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Abstract. We study extensions of p-local �nite groups where the kernel is a p-
group. In particular, we construct examples of saturated fusion systems F which do
not come from �nite groups, but which have normal p-subgroups A C F such that
F=A is the fusion system of a �nite group. One of the tools used to do this is the
concept of a \transporter system", which is modelled on the transporter category of
a �nite group, and is more general than a linking system.

Let G be a �nite group, with Sylow p-subgroup S 2 Sylp(G). The fusion system
of G (at p) is the category FS(G) whose objects are the subgroups of G, and where
MorFS(G)(P;Q) is the set of monomorphisms from P to Q induced by conjugation by
elements of G. The transporter system of G at p is the category TS(G) with the same
objects as FS(G), and with morphism sets MorTS(G)(P;Q) = NG(P;Q): the set of
elements of G which conjugate P into Q. A subgroup P � S is called p-centric in G if
CG(P ) = Z(P ) � C 0

G(P ) for a (unique) subgroup C
0
G(P ) of order prime to p; and the

centric linking system of G is the category LcS(G) whose objects are the subgroups of S
which are p-centric in G, and where MorLcS(G)(P;Q) = NG(P;Q)=C

0
G(P ). All of these

de�nitions are repeated in more detail at the beginning of Section 1. In several papers,
such as [BLO1] and [O2], the fusion and linking systems of G are shown to play a
central role in describing homotopy theoretic properties of the p-completed classifying
space BG^

p .

Abstract fusion and linking systems have also been de�ned and studied, and are
shown in [BLO2] to have many of the same properties as the fusion and linking systems
of �nite groups. A p-local �nite group is de�ned to be a triple (S;F ;L), where S is
a �nite p-group, F is a saturated fusion system over S (De�nitions 1.2 and 1.3), and
L is a centric linking system associated to F (De�nition 1.6). Normal and central
p-subgroups of fusion systems and linking systems are also de�ned (De�nition 1.4).

Certain types of extensions of p-local �nite groups, and in particular central exten-
sions, were studied in [BCGLO2]. One hope was that extensions could provide a new
way to construct exotic examples. But in the case of central extensions, this was shown
to be impossible. By [BCGLO2, Theorem 6.13 and Corollary 6.14], if A is a central
subgroup in (S;F ;L), and (S=A;F=A;L=A) is induced by a group G, then (S;F ;L) is

induced by a group eG such that A � Z( eG) and eG=A �= G.

In this paper, we look at the more general situation of extensions with p-group
kernel. Equivalently, given a p-local �nite group (S;F ;L) and a �nite p-group A,

we want to �nd p-local �nite groups (eS; eF ; eL) such that A C F and (S;F ;L) �=

(eS=A; eF=A; eL=A). One problem when doing this is that the fusion system F=A contains
too little information: F cannot be described as an extension of F=A by A in any sense.

2000 Mathematics Subject Classi�cation. Primary 55R35. Secondary 55R40, 20D20.
Key words and phrases. Classifying space, p-completion, �nite groups, fusion.
B. Oliver is partially supported by UMR 7539 of the CNRS.
J. Ventura is partially supported by FCT/POCTI/FEDER and grant PDCT/MAT/58497/2004.
Both authors were partially supported by the Mittag-Le�er Institute in Sweden.



2 BOB OLIVER AND JOANA VENTURA

Another problem is that in general, when eL is a linking system and A C eL, then eL can
be thought of as an extension of eL=A by A, but eL=A need not be a linking system. As
explained in Section 2, it can contain much more information than a linking system
does. Conversely, if we take a linking system L and try naively to extend it, then the
resulting category will in general have too few objects to be a linking system. So we
were forced to look at a larger class of categories to extend.

A transporter system is a category whose objects are subgroups of a given p-group S,
associated to a given fusion system, which satis�es axioms motivated by the two main
examples: the transporter category of a �nite group, and categories of the form L=A
when L is a linking system and A C L. A transporter system T for which Ob(T ) is the
set of all subgroups of S is always the transporter category of the �nite group AutT (1)
(Proposition 3.12), so we are interested mainly in the cases where not all subgroups of
S are objects. The precise de�nition is given at the start of Section 3.

Nerves of transporter systems have many of the topological properties which are
already known for linking systems. For example, if T is a transporter system associated
to the fusion system F , and Ob(T ) includes all F -centric subgroups, then T induces
a centric linking system L associated to F and jT j^p ' jLj

^
p (Proposition 4.6). As

another example, if T r � T is the full subcategory whose objects are the \T -radical
subgroups" (De�nition 3.9), then jT rj ' jT j (Proposition 4.7).

Extensions of transporter systems are de�ned and studied in Section 5. If T is
a transporter system, and � : eT ! T is a functor which satis�es certain category
theoretic properties (De�nition 5.1), then eT is also a transporter system and eT =A �= T
for a certain normal p-subgroup A C eT . Moreover, in this situation, jeT j ! jT j is a
�bration with �ber BA. Once this has been established, then conditions are described
(Theorem 5.11) which imply that eT is in fact a centric linking system, or at least a full
subcategory of a centric linking system which includes all subgroups which are centric
and radical.

Finally, in Section 6, we look at extensions 1 ! A ! eT ! T ! 1 of this type,
when T is a full subcategory of the transporter category of a �nite group G. We �rst
show that if the induced action of �1(jT j) on A factors through G, then eT will be

a full subcategory of the transporter category of some group eG such that eG=A �= G.
Afterwards, we give examples (Example 6.2) of such extensions where the action does

not factor through G, and where eT and its associated fusion system eF are exotic in in
the sense that eF is not the fusion system of any �nite group.

We would like to thank the University of Aberdeen, the Universitat Aut�onoma de
Barcelona, and especially the Bernoulli Center in Lausanne and the Mittag-Le�er
Institut near Stockholm for their hospitality, allowing the two authors to meet together
and work on this project. We would also like to thank Albert Ruiz for his very timely
discovery of some examples of exotic fusion systems which helped lead to our Example
6.2.

1. Background: fusion and linking systems

We �rst �x some notation. For any group G, and any x 2 G, cx denotes conjugation
by x (cx(g) = xgx�1). For H;K � G, we write

NG(H;K) = fx 2 G jxHx�1 � Kg
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to denote the transporter set, and

HomG(H;K) =
�
cx 2 Hom(H;K)

��x 2 NG(H;K)
	
�= NG(H;K)=CG(H):

We also set AutG(H) = HomG(H;H) �= NG(H)=CG(H).

De�nition 1.1. Fix a �nite group G and a Sylow subgroup S 2 Sylp(G).

(a) FS(G) and TS(G) denote the categories where Ob(FS(G)) = Ob(TS(G)) is the set
of all subgroups of S, and where

MorFS(G)(P;Q) = HomG(P;Q) �= NG(P;Q)=CG(P )

and

MorTS(G)(P;Q) = NG(P;Q):

Let � : TS(G) ����! FS(G) be the functor which is the identity on objects, and
which sends x 2 NG(P;Q) to cx 2 HomG(P;Q).

