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1 Introduction

A longstanding conjecture in algebraic topology describes the free rank of symme-
try of a product of spheres. This conjecture states that if the elementary abelian
group (Z/p)r acts freely on Sn1 × ·· ·× Sns , then r ≤ s. A more ambitious gener-
alization of this conjecture states that if (Z/p)r acts freely on a manifold M, then
∑i dimFp Hi(M,Fp) ≥ 2r. For a survey of conjectures of this type, and partial re-
sults, the reader might consult Section 2 of [1].

In [2] G. Carlsson produced a functorial translation of the second conjecture
(for p = 2) into the language of commutative algebra. Carlsson was able to obtain
partial results [2, 3] on his version of the conjecture using techniques of commuta-
tive algebra; this yielded new results on the topological side as well.

The key point in the proofs in [3] is to show that an upper-triangular square-
zero matrix over a polynomial ring can, through some specialization of variables,
be forced to have submaximal rank. The matrix arises as the differential of a free
differential graded module over a polynomial ring, and in the case of interest the
module has even rank. The generic 2n× 2n square-zero matrix has rank n; by a
“matrix of submaximal rank” we mean a matrix of rank less than n. The structure
of the variety of upper-triangular square-zero matrices was later investigated by
Rothbach [5], who introduced techniques enabling him to determine its irreducible
components.

Throughout this paper, we fix one particular irreducible component Z of this
variety, and study the structure of the subvariety of matrices of submaximal rank
in Z. We use Rothbach’s techniques to determine the components of this variety.
Also, following a suggestion of Carlsson, we show that this subvariety contains
the support variety for a certain universal homology module. The hope is that
this universal homology module and the component result will be useful for the
commutative algebra version of the conjecture, but we have not yet made progress
in that direction.

The structure of the rest of the paper is as follows: in Section 2 we introduce
notation and terminology for the objects of study, restricting attention to an irre-
ducible component Z of the variety of upper-triangular 2n×2n square-zero matri-
ces. In Section 3 we relate our submaximal rank subvariety Y ⊂ Z to the support
variety for the universal homology module. In Section 4 we review Rothbach’s
techniques, and in Section 5 we determine the irreducible components of Y .

The work for this paper was done while the first and third authors were visiting
the University of Paris 13; it is a pleasure to thank the faculty and staff there for
their hospitality.



2 Definitions and notation

In this paper, we work over an algebraically closed field k, which will be the ground
field for all polynomial rings. We also regard all varieties as being defined over k.
In view of the motivation mentioned in the introduction, the reader may wish to
take k = F2, but this restriction is not necessary for the results.

The following notation will be used throughout the rest of the paper.

• U2n is the variety of strictly upper-triangular 2n×2n matrices over k.

• V2n is the variety of square-zero matrices in U2n.

• Z denotes a particular irreducible component of V2n.

• R is the coordinate ring of Z.

• Y is the subvariety of matrices of rank less than n in Z.

• I denotes the ideal of R corresponding to Y .

The coordinate ring of U2n is R(U2n) = k[xi j | i < j]. There are surjections of
coordinate rings R(U2n)→R(V2n)→R corresponding to the inclusions Z ↪→V2n ↪→
U2n. Using these surjections, we can regard the images of the xi j as elements of R.
Let M ∈ M2n(R) be the 2n× 2n upper triangular matrix whose (i, j)-entry is the
image in R of xi j . In particular, M2 = 0. We regard M (the universal matrix) as a
differential on the R-module R2n.

Note that I is the radical of the ideal generated by all n× n minors of the uni-
versal matrix M.

Definition 2.1 The universal homology of Z, written H(M), is defined to be the
R-module Ker(M)/ Im(M).

3 The support variety for universal homology

In this section, we show that Y contains the support variety for the universal ho-
mology module H(M) of Z. We recall that by definition, the support variety of
a module N is the variety corresponding to the annihiliator ideal of N. The two
statements in the following proposition are thus equivalent.



