of order 2, then Aut(P) = (Z/2™)* is a 2-group. If P < S is dihedral
of order 2™ > 8, then there is a unique cyclic subgroup of index two in P, and Aut(P) is a

2-group by Lemma 1.6. Thus the only subgroups P < S for which Aut(P) is not a 2-group
are the T;.

Define F to be the fusion system over S generated by the automorphisms in Inn(S
Aut(P) for P € P, and their restrictions. Assume F is saturated (this will be shown later
Then foc(F) = ([S, S], P) = S, and hence O?*(F) = F (Theorem 1.22(a)). Also, O% (F) = F

);
)
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since any normal subsystem of odd index would have to contain the same automorphism
groups, and Os(F) = 1 by inspection. Thus F is reduced.

Let F* be an arbitrary saturated fusion system over S such that foc(F*) = 5. Let €
be the set of all F*-essential subgroups of S. If P € £, then Aut(P) must have elements
of odd order, and hence P € P. For each T; € P, Aut(T;) = X3 and Autg(7T;) = Cb.
Hence Autz«(T;) = Aut(T;) if T, € €. Since Aut(S) is a 2-group, Theorem 4.1 implies F*
is generated by automorphisms in Autz(S) = Inn(S), the Aut(P) for P € £ C P, and
their restrictions. In particular, foc(F*) < ([, 5], £), and this has index at least two in S if
EGP. Hence £ =P, and so F* = F.

Set G = PSLy(q) for any prime power ¢ = £1 (mod 8), and fix S* € Syl,(G). As is
well known (cf. [G, Lemma 15.1.1(iii)]), S* is a dihedral group and |G| = 1¢(¢* — 1), so
S* = D, where k = v3(¢*> — 1) — 1. So we identify S* = S for S as above. Since G is simple,
foc(Fs(G)) = SN[G,G] = S by the focal subgroup theorem (cf. [G, Theorem 7.3.4]), and
we have just seen this implies Fg(G) = F. In particular, F is saturated, and hence reduced.

Now assume ¢ = p?* ~, where p = 5 (mod 8) (and k > 3). The homomorphism k¢ is an
isomorphism in this case by [BLO1, Proposition 7.9], where it is shown more generally for
p = +3 (mod 8). But we give a different proof here to illustrate how Proposition 4.2 can be
applied.

Set G = SLy(q). Fix u € F of order 2%. Set a = (4 %) and b = (% 3),andlet a,b e G

0wt
be their images in the quotient. Then S & (a,b) € Syl,(G). Let 6 € Aut(G) be conjugation
by (49); then d(a) = a and §(b) = ab. Since u is not a square in FX, [§] generates the
subgroup (of order 2) of diagonal automorphisms in Out(G).
By [St, §3], Out(G) = ([d]) x ([¢P]) = Cy x Cor—2, where ¢ is the field automorphism
which acts via  — 2P on matrix elements. Also, ¥*(a) = a” and ¢?(b) = b. Since p =5
(mod 8), [0]s] and [¢?|s] generate Out(S). Thus

pe o ke Out(G) —— Out(S, F) = Out(S)

is surjective with kernel generated by [, where a@ = (¢?)2" " is the field automorphism of
order 2.

To prove that k¢ is an isomorphism, it remains to show that Ker(ug) has order 2 and is
generated by k¢([0]). Set w = a®* € Z(S). We refer to Proposition 4.2. Since « is the
identity on S = Ng(S) (a(a) = a since the field automorphism of order two sends u to —u),
there are elements gr, € Cz 1) (Auts(7;)) = (w) for each i such that kg (o) acts on Aut(7;)
via conjugation by gr,. These elements are uniquely defined since Cy 7,y (Aut#(T;)) = 1.

When i is even, T} < G & PSLy(y/q) (recall T; = (a®, a’b)), and Ng,(T;) has index at
most two in Ng(T;). Since a|g, = Id and a|s = Id, « is the identity on Ng(7T;) = ¥4 in this
case, and so gr, = 1.

Now considelzv T; for odd i. Let i = (g be the inverse image in G of T; < G, let w be any
lifting of w to G, and set z = w? = (_01 _01) € Z(G). Since the field automorphism of order
two sends u to —u, it sends a'b to za'b. If a acted on Ng(T;) = X, via the identity, then its
action on Ng(7;) would be the identity on a subgroup of index two, which necessarily would
include 7;. Since this is not the case, we conclude that « acts via conjugation by w, and
thus that g7, = w for 7 odd.

By Proposition 4.2(d), since gg, = 1 and gr, = w (and Cy(p)(Autz(T3)) = 1), ka(la]) # 1
in Outy,(£), and it is the only nontrivial element in Ker(ue). Thus Ker(ug) = Cs, which
is what was left to prove. O
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We now consider the semidihedral case.

Proposition 4.4. Let S be a semidihedral group of order 2% (k > 4). Then there is a
unique reduced fusion system F over S, and it is tame. Let q be a prime power such that
vo(q—1) =k — 2, set G = PSU;(q), and fir S* € Syl,(G). Then S = S* and F = Fg«(G),
and kg s an isomorphism if 3{(¢ + 1) and g = 2" for some prime p =5 (mod 8).

Proof. Fix a,b € S such that (a) has index two, b* = 1, and S = (a,b). Then |a’b| = 2
for i even and |a’b| = 4 for i odd. For each i € Z, set T} = (a2, a%b) = C2, and
R; = (a2’ a%*1b) = Qs. The T; are all S-conjugate to each other, and similarly for the R;.
Set P = {,I'Z,RZ|Z S Z}

As shown in the proof of Proposition 4.3, Aut(P) is a 2-group for each P < S which is
cyclic, or dihedral of order > 8. The same argument applies when P is quaternion of order
> 16, and also to S itself. Thus the only subgroups P < S for which Aut(P) is not a 2-group
are those in P.