(b) A p-subgroup P � G is p-centric in G if Z(P ) 2 Sylp(CG(P )); equivalently, if
CG(P ) = Z(P ) � C 0

G(P ) for some (unique) subgroup C 0
G(P ) of order prime to p.

De�ne LcS(G) to be the category whose objects are the subgroups of S which are
p-centric in G, and where

MorLcS(G)(P;Q) = NG(P;Q)=C
0
G(P ):

We call FS(G) the fusion system (or fusion category) of G, TS(G) the transporter
system, and LcS(G) the centric linking system. In this paper, we will be looking at
abstract versions of all three of these systems, starting with fusion systems.

De�nition 1.2 ([Pg], [BLO2, De�nition 1.1]). A fusion system over a �nite p-group
S is a category F , where Ob(F) is the set of all subgroups of S, and which satis�es the
following two properties for all P;Q � S:

� HomS(P;Q) � HomF(P;Q) � Inj(P;Q); and

� each ' 2 HomF(P;Q) is the composite of an isomorphism in F followed by an
inclusion.

Fusion systems as de�ned above are too general for our purposes, and additional
axioms are needed for them to be very useful. When F is a fusion system over a �nite
p-subgroup S, then two subgroups P;Q � S are said to be F-conjugate if they are
isomorphic as objects of the category F . A subgroup P � S is called fully centralized
in F if jCS(P )j � jCS(P

0)j for all P 0 � S which is F -conjugate to P . Similarly, a
subgroup P � S is called fully normalized in F if jNS(P )j � jNS(P

0)j for all P 0 � S
which is F -conjugate to P .

De�nition 1.3 ([Pg], [BLO2, De�nition 1.2]). A fusion system F over a �nite p-group
S is saturated if the following two conditions hold:

(I) For all P � S which is fully normalized in F , P is fully centralized in F and
AutS(P ) 2 Sylp(AutF(P )).

(II) If P � S and ' 2 HomF(P; S) are such that 'P is fully centralized, and if we
set

N' = fg 2 NS(P ) j'cg'
�1 2 AutS('P )g;

then there is ' 2 HomF(N'; S) such that 'jP = '.
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If G is a �nite group and S 2 Sylp(G), then FS(G) is a saturated fusion system.
Axioms (I) and (II) follow mostly as consequences of the Sylow theorems (cf. [BLO2,
Proposition 1.3]).

We next specify certain collections of subgroups relative to a given fusion system.

De�nition 1.4. Let F be a fusion system over a �nite p-subgroup S.

� A subgroup P � S is F -centric if CS(P
0) = Z(P 0) for all P 0 � S which is F-

conjugate to P . We let F c � F denote the full subcategory with objects the F-centric
subgroups of S.

� A subgroup P � S is F -radical if OutF(P ) is p-reduced; i.e., if Op(OutF(P )) = 1.

� A subgroup A � S is normal in F (denoted A C F) if for all P;Q � S and all

f 2 HomF(P;Q), f extends to a morphism f 2 HomF(PA;QA) such that f(A) = A.

� A subgroup A � S is central in F if for all P;Q � S and all f 2 HomF(P;Q), f

extends to a morphism f 2 HomF(PA;QA) such that f jA = IdA.

If F = FS(G) for some �nite group G, then P � S is F -centric if and only if
P is p-centric in G (i.e., Z(P ) 2 Sylp(CG(P ))), and P is F -radical if and only if
NG(P )=(P �CG(P )) is p-reduced. However, P being F -radical is not the same as being
a radical p-subgroup.

In fact, it turns out that saturated fusion systems de�ned only on the centric sub-
groups are equivalent to saturated fusion systems de�ned on all subgroups. In other
words, when constructing saturated fusion systems over a �nite p-group S, we really
need only de�ne it on the centric subgroups of S, and check that it satis�es axioms (I)
and (II) for those subgroups. The next theorem describes how a category constructed
in this way can then be extended in a unique way to a saturated fusion system over S.

For any fusion system F over S, and any set H of subgroups of S which is closed
under F -conjugacy, we say that F is H-saturated if conditions (I) and (II) in De�nition
1.3 are satis�ed for all P 2 H. We say that F is H-generated if each morphism in F
is a composite of restrictions of morphisms between subgroups in H.

Theorem 1.5. Fix a p-group S and a fusion system F over S.

(a) Assume F is saturated, and let H be the set of F-centric F-radical subgroups
of S. Then F is H-generated. More precisely, for each P; P 0 � S and each
' 2 IsoF(P; P

0), there are subgroups P = P0; P1; : : : ; Pk = P 0, subgroups Qi �
hPi�1; Pii (i = 1; : : : ; k) which are F-centric, F-radical, and fully normalized in
F , and automorphisms 'i 2 AutF(Qi), such that 'i(Pi�1) = Pi for all i and
' = ('kjPk�1

) � � � � � ('1jP0).

(b) Let F be a fusion system over a �nite p-group S. Let H be a set of subgroups of S
closed under F-conjugacy such that F is H-saturated and H-generated. Assume
also that each F-centric subgroup of S not in H is F-conjugate to some subgroup
P � S such that OutS(P ) \Op(OutF(P )) 6= 1. Then F is saturated.

Proof. Part (a) is Alperin's fusion theorem for saturated fusion systems, in the form
shown in [BLO2, Theorem A.10]. Part (b) is proven in [BCGLO1, Theorem 2.2]. �

We now turn to linking systems associated to abstract fusion systems.

De�nition 1.6 ([BLO2, De�nition 1.7]). Let F be a fusion system over the p-group
S. A centric linking system associated to F is a category L whose objects are the



EXTENSIONS OF LINKING SYSTEMS WITH p-GROUP KERNEL 5

F-centric subgroups of S, together with a functor � : L ���! F c, and distinguished

monomorphisms P
�P��! AutL(P ) for each F-centric subgroup P � S, which satisfy

the following conditions.

(A) � is the identity on objects. For each pair of objects P;Q 2 L, Z(P ) acts freely on
MorL(P;Q) by composition (upon identifying Z(P ) with �P (Z(P )) � AutL(P )),
and � induces a bijection

MorL(P;Q)=Z(P )
�=

������! HomF(P;Q):

(B) For each F-centric subgroup P � S and each x 2 P , �(�P (x)) = cx 2 AutF(P ).

(C) For each f 2 MorL(P;Q) and each x 2 P , the following square commutes in L:

P
f

//

�P (x)

��

Q

�Q(�(f)(x))

��

P
f

// Q .

A p-local �nite group is de�ned to be a triple (S;F ;L), where S is a �nite p-group,
F is a saturated fusion system over S, and L is a centric linking system associated to
F . The classifying space of the triple (S;F ;L) is the p-completed nerve jLj^p .

For any �nite group G with Sylow p-subgroup S, the category LcS(G) (De�nition
1.1) is easily seen to satisfy conditions (A), (B), and (C) above, and hence is a centric
linking system associated to FS(G). Thus (S;FS(G);L

c
S(G)) is a p-local �nite group,

with classifying space jLcS(G)j
^
p ' BG^

p (see [BLO1, Proposition 1.1]).

The following lifting lemma for linking systems is used frequently.