Proposition 3.1 Y ⊇ supp H(M) and I ⊆
√

AnnH(M).

Proof: Let J be the ideal generated by the n× n minors of M. We show that
J ⊆ AnnH(M). Since I =

√
J, this then implies that I ⊆

√
AnnH(M), and that

Y ⊇ suppH(M).

We must show, for each x ∈ J, that x · H(M) = 0. We can restate this last
condition as “for each x ∈ J and for each v ∈ KerM, there is a u ∈ R2n such that
Mu = xv”. Of course, it is enough to show this for the n×n minors which generate
J. We will show this one minor at a time, by constructing an explicit linear map
N : R2n → R2n, so that M(Nv) = xv for all v ∈ Ker(M).

Let X be an (n× n) submatrix of M, and set x = detX . We can assume x 6= 0;
otherwise there is nothing to prove. Set U = R2n, and write U = V ⊕V ′ = W ⊕W ′,
where the decompositions correspond to the choices of rows and columns used to
define the submatrix X . Thus M : U −→U has components

V
α

//
β

OO

''OOOOOOO
L

W
L

V ′
δ

//
γoo

77ooooooo

W ′

where α has matrix X and determinant x. These two decompositions of U thus
correspond to “pushing X” to the upper left corner of the matrix M. Define N :
U −→U to be the map

W
α̂

//

0
NN

''NNNNNNN
L

V
L

W ′
0

//
0pp

77ppppppp

V ′ ;

where α̂ is the linear map whose matrix is the cofactor matrix of X (thus αα̂ =

x · IdW ).

Set R̄ = R[1/x]. Since R is an integral domain, and x 6= 0 by assumption, R is
a subring of the localized ring R̄. Since x is invertible in R̄, the submatrix X of M
chosen above (and corresponding to the minor x) is invertible over R̄.

Set Ū = R̄⊗R U , V̄ = R̄⊗R V , and similarly for V̄ ′, W̄ , and W̄ ′. Since V
α−→W

is the map with matrix X , which is invertible over R̄, α becomes invertible as a map
from V̄ to W̄ . Set K = Ker(M) ⊆ Ū , I = Im(M) ⊆ Ū and

K ′ ={(α−1γ(v′),−v′) | v′ ∈ V̄ ′},
I ′ ={(w,βα−1(w)) | w ∈ W̄}.

Thus K ′ is the space of vectors in V̄ ⊕V̄ ′ whose image under M lies in W̄ ′ (has zero
W̄ -component); while I ′ is the image of V̄ . Obviously I ′ ⊆ I ⊆ K ⊆ K ′.



By definition, (W̄ ′,I ′) and (V̄ ,K ′) are both pairs of complementary subspaces
of Ū , where I ′ ⊆ K ′. Hence

R̄n ∼= W̄ ′ ∼= Ū/I ′ ∼= (V̄ ⊕K ′)/I ′ ∼= V̄ ⊕ (K ′/I ′) ∼= R̄n ⊕ (K ′/I ′).

Since R̄ is noetherian, this implies that K ′/I ′ = 0, and hence that K ′ = I ′. Thus
all four of the submodules I ,K ,I ′,K ′ are equal.

From the definitions, it follows easily that MN(u) = x·u for all u ∈ I ′. Since
I ′ = K = Ker(M) and R is a subring of R̄, this completes the proof of Proposi-
tion 3.1.

We conclude this section with the natural

Conjecture 3.2 I =
√

AnnH(M), or equivalently, Y = supp H(M).

4 The structure of V2n

In this section, we review Rothbach’s work on the structure of V2n and its irreducible
components; our decomposition of Y into irreducible components is obtained by
similar methods. The reader familiar with [5] can safely skip this section. It should
be noted that because of our motivation, and to minimize technical difficulties, we
have opted only to consider components of V2n. However, the work in [5] applies
to (n×n)-matrices for odd n as well.

Rothbach’s work is based on the decomposition of V2n into Borel orbits.

Definition 4.1 The Borel orbits in V2n are the orbits of the conjugation action of
the Borel group of all invertible upper-triangular matrices on V2n.

