HOMOLOGICAL ALGEBRA FOR THE REPRESENTATION
GREEN FUNCTOR FOR ABELIAN GROUPS

JOANA VENTURA

ABSTRACT. In this paper we compute some derived functors Ext of the
internal homomorphism functor in the category of modules over the
representation Green functor. This internal homomorphism functor is
the left adjoint of the box product.

When the group is a cyclic 2-group, we construct a projective reso-
lution of the module fixed point functor, and that allows a direct com-
putation of the graded Green functor Ext.

When the group is G = Z/2 x Z/2, we can still build a projective
resolution, but we don’t have explicit formulas for the differentials. The
resolution is built from long exact sequences of projective modules over
the representation functor for the subgroups of G by using exact functors
between these categories of modules. This induces a filtration which
gives a spectral sequence which converges to the desired Ext functors.

INTRODUCTION

Homotopy groups are the object of study in homotopy theory and stable
homotopy theory. In the equivariant analogue of homotopy theory, we need
to consider not just homotopy groups but invariants in a larger abelian
category, which is called the category of Mackey functors. In the category
Mack(G) of Mackey functors for a finite group G there is a product, the
box product O [3, 4], that has similar properties to the tensor product in
Ab. The objects R with a ring structure, i.e. a product ROR — R and
a unit satisfying some properties, are called Green functors. There are also
notions of modules over a Green functor, bimodules, etc. The box product
has a right adjoint H. Given two Mackey functors M and N, H(M,N) is
the Mackey functor of internal homomorphisms from M to N. We can also
talk about the box product over a Green functor, Og, and the R-module
internal homomorphism functor, Hp, and they are adjoint. Tor, Ext, Tor’
and Extp are the derived functors of O, H, O and Hp. They always exist
because the categories of Mackey functors and of R-modules have enough
projectives and injectives [4]. Roughly, there are the following analogies
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between Mackey functors and abelian groups:

Mack(G) «— Ab
Green functors «— rings with unit
modules over a Green functor R «— modules over a ring R
0,H,0r,Hgr «— ®,Hom, g, Homp_mod
Tor, Ext, Tor’t, Extp «— Tor, Ext, Tor®, Ext g

Functors Tor and Ext taken over the representation ring (when regarded
as a Green functor) occur in Kiinneth and other spectral sequences for equi-
variant K-theory, when regarded as a Mackey functor. Also Tor and Ext
over the category of Mackey functors arise in certain spectral sequences stud-
ied by Gunnar Carlsson for computing derived completions of representation
rings. The computations made here were intended as a first step towards
investigating those which would be needed to apply such spectral sequences.

We compute the Green functors Extr(F, F)) = @ Exty(F, F) when the
group G is Z/2" and Z/2 x Z/2 (and when the ring of coefficients is Fy),
where R is the representation Green functor (Example 1.5) and F is the fixed
point functor for the one dimensional Fo-vector space with trivial G-action
(Example 1.6). These Ext functors at the G-set G /e are always trivial.

Theorem A. Let G =7/2". Then

Extp(F, F)(G/H) = Fa[za] ® E(y3) (1)
for all subgroups H # e, where y3 has degree 3 and x4 has degree 4.
Theorem B. Let G =7/2 x Z/2. Then

Extp(F, F)(G/G) = Falys, z4] ® E(ys) (2)
Extr(F,F)(G/H) =Fa[z4] ® E(y3) for all HC G of index 2 (3)

where y3 has degree 3, x4 has degree 4 and ys has degree 5. The restriction
morphism from Extr(F, F)(G/G) to Extr(F, F)(G/H) is the ring map that
sends y3 and x4 to the elements with the same name and sends ys to zero.
Its transfer is zero.

The middle level (3) in B is isomorphic to the top level (1) in A when
n = 1. This is a general fact. The functor Extr(F, F') for a certain group
G at G/H is the top level of the “same” functor for the group H (Corollary
4.9).

In both cases, the classes x4 come from a symmetry of a projective R-
resolution of F. The classes y; seem to be a consequence of using o as the
coefficient ring. Actually, when G = Z/2 x 7Z/2, there is a class xg of degree
6 also coming from another symmetry, but yg = x4.

The obvious generalization of (2) for the groups G = (Z/2)" is

EXtR(F7 F)(G/G) = F2[937 L4,Y5, L6y Yon+1, x2n+2]/‘]
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where J is the ideal generated by yf = x9; for i < m+1 and yf = 0 for
1 > n + 1, with surjective restriction maps and zero transfers between two
different orbits. Unfortunately this fails for n = 3 and therefore for all
larger n. When n = 3, there are classes corresponding to y3 and x4, there
is at least one class of degree 6 mapping to zg of (2) under the restriction
map, and there is only one class of degree 5 but it does not map to ys of
(2). The computations for higher n are much more difficult than for n = 2;
and even considering only low degrees, it seems that there is no simple
way of describing Extr(F, F')(G/G) since there is no obvious relation with
Extr(F, F)(G/H) for other subgroups H C G.

This paper is the work done in my PhD thesis and I would like to thank
Gunnar Carlsson for being a very patient advisor. I also would like to thank
the referee for suggesting a different construction in Section 4.2.
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Part I. Background and notation
1. MACKEY FUNCTORS

There are several equivalent ways of defining a Mackey functor for a finite
group [4, 7, 1]. To fix notation and because that’s what we will need in the
rest of the paper, I'll give two of these definitions. One is more abstract and
is good to derive general properties, the other provides a better setting for
the computations done in the second part.
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Let G be a finite group. Consider the category B*(G) whose objects are
finite G-sets and whose morphisms from X to Y are equivalence classes of
diagrams

xLv iy (1.1)
where X, Y and V are G-sets, f and g are G-maps. Two diagrams
Xy %y and XSy

are equivalent if there is an isomorphism h : V43 — V5 of G-sets such that
the following diagram commutes

%

X

T

The composmon of the morphisms represented by X S Vi 25 Y and
y 2 Vs 25 Z is obtained from the pullback

le
h
—

2

Y

Vi xy Va

TN
/\/\

This gives a diagram X Jim Vi xy Vo 222, Z that represents a morphism

from X to Z.
A G-map f: X — Y induces two morphisms in B (G), one from X to

Y represented by X 47 x 1.y and the other from Y to X represented

by YAL X % X. Denote the first by f and the second by f We will
call f the transfer map associated to f. So, any morphism in BT (G) is
the composition of morphisms of G-maps and transfer maps, more precisely,
(1.1) is gf.

The sets Homp+(g)(X,Y) are monoids under the disjoint union of the
middle sets:

X—VIi—Y)+X—Vh—Y)=X—V 1V, —Y

and the zero corresponds to the diagram X «— () — Y with the empty
set in the middle. Define a new category B(G), which is called the Burnside
category, with the same objects as B*(G) and where the group of morphisms
Homp(g)(X,Y) is the group completion of Hompg+y(X,Y). The disjoint
union of G-sets is a product and a coproduct, hence B(G) is an additive
category. We can extend the coefficients to any commutative ring Z with
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unit and still get an additive category. Denote it by Bz(G) or B(G) or just
B.

There is an obvious isomorphism B — B that sends the morphism

represented by (1.1) to the morphism represented by Y Sy Lox

Definition 1.1. A Mackey functor for the group G with coefficients in Z is
an additive contravariant functor from B(G) to the category of Z-modules.

A morphism between Mackey functors is just a natural transformation.
Denote by Mack(G) the category of Mackey functors for the group G. It is
an abelian category. Kernels, cokernels and images of maps between Mackey
functors, i.e. natural transformations, are defined objectwise.

Definition 1.2. For any Mackey functor M and any finite G-set X, define
a new Mackey functor My as follows: Mx(Y) = M(Y x X) for all G-sets
Y and Mx (o) = M(a x Idx) for all morphisms « in B(G).

Since any G-set is a disjoint union of transitive sets and any morphism
in B is a linear combination of compositions of morphisms induced by G-
maps, to define a Mackey functor is enough to define it on transitive sets
and on the morphisms induced by G-maps. For any K C H C G, let
7. G/K — G/H be the quotient map and let , y : G/H — G/*H be
the map H — Hz~! = 271(*H). Any G-map f : G/K — G/H can be
written as mf.v,-1 x where K* C H (or K C "H). So, a Mackey functor
M is completely determined by M(G/H), M(w), M(7E) and M (v, g) for
all subgroups K € H C G and z € G. Notice that 7, g is v,-1 p.

Example 1.3. Let A[H] be the Burnside ring of the group H. The Burnside
functor A is defined by A(G/H) = A[H] for every subgroup H C G and
o A7) A[K] — A[H] is X — H xx X = H x X/ ~, where ~ is
the equivalence relation (hk,x) ~ (h,kx), k € K,
o A(rf): A[H] — A[K] is restriction of the H-action,
o A(z.H) : A[H] — A[*H] is defined on the transitive H-sets by
H/L — *H /*L for all L C H up to conjugacy in H.
The Burnside functor is also the representable functor Homp ) (-, G/G).

Example 1.4. The representable functor Hompg (-, X) is Ax.

Example 1.5. Given a group H, let R[H| be the representation ring over
C of H. The representation functor R is defined by R(G/H) = R[H] for
every subgroup H C G. The morphism R(wi) : R[H] — R[K], K C H
is restriction of representations and R(74) : R[K] — R[H] is induction of
representations. The G-map v, i induces the morphism R(7, y) : R[H] —
R[*H] that sends an H-vector space V' to the same vector space with *H-
action given by ¢-v = x lgzv, for all g € *H and v € V.

As suggested by the previous example, for any G-map f and any Mackey
functor M, M(f) is called a restriction map and M (f) is called an induction
map or transfer. A map M (v, p) is called conjugation.
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Example 1.6. Let M be a Z-module with a G-action. The fixed point
functor F Py is defined by FPy(G/H) = M7 ={m e M :hm=m Vhc
H}, FPy(rfl) is the inclusion M¥ C MK FPy(7l) is the map m
ner/x hm, and FPy (o) : MY — M™ is m — zm.