Lemma 1.7. Let (S;F ;L) be a p-local �nite group. Fix F-centric subgroups P;Q;R

in S, and let P
'
��! Q

 
��! R be any sequence of morphisms in F . Then the following

hold.

(a) Let e and f ' be arbitrary liftings to L of  and  ', respectively. Then there is a
unique morphism e' 2 MorL(P;Q) such thate � e' = f '; (1)

and furthermore �P;Q(e') = '.

(b) Choose liftings f ' 2 MorL(P;R) and e' 2 MorL(P;Q) of  ' and ', respectively.

Then there is a unique morphism e 2 MorL(Q;R) such that e � e' = f ', and such

that �( e ) =  � cq for some q 2 '(Z(P )).

Proof. (a) See [BLO2, Lemma 1.10] or Lemma A.7(a).

(b) Let � 2 MorL(Q;R) be a lifting of  , i.e., �(�) =  . Then by axiom (A) of a

linking system, there is z 2 Z(P ) such that f ' = � � e' � �P (z), and by axiom (C) we

have e' � �P (z) = �Q('(z)) � e'. Set e = � � �Q('(z)), and note that �( e ) =  � c'(z).

If e 0 is another morphism satisfying the same conditions, then by assumption,

�( e 0) = �( e ) � cx for some x 2 '(Z(P )). Then by axiom (A), e 0 = e � �Q('(y))
for some y 2 Z(P ) such that '(y) 2 x�Z(Q). Also,e � e' = f ' = e 0 � e' = e � �Q('(y)) � e' = e � e' � �P (y);
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where the last equality follows from (C). Since the action of Z(P ) on MorL(P;R) is

free, it follows that y = 1, and hence that e 0 = e . �

The following is an easy corollary to Lemma 1.7(a).

Corollary 1.8. Let F be a fusion system (not necessarily saturated) over a p-group
S, and let L be a centric linking system associated to F . For each F-centric subgroup
P � S, choose an \inclusion" morphism �P 2 MorL(P; S) such that �(�P ) = inclP;S.
Then there are unique injections �P;Q : NG(P;Q) ���! MorL(P;Q), for each pair of
subgroups P;Q 2 Ob(L), with the property that �Q � �P;Q(g) = �S(g) � �P for all g 2
NG(P;Q). Also, �P is the restriction to P � NS(P ) of �P;P for each P , and the �P;Q
de�ne a functor from the transporter category of S (restricted to the objects of L) to
L.

Proof. See [BLO2, Proposition 1.11]. �

We �nish the section by noting the following standard result in group theory which
will be needed later.

Lemma 1.9. (a) If Q C P are �nite p-groups and � 2 Aut(P ) is such that �jQ = IdQ
and �=Q = IdP=Q, then � has p-power order.

(b) If S is a p-subgroup of the �nite group G, and H C G, then S 2 Sylp(G) if and
only if S \H 2 Sylp(H) and SH=H 2 Sylp(G=H).

Proof. Point (a) is shown in [Go, Corollary 5.3.3]. Point (b) follows since S=(S \H) �=
SH=H and hence

[G : S] = [H : S \H] � [G=H : SH=H]: �

2. Quotients of linking systems

In this section, we show that whenever (S;F ;L) is a p-local �nite group and A C F
(De�nition 1.4), then we can de�ne a quotient p-local �nite group (S=A;F=A; (L=A)c�)
as a quotient of (S;F ;L) by A. We also show that L=A, de�ned as the quotient of the
free action of A on L, is not in general a linking system; and this will motivate the
concept of a transporter system de�ned in the next section.

We �rst consider quotients of fusion systems. Recall that for any fusion system F
over S, a subgroup A � S is weakly closed in F if A is the only subgroup in its F -
conjugacy class. Clearly, any normal subgroup in F is weakly closed, and any weakly
closed subgroup is normal in S. When A is weakly closed in F , then we de�ne F=A
to be the fusion system over S=A where

HomF=A(P=A;Q=A) =
�
f=A

�� f 2 HomF(P;Q)
	
:

Lemma 2.1. Fix a saturated fusion system F over a p-group S. Then for any subgroup
A C S which is weakly F-closed in S, F=A is a saturated fusion system over S=A.

Proof. This is shown, for example, in [O2, Lemma 2.6]. But since it plays a central
role in this paper, we repeat the proof here.

Proof of (II): Fix ' 2 HomF=A(P=A; S=A) such that Im(') is fully centralized in
F=A. Set P 0=A = '(P=A), and

N' = fg 2 NS=A(P=A) j'cg'
�1 2 AutS=A(P

0=A)g:
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Choose Q � S which is F -conjugate to P and P 0 and fully normalized in F . By
[BLO2, Proposition A.2(b)], there is

� 2 HomF(NS(P
0); NS(Q))

such that �(P 0) = Q. Let � 2 HomF=A(NS=A(P
0=A); NS=A(Q=A)) be the induced

homomorphism. Thus �(CS=A(P
0=A)) = CS=A(Q=A) since P

0=A is fully centralized,
and this restricts to an isomorphism CS(P

0)=A �= CS(Q)=A. We have now proven

Q fully normalized in F =) Q=A fully centralized in F=A. (1)

Set  = � � ' 2 IsoF=A(P=A;Q=A) for short, and choose a lifting e 0 2 IsoF(P;Q) of
 . Consider the subgroupseN =A = N = fg 2 NS=A(P=A) j cg 

�1 2 AutS=A(Q=A)g

and

KQ = Ker[AutF(Q) ���! AutF=A(Q=A)]:

Thus e 0Aut eN (P ) e �10 � AutS(Q)�KQ. Since Q is fully normalized in F , KQ C

AutS(Q)�KQ and AutS(Q) 2 Sylp(AutS(Q)�KQ), and hence all Sylow p-subgroups of
AutS(Q)�KQ are conjugate by elements of KQ. In particular, there is ! 2 KQ such
that

(! e 0)Aut eN (P )(! e 0)
�1 � AutS(Q): (2)

Set e = ! e 0. This is also a lifting of  since ! 2 KQ (!=A = IdQ=A); and by (2),eN � N e def
=
�
g 2 NS(P )

�� e cg e �1 2 AutS(Q)	:
Since Q is fully centralized in F (by axiom (I) for F), axiom (II) for F now implies

that e extends to a morphism b 2 HomF( eN ; NS(Q)), and hence that  = � � '
extends to

 2 HomF=A(N ; NS=A(Q=A)):

We claim that  (N') � Im(�). To see this, �x g 2 N', and let h 2 NS=A(P
0=A) be

such that 'cg'
�1 = ch. Then

c
 (g)

=  cg 
�1 = �ch�

�1 = c�(h) 2 Aut(Q=A);

so  (g) 2 �(h)�CS=A(Q=A). We have already seen that CS=A(Q=A) = �(CS=A(P
0=A)),

and this �nishes the proof that  (g) 2 Im(�). Thus there is

' 2 HomF=A(N'; NS=A(P
0=A))

such that � � ' =  , and 'jP=A = '. This �nishes the proof of condition (II) for F=A.