Each Borel orbit contains a unique matrix of the type described in the following
definition.

Definition 4.2 A partial permutation matrix X is a matrix of 0’s and 1’s in which
each row and each column contains at most one 1.

To an upper-triangular partial permutation matrix we can associate a sequence
of nonnegative integers (a1,a2, . . . ,a2n) by setting

ai =

{
j if Xei = e j,

0 if Xei = 0.



Definition 4.3 A valid X 2 word is a sequence of nonnegative integers (a1, . . . ,a2n)

associated to a partial permutation matrix X with X 2 = 0. The integers ai are the
letters of the word. If v is a valid X 2 word, we write rank(v) for the number of
nonzero integers ai in v, i.e. the rank of the partial permutation matrix associated to
v.

There is a one-to-one correspondence between the Borel orbits and valid X 2

words. Rothbach describes the ordering induced on valid X 2 words via certain
moves, where w < w′ if and only if there is a sequence of moves which transforms
w′ into w.

Remark 4.4 It follows from the definition of partial permutation matrix that the
nonzero letters in a valid X 2 word are distinct.

We can now describe the correspondence between Borel orbits and valid X 2

words. We will show that each Borel orbit contains a unique partial permutation
matrix, and thus to each Borel orbit is associated a unique valid X 2 word. The
closure of a Borel orbit is the closure of an image of the Borel group, which is an
irreducible variety, so these closures are themselves irreducible varieties (cf. [4,
Proposition I.8.1]). Clearly, the closure of a Borel orbit is itself a union of Borel or-
bits. Thus, V2n is a finite union of irreducible varieties (closures of all Borel orbits),
which are partially ordered by inclusion, and the components of V2n are therefore
the maximal elements of this poset. In this way, the problem of determining the
components of V2n is reduced to the combinatorics of the poset of valid X 2 words.

In order to determine which Borel orbits are contained in the closure of a given
Borel orbit, in terms of the corresponding valid X 2 words, Rothbach defined certain
“moves” which give an order relation on the valid X 2 words. To explain this, we
introduce the following terminology. Let (a1, . . . ,a2n) be a valid X 2 word.

Definition 4.5 We say that the i-th letter ai is bound if ai = 0 and there exists a j
such that a j = i. If the letter ai is not bound, then it is free.

It is helpful to regard valid X 2 words as “partial permutations” of the set {1, . . . ,

2n}. The word (a1, . . . ,a2n) is thought of as the partial permutation with domain
{i |ai 6= 0}, which sends i to ai. The X2 = 0 condition translates to saying that
the domain and range of the permutation are disjoint. These can be illustrated by
diagrams with arrows. For example, the words 002041 and 010003 correspond to
the diagrams

(
1 2 3

yy
4 5

yy
6

ww
)

and
(

1 2
��

3 4 5 6
ww

)
.



In the following descriptions, whenever we show a “subdiagram” of a partial
permutation by restricting to some subset of indices I ⊆{1, . . . ,2n}, it is understood
that no index i /∈ I is sent to any index j ∈ I, and no index i∈ I is sent to any nonzero
index j /∈ I.

The three moves are the following:

• A move of type 1 takes a nonzero letter ak and replaces it with a∗k , the largest
integer less than ak such that the replacement yields a new valid X 2 word. (Note
that a∗k always exists since replacement with 0 always yields a valid X 2 word.)
In other words, if we set j = ak and i = a∗k (so i < j < k), then this move sends

(
i j k

~~ )
to

(
i j k

{{
)

or
(

j k
~~ )

to
(

j k
)

,

when i 6= 0 or i = 0, respectively.

• A move of type 2 takes two free letters ak, al such that k < l and ak > al , and
swaps their locations. In other words, it either sends

(
i j k

yy
l

xx
)

to
(

i j k
{{

l
zz

)

if ak = j and al = i 6= 0 (and thus i < j < k < l), or else it sends
(

j k
~~

l
)

to
(

j k l
zz

)

if ak = j and al = 0 (thus j < k < l).