As a particular case, consider M = Z, the free rank 1 Z-module with
trivial action. Then FPz(G/H) = Z for all H C G, FPz(f) = 1 and
FPz(f) = [H : K] for all G-maps G/K L, G/H.

It is well known that a small abelian category is equivalent to category of
modules over a certain algebra. For Mack(G) that algebra over Z, denoted
by u(G) or p, is called Mackey algebra and is defined by

p(G) = P Homp)(G/K,G/H)
H,KCG

with the multiplication defined by composition of morphisms in B(G) or
zero if two morphisms can not be composed [7].

It can also be defined as the algebra generated by t%, rg and ¢, g, for
K C H C G and z € G with the following relations:

thl =t L CKCH (1.2a
(

)
ririi=r] \LCKCH 1.2b)
CyoHCa,H = Cay,H (1.2¢)
tg:rgzchﬁ ,he H (1.2d)
Comtht = tale, i (1.2¢)
CLKT[I_g = ri%cx,g (1.2f)
r%tf = Z t?mecx,KerfL(mL (1.2g)
z€K\H/L
Z tﬁ - Z rg =1 (1.2h)
HCG HCG
tHi —0 H# K (1.2i)
The two definitions are equivalent [7], an isomorphism is defined by send-

ing 7?% — t%, 775 — rlg and Yy g — Cy H-

The identity morphism in Hompg)(G/H,G/H) corresponds to tf. To
simplify notation, let 17 = tg. These elements are idempontents, hence the
modules plyg are projective.

As a Z-module, u(G) is free and the elements t£ ¢, prH withz € K\G/H
and L C HN K* chosen up to H N K®-conjugacy, form a basis (see [7]).

Theorem 1.7 ([7]). The category of Mackey functors and the category of
left u-modules are equivalent.

The equivalence Mack(G) — p-mod sends a Mackey functor M to M =
®M(G/H), where the direct sum is over all subgroups H C G. This is a
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left p-module with r% acting as the restriction M (7‘(‘%), t% as the induction
M(7H) and c, g as the conjugation M (J, p). Conversely, the equivalence
p-mod — Mack(G) sends a p-module N to the Mackey functor N defined
by N(G/H) = t}IN and the images of the morphims in B(G) by the action
of the corresponding elements in p. Using the first definition of p and the
fact that Ag, g is the representable functor Homp(q(-, G/H), we can see
that

wG) = P Acm(G/K)= P AG/K x G/H) = A(Q?)
H,KCG H,KCG

where Q = IlIgcqG/H. This also shows that the p-module corresponding
to the Mackey functor Ag/p is plp.

Definition 1.8 ([3]). Let M and N be Mackey functors, let Z be a finite
G-set. The box product of M and N, denoted MON, is the Mackey functor
defined at Z as the double coend

XY
MON(Z) = / / M(X) @ N(Y) @ Homg(Z, X x Y)

over the category B. Naturality in Z defines MON on morphims in B.

The box product is commutative and associative, i.e., MON ~ NOM
and (MON)OP ~ MO(NOP), and it has an adjoint functor which is the
internal homomorphism functor H.

Definition 1.9. Given Mackey functors M and N, let H(M,N) be the
Mackey functor defined by H(M, N)(X) = Hompseer(q) (M, Nx) on every
G-set X.

Proposition 1.10 ([1]). H(MON, P) ~ H(N, H(M, P)), in particular
HomMack(G) (MDN, P) = HomMack:(G) (N7 H(M7 P))
i.e. O is left adjoint to H.
As a corollary, we get that O is right exact and H(-, P) is left exact.

Proposition 1.11 ([1],[4]). For any Mackey functor M and any finite G-
sets X and Y, we have AxOM ~ MOAx ~ Mx, in particular AxOAy ~
AX><Y7 and H(Ax,M) ~ MX.

The last isomorphism in Proposition 1.11 can be seen as a generalization
of the isomorphism
¢« Homppgen(cy(Ax, M) — M(X) (1.3)
which is the Yoneda Lemma: given a map F': Ax — M, then ¢(F) is the
image of Idy € Ax(X) = Homg(X, X) under F(X) : Ax(X) — M(X).
Conversely, given € M (X), the map ¢~!(x) : Ax — M is defined at the
object Y by

Ax (V) = Homg(Y, X) 3 f — M(f)(z) € M(Y).
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Mack(G) with the box product is a closed symmetric monoidal category.
Here is another very useful property of O and H.

Proposition 1.12 ([1]). There is an associative pairing
6:H(N,P)OH(M,N) — H(M, P)
for any Mackey functors M, N and P.

2. GREEN FUNCTORS AND MODULES

In this section we give the definitions and some properties of Green func-
tors and modules over Green functors. Most properties are generalizations
of some corresponding property for Mackey functors. In fact, after giving
the main definitions, we could go to the previous section and replace the
Burnside functor A by a commutative Green functor R to obtain the rest of
this section. The main references are [4], [7] and [1].

Definition 2.1. A Green functor R is a Mackey functor with two maps of

Mackey functors: A 12 Rand a multiplication ROR — R, where A is the
Burnside functor, making the following diagrams commute

m 1 Id IdO1
ROROR %™ pogR AOR 275 Ror <22 RoA
\Lm[\ld lm \ inﬁ/

ROR —2 R R

The first diagram says that the multiplication is associative, the second
diagram says that 1 is a left and a right unit in R. A map between Green
functors is a map of Mackey functors making the obvious diagrams commute.
Definition 2.2. A Green functor R is commutative if the diagram

T

ROR ROR

AN

R

commutes, where 7 permutes the coordinates and m is the multiplication in

R.

Definition 2.3. A (left) module over the Green functor R is a Mackey
functor M with a map of Mackey functors ROM —— M such that

d
ROROM ™ pons Aom 2 por
N
ROM —* M M

commute, where m and 1g are the multiplication and unit in R.
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A map between two R-modules is a map of Mackey functors preserving
the action of R. Denote by R-mod the category of (left) modules over the
Green functor R. Similarly we can define right modules over R and also
bimodules.

The canonical isomorphism AOA ~ A and the identity map Id4 give A
the structure of a Green functor. Any Mackey functor M can be viewed as
an A-module with the A-action given by the isomorphism ACOM ~ M.

Green functors and modules over Green functors can also be defined as
follows:

Definition 2.4. A Mackey functor R is a Green functor if R(X) is a Z-
algebra for any G-set X, the maps R(f) are ring homomorphisms preserving
the unit, and

aR(f)(b) = R(F)(R(f)(a)b) ,

~

R(f)(b)a = R(F)(b R(f)(a))
for any G-map f: X — Y and a € R(X), b€ R(Y).

Definition 2.5. Let R and S be Green functors. A morphism of Mackey
functors f : R — S is a morphism of Green functors if each f(X) is a
morphism of rings.

Definition 2.6. A Mackey functor M is a (left) module over the Green
functor R if M(X) is a (left) module over R(X), and if f : X — Y is a
G-map then

M(f)(am) = R(f)(a)M(f)(m)  VaeR(Y)meM(Y)
aM(f)(m) = M(f)(R(f)(@)m) ~ Vae€ R(Y),me M(X)

~ ~

R(f)(@)m = M(f)(aM(f)(m))  VaeR(X),meM()

Definition 2.7. Let M and N be modules over the Green functor R. The
morphism of Mackey functors f : M — N is a morphism of R-modules if
each f(G/H) is a morphism of R(G/H)-modules.

These definitions are equivalent to the first ones ([1], [4]).

Example 2.8. With the second set of definitions, it’s easy to check that the
representation functor R defined in Example 1.5 is a Green functor which
is commutative because the ring R(X) is commutative for all finite G-sets
X. Also, the fixed point functor F'Pz (see Example 1.6) is an R-module (R
with coefficients in Z) with the R-action induced by the map € : R — F Pz
which is defined at each transitive G-set G/H as the usual augmentation
map €(G/H) : R[H] — Z (tensored with the ring Z), i.e. a representation
oin R(G/H) = R[H] acts on the module F'Pz(G/H) = Z by multiplication
by dim(o).
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Fix a Green functor R. Other examples of Green functors are Ry, with
X any G-set. These are also R-modules. If M is an R-module, then My is
a module over R and over Rx.

Another important example of a Green functor is H(M, M), where M is
any Mackey functor. The product is given by the map of Proposition 1.12,
the unit A — H(M, M) is the map that sends G/G € A[G] to the identity
map IdM S HomMack(G) (M, M) = H(M, M)(G/G)

For any Green functor R, we can define a category Cgr as follows: the
objects are finite G-sets, the set of morphisms from X to Y is

R(X X Y) ~ HomR_mOd(RX, Ry)

and composition of morphisms in Cg is composition of R-module morphisms.
Cr plays the same role for R-modules as the Burnside category B for Mackey
functors, which are A-modules. In fact we have C4 = B.

As in the case of the Burnside category, when R is commutative, we also
have a natural isomorphism Cp — C%p since

Home,(X,Y) ~ R(X xY) ~ R(Y x X) ~ Hom¢, (Y, X) .
We will call it the opposite map.

Proposition 2.9 ([1]). The category of R-modules is equivalent to the cat-
egory of additive contravariant functors from Cr to Z-mod.

The unit of the Green functor R, 1z : A — R, gives a functor B — Cp
since both categories have the same objects and Hompg(X,Y) = A(X x
Y) and Home,(X,Y) = R(X xY). So Cr contains the morphisms in B
(there might be some identifications), which are generated by G-maps and
transfers, composition of these morphisms in Cg is the same as in B. The
other morphisms in Cr encode the action of the ring R(X) on the R(X)-
module M (X), for any R-module M.

Notice that the representable functors Home,, (-, X') are the R-modules
Rx, by definition of the category Cr. If R is the Burnside functor A, we
recover Example 1.4. For R = A, Proposition 2.9 only says that the category
of A-modules is equivalent to the category of Mackey functors.

Now we can define an algebra in the same way the Mackey algebra was
defined:

p= @B Home,(G/K,G/H) ~ R(D?)
H,KCG

where  is the disjoint union of all transitive G-sets, and the product is
given by composition of morphisms in Cg or zero if two morphims can not
be composed.