Proof of (I): Assume P=A is fully normalized in F=A. Since NS=A(P
0=A) = NS(P

0)=A
for all P 0 in the same F -conjugacy class, P is also fully normalized in F . Then P=A
is fully centralized in F=A by (1). Also, AutS=A(P=A) 2 Sylp(AutF=A(P=A)) since
AutS(P ) 2 Sylp(AutF(P )) (by condition (I) again for F), and since a surjection of
�nite groups sends Sylow subgroups onto Sylow subgroups. �

Whenever (S;F ;L) is a p-local �nite group and A C S is normal in F , we let L=A
be the category whose objects are the subgroups P=A � S=A such that P is F -centric,
and where

MorL=A(P=A;Q=A) = MorL(P;Q)=A:
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Here, g 2 A acts on MorL(P;Q) via composition with �P (g) 2 AutL(P ). Let (L=A)
c

be the subcategory of L=A whose objects are the F=A-centric subgroups of S=A. We
will de�ne (L=A)c� to be a certain quotient category of (L=A)c.

Lemma 2.2. Fix a p-local �nite group (S;F ;L), and assume A C S is normal in F .
Let F=A be the induced fusion system over S=A, and let (L=A)c be de�ned as above.
Then for each F=A-centric subgroup P=A � S=A, P is F-centric, and there is a unique
subgroup E0(P ) � AutL=A(P=A) of order prime to p such that

CAutL=A(P=A)(P=A) = E0(P )� Z(P=A):

Let (L=A)c� be the category whose objects are the F=A-centric subgroups of S=A, and
where

Mor(L=A)c�(P=A;Q=A) = MorL=A(P=A;Q=A)=E0(P ):

Then (L=A)c� is a well de�ned category, and is a centric linking system associated to
F=A.

Proof. Fix an F=A-centric subgroup P=A � S=A. For all P 0=A which is F=A-conjugate
to P=A, P 0 is F -conjugate to P , and CS(P

0)=A � CS=A(P
0=A) � P 0=A. Thus CS(P

0) �
P 0 for all such P 0, and this shows that P is F -centric. In particular, P 2 Ob(L).

Set

K 0
P = Ker

�
AutL=A(P=A) ���! AutF=A(P=A)

�
; (3)

and let b�P=A denote the homomorphismb�P=A = �P;P=A : NS=A(P=A)
=NS(P )=A

������! AutL=A(P=A)
=AutL(P )=A

:

If P is fully normalized in F , then

AutS(P ) 2 Sylp(AutF(P )) =) �P;P (NS(P )) 2 Sylp(AutL(P ))

=) b�P=A(NS=A(P=A)) 2 Sylp(AutL=A(P=A)) :

Hence by Lemma 1.9(b), K 0
P\
b�P=A(NS=A(P=A)) = b�P=A(Z(P=A)) is a Sylow p-subgroup

of K 0
P . Since jZ(P=A)j and jK 0

P j are both invariant under F -conjugacy, this implies

that b�P=A(Z(P=A)) 2 Sylp(K 0
P ) whether or not P is fully normalized.

For each f 2 AutL(P ) and each g 2 P ,

�P (�(f)(g)) = f � �P (g) � f
�1

by axiom (C) for L. Upon passing to the quotient group AutL=A(P=A), this shows

that each element of K 0
P centralizes the subgroup b�P=A(P=A). In particular, the Sylow

p-subgroup b�P=A(Z(P=A)) is central in K 0
P , and hence

K 0
P = E0(P )� Z(P=A) (4)

for a unique subgroup E0(P ) � AutL=A(P=A).

Now de�ne (L=A)c� to be the category whose objects are the F=A-centric subgroups
of S=A, and where

Mor(L=A)c�(P=A;Q=A) = MorL=A(P=A;Q=A)=E0(P ):

To see that composition is well de�ned, we must show, for each f 2 MorL=A(P=A;Q=A)
between F=A-centric subgroups, that

E0(Q) � f � f � E0(P ):
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For each � 2 E0(Q), there is by Lemma 1.7(a) (applied to L) a unique morphism
� 2 AutL=A(P=A) such that � � f = f � �, and � 2 E0(P ) since the induced square in
F=A must commute.

This shows that (L=A)c� is a well de�ned category. The distinguished monomorphisms

�P=A : P=A �����! AutL=A(P=A) = AutL(P )=A

are induced by the distinguished monomorphisms �P for L. Conditions (B) and (C)
for (L=A)c follow directly from the corresponding conditions for L. It remains to prove
condition (A), and this follows by (3) and (4). �

Note that by Proposition A.10, whenever (S;F ;L) is a p-local �nite group with
normal p-subgroup A C F , then the sequence

BA �����! jLj �����! jL=Aj

is a homotopy �bration sequence.

It is easy to construct examples of linking systems L with normal subgroup A for
which (L=A)c is not a centric linking system. As a rather trivial example, set p = 2, �x
a �nite group H of even order, and set G = A4�H. Let A C G be the normal subgroup
of order 4 in A4, and �x Sylow subgroups S0 2 Syl2(H) and S = A � S0 2 Syl2(G).
Let F = FS(G), L = LcS(G), and L0 = LcS0(H). Then A is normal in F . For
any P � S which is F -centric and contains A, P = A � P0 for some P0 � S0,
AutL(P ) = A4 � AutL0(P0), and hence AutL=A(P=A) �= C3 � AutL0(P0). Thus (L=A)

c

is not a linking system.

Note also, in the above example, that the kernel of the map from AutF(P ) to
AutF=A(P=A) is not a p-group for any P containing A. This helps to motivate the
following general criterion for L=A to be a linking system.

Proposition 2.3. Let (S;F ;L) be a �nite p-group, and assume A C F . Then (L=A)c

is a linking system associated to F=A if and only if Ker
�
AutF(P ) �! AutF=A(P=A)

�
is a p-group for all P � S such that P � A and P=A is F=A-centric.

Proof. Let P be the set of all subgroups P � S such that P � A and P=A is F=A-
centric. Consider the following subgroups for all P 2 P :

KP = Ker[AutF(P ) �! AutF=A(P=A)]

K 0
P = Ker[AutL=A(P=A) �! AutF=A(P=A)] :

By Lemma 2.2, K 0
P = E0(P )� Z(P=A) for some subgroup E0(P ) of order prime to p,

and (L=A)c is a linking system associated to F=A if and only if K 0
P is a p-group for all

P 2 P .

Consider the diagram

AutL(P )
=A

// //

=Z(P )
����

AutL=A(P=A)

=K0
P

����

AutF(P )
=KP

// // AutF=A(P=A) .

Here, in all cases, \=H" means dividing out by the subgroup H. Since A and Z(P )
are both p-groups, this shows that KP is a p-group if and only if K 0

P is a p-group, and
thus (L=A)c is a linking system if and only if KP is a p-group for all P 2 P . �



10 BOB OLIVER AND JOANA VENTURA

The following proposition describes one more very simple way to construct such
examples.