Define F to be the fusion system over S generated by the automorphisms in Inn(S5),
Aut(P) for P € P, and their restrictions. Assume F is saturated (to be shown later). Then
foc(F) = ([S,S],P) = S, and hence O*(F) = F (Theorem 1.22(a)). Also, O% (F) = F since
any normal subsystem of odd index would have to contain the same automorphism groups,
and Oy(F) =1 by inspection. Thus F is reduced.

Let F* be an arbitrary saturated fusion system over S such that foc(F*) = S. Let &€ be
the set of all F*-essential subgroups of S. If P € &, then Aut(P) must have elements of
odd order, and hence P € P. For all P € P, [Aut(P):Autg(P)] = 3, and hence Autz(P) =
Aut(P) if P € £. Since Aut(S) is a 2-group, Theorem 4.1 implies F* is generated by
automorphisms in Autz«(S) = Inn(S), the Aut(P) for P € &, and their restrictions. In
particular, foc(F*) < ([5,5],£), and this has index at least two in S if £ G P. Hence
E=7P,and so F*=F.

Fix a prime power ¢ = 1 (mod 4), set G = PSUs(q), and fix S* € Syl,(G). Then
|G| = 2¢*(¢*> — 1)(¢* + 1) where d = ged(3,q + 1) [Ta, p. 118], and hence |S*| = 2% where
k = va(q — 1) + 2. Since GUy(q) has odd index in SU;(q), and the Sylow 2-subgroups of
GUs,(q) are semidihedral by [CF, p.143], the Sylow 2-subgroups of SU;(q) and of G are
also semidihedral. Thus S* = SDsk, and we identify S* = S as above. Since G is simple,
foc(Fs(G)) = S (cf. [G, Theorem 7.3.4]), and we just saw this implies Fs(G) = F. In
particular, F is saturated.

Now assume 3t(¢+ 1) and g = p*™* for some prime p = 5 (mod 8). By [St, §3], Out(G) is
generated by diagonal and field automorphisms; where the group of diagonal automorphisms
has order ged(3,q + 1) = 1. Thus Out(G) = ([¢*]), generated by the class of the field

automorphism (x — 2P). Since G = PSUs(q) is defined via matrices over F 2, ¢? has order
2k=3,

More explicitly, regard G = PSUs(q) = SUs(q) as the group of matrices M € SL3(q¢?)
such that ¢7(M") = M ™', where M" is the transpose (a;;) = (as—ja—;). Fix u € F};, of order
281 (recall vy(q — 1) = k — 2), and set a = diag(u, —1,u~%). Since u¢™! = —1, a € SUs(q).
Set b = <§2é>' Then bab~! = a7 = a1 and so S = (a,b) is semidihedral. Also,

YP(a) = aP, YP(b) = b, so [YP|s] generates Out(.S), and we conclude that
11 o kgt Out(@) ———— Out(S, F) = Out(S)

is an isomorphism.



REDUCED, TAME, AND EXOTIC FUSION SYSTEMS 59

It remains to prove that Ker(ug) = 1. Fix [a] € Ker(ug), and choose a representative
a € Autfyp(ﬁg(G)) for the class [a] such that ag is the identity on Autze(q)(S). In the
notation of Proposition 4.2, & contains only the subgroups T;, since Z(R;) = Cy (and
hence Cy(gr,)(Auts(R;)) = C'Z S(Autz(R;))). If o is represented by elements gp, then g7, €
Cr, (Autg( i) = Z(9) for eaeh i, and is uniquely determined since Cz(p,)(Aut#(7;)) = 1.

All of the gr, are equal by point (b) in the proposition, and hence [o] = 1 by point (d). O

4.2. Tameness of some fusion systems studied in [OV2].

We next consider some fusion systems studied in [OV2, §4-5], and prove they are reduced
and tame using the lists of essential subgroups and other information determined there.

Proposition 4.5. The fusion systems at the prime 2 of the group PSL4(5), and of the
sporadic simple groups Mg, Msz, McL, Jo, and Js, are all reduced and tame. Moreover, if
G s any of these groups, then kg is an isomorphism.

Proof. By [GL, §1.5], Out(G) = Cy when G = May,, McL, J,, or Js, while Out(M,3) = 1. By
[St, (3.2)], when G = PSL4(5), Out(G) is generated by diagonal automorphisms (induced
by conjugation by diagonal matrices in GL4(5)) and a graph automorphism (induced by
transpose inverse). Since all multiples of the identity in GL4(5) have determinant one,
the group of diagonal outer automorphisms is isomorphic to F; = Cy. Since the graph
automorphism inverts all diagonal matrices, we get Out(G) = Dy.

Now let G be any of the above six groups, fix S € Syl,(G), and set F = Fg(G). We prove
below in each case that among the homomorphisms

Out(G) —2%— Outyy, (LL(G)) —22— Out(S, F) ,
liG o K¢ 18 an isomorphism and pug is injective. It then follows that k¢ is an isomorphism.

We show that pg ok is injective for each of these groups, using arguments suggested to us

by Richard Lyons. These are based on the following statement, applied to certain subgroups
H < G:
a € Aut(H), S € Syl,(H), a|s =1Idg
Q= 0a(H), Cu(Q) < Q) = o € Auta () ®)
This follows, for example, from [OV2, Lemma 1.2]: a € Inn(H) if a certain element in
H'(H/Q; Z(Q)) vanishes, and this element does vanish since its restriction to the Sylow
subgroup S/@Q vanishes. Thus a € Inn(H) and is the identity on S, so it must be conjugation
by an element of Cy(S) = Z(5S).
As in [OV2], we let Sy = UT3(4) denote the group of upper triangular 3 x 3 matrices over
[, with 1’s on the diagonal. For z € Fq and 1 <@ < j < 3, ¢f; € UT3(4) is the matrix with
entry x in position (7, ), 1’s on the diagonal, and 0’s elsewhere Set

Eij = {6::] |I € IF4} s A1 = <E12,E13> s and A2 = <E13, E23> .