Proposition 2.10 ([1]). The algebra p is generated by tiL, vt c, y, Aua
for KCHCG,r € G,ac€ R(G/K). The relations among ti, rit and c, n
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are the same as in the Mackey algebra, (1.2). The other relations are:

Ao+ AKb = AKath, 0,0 € R(G/K) (2.1a)
AKaAKD = AKabs 0,0 € R(G/K) (2.1b)

ko1 = 2t 2 € Z, where 1 is the unit of R(G/K) (2.1c)
N . = Aw(a)rfg, a€ R(G/H), KCHCG (2.1d)
Agath = tgxw(a), ac€R(G/H), KCHCG (2.1e)
Co, HAHa = NeH e, gy(a)Ca,Hs @ € R(G/H), v € G (2.1f)
AR TR = Ay, 0 € R(G/K), KCHCG (2.1g)

The opposite map Cr — Cj; induces an anti-isomorphism of the algebra
p that sends an element v to its transfer . On the generators of p, it’s given
by

~H H
ti,

TR = th = rH Co,H = Cyp—12p and AHa = AHq. (2.2)

Proposition 2.11 ([1]). The category of left R-modules is equivalent to the
category of left p-modules.

The isomorphism p-mod — R-mod is V' +— My, where My (X) = R(X x
Q) ®p(a2) V for all G-sets X and Q = UyceG/H. If X = G/H then
My (G/H) = R(G/H x Q) ®p(o2) V = (1ap) ®, V =15V
because R(G/H x Q) = Home,(G/H,Q?) = 1gp. The isomorphism from
R-mod to p-mod is M +— M(Q). If M = Rg/p then
Ra/a(2) = R(Q x G/H) = Home, (Q,G/H) = ply.

We now finish this section with the definitions of the box product over
R, Opg, and the internal homomorphism functor over R, Hpg, a subfunctor
of H, and a list of properties that O and Hp satisfy.

Definition 2.12. Let M be a right R-module and N a left R-module. The
Mackey functor MOgN is the coequalizer of MORON v A ION and

MORON fdBay MON, where ap; and ay are the actions of R in M and

N.

Definition 2.13. Let M and N be left R-modules. Hr(M, N) is the Mackey
functor defined by Hr(M, N)(X) = Homp med(M, Nx) for all G-sets X.

Proposition 2.14 ([1]). Let M be a bimodule, N and P be left modules.
Then

Hr(MORN, P) = Hr(N, Hp(M, P)).
In particular, Homp meq(MOgN, P) ~ Homp med (N, Hr(M, P)).

Corollary 2.15. Hy(-, P) is left exact, Op is right ezact.

For simplicity, from now on assume that R is a commutative Green func-
tor.
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Proposition 2.16 ([4]). If R is commutative and M and N are R-modules,
then MORN and Hr(M,N) are R-modules, and MORrN ~ NOrM.

Since the categories of left modules, right modules and bimodules over
a commutative Green functor are all equivalent, Proposition 2.14 says that
Ogr and Hg are adjoint functors in the category R-mod if R is commutative,
i.e. R-mod is a closed symmetric monoidal category, just like Mack(G).

Proposition 2.17. RxOpM ~ MOgrRx ~ Mx and Hr(Rx, M) ~ Mx,
for any R-module M.

This is the analogous of Proposition 1.11 and the second part is a gener-
alization of

HomR_mod(RX,M) ~ M(X) (2.3)

which is again the Yoneda lemma as in (1.3).

Proposition 2.18 ([1]). If M is an R-module, then Hr(M, M) is a Green
functor with the product 6 defined in 1.12.

Proposition 2.19. The product & defined in propostion 1.12 induces an
associative pairing

Hr(N,P)OHRr(M,N) — Hgr(M, P).

3. HOMOLOGICAL ALGEBRA

Lewis in [4] shows that Mack(G) and the categories of left and right R-
modules are abelian categories with enough injectives and projectives. The
projectives in Mack(G) are generated, as modules, by the representable
functors Ax. The projectives in R-mod are generated by Rx, they are
representable in the category of functors from Cr to Z-modules, which is
equivalent to R-mod (Proposition 2.9). Let Tor, Ext, Tor® and Extp be
the derived functors for O, H, Ogr and Hp respectively. By definition,
Ext™ (M, N) and Tor’(M, N) are just Mackey functors if M and N are R-
modules. If R is commutative, then Hr(M, N) and MOrN are R-modules
and that induces an R-module structure on Ext’(M, N) and TorZ(M, N).
Moreover the graded Mackey functor Extr(M, M) = @,>0 Ext’h (M, M) is a
Green functor with a Yoneda product induced by the pairing of Proposition
2.19 on the H cochain complex, which is constructed in the same way the
Hom cochain complex is for ordinary modules over a ring.

In the category of modules over an ordinary ring, we have the following
standard results that we will need later.

Proposition 3.1 (The short exact sequence trick). Given a short exact
sequence of modules over a fixed ring

0—A--BL.0c—0o,
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a projective resolution (Py,dy) for A and a projective resolution (Qx,dx) for
C, there is a projective resolution for B of the form

d d d
B Py 0 Py : P 2.
N NN \ (3.1)
Qo<5—CQ1<5—Qa~— "
0 1 2
I'm assuming the sign conventions in [9], namely if (C,d) is a chain com-

plex then the n'" translate of C, C[n], is the complex defined by C[n]; =
Citrn, with differentials (—1)"d.

Lemma 3.2. Let P, be a projective resolution for a module M
0— M~ p & plp— ...

and Q. be a projective resolution for a module N
0 N Qo2 Q& Qye—o -

Let f : P, — Q[—n]« be a chain map. Let Ty be the chain complex with
T,=N and T; =0 ifi # n. Let € : Q[—nl]« — T be the chain map defined
by €, = (—1)"¢ : Qo — N and €& = 0 for i # n where € : Qo — N s
the augmentation map. Then f is chain homotopic to zero if and only if
€f : P, — Ty is chain homotopic to zero.

Proposition 3.3. Ext}(M,N) ~ [Py, Q[—n]]

[Py, Q[—n]+«] denotes the group of chain homotopy equivalence classes of
chain maps P, — @Q[—n|,. The isomorphism sends a chain map f : P, —
Q[—n]« to the class represented by (—1)"ef. Lemma 3.2 shows that this
map is injective. See [9] for more details.

4. SOME EXACT FUNCTORS

In this section we describe some exact functors defined on the category
of modules over a Green functor. They are used in Part II to reduce the
computation of the Green functor Extr(F, F') to the computation of the
algebra Extr(F, F')(G/G), and also to build projective resolutions.

4.1. Induction and restriction. Fix a subgroup H of G. Given a G-set
X, let Resg X denote the H-set obtained from X by restricting the action.
For any H-set Y, let Indg Y be the G-set G x g Y defined in Example 1.3.
Res% and Ind are the restriction map A(7%) and the induction map A(7%)
in Example 1.3. Now define the functors Res$; : Mack(G) — Mack(H)
and Ind$, : Mack(H) — Mack(G) by

(Res% M)(Y) = M(Ind% Y) and (Ind% M)(X) = M(Res% X)
for every H-set Y and G-set X.
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Proposition 4.1 ([8]). Res$% : Mack(G) — Mack(H) is left and right

adjoint of Ind% : Mack(H) — Mack(G).

Proposition 4.2 ([1]). H(M,N)(G/H) ~ HomMack(H)(Resg M, Res& N)
The functors Res% and Indg also have good properties when considering

only Green functors or modules over a fixed Green functor. In [1] Bouc
proves the following results.

Proposition 4.3. Let R be a Green functor for the group G and M be an
R-module. Then Res$ R is a Green functor for H and Res$; M is a module
over Res$ R. If N is a Res$; R-module, then Ind% N is a module over R.

So we have well defined functors
Res% : R-mod — Res$ R-mod

and
Indg : Resg R-mod — R-mod .

Proposition 4.4. The restriction functor Resg is left and right adjoint to
the induction Ind$;.

Corollary 4.5. Res$ and Ind$, are exact.
Proposition 4.6. Let M and N be R-modules and H C G. Then

Hr(M,N)(G/H) ~ Homg .o Romod (Res$ M, Res$; N)

= Hpest R(Resg M, Res$ N)(H/H)
An obvious and useful corollary is:
Corollary 4.7. Let M, N be R-modules. Then
Ext}y(M, N)(G/H) ~ Extj o ronoq(ResE M, Resfy N)(H/H)

for any subgroup H C G.

Now let RY and RY denote the representation functors for G and H,
respectively. In the same way, let F¢ and F¥ denote the fixed point functors
for the groups G and H.

Lemma 4.8. Res§; R® = RY and Res§ F¢ = FH.

Proof. Trivial by the definitions of R, R¥, F& and FH, O
Corollary 4.9. Extpe(F®, FO)(G/H) ~ Extpu (F?, FH)(H/H)

Proof. Apply Corollary 4.7 with R the representation functor for G and
M =N =F¢. O
Corollary 4.10. Ext},¢(F¢, F¢)(G/e) =0 for alln > 0.

Proof. Since Resf R% = Z, the category of modules over the Green functor
ResS R is the category of Z-modules. The module ResS F¢ = Z is free,
S0

Ext}a(FC, FO)(G/e) ~ Ext% 04(2,2) =0 O
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4.2. The upside down functor U{. In this subsection G is a finite abelian
group and R is the representation Green functor for G and with coefficients
in any commutative ring Z with unit. The goal is to define an exact functor
U : R-mod — R-mod that will allow us to build a projective resolution in
Sections 6 and 7 in half the steps we’d have to do without it. The functor
U is induced by an isomorphism ¢ of the algebra p associated to the functor
R.

Note: R(X) denotes the value of the functor R at the G-set X and R[H]|
denotes the representation algebra of the group H. So R(G/H) is the value
of the functor R at G/H,i.e. R(G/H) = R[H| and G/H is just a G-set. The
representation algebra R[G/H| is not the same as R(G/H), the first only
makes sense if H is normal in G (which is always true for abelian groups),
the later is always defined even if the group is not abelian.

For any finite abelian group G, we define its dual to be
G* = Hom(G,Q/Z) .