Proposition 2.4. Fix a �nite group G and Sylow subgroup S 2 Sylp(G). Assume
there is a normal p-subgroup A C G which is centric in G; i.e., CG(A) = Z(A). Let
L�AS (G) � LcS(G) be the full subcategory with objects those P � S containing A. Then

A is normal in FS(G), and L
�A
S (G)=A �= TS=A(G=A).

Proof. Since A is centric in G, so is every subgroup which contains A. Thus CG(P ) =
Z(P ) for every P 2 Ob(L�AS (G)), and so L�AS (G) is a full subcategory of the transporter

category TS(G). It follows that L
�A
S (G)=A �= T �A

S (G) �= TS=A(G=A). �

One easily �nds examples of groups whose (centric) transporter category is not a
linking category. For example, there are subgroups P � A7 such that P �= C2

2 , and
CA7(P )

�= C2
2 � C3. Thus P is 2-centric in A7, but for S 2 Syl2(A7), L

c
S(A7) is not a

full subcategory of TS(A7). So if we set G = C7
2 o A7, where A7 acts on A = C7

2 by
permuting a basis, then (LcS(G)=A)

c is not a linking system for G=A �= A7.

3. Transporter systems

In the last section, we saw that for a centric linking system L with normal subgroup
A, the quotient category (L=A)c need not be a linking system associated to any fusion
system. This motivates us to de�ne what we call \transporter systems": categories
with extra structures satisfying some properties similar to those of the transporter
categories associated to �nite groups, but without necessarily having such a group.

Recall (De�nition 1.1) that for any �nite group G and any S 2 Sylp(G), TS(G)
denotes the category with objects the subgroups of G, and with morphism sets the
transporter sets NG(P;Q). For any set H of subgroups of S, we let TH(G) be the full
subcategory of TS(G) with object set H.

De�nition 3.1. Let F be a fusion system over a p-group S. A transporter system
associated to a fusion system F is a nonempty �nite category T , together with a pair
of functors

TOb(T )(S)
"

������! T
�

������! F ;

satisfying the following conditions:

(A1) Ob(T ) � Ob(F), and Ob(T ) is closed under F-conjugacy and overgroups.
Also, " is the identity on objects and � is the inclusion on objects.

(A2) For each P;Q 2 Ob(T ), the kernel

E(P )
def
= Ker[�P;P : AutT (P ) �! AutF(P )]

acts freely on MorT (P;Q) by right composition, and �P;Q is the orbit map for
this action. Also, E(Q) acts freely on MorT (P;Q) by left composition.

(B) For each P;Q 2 Ob(T ), "P;Q : NS(P;Q) ���! MorT (P;Q) is injective, and the
composite �P;Q � "P;Q sends g 2 NS(P;Q) to cg 2 HomF(P;Q).
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(C) For all ' 2 MorT (P;Q) and all g 2 P , the diagram

P
'

//

"P;P (g)

��

Q

"Q;Q(�(')(g))

��

P
'

// Q

commutes in T .

(I) "S;S(S) 2 Sylp(AutT (S)).

(II) Let ' 2 IsoT (P;Q), P C P � S, and Q C Q � S be such that '�"P;P (P )�'
�1 �

"Q;Q(Q). Then there is some ' 2 MorT (P ;Q) such that '�"
P;P

(1) = "
Q;Q

(1)�'.

We will often write \(S;F ; T ) is a transporter system" to mean that T is a trans-
porter system associated to the fusion system F over the p-group S. The above axioms
are clearly labelled to show their connection with axioms (A), (B), and (C) of a linking
system, and axioms (I) and (II) of a saturated fusion system. Note, however, that
the concepts of fully normalized and fully centralized subgroups do not appear in the
axioms of a transporter system | which does help simplify some of our proofs that if
one category is a transporter system then another one is too.

For any transporter system (S;F ; T ), axiom (A2) implies that the functor � : T ! F
is \source regular" in the sense of De�nition A.5. So by Lemma A.6, a morphism in T
is an isomorphism if and only if its image in F is an isomorphism. In particular, T is
an EI category (all endomorphisms are automorphisms) since F is one.

We will show in Proposition 3.5 that transporter categories of �nite groups, linking
systems associated to saturated fusion systems, and (more generally) categories of the
form L=A when L is a linking system and A a normal subgroup, are all examples
of transporter systems. These examples provided our main motivation for the above
de�nition, and the axioms for a transporter system are clearly related to those for
fusion and linking systems.

We will prove soon, as Proposition 3.4(a), the following stronger form of axiom (I),
which is more closely analogous to the axiom (I) in De�nition 1.3:

(I0) If P is fully normalized in F , then "P;P (NS(P )) 2 Sylp(AutT (P )).

The weaker axiom (I) we use here is motivated by the alternative set of axioms for a
saturated fusion system due to Radu Stancu [St].

For all P � Q � S objects in T , we set �P;Q = "P;Q(1), and think of these as the
inclusion morphisms in T . By condition (B), � sends inclusions in T to inclusions in
F . Whenever P0 � P � S and Q0 � Q � S are in Ob(T ), and

P0
'0

//

�P0;P

��

Q0

�Q0;Q

��

P
'

// Q ,

is a commutative square in T , we say that '0 is a restriction of ' (and sometimes write
'jP0;Q0 = '0), and also that ' is an extension of '0. Thus axiom (II) gives conditions
under which a morphism can be extended.

This terminology suggests that the restriction 'jP0;Q0 should always exist and be
unique, whenever P0 and Q0 are objects in T and �(')(P0) � Q0. This is shown in the
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following lifting lemma, which is the analog for transporter systems of Lemma 1.7(a).
We will see later (Lemma 3.8) that extensions are also unique when they exist.

Lemma 3.2. Let (S;F ; T ) be a transporter system, and let � : T �! F be the
projection functor.

(a) Fix morphisms ' 2 HomF(P;Q) and  2 HomF(Q;R), where P;Q;R 2 Ob(T ).

Then for any pair of liftings e 2 ��1Q;R( ) and f ' 2 ��1P;R( '), there is a unique

lifting e' 2 ��1P;Q(') such that e � e' = f '.
(b) All morphisms in T are monomorphisms in the categorical sense. In other words,

for all P;Q;R 2 Ob(T ) and all '1; '2 2 MorT (P;Q) and  2 MorT (Q;R),
 � '1 =  � '2 implies '1 = '2.

(c) For every morphism ' 2 MorT (P;Q), and every P0; Q0 2 Ob(T ) such that P0 �
P , Q0 � Q, and �(')(P0) � Q0, there is a unique morphism '0 2 MorT (P0; Q0)
such that '��P0;P = �Q0;Q �'0. In particular, every morphism in T is the composite
of an isomorphism followed by an inclusion.

Proof. Since morphisms in F are all group monomorphisms, they are also monomor-
phisms in the categorical sense. Hence points (a) and (b) are special cases of Lemma
A.7(a,b).

In the situation of (c), by de�nition of a fusion system, �(')jP0;Q0 2 HomF(P0; Q0).

So the result follows from (a), with P;Q;R replaced by P0; Q0; Q, f ' by ' � �P0;P , etc.
The last statement is the special case where P0 = P and Q0 = �(')(P ). �

The following technical lemma can be thought of as a converse to axiom (II). It
shows that the condition for extending a morphism, which is su�cent by axiom (II),
is also necessary.