The field automorphism of F, is denoted z +— Z, and we write F;, = {0,1,w,w}. Also,
T, Py P35, Y0, 715 Co € Aut(Sp) are the automorphisms

(G5 = (8ig) - A ((336) = (3177) *<(“b)> (457)
c = a c =101 ¢ c 0
001 001 o P00 ¢ 00 ¢ ) P2\\8of 00 '
labd 1 wa @b labd 1w lab 1a
01c =101 wec), Y1 01c 01lc 01
001 00 1 001 001 00

(( ) =(7) el

The group Out(Sy) = Cj x (X3 x X3) is described precisely by [OV2, Lemma 4.5]. In
particular, the subgroups (o, cso7) and (71, 7) are isomorphic to X3 and commute with
each other.

a
1
0
a
1
0

)
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By the focal subgroup theorem (cf. [G, Theorem 7.3.4]), foc(F) = SN[G,G] = S in each
case, and hence O%(F) = F. In each of Cases 1 and 2 below, we prove successively that (i)
fic o ke is an isomorphism, (ii) uq is injective, (iii) Oy(F) = 1, and (iv) O% (F) = F.

Case 1:  Assume first that S = S; = Sy % (¢): the extension of UT3(4) by a field
automorphism of Fy. Then Sy = (A;, Ay) is characteristic in S, since A; and A, are the
unique subgroups of S isomorphic to Cy (cf. [OV2, Lemma 5.1(b)]). Since ¢, permutes freely
a basis of Z(Sp) = E13, [OV2, Corollary 1.3 & Lemma 4.5(a)] imply there is an isomorphism

Out(S) —=— Couso({les))/([es]) = ([p3]: [p3); [7]) = Ds .

Let 7, pf, p5 € Aut(S) be the extensions of 7, pi, p5 € Aut(Sy) which send ¢ to itself.

Set H; = (A;,¢), and N; = (H;,e15e35). By [OV2, Theorem 5.11] and Table 5.2 in its
proof, in all cases, Sy is F-essential, and for ¢ = 1,2 either H; or N, is F-essential but
not both. Also, Outz(S) = 1 (since Out(S) is a 2-group), and Outxz(Sy) = ([10], [ce)) or
([70], [n1], [es]).- By [OV2, Lemma 5.8], there is a unique possibility for Outz(N;) if N; is
essential, and hence this group is normalized by [pi] and [p5]. By [OV2, Lemma 5.7], there
are two possibilities for Outz(H;) (if H; is essential) which are exchanged under conjugation
by [pf] and invariant under conjugation by [p5_,].

By inspection, for i = 1,2, [pf,v] = 1 but [pf,11] # 1. Together with the above obser-
vations about the action of pf on the possibilities for Outz(H;) and Outz(N;), this shows
that pf is fusion preserving (contained in Aut(S,F)) exactly when N; is F-essential and
[11] € Outz(Sy) (and pips € Aut(S,F) only if N; and N, are both essential). Also, 7 is
fusion preserving if either the N; are both essential or the H; are both essential (and the
Outz(H;) are chosen appropriately in the latter case), and otherwise Out(S, F) < ([pi], [p5]).
Thus Out(S, F) is as described in Table 4.1, where we refer to [OV2, Table 5.2] for the in-
formation about the fusion systems.

G F-essential | Outx(Sp) Out(S,F) | Out(G)
Mo, Sos Hi, No | ([l [eg]) ([p3]) = Ca Cy
Myz || So, Hi, No | ([y0]; [71]; [co)) 1 1

PSL4(5) So,Nl,NQ <[’70],[C¢]> Out(S) = Dg Dg
McL | So, N1, N2 | ([l [nls [eg]) | ([7]) = Cy Cy
TABLE 4.1

(i) Since |Out(G)| = |Out(S, F)|, it suffices to prove ug o kg is injective. Fix a € Aut(G, S)
such that pe(ke(le])) = 1; thus als = ¢, for some g € Ng(S). Upon replacing a by
cg_1 o, we can assume «|s = Idg. When G is one of the three sporadic groups, then by
[GL, §1.5], A; is centric in Ng(4;) (1 = 1,2) and G = (Ng(A1), Ng(Az)). When G =
PSLy(5) = PQE(5), this is easily checked by identifying Sy < PQg(5) as the subgroup
generated by classes of diagonal matrices (with respect to an orthonormal basis), together
with permutation matrices for the permutations (12)(34) and (34)(56). So by (5), there
are elements z1, 2, € Z(S) = (e13) such that a|nga,) = ¢, for i =1,2. Let g € Ng(Sp) be
such that ¢, = 79 € Autz(Sp). Then g € Ng(A;) for i = 1,2 since 7 leaves the A; invariant,
so a(g) = ¢, (g) = ¢2,(g), and hence z; = 2 since [g, Z(5)] # 1. Thus o € Auty(5)(G).

(ii) Set £ = LE(G). By Proposition 4.2, each element of Ker(uq) is represented by some

a € Aut{yp(ﬁ) which is the identity on objects and on Aut.(S), and such that for each
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fully normalized P € Ob(L), ap € Aut(Aut,(P)) is conjugation by some element gp €
Czpy(Autg(P)). Since Z(N;) = Cy (so Czny)(Auts(N;)) = Czny(Autz(N;))), the only
F-essential subgroups which could be in the set & defined in Proposition 4.2(d) are Sy, and
H, and its S-conjugates if they are essential.

When P = 5,
gp € Cy(p)(Auts(P)) = (e13) = Z(S) = Cys)(Autz(S)) - (6)

So if Hy is not F-essential, then [a] =1 in Outy,, (L) by Proposition 4.2(d).