There is a pairing G* x G — Q/Z defined by (o,g9) — o(g), i.e. it’s
evaluation of a map ¢ € G* at g € G. Given H C G, let

Ht={oceG*:0(h)=0forall he H} .

H* is a subgroup of G*. Since G is abelian, G is isomorphic to its dual. Fix
an isomorphism ¢ : G* — G and let H' = o(H*). The functor & depends
on this isomorphism .

Proposition 4.11. For any subgroups K and H of G, we have
(i) (KNH) =K'H'
(ii) (KH) = K'nH'
(i) If K C H then H C K" and [H : K] = [K': H'].

Let p be the algebra associated to R defined in Section 2. Its generators
are t%, r%, ¢z, 7 Where x are representatives of the left cosets G/H, and Ag »
where o € R[H]. It’s enough to consider Ay, for irreducible characters. If
o is not irreducible, then it is a linear combination of irreducible characteres
o =) z0; and, applying (2.1a) and (2.1c), Ag,e = D 2iAH,0-

Extend the isomorphism ¢ : G* — G used to define H' to the group
algebra Z[G*]. Since the group G is abelian, we identify Z[G*] with R[G],
SO

i Z[GY] — Z[HY]  and 1§ Z[HY] — Z[G]

denote the usual restriction and induction maps between R[G]| and R[H].
For each o € Z[H*] choose x € Z[G*] such that 7§ (x) = o. Such x
exists because 7§ is surjective (G is abelian). Let vy (o) = pp(x), where

p: G — G/H'is the quotient map. If 7§ (x1) = 7% (x2) for two characteres
X1, X2 € G* then x1x5 " € H* and so pp(x1x5 ') = 1, i.e. pp(x1) = po(x2)-
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So we get a well defined map of algebras ¢y : Z[H*| — Z[G/H'], which is
obviously an isomorphism. The map vy was defined so that the diagrams

Z|G¥] = R[G Z[G] R[G] Z[G]
ip and et Tpl (4.1)
Z[H*] = R[H Z|G/H' R[H] —— Z[G/H']

are commutative, where p~!(z) = 2 p(y)=z Y-

Now we will define the algebra homomorphism ¢ : p — p.

Since p ~ R(Q?), where Q = ®pceG/H, for every Green functor over
any finite group G, there is a Z-module isomorphism

~ P D RE/UHNK),

H,KCG zeH\G/K
whose inverse is given by
If G is abelian then

p~ @ ZIG/HKIR(G/(HN"K)) .

HKCG

And if we also assume that R is the representation functor, then
R(G/(HNK))=RHNK]~ Z|[(HNK)*] ~ Z[G/H'K']

where the last isomorphism is the map ¥gynx (together with Proposition
4.11) defined above. Thus

p~ @ (ZIG/HK]|® Z[G/H'K")) . (4.2)
HKCG
If HK CG,ue Z[G/HK] and v € Z|G/H'K'], denote by [u®u'|g k the
element u ® v’ in the (H, K)-component of this decomposition.

Define the product in the right-hand side of (4.2) by: the product of
[u® vk and [v®v']L ar is equal to 0 if K # L, and to

YK, H,M > [zuv ® z'u'v'| g (4.3)
reHKM/HM
o' €H'K'M' /H' M’

otherwise, where
yeam =[(KNHM): (KNH)(KNM).
Lemma 4.12. The Z-module isomorphim (4.2) is an algebra isomorphism.

Proof. To simplify notation, in this proof we will drop the index in the maps
Y, and denote by A\, and ¢, the elements Ay, and c¢; g, respectively, where
a € R(G/H) and z € H.

The inverse isomorphism (4.2) sends the element [u ® u/]gx to a =

tng)\wq(u/)curgmH, and [v® V| m to 3= t%mM)\wq(v/)cvr%M.
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If L # K then the product 3 is 0. If L = K, applying the relations (1.2)
and (2.1) in the algebra p to simplify the product a3, we get

H M
af= D KOMAG | )RR (0 ) G R
ceK/(HNK)(KNM)

H M _ 4+H M
If x € KN HM then t5ngamCon Hrknm = tHonknmCurTHnkn- And
since

tHOM HNAK KNM rHOM
HNKNM 0% = () r i Aiay (0~ (")) HAKNM
= AN (PR (W) (1 (0)

= Z AHﬂM,zp*l(x’u’v’)
z’eH'K'M'/H' M’
(the first equality is relation (2.1g), and the second follows from the defini-
tion of the isomorphisms 1 and the commutative diagrams 4.1), the product
af simplifies to

af = VrHM Z tgmM)‘zﬁl(x’u’v’)ca:uvT%mM
ceK/(KNHM)
o/ eH'K'M' /|H'M’
which is the image of (4.3). O

Let  be the map defined on the right-hand side of (4.2) that sends the
element [u ® «'|g k to the element [v/ @ u]pys k.

Lemma 4.13. The map t is an algebra homomorphism.

Proof. 1t is enough to show that g x v = vu’ k7 M. By Proposition 4.11,
we have

(K'nH'M/(K'nH(K'nM"))=(KHNM))/(KHNKM)
and so
v = [(K(HNM) - (KHNKM)']
=[KHNKM: K(HNM) .
Using the group isomorphism
(KNHM)/(KNH)(KNK))~(KHNKM)/(K(HNM)) ,
we finally get v k.M = Yo/ k7 M- O

Denote by ¢ the conjugate of 7 by the algebra isomorphism (4.2). Since 7 is
an algebra isomorphism, this map ¢ : p — p is also an algebra isomorphism.

Proposition 4.14. The map ¢ : p — p is an algebra isomorphism such
that 1* = id and
) =Ty, rg) = thy
ep o) = )‘H’,w;{}(:c) and  t(AH,0) = Cpp(o),H'
if o € R[H] is irreducible.
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Proof. Obviously (> = id because 7 also satisfies this property.
The isomorphim (4.2) interchanges the following pairs of elements:
th e~ leolgxy fKCH
it e—lolgy fKCH
Cz.H —— [t ® 1y n
Mo «—— 1@ Yy(o)|un
Applying the map ¢ to the elements on the right, we get respectively the
following four elements:

Leluk , DB@lgw, Q1@z|lwm and [Yu(o)® g,
(note that H' C K’ because K C H), which are mapped under the isomor-
phim (4.2) to

K’ K’
g, U )‘H',w;{}(x) and  Cyp (o)1 - O
The isomorphism ¢ : p — p induces a functor

U : p-mod — p-mod , M +—— M’

where M’ is the the module M with p-action defined by r - m = «(r)m, for
all m € M and r € p. Using the equivalence between p-mod and R-mod,
U can also be written as a functor &/ : R-mod — R-mod, M —— M’
where M’ is the Mackey functor defined by M'(G/H) = M(G/H') and
M'(a)) = M(t(e)) for all morphisms « in Cg.

Proposition 4.15. The functor

U : p-mod — p-mod
(or U : R-mod — R-mod) is eract and U? = id.
Proposition 4.16. U(ply) ~ plg and U(Rg ) ~ Ra/m-

Proof. The map t|p1, : plg — plys is an isomorphism from (plg)’ to
ply: because ¢ : p — p is an isomorphism of algebras. The second part
is equivalent to the first using the equivalence between R-modules and p-
modules. ([

Part II. The proofs
5. PRELIMINARIES

Fix a finite group G and a commutative ring Z with unit. Let R be the
representation functor for G with coefficients in Z and let F' = F' Pz be the
fixed point functor defined in Example 1.6. Proposition 2.17 gives the image
of the functor Hp(:, F') on the projective R-modules Ry. In this section,
we’ll see what the image is on maps between projective modules and, in
particular, what Hg(-, F')(G/G) is. Needless to say that this is what we
need to know to compute the derived functor Extg(-, F) of Hg(:, F).
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As we saw before, the representation functor R is a commutative Green
functor and F' is a module over R. The action of the ring R(G/H) = R[H]|
on the R(G/H)-module F(G/H) = Z is given by ¢ - z = dim(o)z for all
representations o € R[H| and z € Z. The functor F is also a Green functor
since F(G/H) = Z is a ring for all H C G and F(f) = 1 is a ring map
for all G-maps f : G/H — G/K. The maps F(f) also satisfy the transfer
conditions in Definition 2.4.

Let € : R — F be the map defined by the usual augmentation map
R[H] — Z, 0 — dimo (tensored with Z) at each G/H. This is a map
of R-modules and a map of Green functors. As a map of Green functors,
e induces a map of algebras € : p — p(F'), where p and p(F) are the
algebras associated to the Green functors R and F' respectively. As a map
of R-modules, since € is surjective, it gives F' ~ R/I where I = kere is
the augmentation ideal. Kernels of maps of Mackey functors are defined
levelwise, in this case I[(G/H) = I[H] is the usual augmentation ideal of
the ring R[H]. Still as a map of R-modules, e induces surjective maps
ex : Rx — Fx for all G-sets X, and ker(ex) = (kere)x = I'x.

We will say that a map of R-modules f: Rg/y — Rg/k is determined
by v € Rg/g(G/H) = 1yplk, if f corresponds to the map of p-modules
plg — plg given by multiplication on the right by v.

Proposition 5.1. Let f : Rg/g — Rg/x be the map determined by v €
Rg/k(G/H) = 1ypli. Then the map Hr(f, R) : Rg/x — Rg/m is
determined by v € Rg/p(G/K) = 1kply.