Lemma 3.3. Fix a transporter system (S;F ; T ), and objects P C P and Q � Q of T .

If ' 2 MorT (P ;Q) is an extension of ' 2 IsoT (P;Q), then

P
'

//

"P;P (x)

��

Q

"Q;Q(�(')(x))
��

P
'

// Q

(1)

commutes in T for all x 2 P .

Proof. By axiom (C), the following square commutes in T :

P
'

//

"
P;P

(x)

��

Q

"
Q;Q

(�(')(x))

��

P
'

// Q

(2)

Each morphism in (1) is the restriction of the corresponding morphism in (2). So square
(1) also commutes by the uniqueness of restriction morphisms (Lemma 3.2(c)). �

We next prove that axiom (I) can be replaced by the stronger axiom (I0) stated
above.
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Proposition 3.4. The following hold for any transporter system (S;F ; T ) and any
subgroup P � S.

(a) P is fully normalized in F if and only if "P;P (NS(P )) 2 Sylp(AutT (P )).

(b) P is fully centralized in F if and only if "P;P (CS(P )) 2 Sylp(E(P )).

Proof. The \if" part in both (a) and (b) is clear, since jAutT (P )j and jE(P )j depend
only on the F -conjugacy class of P .

(a) Suppose otherwise: that T does not satisfy axiom (I0). Let P be a maximal coun-
terexample. Thus P is fully normalized, and "P;P (NS(P )) is not a p-Sylow subgroup
of AutT (P ). Since axiom (I0) holds for the group S by assumption, P � S, and so
P � NS(P ). Choose Q 2 Sylp(AutT (P )) such that "P;P (NS(P )) � Q. We know that

"P;P (NS(P )) 6= Q, so "P;P (NS(P )) � Q0
def
= NQ("P;P (NS(P ))). We thus have strict

inclusions of p-subgroups of AutT (P ):

"P;P (P ) � "P;P (NS(P )) C Q0 (3)

Pick any morphism ' 2 Q0 not in "P;P (NS(P )). Then '
�1

�"P;P (x)�' 2 "P;P (NS(P ))
for all x 2 NS(P ) since "P;P (NS(P )) C Q0. So by axiom (II), there is an extension
' 2 AutT (NS(P )) of '; i.e., a morphism such that the following square commutes:

NS(P )
'

// NS(P )

P

�P;NS(P )

OO

'
// P .

�P;NS(P )

OO

Set j'j = pkm where p-m. Choose r such that r � 0 (mod m) and r � 1 (mod pk).
Then 'r has order pk and (since j'j

��pk) is again an extension of 'r = '. We can thus
assume that ' has p-power order.

Choose P fully normalized and F -conjugate to NS(P ). Let 
 2 IsoT (NS(P ); P ) be

any lifting of an isomorphism 
0 2 IsoF(NS(P ); P ). Since jP j = jNS(P )j > jP j and P

is a maximal counterexample, we have "
P ;P

(NS(P )) 2 Sylp(AutT (P )). Hence 
 �' �
�1

is conjugate to "
P ;P

(x) for some x 2 NS(P ), because ' has p-power order (and so does


 �' � 
�1) and all p-Sylow subgroups are conjugate. By replacing 
 by an appropriate

element of AutT (P ) � 
, we can arrange that 
 � ' � 
�1 = "
P ;P

(x).

Now, ' 2 AutT (P ) restricts to ' 2 AutT (P ). Set R = �(
)(P ) � P and 
0 =

jP;R 2 IsoT (P;R) (using Lemma 3.2(c)). Then 
0'


�1
0 2 AutT (R) is a restriction

of "
P ;P

(x). Hence �("
P ;P

(x)) = cx restricts to an automorphism of R (in F), which

means that x 2 NS(R) and 
0'

�1
0 = "R;R(x). Also, jNS(R)j � jNS(P )j since P is fully

normalized and R is F -conjugate to P , so �(
)(NS(P )) = NS(R), and x = �(
)(y) for
some y 2 NS(P ). We thus have the following two commutative squares of isomorphisms
in T :

P

0

//

'

��

R

"R;R(x)

��

P

0

//

"P;P (y)

��

R

"R;R(x)
��

P

0

// R P

0

// R ,

where the second commutes by Lemma 3.3. Upon comparing the two squares, we
�nally get ' = "P;P (y), which contradicts our assumption that ' =2 "P;P (NS(P )).



14 BOB OLIVER AND JOANA VENTURA

(b) Again �x P � S, and let P 0 be any subgroup which is F -conjugate to P and
fully normalized in F . Then "P 0;P 0(NS(P

0)) 2 Sylp(AutT (P
0)) by (a), and hence

"P 0;P 0(CS(P
0)) = "P 0;P 0(NS(P

0)) \ E(P 0) is a Sylow p-subgroup of E(P 0) by Lemma
1.9(b). Also, E(P ) �= E(P 0), so P is fully centralized if and only if jCS(P )j = jCS(P

0)j;
equivalently, "P;P (CS(P )) 2 Sylp(E(P )). �

We next check that the examples which motivated De�nition 3.1 really are trans-
porter systems.

Proposition 3.5. (a) For any p-local �nite group (S;F ;L), L is a transporter system
associated to F . More generally, if A C F is a normal subgroup, then L=A is a
transporter system associated to F=A.

(b) For any �nite group G and any S 2 Sylp(G), TS(G) is a transporter system asso-
ciated to FS(G).

(c) Let (S;F ; T ) be a transporter system, and let T0 � T be any nonempty full sub-
category such that Ob(T0) is closed under F-conjugacy and overgroups. Then T0
is also a transporter system associated to F .

Proof. Point (c) follows immediately from De�nition 3.1.

We next check point (b). For �nite G and S 2 Sylp(G), de�ne

T (S)
"

������! TS(G)
�

������! FS(G)

to be the inclusion, and the functor g 7! cg, respectively. The axioms of De�nition 3.1
are easily checked.

It remains to prove (a). Let (S;F ;L) be a p-local �nite group. We prove here only
that L is a transporter system associated to F . The last statement, that L=A is a
transporter system for any A C F , will then follow as a special case of Proposition
3.11, to be shown later.

Fix morphisms �P 2 MorL(P; S), for all P 2 Ob(L), such that �(�P ) = inclP;S 2
HomF(P; S), and such that �S = IdS. By Corollary 1.8, there is a unique functor

" : TOb(L)(S) �����! L

such that "P;S(1) = �P and ("P;P )jP = �P for all P . Furthermore, "P;Q is an injection
of NS(P;Q) into MorL(P;Q) for all P;Q 2 Ob(L) (again by Corollary 1.8). For each
P � Q � S such that P;Q 2 Ob(L), we set �P;Q = "P;Q(1) 2 MorL(P;Q). We think
of these as the inclusion morphisms, and de�ne restriction and extension in L with
respect to them.

We are now ready to check that the axioms of a transporter system hold for L.