Assume now that H; is F-essential. Then H; and A; are both F-centric and fully
normalized in F, and (6) holds when P is either of these subgroups. By the descrip-
tion of Autz(Sy) and Autz(H;) in Table 4.1 and [OV2, Lemma 5.7(a)], A; is invariant
under all F-automorphisms of Sy and of H;, and hence Autz(Sp, A1) = Autz(Sy) and
Autz(Hy, Ay) = Autz(Hy). Also, Ca, (Autz(Sy)) = Ca, (Autz(H;)) = 1. Proposition 4.2(c)
now implies gy, = ga, = gs,- S0 [a] = 1 by Proposition 4.2(d) again; and thus pg is
injective.

(iii) By [OV2, Table 5.2], for each i = 1,2, Outz(A4;) is isomorphic to one of the groups
Y5, (C3 x A5)xCsy, Ag, or A7. Hence Ay and Ay are F-radical and F-centric, and Oy(F) <
A1 N Ay = Ej3 by Proposition 1.5. Since no proper nontrivial subgroup of Ej3 is invariant

under the action of 79 € Autz(Sy), and Ej3 itself is not invariant under the action of
vy € Autz(Ny) (see [OV2, Lemma 5.8]), we conclude that Oq(F) = 1.

(iv) Since Outz(S) = 1 in each of the four cases, condition (ii) in Definition 1.18 implies
that F cannot contain a proper normal subsystem over S. So O% (F) = F.

Case 2: Now assume S = Sy = Sy % (#), where ¢y = 7o cy € Aut(Sy). Thus G = J, or Js.
Again in this case, Sy is characteristic in S (cf. [OV2, Lemma 4.1(d)]). Since ¢y permutes
freely a basis of Z(Sy) = Ei3, [OV2, Corollary 1.3] together with the description of Out(Sy)
in [OV2, Lemma 4.5], imply there is an isomorphism

Out(S) ——— Cousn)(([ca]))/{[col) = Ta.

1R

Set Q = (E13, elyels, €4,e55, 0), an extraspecial group of type Dg X ¢, Qg with Out(Q) = ;.
Let 41 € Aut(S) be the extension of 7 € Aut(Sy) which sends 6 to itself. By results in
[OV2, §4.2-3], F = Fs(G) is isomorphic to the fusion system generated by automorphisms

Outz(S) = ([nl),  Outz(So) = (1), [l [e]) = Cs x X5, Outz(Q) = As;

and by Outz(A4;) = GLy(4) if G = J3. Since Aut(S, F)/Inn(S) normalizes Outz(S) = Cs,
and the normalizer in ¥, of a subgroup of order 3 has order 6, |Out(S, F)| < 2.

(i) In both cases (G = Jy or J3), Out(G) = Cy. So to prove fig o kg is an isomorphism, it
suffices to show it is injective. Fix a € Aut(G, S) such that pg(ka([a])) = 1; as before, we
can assume a|g = Idg. By [GL, §1.5], Ng(Z(S)) and Ng(F13) satisfy the hypotheses of (5),
and they generate G since both are maximal proper subgroups. By (5), a|n,z(s)) = 1d, and
| Ng(Brs) = €. for some z € Z(S). Thus a € Autzg)(G).

(ii) Set £ = LE(G). By Proposition 4.2, each element of Ker(ug) is represented by some
a € Autfyp(ﬁ) which is the identity on objects, and such that for each fully normalized
P € Ob(L), ap € Aut(Autg(P)) is conjugation by some element gp € Cyzp)(Auts(P)).
Since Z(Q) = C, (hence Czg)(Auts(Q)) = Cz(Autr(Q))), & contains at most the
subgroups Sy, A;, and A;. Note that in both cases, A; and Ay are F-centric and fully
normalized in F.
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In both cases, 79 € Autz(Sy) leaves A; and Ay invariant, and acts on each of the groups
Z(Sy) = Ey3, Ay, and Ay with trivial fixed subgroup. Hence

CZ(AI)(AUt]-‘(SO; Al)) = CZ(AQ)(Aut]:(SO, Ag)) = 1

and so ga, = gs, = ga, by Proposition 4.2(c). Also, gs, € Cyzsy)(Auts(Sy)) = (eis) =
Z(S) = Czs)(Autx(S5)), and Proposition 4.2(d) applies (with g = gg,) to show that [a] =1
in Outyy,(£). Thus pe is injective.

(iii) Since Sy and @ are F-centric and F-radical, Oy(F) < Sy N Q. Also, Autx(Q) acts
transitively on the set of elements of order four in (), and on the set of noncentral elements
of order two. Since each of those sets contains elements in Sy and elements not in Sy, this
implies Ox(F) < Z(Q) = (el;). Since 7 € Autz(Sy) and vo(ei;) # els, it follows that
Oy(F) = 1.

(iv) Set Fy = O%(F). By Lemma 1.20(e), Oy(Fy) = 1 since Oy(F) = 1. So Fy is a center-
free, nonconstrained fusion system over S, and is included in the list given in [OV2, Theorem
4.8]. Since Outr(Q) = As in all cases, Outz,(Q) contains O (Outx(Q)) = Outx(Q), and
so JFp is the fusion system of Jy or J;. Since Outz(S) = C3 in both cases (G = J, or J3),

neither of these fusion systems can be properly contained as a normal subsystem of the other
(see condition (ii) in Definition 1.18). Hence O% (F) = F. O

4.3. Alternating groups.

We prove here that all fusion systems of alternating groups are tame, and are also (with
the obvious exceptions) reduced. Unlike the other examples given in this paper, we prove
tameness without first determining the list of essential subgroups.