Proof. This propositon is really about the isomorphism
Hr(Rx,R) 2 Ry
in Proposition 2.17 when M = R. At the G-set Y, by definition of Hg
Hr(Rx,R)(Y) = Homp mod(Rx, Ry) = Hom¢, (X,Y),

by (2.3)
Rx(Y) = HOmR_mod(Ry,Rx) = HOmCR(}/, X)

So ¢ is the opposite map Cp — C7 that sends a morphism g to its transfer

~

g.
The proof now should be easy. Let f* = Hg(f, R). At the G-set G/K,

the map f*(G/K) sends the identity map id € Hompg.mod(Ra /x> Ra/k)
to f € Homp.mod(Ra/ms Ra/k).- By 217, f* 1 Rg/x — Rg/i is deter-
mined by f*(G/K)(id) which is f which is identified with v as an element

Proposition 5.2. Let f be the map on Proposition 5.1. Then Hg(f, F) :
Fa/x — Fgym is the map determined by ().
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Proof. We already know that Hr(f, R) is xv. Let f* = Hgr(f,F). The
diagram

Re/x —2> Ra/m

ieG/K iEG/H

Fo/x L>FG/H

is commutative. It can also be written as

plk L> ply m li> mo
I I ~
p(F)1x — p(F)ly e(m) —— ¢(mu)

(The bottom row is actually a map of p(F')-modules but is also a map of
p-modules via the augmentation map € : p — p(F').) The vertical arrows
are surjective and e(mv) = e(m)e(v) so f* is xe(0). O

There is an abuse of notation in the statement of Proposition 5.2. The
element €(v) € p(F) determines a map of F-modules from Fg/x to Fg
xe(B)

which corresponds to the map of p(F)-modules p(F)lxy —= p(F)lk.

But since F' is an R-module, the map Fg /g x40, Fg/p is also a map

of R-modules. We will write xe(v), or even just X, to denote the map of
R-modules too, as we did in 5.2.

Let X be a transitive G-set. The functor F'x is representable as an F-
module. As as R-module, Fx is a quotient of a representable R-module,
Fx ~ Rx/Ix. In terms of modules over the algebra p, the corresponding
module Fy is a quotient of the submodule of Ry of p. The units 1 and

1r of the Green functors R and F' induce maps of algebras pu N p and

1 1r, p(F). It’s easy to check that 1p is surjective and it factors throuth p,
i.e. the following diagram commutes

1
p—"Lsp

N

p(F)

Since 1p is surjective, the elements Ay, in p(F) can be written in terms
of T‘%, t% and c¢; g which are in p and also in p. By abuse of notation, we
will consider ﬁX as a submodule of p since we don’t need any of the extra
generators A\g, € p(F'), and drop any references to the algebra p(F'), unless
it is needed to clarify some argument.

Let F be the p-module corresponding to F. Then F = PucgZ with
p-action defined by: r% sends the H-th to the K-th component, t% is mul-
tiplication by [H : K] from the K-th to the H-th component, ¢, g sends
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the H-th component to the “*H-th component, and Ag, is multiplication
by dim(o) in the H-th component. So F is isomorphic the submodule gen-
erated by the elements rg with H C G. We will denote this module by
Z[r%: H C Gl
Proposition 5.3.

(i) Hom,(ply, F) = Z is generated as a Z-module by 15 — ré&
(ii) Hom,(ri, Ij’N) =1 VKCHCG
(iii) Hom,(t}f, F)=[H:K] YKCHCG
(iv) Hom,(cz m, )— 1 VzeeGHCG
(v) Homp()\HU, F)=dimo YV HCG,o e R[H]
where T‘K plg — ply, tK :plyg — plk, cog : plys — plyg and
Ado : pPly — ply denote multiplication on the right by rﬁ, t%, Ce,H and
Ao respectively.

Proof. A morphlsm of p-modules ply — F is determined by the image of
1g. Since F = Z[r& : H C G], the Z-module Hom,(ply, F) is generated
by the maps i : 1y — ’I“IG<. But

0 fK+#H
ox(lm) = e (1Y) = lpex(1g) = 1grf = { ré ifKiH

SO p generates Homp(le,Fv).
Parts (ii), (iii), (iv) and (v) follow from part (i) and the remark before
the lemma. U

Proposition 5.4. If K C H and K # H, thent r% acts as multiplication
by [H : K] on the p-module ﬁg/L forall L CG.

Proof. To make this proof precise, we need to go back to the algebra p(F).
By equation (2.1g) tiril = Afii() n p(F), where t(1) is notation for
F(m)(1) and 7 : G/K — G/H is the quotient map. Since F(7i)(1) =
[H : K], the result follows from equation (2.1c) and from the fact that the
action of p on ﬁg/L is induced by the action of p(F') on p(F)1r. O

Let€: plyg — F be the map of p-modules corresponding to € : R — F.
It is defined by 16 — rg = 1g. Recall that I = ker € is the augmentation

ideal. So I is the kernel of €.

Lemma 5.5. Suppose G is abelian and is generated by {gi,...,gn}. Then
I=p{rco, —lali=1,...,n}

where o; = ¢(g;) for some fized isomorphism ¢ : Z[G] — R|G].

Proof. Since the map r% : R[G] — R[H] is surjective because G is abelian,

then I[H] = r%(I[G]) and this implies that I is generated by 1¢I = I[G).
The ideal I[G] is generated by {o — 1|o irreducible character}. Since R[G]
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is isomorphic to the group ring Z[G], the characters o; generate R[G| and
0; — 1 generate I[G] as an R[G]-module. O

Corollary 5.6. Let 0y : (plg)™ — plg be the map
=2 —1la - Ago, —lc |
where o; was defined in Lemma 5.5. Then
0 F < plg <2 (plg)"
1S exact.
Another way of stating this corollary is
F=pla/p{Ace; —1ali=1,...,n}
In general
Corollary 5.7. If G is abelian, then
Foiu = plu/p{ o — Lilo € R[H] irreducible}
for all H C G.

Proof. Since € : R — F is surjective, eq/iy : Rgg — Fg/u also is.
As in 5.5, kereg,y is generated by kereq/y(G/H) which is generated by
)\H,a —1g. O

Let G = (Z/2)™ and i be the Mackey algebra for G.
Proposition 5.8. If G = (Z/2)", the algebra p is generated by
{(ti K CHCGY}.

Proof. If ok is an irreducible representation (or character) of H C G with
ker = K, then [H : K] = 2 and t{(1) = 1 + ok where 1 is the trivial
representation. Equation (2.1g) with a = 1 gives

Moy = thr — Lu. (5.1)

Given any representation o of the subgroup H, it can be written as a sum of

irreducible representations and so, applying (2.1a) and (5.1), we can write

AH,s as a linear combination of products of inductions and restrictions.
The relation (1.2g) with L = K and H = (K, x) gives

Coie = T 1 (5.2)

forallz €e G/H, x ¢ H. O

Corollary 5.9. Let m: u — p be the map that sends any element of u to
the element in p with the same name. Then 7 is surjective and p ~ u/ ker .
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Corollary 5.10. Let G = (Z/2)" = (Tr,...,T,) and Z = Fa. Let 0y :
(plg)" — pla be

— G G .. G G
0o = [ by by T Ty } :
Then
0 F < plg & (ple)"
18 exact.
Proof. Trivial from Corollary 5.5 and (5.1). O

6. THE CYCLIC CASE

In this section G = Z /2™ = (T') and the coefficient ring is 5. Let R be
the representation functor and F' be the fixed point functor as in Section 5.
We prove the following theorem.

Theorem 6.1. The Green functor Extr(F, F') is given by

Extg(F, F)(G/H) = Falys, 24]/ (43 = 0) (6.1)
for H C G, H # e, where x4 has degree 4 and y3 has degree 3, and
EXtR(F, F)(G/e) = FQ . (62)

If K # e, the restriction map r% s the ring map that sends y3 to zero and
x4 to x4, the induction map t% sends ysxly to yszly and x4 to zero, for all
1> 0.

Let p be the algebra associated to R. Fix an isomorphism ¢ : G* — G
and let (o) = T. The upside down functor ¢ defined in Section 4.2 switches
the maps xcr,. and XAg,. We also denote by T' the generators of the
subgroups Z/2% C 7/2" and by ¢ the restriction of o to Z/2*. So U switches
cr,i wWith Mg , for all H C G. And we will drop the x on the maps xv. As
a map, an element v of p always denotes multiplication on the right.

Proposition 6.2. The long exact sequence

la+Xra,os r& lecp,e t& lg+Ag,s
R R “ee

RG/e RG/e

(6.3)
is a projective R-resolution for F.

Proof. The first differential 0y = 15 + Ag,» comes from Corollary 5.6. Lev-

elwise, i.e. at the G-set G/H with H = Z/2*, 9y(G/H) is R[H] =2 R[H]
and its kernel is generated by the regular representation 1+o+- - o2l =
t(1). This implies that ker 0y is generated as an R-module by the trivial
representation of R(G/e) = R[e] and so the next term of the resolution is
Rgj. and the differential 0; is ré.

It looks like 0y should be t¢ and not &, but recall that the elements of
p act on the left as the morphims in an R-module and act on the right to

define maps between representable R-modules (or p-submodules). Also, the
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trivial representation of the trivial subgroup lies in R(G/e) = 1l.plg and
corresponds to the element r$, and so ker 9y = pr¢.

At G/H with H = 7/2%, 8;(G/H) is the map R]e] — R[H] that
sends 1 of each component to 1 +o0 + -+ + 02*~1. The kernel is gener-
ated by the elements (1,1,0,...,0), (0,1,1,0,...,0), ..., (0,...,0,1,1).
Again all of them are obtained from the kernel of 0;(G/e), and all of
the elements of ker 9;(G/e) are obtained from (1,1,0,...,0) by conjuga-
tion. Since (1,1,0,...,0) in Rg/(G/e) = leple corresponds to e + cre,
ker = p(le + cre) and so the next term of the resolution is Rg/. with
differential 9 = 1. + c7e.

Now notice that U(kerdi) = U(p(le + cre)) = p(lg + Ag,») and, by
Lemma 5.5, this is the augmentation ideal. To get the rest of the resolution,
including 0s, just apply the upside down functor I to the bit of the resolution
we already have: 9y = U(y), 03 = U(D1), Oy = U(D2) = U?*(0y) = Oy and
we are back to the beginning. O

on—k

We constructed the resolution with both R-modules and p-modules. These
two categories are equivalent and sometimes one of them is better than the
other. The functors have the advantage of breaking the computation of
kernels to each level, the algebra p provides a good way to put everything
together and identify the maps more easily, since we are dealing with sub-
modules of p. We can also write the resolution (6.3) as

G G

Pl <28 g1 1 T 1 10 (6

Let M be the Mackey functor defined by M(G/H) = Z if H # e and

M(GJe) = 0, M(f) =1 for all G-maps f : G/K — G/H if K # e and

all tranfers M(f) = 0. Let N be the R-module that has the same value on

objects as M with morphims N(7¥) = 0, N(y,g) = 1 and N(7) = 1,

where 74 : G/K — G/H is the quotient map and v, 5 : G/H — G/H
is a conjugation map.