• A move of type 3 is defined whenever there are indices i < j < k < l such that
i = a j and k = al (hence ai = ak = 0), and replaces al by j, ak by i, and a j by 0.
Pictorially, it sends

(
i j

��
k l

�� )
to

(
i j k

{{
l

zz
)

.

Observe that a move of type 2 or 3 preserves the rank of words. In fact, the
only way of getting a word of smaller rank is to replace a letter by zero. This
corresponds to applying move 1 one or more times. A sequence of moves of type
1 which results in a letter being replaced by zero will be called a move of type 1 ′.

The partial ordering on valid X 2 words is defined by letting w ≥ w′ if and only
if w can be transformed into w′ by a (possibly empty) finite sequence of moves.
The maximal valid X 2 words are thus those which are not the result of any of the
three types of moves.

Example 4.6 The word (0,1,0,3) is transformed to (0,0,1,2) by a move of type
3, so in the ordering defined above, (0,0,1,2) < (0,1,0,3).



Finally, the maximal valid X 2 words are also called bracket words because there
is a one-to-one correspondence between maximal valid X 2 words and sequences
of left and right parentheses of length 2n which form valid LISP expressions. A
bracket word corresponds to the valid X 2 word (a1, . . . ,a2n) where ai = 0 if the i-th
parenthesis in the bracket word is a left parenthesis, and ai = j if the i-th parenthesis
is a right parenthesis which closes the j-th parenthesis.

Remark 4.7 For a bracket word w of length 2n, we have rank(w) = n.

The key theorem of Rothbach’s paper is

Theorem 4.8 (Rothbach) For any pair of valid X 2 words v,w, the Borel orbit Ov

associated to v is contained in the closure of the Borel orbit Ow associated to w
if and only if v ≤ w. The irreducible components of V2n are thus the closures of
the Borel orbits associated to the maximal valid X 2 words; and the irreducible
component of V2n associated to a maximal valid X 2 word w is the union of the
Borel orbits associated to the valid X 2 words which are less than or equal to w.

Since Rothbach’s paper is not generally available, we give a very brief sketch
here of his techniques. For each i ≤ 2n, let ki ⊆ k2n be the subspace of elements
(x1, . . . ,xi,0, . . . ,0) for x1, . . . ,xi ∈ k. These are the subspaces of k2n which are
invariant under the action of all elements in the Borel group. For any X ∈ V2n and
any 0 ≤ j < i, define r(i, j,X) = dimk(X(ki)+ k j). One easily sees that r(i, j,X) =

r(i, j,Y ) if X and Y are in the same Borel orbit. For any valid X 2 word v, associated
to a partial permutation matrix X , set vi j = r(i, j,X). Rothbach then shows:

• Two matrices X ,Y ∈ V2n are in the same Borel orbit if and only if r(i, j,X) =

r(i, j,Y ) for all i, j. The Borel orbit associated to v is therefore the set {X ∈
V2n |r(i, j,X) = vi j ∀i, j}.

• For any two valid X 2 words v,w, v ≤w (as defined above via moves) if and only
if vi j ≤ wi j for all i, j.

• If v is obtained from w by a move of one of the above types, then the Borel orbit
Ov is in the closure of the Borel orbit Ow.

For any given valid X 2 word w, the union of the Borel orbits associated to words
v ≤ w is just the set

{X ∈V2n |r(i, j,X) ≤ wi j ∀i, j}.

This is an algebraic set (hence closed), since it is defined by requiring determinants
of certain submatrices to vanish. So together with the three points above, this proves
that it is the closure of the Borel orbit associated to w.



Rothbach’s theorem says that the irreducible components of V2n are determined
by the poset of all valid X 2 words. In the next section, we will study the subposet
of words associated to orbits contained in Y , and thus determine the irreducible
components of Y .