We first fix some notation when working with alternating and symmetric groups. We
always regard A, < X, as groups of permutations of the set n = {1,...,n}. For o € 3,
we set supp(c) = {i € n|o(i) # i} (the support of o). Likewise, for H < %,,, supp(H) is
defined to be the union of the supports of its elements.

Lemma 4.6. Fiz a prime p and n > p®>. Assumen > 8 if p = 2. Set G = A, and fix
S € Syl,(G). Set q=p if pis odd, and q =4 if p=2. Then

Cy ifn=0,1(mod q)
1 otherwise.

Out(S, Fs(Q)) = {

In all cases, g o kg sends Out(G) = Outy, (G) = Cy onto Out(S, Fs(G)).

Proof. Set F = Fg(G) for short. Set E, = ((12---p)) = C, if p is odd, and E, =
((12)(34),(13)(24)) =2 C3 if p=2. Let Q < S be the subgroup generated by all subgroups
of S which are G-conjugate to F,. If E; and E5 are G-conjugate to E,, then either F} = Es,
or supp(E7) Nsupp(Fs) = @ and [Fy, Ey] = 1, or (Fy, E) is not a p-group. Since this last
case is impossible when Fj, Fy < S, we conclude that QQ = Q1 X - -+ X Qy, where k = [n/q]
and the @); are pairwise commuting subgroups conjugate to Fi,.

Fix a € Aut(S, F), and set R = «(Q). We first show that R = Q. For i > 1, let r; be the
number of orbits of length p’ under the action of R on n. Thus

‘n if pisoddorr; =0
> " pir; = |supp(R)| < ;1[ /4 e 1 (7)
i>1 [n/Z] 1fp—2&11d ™ Z 1

since supp(R) has order a multiple of p, and a multiple of 4 when p = 2 and r; = 0. .Since
R = Q is elementary abelian, R is contained in a product [];.,(B;)", where B; = C} acts
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freely on a subset of n of order p?, and hence

D in1 T if pisodd or r; =0

8
Yospiri—1 ifp=2andr >1. (8)

tk(Q) = rk(R) < {

In the last case, “—1” appears since R contains only even permutations, and since the only
factors B; which act via odd permutations are those for ¢ = 1.

Thus if p is odd or r; = 0, then by (7) and (8),
> o' < qnfq] = gk = prk(Q) <> pir; . (9)

i>1 i>1

Also, p* > pi, with equality only when i = 1 or p’ = 4. Hence (9) is possible only when p is
odd, r; = k, and r; = 0 for ¢ > 1; or when p =2, r, = k, and r; = 0 for ¢« > 2. In both cases,
R is a product of subgroups conjugate to E,, and thus R = Q.

Now assume p = 2 and r; # 0. By (7) and (8) again,
> 2 —2<2([n/2) — 1) < 4 fn/4] = 4k = 20k(Q) < Y 2ir; — 2,

i>1 i>1

sor; = 0 for i > 3, and the inequalities are equalities. In particular, r1+2ry = [n/2] = 2k+1,
so 71 and [n/2] are both odd. Hence R = (C2)™2 x C3' ' (and r; > 3), where each element
in Autg(R) permutes the C3-factors and the Cs-factors. It follows that Autg(R) = (332
Yr,) X 2. Since « is fusion preserving, we have Autg(R) = Autg(Q), where Autg(Q) =
Auty, (Q) = Y31 X since [n/2] is odd (n — 4k > 2 where 4k = |supp(Q)|, so there is a
transposition which centralizes Q). Thus Y30 X = (3313,,) X X,,. Since (X310 %,)2> = C2
for all £ > 2, we get ry =1, Y301 X, = X3 X ¥, and this is clearly impossible.

Thus a(Q) = Q. Since « is fusion preserving, it permutes the G-conjugacy classes in Q.
For each 1 < r < k, there are (]:) (¢ —1)" products of r disjoint p-cycles in @ if p is odd, and
(f)(q — 1)" products of 2r disjoint 2-cycles in @ if p = 2. Clearly, k(q — 1) < (f)(q — 1)
for 1 < r <k, and k(g — 1) < (¢ — 1)* since k > 1 and (k,q) # (2,3) by assumption.
Hence « sends the set of p-cycles in @ (products of two 2-cycles in @) to itself. Since the
p-cycles (products of two 2-cycles) are precisely the nonidentity elements in Ule @i, and
since D1, ..., Q) are the maximal subgroups in this set, a permutes the @);.

Thus there is g € Ny, (@) such that ¢,|g = ag, and hence

Autys,1(Q) = (elg)Auts(Q)(alg) ™" = Auts(Q)

since @ € Aut(S). Since @ < S by construction, this implies gSg~! < S-Cx, (Q), where S
normalizes Cy; (@) since it normalizes ). Hence there is h € Cy, (Q) such that hg € Ny, (5)
(and a|g = cnglg). Upon replacing o by avo c,:gl, we can now assume «alg = Id.

Set Fy = Nx(Q). Since @ is fully normalized in F and @ < S, this is a saturated
fusion system over S. Also, Cs(Q) < @: any permutation which centralizes () must leave
each set supp(Q);) invariant, and hence Cg(Q) = (C’Aq(E*))k X Ap_ge = Q X Aj_gr. Thus
@ is normal and centric in Fy, so Fy is constrained in the sense of [BCGLO1, Definition
4.1]. By [BCGLO1, Proposition 4.3], there is a finite group Gy, unique up to isomorphism,
such that Oy (Go) = 1, Q Q Gy, Cg,(Q) < Q, S € Syl,(Go), and Fy = Fs(Go). Thus
Go/Q = Autz(Q). The fusion preserving automorphism « induces an automorphism of
Fo = Nx(Q), and hence by the uniqueness of Gy (in the strong sense of [AKO, Lemma
I1.4.3]) induces an automorphism § € Aut(Gy) such that 5|s = . Let H < G be the group
of those g € G such that ¢, sends each Q); to itself via an automorphism of order prime to p.
Thus H/Q < (Cp—1)* (with index 1 or 2) when p is odd, and H/Q = C¥ when p = 2. Since
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Blo = Idg and H/Q has order prime to p, §|g is conjugation by an element a € ). Upon
replacing o and 3 by aoc,! and Soc, !, we can assume |y = I[dg. But now, Z(H) =1, so
distinct elements of G have distinct conjugation actions on H, and hence 8 = Idg,. Thus
o = ﬁ|g = IdS.