M(G/H) =2 N(G/H) =2
1 o of |1
M(G/K) =2 N(G/K)=Z2
o| o of |o
M(GJe) =0 N(GJe) =0

Proposition 6.3.

ifn=20

ifn=14+4k orn=2+4k, k>0
ifn=34+4k,k>0

ifn=4k, k>0

Ext’(F, F) =

=z oM
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Proof. Since the resolution (6.3) is 4-periodic, Ext\f*(F, F) = Ext’(F, F)
for all 7 > 1.

Apply the functor Hg(-, F') to the resolution (6.3). By Proposition 2.17
we get the complex

o 1 é
Fgje —>F —>F —

where 6; = Hp(0;, F). From Proposition 5.2, we have dp = 1lg + Ag0,
61 = t%, 0y = 1c + cre and d3 = r¢. Since dim(o) = 1, dp = 0 and so
Ext%(F,F) =ker§y = F.

A map of R-modules from a functor Fg /g to any module is determined
at the G-set G/K. So 01, d2 and 03 are determined by §;1(G/G), 62(G/e)
and 03(G/e). Writing the differentials in matrix form, instead of using an
element of p, the complex becomes

at G/G :Fy—2>Fy— >Fy— 2 ~Fy— 2 > F, >
at G/H : Fy *O>IF2*A>[F%””“ *A>F%”*’“ L>F2*0>

at G/e: Fy 0 Fy A F%" A F2%" * > T, 0
where H = 7Z,/2* for 1 < k < n, A is the diagonal map and
1 0 --- 0 17
1 1 . 10
A=10 1 . 0
. o100
0 -~ 0 1 1]

Now compute the cohomology of each row to get Ext’,(F, F) at each tran-
sitive G-set. The morphisms are induced from F and Fg/, since each
Ext'y(F, F') is a subfunctor of one of these. O

Proposition 6.4. As an algebra, Extp(ﬁ’, F) = Falys, z4]/(y3 = 0) where
x4 has degree 4 and y3 has degree 3.

Proof. As a graded vector space, Extp(ﬁ,ﬁ) = Extgr(F,F)(G/G). The
algebra struture is given by composition of chain maps since Extﬁ)(F, F) =
[Py, P[—i].], where P, is the resolution (6.4).

Let z4 and y3 be the nonzero classes in Ext,(F, F') of degree 3 and 4
respectively. Let a : P, — P[—4]. be

{0, 0<i<3
oy =

1, i>4
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and (3, : P. — P[-3], be

( 0 if0<i<?2
r& ifi =344k, k>0
ST Agoi ifi=4+4k k>0
ﬁi: jeven ’
t¢ ifi=5+4k,k>0
> epie ifi=6+4k k>0

jeven

It’s easy to see that both «, and (3, are chain maps. To see that they are
not chain homotopic to zero, we are going to apply Lemma 3.2.

The chain map a is chain homotopic to zero if and only if there is a map
¢:ple — F such that P03 = eau, Where €:plg — F is the augmentation
map. A map ¢ : pl, — F is either 7" or zero. So ¢03 is 1g + Ag,» or zero,
which is always different from eay = 1G

Again by Lemma 3.2, the chain map f, is chain homotopic to zero if and
only if there is a map ¢ : pl — F such that ¢62 = €3 =Y. As above, a
nonzero map ¢ must be %, s0 ¢pds = (1 + cr.6)rS = 0 # €.

Since o, and S, are not chain homotopic to zero, they represent the classes
x4 and y3. o

The class y3 is zero because Extg(F, F)=0.

Composing any chain map v : P, — P[—n]. with a,, on the left or on
the right, gives

On On, On

Py <" Py <" e Pay = Pag < P =
l \L l \L’Yn+4 \L'Yn-‘rS
0 0
0 0 e 0 Py<—"— P <—

Since the resolution P, is 4-periodic, i.e. 0,14 = 0; for all i > 0, we can
assume that -, satisfies 7,14 = 7; for i« > n (if not, we can replace v, by
a chain homotipic map satisfying this condition). So, by Lemma 3.2, if ~,
is not chain hqmotopic to zero, auyx = Va0 is not either. This argument
implies that o and B.a are not homotopic to zero for all 5 > 0, and since
all these classes have different degrees, they are linearly independent. O

Propositions 6.3 and 6.4 together imply Theorem 6.1.

7. THE Z/2 X /2 CASE

Let G = Z/2 x Z/2 and let the coefficient ring be Fa. The goal of this
section is to compute the graded Green functor Extg(F, F'), where R is the
representation Green functor and F' is the fixed point functor, a module over
R. First we build a projective resolution. The tools used are the short exact
sequence trick (Lemma 3.1), the upside down functor U defined in Section
4.2 and the induction functor Ind$ of Section 4.1. Then we compute the



THE REPRESENTATION GREEN FUNCTOR FOR ABELIAN GROUPS 27

algebra Extr(F, F)(G/G). The value of Extr(F, F) at the other orbits and
morphisms are obtained by applying the restriction functor Resf].

7.1. A projective resolution. Let i be the Mackey algebra over Fo for
the group Z/2 x 7Z/2. Let p be the algebra associated to R. Let S and T
be two generators of the group GG. We will also denote by S, T" and ST the
subgroups of order two generated by these elements.

Proposition 7.1. p = u/(tSr% + t§r§ + tSr& + G rG)

Proof. By Corollary 5.9 all we need to do is to compute ker 7.

The rank of p is rkA(Q?) = 53, where Q = Ilyc¢G/H. The rank of p is
rkR(Q?) = 52. So ker 7 has rank 1.

Equation (2.1g) with H = G, K = e and a = 1 gives

G.G_
tere = AG 1+os+or+osy

where o, denotes the irreducible character with kernel L. Now apply (5.1)
and (2.1a) to get

tSr8 = tGr§ +t5rG + tGrgr. (7.1)
Notice that the relation (7.1) does not hold in p because the four elements
involved are linearly independent in u (see [7]), so ker7 is generated by
98 + 157G +1GrG + G rgr. O
Lemma 7.2. The sequences

H, .H H
te Te Te

plp Pl ple
for H=S5,T,5T, are exact.

Proof. Apply the functor Ind% to the resolution (6.4) with G replaced by
H. The sequence obtained is exact because Ind% is an exact functor. (|

Lemma 7.3. The sequences

GtG tG tG G G GtG
Pl =" ply <" plg <" plg < ply <
for H=S5,T,5T, are exact.
Proof. Apply the upside down functor U to Lemma 7.2. O

Let M = Rg/s® Rg/7® Ra/st and let M be the p-module corresponding
to M.

Lemma 7.4. Let 0y : pl% — plg, 01 : M — pl% and 9y : M@ple — M
be the maps

a.G 4G.G r§ 0 gy
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and
r§tg 0 o
0y = 0 7"7@ t% 0 rl )
0 0 rthgT rf T

where an entry m € p is a map pli allll plp. Then
plg<8—0p1é<a—1j/\\j<a—2j/\\j®ple
18 exact.

Proof. ITm 0;41 C ker 0;,i = 0, 1: Trivial.

ker 9y C Im dy: The elements in ker 9y are of the form (vq,0) with v, €
ker t4r$, or (0,v) with vo € kert$r%, or (v1,ve) with vy ¢ kertGrg, vy ¢
ker tgrjq and vltng = vgtgrg. The first case gives p(rg,O) C ker 0, the
second case gives p(0,7%) C ker dp, and if (v1,v2) is in the third case then
both vlt%r% and Ugtgrg belong to

ptSrS 0 ptSr§ = Fo (t97C 5T4C8) = pt5 TG

e'er’e €

and so (vy,v2) € p(rgT, rng) because threG = rgT(t%r%) = rgT(tgrg).

ker 01 C Im 0do: The element (vq,ve,v3) € M is in ker O iff
7§ = vor§ = var§y. (7.2)
Obviously (v1,0,0), (0,v2,0) and (0,0,v3) are in the kernel of 9 if v; €
ker rgf = prgtg, vg € ker r% = pr%t% and v € ker 7"§T = prthgT.
Now suppose that (vq,ve,v3) € ker 9y with vy ¢ ker rg. Then vy ¢ ker rg
and v3 ¢ ker 7§y, We want to show that

(Uh V2, U3> € P(Tfa 7{; TET) mod p(r§t§7 07 0)@10(()7 T’gt?, O)EBp(Oa 07 rthgT)'
(7.3)

Since

nir§ € prif N pr§p = Folrd g t3rd 08 12Trg) = prl

then vy € pre. Similarly vy € prl and vz € pr3T. If we replace v; = r?

in (7.2), we get vy = cg7e7°eT and vg = ch,erfT for some g,h € G (check the

multiplication table in the appendix). But ¢ 1l = tI' + (1. + ¢4 ¢)rl where

(le +cge)rl € prjq t% and similarly for vs. This proves (7.3) which implies

ker a1 g p<(7"gt§, 07 0)7 (07 qutg, O)a (07 07 rthgT)a (TS TT TST» =Im 82' U

erer’e

Lemma 7.5. Let 9} : p12 — pl., 94 : M — p12 and &) : M@ plg — M
be the maps

/ S, T,T / 20 57
80 = [ 7'6 te 7'6 te :| s 81 = O tT tST R
[ €
and e G
/ oy TO . 0 t%
82 = 0 te Te O tT

0 0 2T 4G,
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Then
pleﬁplgﬁﬁiﬂ@plg
1S exact.
Proof. Apply the upside down functor U to Lemma 7.4. O

Proposition 7.6. There is a projective p-resolution for F of the form

Plo<5—Plg=<5— M 1%, p1E; M
NU® N8 N ea‘\\ ea‘\\\
Ple <= pli < M\ 1\7\

@
ple <—

where each row becomes J-periodic after the first two maps, and so do the
correction maps between any two different rows. The maps dy, 01, O and
04 were defined in the Lemmas 7.4 and 7.5.