5 The irreducible components of Y

In this section, we will identify the irreducible components of Y . More specifically,
if Z is an irreducible component of V2n corresponding to a valid X 2 word w, we will
describe the components of the subvariety Y ⊆ Z in terms of the structure of w.

Definition 5.1 We say that a bracket word is irreducible if it cannot be expressed
as the concatenation of bracket words of smaller length.

Example 5.2 The bracket word (()()) is irreducible; the bracket word ()(()) is
expressible as a concatenation of the irreducible bracket words () and (()).

Let w be a bracket word of length 2n. Observe that w can be expressed as a
concatenation of irreducible bracket words w = w1 · · ·wm. (If w is irreducible then
m = 1.) We shall use w,wi to denote not only the irreducible bracket words in this
factorization, but also the corresponding valid X 2 words. For a bracket word w
factored in this way we make the following

Definition 5.3 For each i ∈ {1, . . . ,m}, let w(i) be the valid X 2 word obtained from
w by replacing the last letter of wi by a zero.

Notice that the words w(i) defined in 5.3 are all obtained from w by a move
of type 1′, and so all have rank n− 1. Notice also that, in general, there are other
words obtained by a move 1′. For example, if w = 002041 then 002001 is one such
word.

Now we can describe the components of Y :

Theorem 5.4 The irreducible components of Y are the closures of the Borel orbits
corresponding to the words w(i). Alternatively, the irreducible component of Y
corresponding to w(i) is the union of the Borel orbits corresponding to the valid X 2

words which are less than or equal to w(i).



Example 5.5 Let n = 3 and let Z be the component corresponding to the bracket
word ()(()). Then the corresponding valid X 2 word is w = 010043. In this case, we
express w as the concatenation of () and (()). Thus, in the notation of the paragraph
after Example 5.2, m = 2, w1 = (), and w2 = (()). Writing this decomposition in
terms of valid X 2 words, we have w1 = 01, w2 = 0043 and so w(1) = 000043 and
w(2) = 010040. Thus the subvariety Y ⊆ Z has two components.

In this case, we can describe these varieties in a simple way in terms of matrices.
The component Z consists of all 6×6 matrices of the form




0 a b c d e
0 0 0 0 f g
0 0 0 0 h i
0 0 0 0 j k
0 0 0 0 0 0
0 0 0 0 0 0




where
[
a b c

]
·




f g
h i
j k


 =

[
0 0

]

The subvariety Y has two components: one where

rank




f g
h i
j k


 ≤ 1, and another where

[
a b c

]
=

[
0 0 0

]
.

Unfortunately it is not always possible to describe the components in this fashion.

Proof: [Proof of Theorem 5.4] The closure of each Borel orbit in Y is the closure
of a continuous image of the Borel group of upper triangular matrices, and hence
is irreducible (cf. [4, Proposition I.8.1]). Clearly, the closure of any Borel orbit is a
union of Borel orbits, and hence the components of Y are just the maximal closures
of Borel orbits. So by Rothbach’s theorem (Theorem 4.8), the components of Y are
the closures of the orbits associated to valid X 2 words which are maximal among
those in Y .

It thus suffices to prove that if w is a maximal valid X 2 word, then any v with
rank(v) < n and v ≤ w satisfies v ≤ w(i) for some i. For any such v, there is a se-
quence of moves that we can apply which transforms w into v, and one of these
moves must be of type 1′ (since that is the only type of move which decreases the
rank). We must show two things: that we can always make a move of type 1′ first,
and that the words w(i) are maximal among those obtained from w by a move of type
1′. The first statement is proved in Lemma 5.6, and the second in Lemma 5.7.

Lemma 5.6 Let w be a bracket word of length 2n and let v be a valid X 2 word such
that rank(v) < n and v ≤ w. Then there is a valid X 2 word u obtained from w by a
move of type 1′ such that v ≤ u ≤ w.