We have now shown that each element of Aut(S,F) is conjugation by some element of
¥,. Since n > 6, Out(G) = Outy, (G) by, e.g., [Szl, Theorem 3.2.17]. Thus pg o kg sends
Out(G) = Cy onto Out (S, F). This last group is trivial exactly when there is g € Ny, (S)\ A4,
such that c4|g € Autz(9); i.e., when ¢y4|g = ¢p|s for some h € Ng(S). Upon replacing g by
gh™!, we see that Out(S, F) = 1 if and only if some odd permutation g € ¥,,\ A, centralizes
S.

If n # 0,1 (mod g), then there is a transposition (ij) which centralizes S: when p is
odd because one can choose i, € nxsupp(S), and when p = 2 because the S-action on n
has an orbit {7, 5} of order 2. Thus Out(S,F) = 1 in this case. If n = 0,1 (mod ¢), then
In~supp(Q)| < 1, and so

Cs,(5) < Cs,(Q) =Q < A, .
Thus Out(S, F) = Outy, (S) has order two in this case. O

The following well known lemma will be needed when working with elementary abelian
subgroups of symmetric groups.

Lemma 4.7. Fixn > 1 and an abelian subgroup G < X,,. Let Hy, ..., H,, < G be the distinct
stabilizer subgroups for the action of G on n, and let X; C n be the set of elements with
stabilizer subgroup H; (so n is the disjoint union of the X;). Then each X; is G-invariant.
Let k; be the number of G-orbits in X;. Then

i=1
where each factor (G/H;) 1 Xy, has support X;, Xy, permutes the k; G-orbits in X;, and each
factor G/H; in (G/H;)* has as support one of those G-orbits.

Proof. Let Y1,...,Y; be the G-orbits in n, and let Cy < Cx; (G) be the subgroup of elements
which leave each of the Y; invariant. Since G is abelian, y and g(y) have the same stabilizer
subgroup for each g € G and each y € n. Let K; be the stabilizer subgroup of the elements
in Y;. Then the homomorphism

t
x: [[(G/K) —— Gy
i=1
defined by setting x (g1 K1, ..., 9:K:)(y) = gi(y) for y € Y;, is an isomorphism.

Since all elements in each orbit have the same stabilizer subgroup, each set X; is a union
of orbits Y; (i.e., is G-invariant). Also, Cj is normal in Cy, (G): it is the kernel of the
homomorphism to >; which describes how an element ¢ permutes the orbits. Each o €
Cs, (G) sends each orbit in n to another orbit with the same stabilizer subgroup, and thus
leaves each X; invariant. Since X; contains k; orbits, Cx, (G)/Co = T2, B, and Cx, (GQ)
is isomorphic to the product of the wreath products (G/H;) 1 3y, . O

We are now ready to prove that all fusion systems of alternating groups are tame.

Proposition 4.8. Fiz a prime p and n > 2, set G = A,, and choose S € Syl (G). Then
Fs(G) is tame. If p=2 and n > 8; or if p is odd, n > p? and n = 0,1 (mod p); then

ket Out(G) —— Outyy, (LS(G)) = Cy
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18 an isomorphism.

Proof. Set F = F5(G) and L = LE(G). If n < p?, or if p = 2 and n < 6, then the Sylow
p-subgroups of A,, are abelian, so F is constrained, ted(F) = 1 by Proposition 2.4, and so
F is tame by Theorem 2.20. If p = 2 and n = 6,7, then since Ag = PSLy(9) and A; has the
same fusion system as Ag, F is tame by Proposition 4.3.

If p is odd and n > p?, then ug: Outy, (L) —= % Out(S, F) is an isomorphism by [BLOLI,
Theorem E] and [O1, Theorem A]. (Note that while the latter result depends on the classi-
fication of finite simple groups, this particular case does not. For example, it follows from
[O1, Proposition 3.5], applied with Ty = 1, T = S, and X = @ the group defined in the
proof of Lemma 4.6.) So by Lemma 4.6, either n = 0,1 (mod p) and kg is an isomorphism,
or Outyp(L£) = 1 and hence k¢ is split surjective. Thus F is tame in these cases.

It remains to handle the case p = 2 and n > 8. By Lemma 4.6 again, it suffices to prove
Ker(pg) =1ifn=0,1 (mod 4) and |Ker(ug)| <2ifn=2,3 (mod 4), (10)
and also

n=2,3 (mod 4) = thereisz € Cyx, (S)\G such that rkg([c.]) # 1 . (11)

Let Q < S be as in the proof of Lemma 4.6: the subgroup generated by all subgroups
of S G-conjugate to F, = ((12)(34),(13)(24)). We saw in the proof of the lemma that
Q = Q1 X -+ X Qk, where k = [n/4], the Q; are the only subgroups of S G-conjugate to F.,
and they have pairwise disjoint support. Thus @ is weakly closed: the unique subgroup of
S in its G-conjugacy class.

Fix [a] € Ker(ug). By Proposition 4.2, we can assume [o] is the class of a € Aut{, (L) for
which ag = Idaut,(s)- Let gp € Czpy(Autg(P)), for P < S F-centric and fully normalized,
be the elements defined in Proposition 4.2. Set g = g9 € Co(Auts(Q)) = Z(S) (the last
equality since () is normal and centric in S). For each fully normalized P > @ (including
P = S), all automorphisms in Autz(P) leave @) invariant since it is weakly closed, so
gp = 9o = g (mod Cy(Autz(P)) = Czpy(Auts(P))) by Proposition 4.2(c). So upon
replacing a by « o c[’g]l, we can assume g = 1, and ap = Idaw,.(p) (and gp = 1) for all fully
normalized P > Q).