Proof. The exact sequence of Lemma 7.4 is the beginning of a resolution P
for F. The idea is to apply the short exact sequence trick (Proposition 3.1)
with A = Im(02|37), B = Imdy and C = B/A. We only need projective
resolutions for A and C.

The map 0|7 7 : M — M is diagonal and each diagonal entry is rHtG :
ply — ply (H = S,T or ST'), which occurs as a map in the exact sequence
of Lemma 7.3. So a resolution for A is obtained by taking the direct sum of
the three long exact sequences of Lemma 7.3 and that is the first row of the
resolution Pk.

By definition

C =Im(02/p1.)/(Im(02|p1.) N Im(2[37))
where Im(&|p1,) = p(r, vl r27)
Im(ds|7) = p(r§t§,0,0) ® p(0,rFt5, 0) ® p(0, 0, 7§t Sr).
Using the multiplication table in the appendix, we get
C = Fo(tHr S JH.T H,. ST) HCG)

676 6766

and

Now it is easy to see that C' is a p-module with rank 5, 17C = Fy for every
subgroup H, t% acts by left multiplication and rlfg acts as zero if H # K,
i.e. C is isomorpic to U(F) = Fo(tH : H C G). So U(P,) is a projective
resolution for C. O

Next we’ll give a more detailed description of the maps in the resolution
P.. Everything follows from the way P, was constructed, namely the short
exact sequence trick.
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If we write the differential maps of P, as matrices as in Lemmas 7.4 and
7.5, we get

Oar: — D3+i *
3+i — 0 L{(&)

for ¢ > 0, where Ds,; is a 3 x 3 block whose entries are the maps in the first
row of the resolution for F', so the index 3 + ¢ should be taken mod 4, i.e.
there are only four of these blocks and they appear periodicaly with period
four. They are:

e e . -G
tgrg oo tg o
Do = tTTT o o D1 = tT .
i tsrrsr | L tor
GG . e
rgtg rg
Dy = r%t? D3 = ’I“g
G .G G
i rsrtsr | i rsr

These blocks correspond to the direct sum of the three long exact sequences
of Lemma 7.3.
If 4 > 1, the block * has at least 3 columns, so we can write

D — Dyii| Asyi *
3+1 — 0 ‘ Z/I((‘)Z)

where As.; is a 3 x 3 block obtained by applying once the short exact
sequence trick. Like the blocks in the diogonal, the A3y; are also 4-periodic.
They are:

G G S S

ryE  Trgr 0 Ty Ty

Ag=A1=| 7§ 0 4, and Ay =A3=| I 0 oI
rg 7’% 0 rfT rfT 0

The second application of the short exact sequence trick allows us to write
the differential maps in the form

Deyi Agti *
Ooyi = 0  U(Detiv1) *
0 0 0;
for ¢ > 0.
If 7 > 1 the we can write
De+i Agri Beti
Oori= | 0 |UDeyit1) | U(Apriv1) *
0 0 0;
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where
0 0 rjq rgT
By = 0 ,  Bi=|r§ 0 r§ |,
t3TpST rg ¢ 0
AG,ST AG,ST AG,ST
Bo=| Aas Ags  Aas ,
et Aar  la
0 tg tg +tSrfd
By = | t§ +tSrT 0 tg
G G G..ST G.ST
tS’T tST + te Te te Te

We can keep on breaking 9; into 3 x 3 blocks, each of them occurring with
period 4. But since 0; is a (i + 1) X (i + 2) matrix, there are also blocks of
size 1 x2,2x3,3x1 and 3 x 2. The nonzero 1 x 2 blocks are either 9y or 9],
and occur in the right lower corner of d3;, kK > 0. The nonzero 2 x 3 blocks
are either 9; or 9] and occur in the right lower corner of 943x, k > 0. The
3 x 1 blocks occur in the last column of 0o 43, £ > 0. The 3 x 2 blocks occur
in the last two columns of J3, k > 1.

In Section 7.2, we’ll need the following differentials:

D3 Y Dy Ap |
82:[D2 Z]? 83:|:0 8(l):|> 64:|:0 ai_v
Do Ag w
| Dy A X
0 0 Oy
D3 A3 By Dy AO By Vv
Or = 0 U(Dy) U(Ap) , Og = 0 U(Dy) U(A) UX)
0 0 o1 0 0 Do A
and
D1 A By U
o _ | 0 UDy) UA) UW)
271 0 Dy Y )
0 0 0 oA
where
] o tg
V= |G|, W=|tZ&+5rT 0 :
ré | tSr tGr +tSrdT
AG.sT | 0o rs rs
X = )\G,S , Y = TZ 0 , 7 = Tg
Ao FST ST ST

and U is 0.
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7.2. The algebra Extr(F, F)(G/G). Since

9, — * *
oo

we can write P; = Q; @ P,_¢g for i > 6. Let z : P, — P[—6], be the chain
map where x; is the projection Q; & P,_¢ — P;_¢, 1 > 6.

Lemma 7.7. Let f : P, — P[—n], be any chain map. Then f ~ 0 iff
fx~0.
Proof. Apply Lemma 3.2. O

Proposition 7.8. Let (Py,0y) be the resolution in Proposition 7.6. There
are chain maps « : P, — P[-3|.,  : P, — P[-4]« and v : P, —
P[-5], all not homotopic to zero, such that

(i) a, B and v commute with each other up to a chain homotopy

Proof. Let
az=[r§ 1F r§p 0], Ba=[1lg 1la¢ 1la 0 0],
w=[0 00 1§ o iG]
Since the image of a303 is in the image of Jy, we can lift a3 : P3 — Py to a

chain map « : P, — P[—3|.. Similarly, 84 : Py — Py and v5 : P5s — Fy
also define chain maps (: P, — P[—4], and v : P, — P[-5]..

Lemma 7.9. «, § and v are not chain homotopic to 0.
Proof. By Lemma 3.2, o ~ 0 iff there is 7 : M — F such that

¢y =eaz=[r§ ¢ r§p 0],
where € : plg — Fis surjective. But all maps from M to F are of the form
¢ = [ a; as as ] with a1 : plg — F, so a; is either 0 or rgf. Similarly
for as and a3. So ¢p0y = [ 0 0 0 = ] = eag for all ¢.

The same argument works for 3. N
If v ~ 0, then there is ¢ : pl‘é @ p12 — F such that

¢84:e'y5:[0 00 rg; r% rgT].
¢ must be [al as as a4 a5}with a; = 1g or 0 for ¢ = 1,2,3, and
ai:reGorOforizél,B. Ifa4:r§anda5:0then
pos=[0 0 0 0 ¢ r§. ] .

If a4 = 0 and a5 = reG then ¢04 = [ 0 00 rg; 0 rgT } There are at
most two nonzero entries in ¢ds and so ¢pdy # €5 for all ¢. (|
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To prove parts (i), (ii) and (iii), we need the following liftings of the chain
maps «, 8 and ~:
s

Qg =

G 1G

a7 = rSr

1q r T
_ S T
o8 = TS 15

Br = 1oy

G
la rs st

By = Is Is
T.T T.T T

17 tf T, 17 tf T, C&Jf

ST

8= 0 rST lgr

Y9 = 0 rr T
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[ 0 TgT t%"g |
0 s tSrrer oo
o = | ———7 i A
tg CTeTe
& rg csﬁreT
L th Te

All of them are obtained by direct computation using the differential maps
up to dy which were listed at the end of Section 7.1.

Part (i): By Lemma 3.2, to see that a8 ~ (a, it’s enough to find a ¢
such that ¢J7 = e(a3f7; — Baar). In this case

¢p=[0 0 0 r§ r¥ r§ 0]

does the job. Since e(agys — v5as) = 0 and €(8479 — v509) = 0, we can take
¢ = 0 to show that ay ~ va and Gy ~ 0.
Part (ii): Let ¢ = [ ¢ 1¢ 1¢ 0 0 O ] Then

¢85:e(a3a6—x6):[rg qu T‘gT 0 0 0 1G]7

so a? ~ .
Part (iii): ey5710 = 0, so 72 ~ 0.

To prove parts (iv) and (v) we need the following

Lemma 7.10. Ifi > 7, then

(7.4)

Proof. Suppose it’s true for §;. Recall that

. DZ * ) o Di—4 *
82'—[0 *:| and (91_4—[ 0 *:|

with D;_4 = D;. (;11 is a map that satisfies §;0; = 9;_45;11, so it can be
of the form (7.4). O
From Lemma 7.10, we have

azfBr o Bapan = [ 1§ rE vy x|

and
BaBs- - Pagan = [ la la la *].

Now the proof that shows a 2 0 and 3 % 0 also works in this case, and so
we get af" £ 0 and " £ 0.
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Lemma 7.11. Ifi > 10, then

1

Bi = 1

*

Proof. (19 can be computed directly from fBg9. One possible lifting is

[ 1g 5Ty rd ]
17 t*egreT *
Lt
Bro = g tg
17 t¢ ¢ 1§
Lsp
L 1G 1G 1G TeG |

The result now follows by induction as in Lemma 7.10, but using

9= 0 UDip1) = U
0 0 *

Part (vi): From Lemma 7.11
VB9 Psran=1[0 0 0 rg rf 7§y x]
so, as in parts (iv) and (v), the proof that v 2 0 also shows that v % 0.
Part (vii): If ya3" ~ 0 then there is ¢ : M ® p13 @ --- — F such that
PO074+4n = €ys08. Since

evsa8f12616 Bsyan = [0 0 0 r& & rG x|

it’s enough to consider ¢ of the form [ 0 0 0 ap ay ag = ] with a; :
ple — F'. So a; is either 0 or rf. But

¢Or1an=1[0 0 0 0 0 0 = ]+#eysasBiaBie- Pstan

for all possible ¢ because (1. + cz¢)rS = 0 for all z € G. That shows that
vaf" £ 0.