Axioms (A1) and (C) follow immediately from axioms (A) and (C) for a linking
system.

Axiom (A2) : By axiom (A) for a linking system, for any P;Q 2 Ob(L), E(P ) =
�P (Z(P )) acts freely on MorL(P;Q), and �P;Q is the orbit map of that action. It remains
to show that E(Q) = �Q(Z(Q)) acts freely on MorL(P;Q). Assume f 2 MorL(P;Q)
and x 2 Z(Q) are such that �Q(x) � f = f . Then x centralizes �(f)(P ), so x = �(f)(y)
for some y 2 Z(P ) since P is F -centric, f = �Q(x) � f = f � �P (y) by axiom (C) for a
linking system, and so y = 1 by axiom (A) of a linking system. Thus x = 1, and the
action is free.
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Axiom (B) : For any P;Q 2 Ob(L) and any x 2 NS(P;Q),

�Q � "P;Q(x) = "Q;S(1) � "P;Q(x) = "S;S(x) � "P;S(1) = �S(x) � �P :

Since �(�P ) and �(�Q) are inclusions in F , this shows that �("P;Q(x)) is the restriction
to HomF(P;Q) of �(�S(x)), and hence is conjugation by x by axiom (B) for L as a
linking system. Thus �("P;Q(x)) = cx, and this proves axiom (B) for L as a transporter
system.

Axiom (I0) : Assume P is fully normalized in F . Then AutS(P ) �= NS(P )=Z(P )
is a Sylow p-subgroup of AutF(P ) �= AutL(P )=�P (Z(P )) by axiom (I) for the saturated
fusion system F (and axiom (A) for L as a linking system), and so "P;P (NS(P )) is also
a Sylow p-subgroup of AutL(P ).

Axiom (II) : Let f 2 IsoL(P;Q), and P C P � S and Q C Q � S, be such

that f � "P;P (P ) � f
�1 � "Q;Q(Q). If Q is fully centralized in F , then axiom (II) for

the saturated fusion system F implies that �(f) extends to a homomorphism  2

HomF(P ; S), whose image must be contained in Q since �(f) conjugates Aut
P
(P ) into

Aut
Q
(Q). Hence by Lemma 1.7(b), there is f 2 MorL(P ;Q) (not necessarily a lifting

of  ) which extends f .

Now assume Q is not fully centralized. Choose R which is F -conjugate to P and
Q and fully normalized in F . Then "R;R(NS(R)) is a Sylow p-subgroup of AutL(R)
(by axiom (I0)), and hence contains every p-subgroup of AutL(R) up to conjugacy. For
any isomorphism ' 2 IsoL(Q;R), ' � "Q;Q(NS(Q)) �'

�1 is a p-subgroup of AutL(R), so

there is � 2 AutL(R) such that '0
def
= � � ' conjugates "Q;Q(NS(Q)) into "R;R(NS(R)).

Since R is fully centralized, the result of the last paragraph implies that there are

morphisms f 0 2 MorL(P ;NS(R)) and ' 2 MorL(Q;NS(R)) such that f 0jP;R = '0 � f
and 'jQ;R = '0. By axiom (C) for a linking system,

f 0 � �
P
(P ) � f 0�1 = �NS(R)(�(f

0)(P )) and ' � �
Q
(Q) � '�1 = �NS(R)(�(')(Q)):

After restriction, this shows that in AutT (R),

"R;R(�(f
0)(P )) = ('0 � f) � "P;P (P ) � ('

0
� f)�1

� '0 � "Q;Q(Q) � '
0�1 = "R;R(�(')(Q));

where the inequality holds since f � "P;P (P ) � f�1 � "Q;Q(Q) by assumption. Thus

�(f 0)(P ) � �(')(Q). By de�nition of a fusion system, there is � 2 HomF(P ;Q) such

that �(') = �(f 0) � �, and so Lemma 1.7(a) now implies that there is f 2 MorL(P ;Q)

such that ' = f 0 � f . Upon restricting these morphisms to P , this implies that '0 � f =

'0 � f jP;Q; and hence by Lemma 1.7(a) that f jP;Q = f . �

More generally, one can also show that any quasicentric linking system in the sense
of [BCGLO1, x3]) is a transporter system.

Later, in Proposition 3.12, we prove a partial converse to Proposition 3.5(b), by
showing that any transporter system which \has enough objects" in a certain sense to
be made precise is a full subcategory of the transporter category of a �nite group.

Transporter systems were de�ned associated to arbitrary fusion systems. But in fact,
the conditions on the de�nition are su�ciently restrictive that if a transporter system
T is associated to a fusion system F , then F is saturated | at least with respect to
the objects of T .
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Proposition 3.6. Let F be a fusion system over a p-group S (not necessarily satu-
rated), and let T be a transporter system associated to F . Then F is Ob(T )-saturated.
If F is also Ob(T )-generated, and if Ob(T ) � Ob(F c), then F is saturated. More gen-
erally, F is saturated if it is Ob(T )-generated, and every F-centric subgroup P � S
not in Ob(T ) is F-conjugate to some P 0 such that OutS(P

0) \Op(OutF(P
0)) 6= 1.

Proof. Assume P 2 Ob(T ). If P is fully normalized in F , then by Proposition 3.4(a),
"P;P (NS(P )) 2 Sylp(AutT (P )). Hence by Lemma 1.9(b), applied with G = AutT (P )
and H = E(P ), "P;P (CS(P )) 2 Sylp(E(P )) (hence P is fully centralized by Proposition
3.4(b)) and AutS(P ) 2 Sylp(AutF(P )). Thus F satis�es axiom (I) for the subgroup P .

Now �x f 2 IsoF(P;Q) such that Q is fully centralized in F , and let ' 2 IsoT (P;Q)
be any isomorphism such that �(') = f . Set

Nf = fx 2 NS(P ) j f � cx � f�1 2 AutS(Q)g:

Then '("P;P (Nf ))'
�1 is a p-subgroup of E(Q)�"Q;Q(NS(Q)). Since Q is fully cen-

tralized, "Q;Q(CS(Q)) 2 Sylp(E(Q)) (Proposition 3.4(b) again), and so "Q;Q(NS(Q))
is a Sylow p-subgroup of E(Q)�"Q;Q(NS(Q)). Thus there is � 2 E(Q) such that
(� � ')("P;P (Nf ))(� � ')�1 is contained in "Q;Q(NS(Q)). So by axiom (II) for T , � � '
extends to a T -morphism de�ned on Nf , �(� � ') = �(') = f , and hence f extends to
an F -morphism de�ned on Nf . Thus F satis�es axiom (II) for the subgroup P .

We have now shown that F is Ob(T )-saturated. The last two statements (F is
saturated under additional hypotheses) follow from Theorem 1.5(b). �

For any transporter system (S;F ; T ), we let T c � T denote the full subcategory
whose objects are those P 2 Ob(T ) which are F -centric. We want to show that T
determines a unique linking system L associated to F with object set Ob(T c). When
doing this, we use the term \linking system" associated to F in a slightly more general
way than previously: to refer to any category L which satis�es all of the conditions in
De�nition 1.6, except that Ob(L) need not contain all F -centric subgroups.