For each 1 < i < k, there is a 3-cycle h; € Ng(Q) which permutes transitively the
involutions in @); and centralizes the other @;. Thus Co(Autz(Q)) < ﬂle Co(h;) = 1.
Recall that P € <€A'0 if P is F-essential, P = Cg(FE) for some elementary abelian subgroup
E fully centralized in F, and Czp)(Auts(P)) = Czpy(Autz(P)). Let %%Q be the set of
subgroups P € (SA'O which do not contain ). Let X be a set of representatives for é\o modulo
F-conjugacy. By Proposition 4.2(e), applied with H = X U{Q}, [a] = 1 if and only if
gp € Czpy(Autz(P)) for all P in a set of representatives for cSA’O%Q modulo F-conjugacy.

Fix P = Cg(F) € gon. Since E is fully centralized, P € Syl,(Ce(F)). Since P is F-
essential, Outz(P) has a strongly 2-embedded subgroup, and hence all involutions in any
Sylow 2-subgroup of Outx(P) are in its center (cf. [OV2, Propositions 3.3(a) & 3.2]). In
particular, Outx(P) contains no subgroup isomorphic to Dg.

Fix P € Syl,(Cy, (E)) which contains P. Thus P = PN A,. Also, E < P, so P <
P.Cy, (P) < Cs, (E), and hence

ﬁ-C’gn(ﬁ)/f’ has odd order. (12)
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By Lemma 4.7, each union of m E-orbits of order ¢ = 2¢ which have the same stabilizer
subgroup contributes a factor E, ! %, to Cx, (F), where E, = (Cy)" is acting freely on an
orbit of order ¢ in n. Since a Sylow 2-subgroup of ¥,, is a product of wreath products

Cy---1Cy, P € Syly(Cy, (E)) is a product of subgroups of the form E,1Cy2---1Cy (or E,)

with pairwise disjoint support. If P contains a factor £, Cy 1 --- 15 for ¢ = 2" > 8, then
Outz(P) contains GL,(2) > Dg, which we just saw is impossible.

Write n = Xy II X, IT X5, where X is the set of points fixed by 15, X, is the union of
P-orbits of length 2, and X, is the union of P-orbits of length > 4. By the above description
of P, P = P, x P,, where supp(P;) = X; for i = 1,2, P, = C¥" where 2m = | X[, and P, is
a product of subgroups E42Cy0---1Cy and Cy -+ -1 Cy (the latter of order > 8). By (12),
| Xo| < 1, since otherwise there would be a 2-cycle in Cy, (P) not in P.

Each factor E, or Cy ! Cy (with support of order 4) contains a subgroup conjugate to
E, (thus one of the factors @; in Q). Thus X, C supp(Q N P). If n — |X5| < 3, then
Xy = supp(@Q), so Q < PNA, =P, contradicting the original assumption on P. Thus
| Xo U X;1| > 3. Since | Xy| <1 and | X;| = 2m is even, we have m > 2.

If {i,j} is any of the m orbits of order 2 in Xi, then (ij) € Cy, (P)~A, and P =

(P,(ij)). Thus Ny, (P) = Ny, (P), Cs,(P) = Cs,(P), P-Cx, (P) = P-Cy,(P), and so
Ny, (P)/P-Cy, (P) = Ng(P)/P-Cg(P). This proves that

Outg(P) = Outgn (P) = Outz;n (f)) = Em X C)utz)x2 (Pg),
where the first isomorphism is induced by restriction. Here, ¥, is the group of permutations
Of XQ.

If m = 2, then Oy(Outg(P)) # 1, and if m > 4, then Outg(P) > Dg. Either of these
would contradict the assumption that Outg(P) contains a strongly 2-embedded subgroup.
Thus m = 3, and X; = supp(P;) has order 6. A group with a strongly 2-embedded sub-
group cannot split as a product of two groups of even order, so [Outs,, ()] is odd. Since
Py-Cxy (P»)/ P, is isomorphic to a subgroup of P-Cy, (P)/P, it has odd order by (12), and
hence

N, Ex, (P 2)
PyCsy (Ps)

is also odd. If P, < T € Syl,(Xx,), then Np(Py)/P, has odd order, so P, = T (cf. [Szl,
Theorem 2.1.6]), and thus P, € Syl,(Xx,).

Since P; is a Sylow 2-subgroup of a symmetric group and has no orbits of order 2, it is
a product of subgroups Cy 0 ---1Cy of order > 8. Since 4’ | X3| (a union of orbits of order
20 > 4) and | X,| <1,

Py-Csy, (Py)
P

|Nsy, (Po)/Po| =

- ‘OUt2X2 <P2)HP2'CEX2 <P2)/P2‘

n=1Xo|+6+|X2]=2,3 (mod4).

If R is any other subgroup in é'\on, then R = RNG, n =Y, 1Y, 1Y, where Yj is the
set of elements fixed by R and Y; is the union of R-orbits of order 2, R = R; x Ry where
supp(R;) = Yi, Ry € Syly(2y,), [Y1| = 6 = | X4|, and |Y5] = | X5| (the largest multiple of 4
which is < n—6). Thus R is ¥,-conjugate to P, and is A,-conjugate to P since there are
odd permutations which centralize P (the transpositions in P).