To prove that ya 8™ % "2, do the same as in part (v). It works because

e(v508B12 -+ Pagan — Pafs -+ PBsgan) = [ 1¢ 1o la * | . O

Corollary 7.12. The algebra Extp(f,ﬁ) contains a subalgebra isomorphic
to

Falys, x4, y5]/ (43 = 0),
where deg(y;) =i and deg(z4) = 4.
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Let Q; = Hom,(P;, F), §; = Hom,(9;, F) and & = Hom,(U(8;), F). By
Proposition 5.3, Q; = F‘H Let Q = ®Q;. Keeping track of the blocks of
d;, which are induced by the blocks of 0; discussed at the end of Section 7.1,
after applying the functor Hom,(-, F ) to the resolution of Proposition 7.6,
we get the following picture where each arrow is one block

This block decomposition defines a decreasing filtration F'Q > F'Q >

D FPQ D --- of Q, where FOQ = Q, F'Q is Q without the first row of
blocks, i.e. the first row of (7.5), in general FPQ is @@ without the first p
rows of blocks. There is a spectral sequence associated to the filtration with
EP? = HPTI(FPQ/FPT1Q) converging to H(Q) = Ext,(F, F) (Thgorem 2.6
in [6]). The differentials d; of the spectral sequence are Hom,(4;, F') (A; are
the blocks of 9; above the blocks in the diagonal), the dy are Hom,(B;, F)
(B; are the blocks above the A4;), etc.

Lemma 7.13. If p is even then

0 i<3p
FQ i:3p
, 0 2=3p+1
HY(FPQ/FPTQ) =
F3 i=3p+3+4k or3p+4+4k k>0
0 ¢=3p+5+4k or3p+6+4k, k>0

If p is odd then

0 i<3p
FQ z':3p
HY(FPQ/FPTQ) =< F3 i=3p+1
F3 i=3p+2+4k or3p+5+4k, k>0
0 i=3p+3+4k or3p+4+4kk>0

Proof. The quotient FPQ/FP*1Q is the p-th row of blocks of (7.5), which
is the image of the p-th row of P, under the functor Hom,(-, ). So, if p is
even, then H'(FPQ/FPT!Q) is the cohomology of the complex

1
Fy — 3
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shifted by 3p, where d; = Hom,(D;). And if p is odd, then H'(FPQ/FPT1Q)
is the cohomology of

5 5 d d,

Fy IF2 F3 F3 F3 F3 F3 (7.7)
shifted by 3p, where d; = Hom,(U(D;)). O
Corollary 7.14. The Eq-term of the spectral sequence is:

([ Fy ifqg=0
0 ifg=1
EY'={ Fy ifqg=2
F3 ifq=3+4k or4+4k, k>0
0 #fq=5+4k or6+4k,k>0
0 #q=0,1
FQ ’if q= 2
E/"={ F3 ifq=3
F3 ifq=4k or 3+ 4k, k> 1
(L 0 ifg=1+4k or2+4kk>1
and Ef+2’q+4 = EP? for all p,q > 0.
3l 3. 3. 3
31 3. 3. 2
1. 1
FE1-term:
o The numbers are the ranks of
3l 3 1 dy each Ef’q. No number means

the rank is zero.

3l 2

1] 1
0,0

1 dl;

-

Proposition 7.15. There is a map x : £, — FE,. of graded modules such
that x(EP9) C EPT2ate,

Proof. Since the chain map z : P, — P[—6], preserves the filtration of P,
x acts on the E,-terms of the spectral sequence increasing the degree by 6.
x represents a class in Extp(ﬁ , F ), so z : B, — E, is not the zero map and
it must send 1 € E,(_]’0 to a class in E,. of degree 6. The only nonzero class
of degree 6 in B lies in B> so z: EPY — BP9 forall p.g>0. O
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Lemma 7.16. The Es-term of the spectral sequence is:
E%9 — Fyo g=4k or34+4k, k>0

2 71 0 otherwise
pla _ Fo g=4k or3+4k,k>1

2 71 0 otherwise

and E§+2’q+4 = ED? for all p,q > 0.

Proof. From Lemma 5.3 we have Hom(Z) =[1 1 1 |,
[ 01 1 } 0 11
Hom(Y) = , Hom(4;)= |1 0 1
1 01
110
and Hom(U(Z)) = 0, Hom(U(Y)) = 0, Hom(U(A;)) = 0.

The differentials di’q are induced by the maps Hom(U(Z)), Hom(U(Y"))
and Hom(U(A4;)), so they are zero.

The differential cl(l)’2 : E?’2 — Ell’2 is the restriction of Hom(Z) to the
quotient E?’Q = ker dp/ Im §; which is generated by the class (1,1,1) (recall
that E?’q is the homology of the complex (7.6)). Since Hom(Z)(1,1,1) =1,
then d(l)’2 =1.

From (7.6) and (7.7), we see that E¥"? is a quotient by 0 if ¢ = 3 + 4k
or 444k, k> 0and p = 0,1, so dv® = Hom(Y) and d*? = Hom(4,), for
g =T+ 4k, 4+ 4k, k > 0.

All other d? : EY" — EJ"? are zero because E? = 0 or B! = 0.

Now it’s easy to compute E2? = ker d??/ Im d =" for p = 0,1 (set d*? =
0if p <0).

Finally, E5">7" — EP9 bhecause the same is true for the Ej-term, d™? =

0, and the maps d1f+2’q+4 and d)"? are induced by the same differential map

of the resolution Py, hence they are equal. O
Theorem 7.17. Extp(f, F) ~ Fylys, z4,ys]/ (42 = 0)

Proof. Corollary 7.12 says that Extp(l5 , F ) is at least the graded algebra

B = Falys, x4, y5]/(y3 = 0).

To show that Extp(ﬁ, F) is at most B it’s enough to check that the rank of
Extj)(F , F) is less or equal than the rank of B; for all degrees i.

Since the spectral sequence converges to Extp(ﬁ , ﬁ), we have

rk(Ext)(F, F)) < rk( @ ELY).
ptg=i

Let f: B — @450 B3 be defined by f(a}) = 1 € Ey™", f(ysa}) =
e BY*H f(ysa) =1 € Byt flysysat) = 1€ BT, p(ab) =
1e E§+2’q+4 if f(b) =1¢€ EYY foralln > 0, ie. fis a map of graded
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modules that sends z} and y3z) into Eg’q, sends the previous elements

multiplied by y5 into E%’q, and commutes with the action of z. Here is the
picture of the image of f:

q
A
2 . T
Y524 2y ZYs
3
€ . B
Ysa Ysys
T X
4 Ys
Y3 .
1
p

p+q=1i qu) = Tk(BZ)
U

Lemma 7.16 implies that f is an isomorphism, so rk(€P

7.3. The Green functor Extr(F, F). Proposition 6.4, Theorem 7.17 and
Corollaries 4.9 and 4.10 give the value of Extr(F, F') on the objects of B:

Extg(F, F)(G/G) = Falys, x4] @ E(ys)
Extr(F, F)(G/H) =Falz4] ® E(y3) for H of index 2
Extr(F,F)(G/e) =0

The only thing left is to find the morphisms rg and tfl.

Proposition 7.18. The restriction map Tfl s the ring map that sends ys,
x4 to the elements in Extr(F, F)(G/H) with the same name and sends ys
to zero. The induction map tfl 18 zero.

Proof. The spectral sequence used to compute Extr(F,F)(G/G) comes
from a filtration of the complex (7.5) which was obtained from the reso-
lution of Proposition 7.6 by applying Hom,(-, F ). This was all done in the
category of modules over p. If we translate the resolution in 7.6 into the
language of Mackey functors, we obtain a projective resolution for the mod-
ule F' over the Green functor R. Now apply the functor Hz(-, F') to this
resolution to get a complex of R-modules which looks like (7.5) with F
replaced by F. This complex can be filtered in the same way (7.5) was and
we get a spectral sequence of R-modules converging to the graded R-module
Extr(F, F'). The “old” spectral sequence is the value of this one at the G-set
G /G, so we know that the “new” spectral sequence collapses at the Fa-term.
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A direct computation of the Fo-term gives Extg(F, F') as an R-module, in-
cluding the above descriptions of rg and t%. This is made easier since we
already know that Extr(F, F') is a Green functor, which implies that rg is
a ring map so we only need to know its value on the generators y3, x4 and
ys5. Surjectivity of T‘IG{ implies that tg is zero. O

APPENDIX A. MULTIPLICATION TABLES

Let G = Z/2 x Z/2. Let H, K and L be subgroups of order 2. Let
x€G/H,x ¢ H ye G/K,y ¢ K, 2z € G/L, z ¢ L. The three tables
below contain the nonzero products of the generators of the Mackey algebra

p= pr, (G).

‘ nge ngerg reG
Che | Chge Chg.eTe! rg
thrl if H £ K
K K K,G
te Ch,e te Chg,e { tZ{CZgjerf, lf H _ K te T'e
t& t¢ t&rl t&r¢
H H H thrl H,G
756 Cg,e ngH 7je 69767”6 L 75 H TH te Te
Ch,erf Z Chag,e Chg,erf 0 (16 + CZ,G)TeL reG 0
acH
Ch,H tfchg,e Chg,H tfchg,erf tf?“g TIC—; tfreG
tfchﬁrf 0 tfchg,erf 0 0 thrG 0
(K H tE (e + eye)rl
Ke#eﬂ th(1e +cye) thrH 0 fK=L t&¢ o
0,if K#L
1% t& 5 trll trk tGr tore
tGrH 0 tGrH 0 0 tr¢ 0
t¢ t% térl 1o t5rS tSr&
rf D Cge (1e + cx,e)rf 0 T‘eG 0 0
geG
rg tf(le +cpe) lu+cpm tf(le + cxye)rf rg 0 0
tfrf 0 tfl(le + cx,e)rf 0 theG 0 0
G
T
i ;é(H tf(l8 +cye) tfrf 0 7‘% tfrf 0
+K .G
K41 0 0 0 tke@ 00
1g t¢ t& tGrH lg 4G tSrC
GG 0 0 0 tGre 0
tGre 0 4G H 0 GG GG
K # H ele KT'K leTe
tGr¢ 0 0 0 tSré 0 0
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