Proof: By induction on the number of moves applied on w to get v, it’s enough to
show that a move of any type followed by a move of type 1′ is the same as a move
of type 1′ followed by some other move. Note, however, that the letters involved
in each of the moves 1′ may not be the same and that the type of the other move
may change as we “commute” it past the move of type 1′. We prove this in cases,
according to the type of move which is being composed with the move of type 1 ′.
In what follows we will assume that the move of type 1′ is applied to one of the
letters involved in the other move; if this is not the case the two moves commute
and the conclusion of the lemma follows immediately.

Case I: move 1 followed by move 1′. A move of type 1 followed by a move
of type 1′ applied to the same index is equal to the move of type 1′ applied to that
index. This is illustrated by the following diagram:

j?> =<89 :;k l
~~

j?> =<89 :;k l
zz

j?> =<89 :;k l
type 1

//
type 1′

//

type 1′
55

Case II: move 2 followed by move 1′. Suppose we have a valid X 2 word
a1 · · ·a2n, and indices i < j < k < l such that al = i and ak = j (and thus ai = a j = 0).
So we can apply move 2 to the pair ak, al and then apply move 1′ to either of these
letters. The following two commutative squares of diagrams of moves show that
the composite of these two moves is always a type 1′ move followed by a move of
type 2 or 1.

i
?> =<89 :;j k

zz
l

yy
i
?> =<89 :;j k

~~

l

i
?> =<89 :;j k

}}
l

{{
i
?> =<89 :;j k l

{{

type 1′
//

type 2

��

type 2

��
type 1′

//

i
?> =<89 :;j k

zz
l

yy
i
?> =<89 :;j k

~~

l

i
?> =<89 :;j k

}}
l

{{
i
?> =<89 :;j k

}}
l

type 1′
//

type 2

��

type 1

��
type 1′

//

It remains to consider the possibility of a type 2 move which switches two
letters of which one is zero. The composite of such a move followed by a type 1 ′

move is itself a type 1′ move, as illustrated by the following diagram.

j?> =<89 :;k
}}

l j?> =<89 :;k l
zz

j?> =<89 :;k l
type 2

//
type 1′

//

type 1′
55

Case III: move 3 followed by move 1′. Suppose we are given a valid X 2 word
a1 · · ·a2n to which we can apply a move of type 3. This means that there are indices
i < j < k < l such that a j = i and al = k (and hence ak = ai = 0). After applying
move 3 to this word, we can then apply move 1′ to the letter in the l-th or k-th
position, as illustrated in the bottom side of the following two squares. The first



square illustrates the subcase where we apply the move of type 1′ to the index k,
and the second the subcase where we apply the move of type 1′ to the index l.

i
?> =<89 :;j

��
k l

}}

i
?> =<89 :;j k l

}}

i
?> =<89 :;j k

}}
l

{{
i
?> =<89 :;j k l

{{

type 1′
//

type 3

��

type 1

��
type 1′

//

i
?> =<89 :;j

��
k l

}}

i
?> =<89 :;j

��
k l

i
?> =<89 :;j k

}}
l

{{
i
?> =<89 :;j k

}}
l

type 1′
//

type 3

��

type 2

��
type 1′

//

Thus both composites of moves can also be described as a type 1′ move followed
by a move of type 1 or 2.

Lemma 5.7 If u is a valid X 2 word with rank n− 1 obtained from a bracket word
w by a move of type 1′, then u ≤ w(s) for some s.

Proof: Write w = (a1, . . . ,a2n). Let j < k be indices such that ak = j, and such that
u is obtained from w by replacing ak by 0. If u is not equal to w(s) for any s, then
there are indices i < j < k < l such that al = i (hence ai = a j = 0), and some w(s)

obtained from w by a move of type 1′ where al is replaced by 0. In other words,

w =
(

i j k
zz

l
yy

)
, u =

(
i j k l

yy
)
, and w(s) =

(
i j k

zz
l
)
.

We now see that u is obtained from w(s) by a type 2 move followed by a type 1
move:

i
?> =<89 :;j k

yy
l i

?> =<89 :;j k l
zz

i
?> =<89 :;j k l

xxtype 2
//

type 1
//

and thus u ≤ w(s).
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