Now, Z(P) = P, x Z(P,), where Z(P;) is a product of one copy of Cy for each factor
Cy1---1Cy in Py (equivalently, for each Py-orbit in X5). Also, each of these factors Cy has
support the corresponding Ps-orbit, hence of order a multiple of 4, and hence contained in
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A,. Thus Z(P) < G = A,. Also, Autz(P) acts via the identity on Z(P), since all of the
factors Cy 1+ -+ Cy in P, have different orders (hence their supports have different orders).
Since Aut,, (PN A,) = 33 acts on P; by permuting the three transpositions, Autz(P) acts
on PN A, = C? with trivial fixed set. Since Z(P) = (P, N A,) x Z(P,), it now follows that
Czpy(Autg(P))/Czpy(Autz(P)) has order two.

To summarize, every class in Ker(ug) is represented by some a such that ap = Id when
P > @, and for such o, [a] = 1 if and only if gp € Cz(py(Autz(P)) for some representative

in each F-conjugacy class in gon. When n = 0,1 (mod 4), gon = o, so Ker(ug) = 1.
When n = 2,3 (mod 4), all subgroups in é\o’)éQ are J-conjugate to some fixed P, and so
|Ker(ua)| < |Czpy(Auts(P))/Czpy(Autz(P))| = 2. This proves (10).

Assume n = 2,3 (mod 4), and set k = [n/4] as before. Set P, = ((12),(34),(56)) and E =
G N P;. Assume S was chosen so that supp(S) = {1,...,4k+2}, supp(Q) = {3, ..., 4k +2},

and P & Cs(E) € Syly(Ca(E)). Then Autz(P) = 33 x A where A has odd order, and so
Pe&”.
0
Set = (12). Then Out(G) = ([c.]) = Cy, [x,5] = 1, and ¢, is the identity on
Ne(Q)/CL(Q) = Autz(Q). (Note that if n = 4k + 3, then C(Q) = ((12n)) does not com-
mute with z.) Also, (12)(34)(56) centralizes Ng(P), and hence ¢, acts on Autz(P) (or on

N¢(P)) via conjugation by gp oo (34)(56) € Czpy(Autg(P)). Since gp ¢ Czpy(Autz(P)),
[c.] is sent to a nontrivial element in Ker(ug). This proves (11), and finishes the proof of
the proposition. O

We finish by proving that with the obvious exceptions, most fusion systems of alternating
groups are reduced.

Proposition 4.9. Fiz a prime p and n > p* such that n = 0,1 (mod p). Assume n > 8 if
p=2. Set G = A,, and choose S € Syl,(G). Then the fusion system Fgs(G) is reduced.

Proof. Set F = Fg(G). By the focal subgroup theorem (cf. [G, Theorem 7.3.4]), foc(F) =
SN[G,G] =8, so0 OP(F) = F.

Let ) < S be as in the proof of Lemma 4.6: the subgroup generated by all sub-
groups of S G-conjugate to E,, where E, = ((12---p)) = C, if p is odd, and E, =
((12)(34),(13)(24)) = C3 if p = 2. We saw in the proof of the lemma that Q = Q1 x - --xQy,
where k = [n/p] (p > 2) or [n/4] (p = 2), the @, are the only subgroups of S G-conjugate
to F,, and they have pairwise disjoint support. Thus @ is Autz(S)-invariant. We also saw
that Cs(Q) = @, and hence @ is F-centric (since it is the only subgroup in its F-conjugacy
class by construction). Finally,

Cp_l ifp>2

13

Auty, (Q) = Aut(E,) 1 X where Aut(E,) = {
and hence Autz(Q) has index at most two in this wreath product. When p = 2, since
Y < Auty, (Q) permutes the @Q); with support of order 4, it is contained in Autz(Q).

Set R = O,(F). Since @ is F-centric, and is F-radical by (13), R < ) by Proposition
1.5. Assume R # 1, and fix ¢ € R of order p. There is h € ) which is G-conjugate to g
(a product of the same number of p-cycles) such that gh is a p-cycle (or a product of two
2-cycles if p = 2). Then h € R since R < F, and so gh € R. Since each @); is generated
by elements G-conjugate to gh, this would imply that R = @). But in all cases, there are
elements both in ) and in S\ which are products of p disjoint p-cycles, so @) is not strongly
closed in F. We conclude that R = O,(F) = 1.
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Now set Fo = O (F); we must show Fy = F. By [BCGLO2, Theorem 5.4], it suffices to
show that Autz (S) = Autz(S). Also, by the same theorem,

Autz, (S) = Auth(S) > (a € Autx(S) | a|p € O” (Autx(P)),
some F-centric subgroup P < S with a(P) = P) .

For a € Autz(9),if alg € OP (Aut£(Q)), then a € Autg,(S). If p = 2, then O (Aut£(Q)) =
Autz(Q) by the description in (13), so Fy = F in this case.

Assume p is odd. Let p’ be the largest power of p such that p* < n. Write S = S} x S,
where supp(S1) Nsupp(Sz) = @ and [supp(S1)| = p*. Fix T € Syl (%,), and identify

Sy =TT+ AT < L8015, <Dy < 5.

Let ®: (X,)) — £,1---1%, < ¢ be the monomorphism which sends the first factor
diagonally to (3,)? ', the second factor diagonally to (12%,)" ", etc. Set P, = ®(T*) and
P =P xS <S. Fixu el of order p— 1, and choose h € Ny, (T') such that hgh™" = g*
for g € T. Let a € Autz(S) be conjugation by ®(h,h~',1,...,1). Then «|p, has matrix
diag(u,u™',1,...,1) € SLy(p) with respect to the canonical basis. Since Autz(P;) has index
at most two in Auty, (P) = GL¢(p), we get a|p € OP (Autz(P)), and so a € Autz,(S) since

P is F-centric. Also, a|qg represents a generator of Autz(Q)/O¥ (Autz(Q)) = Fy, so this

finishes the proof that Autz, (S) = Autz(S) and hence that 7y = F. Thus F is reduced. [
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