Proposition 3.7. Let (S;F ; T ) be a transporter system. Let E(P ), for P 2 Ob(T ), be
as in De�nition 3.1. Then for every F-centric subgroup P � S, E(P ) = E0(P )�Z(P ),
where E0(P ) is the subgroup generated by all elements in E(P ) of order prime to p. We
can thus de�ne a centric linking system L associated to F by setting Ob(L) = Ob(T c),
and by setting

MorL(P;Q) = MorT (P;Q)=E0(P )

for all P;Q 2 Ob(L).

Proof. By axiom (C), for all P 2 Ob(T ), E(P ) commutes with "P;P (P ) in AutT (P ).
Hence if P is F -centric, then "P;P (Z(P )) is central in E(P ), and is a Sylow p-subgroup
by Proposition 3.4. This implies that E(P ) splits as a product Z(P ) � E0(P ), where
E0(P ) consists of all elements in E(P ) of order prime to p.

It is now straightforward to check that L, when de�ned as above, is a quotient
category of T c (i.e., composition is well de�ned). Also, axioms (A), (B), and (C) for
a transporter system imply that L satis�es the corresponding axioms for a linking
system, and thus is a linking system associated to F . �

We have already shown that every morphism in a transporter system is a monomor-
phism in the categorical sense. We now show that every morphism is also an epimor-
phism.
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Lemma 3.8. Let (S;F ; T ) be a transporter system. Fix subgroups P;Q;R 2 T , to-
gether with morphisms  2 MorT (P;Q) and '1; '2 2 MorT (Q;R) such that '1 �  =
'2 �  . Then '1 = '2. In other words, all morphisms in T are epimorphisms in the
categorical sense.

Proof. Since  is the composite of an isomorphism followed by an inclusion (Lemma
3.2(c)), it su�ces to prove this when P � Q and  = �P;Q is the inclusion. Also, it
su�ces to do this when P C Q: otherwise it can be shown in several steps using a
chain of subgroups linking P to Q, each normal in the following one.

Set P 0 = �('1)(P ). By Lemma 3.2(c), '1 � �P;Q = '2 � �P;Q has a unique restriction
� = '1jP;P 0 = '2jP;P 0 2 IsoT (P; P

0). Fix x 2 Q, set yi = �('i)(x), and consider the
following two squares:

Q
'i

//

"Q;Q(x)

��

R

"R;R(yi)

��

P
�

//

"P;P (x)

��

P 0

"P 0;P 0 (yi)

��

Q
'i

// R P
�

// P 0

The �rst square commutes by axiom (C), and the second square is de�ned to be a
restriction of the �rst. Note that "P;P (x) is the restriction of "Q;Q(x) since " is a functor
(and since �A;B = "A;B(1) for all A � B � S). Hence the second square commutes by
the uniqueness of restriction morphisms (Lemma 3.2(c)). Thus "P 0;P 0(y1) = "P 0;P 0(y2) =
� � "P;P (x) � �

�1. Since "P 0;P 0 is injective, this shows that y1 = y2. Since this holds for
all x 2 Q, �('1) = �('2).

By axiom (A2), we now get '2 = '1 � � for some � 2 E(Q). Hence

'1 � � � �P;Q = '2 � �P;Q = '1 � �P;Q;

so ���P;Q = �P;Q by Lemma 3.2 again, and � = IdQ since E(Q) acts freely on MorT (P;Q)
(axiom (A2)). It follows that '1 = '2. �

By analogy with the de�nition of radical and normal subgroups in a fusion system,
we de�ne:

De�nition 3.9. Let (S;F ; T ) be a transporter system.

� A subgroup Q 2 Ob(T ) is called T -radical if "Q;Q(Q) = Op(AutT (Q)).

� An arbitary subgroup Q � S (not necessarily an object in T ) is called normal in T ,
denoted Q C T , if for every morphism ' 2 MorT (P; P

0) in T , there is a morphism
' 2 MorT (PQ;P

0Q) such that �P 0;P 0Q � ' = ' � �P;PQ and �(')(Q) = Q.

If T is a full subcategory of TS(G) for some �nite group G and S 2 Sylp(G), then for
Q 2 Ob(T ), Q is T -radical if and only if Q is a radical p-subgroup of G in the usual
sense. If (S;F ;L) is a p-local �nite group and we regard L as a transporter system,
then P 2 Ob(L) is L-radical if and only if it is F -centric and F -radical. More generally,
if (S;F ; T ) is an abstract transporter system and P � S is F -centric and F -radical,
then it is not hard to see that P is also T -radical, but not conversely. For example,
assume G = H o S where H has order prime to p, S 2 Sylp(G), and CG(H) � H. Set
F = FS(G) and T = TS(G). Then every subgroup of S is T -radical, but no proper
subgroup of S is F -radical (nor F -centric if S is abelian).

The following proposition is the version for transporter systems of Alperin's fusion
theorem.
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Proposition 3.10. Let (S;F ; T ) be a transporter system. For each P; P 0 2 Ob(T )
and each ' 2 IsoT (P; P

0), there are subgroups

P = P0; P1; : : : ; Pk = P 0 and Qi � hPi�1; Pii (i = 1; : : : ; k)

where each Qi is T -radical and fully normalized in F , and also automorphisms �i 2
AutT (Qi) and isomorphisms 'i 2 IsoT (Pi�1; Pi), such that 'i = �ijPi�1;Pi for each i,
and ' = 'k � � � � � '1.

Proof. Fix ', and assume inductively that the result holds for all isomorphisms between
larger subgroups of S. If P = P 0 = S, there is nothing to prove, so we assume that
P; P 0 � S. Choose a fully normalized subgroup Q in the F -conjugacy class of P and
P 0. Since "Q;Q(NS(Q)) is a Sylow p-subgroup in AutT (Q) by axiom (I0), there are
isomorphisms  2 IsoT (P;Q) and  

0 2 IsoT (P
0; Q) such that  � "P;P (NS(P )) �  

�1 �
"Q;Q(NS(Q)) and similarly for  0. So by axiom (II),  extends to a morphism from
NS(P ) to NS(Q), and similarly for  0, and so the proposition holds for  and  0 both.
Thus to prove the proposition for ', it su�ces to prove it for  0 � ' �  �1 2 AutT (Q).
In other words, we are reduced to the case where P = P 0 is fully normalized.

If P is T -radical, then we are done. Otherwise, let R 	 P be such that "P;P (R) =
Op(AutT (P )). By axiom (II) again, any ' 2 AutT (P ) extends to an automorphism of
R, and again we are done by the induction hypothesis. �

If (S;F ; T ) is a transporter system and A C T , then we de�ne the quotient category
T =A by letting Ob(T =A) be the set of all P=A for A � P 2 Ob(T ), and setting

MorT =A(P=A;Q=A) = MorT (P;Q)="P;P (A) = "Q;Q(A)nMorT (P;Q):

The equivalence between these two formulas for MorT =A(P=A;Q=A) follows from axiom
(C). We next show that T =A is itself a transporter system.

Proposition 3.11. If (S;F ; T ) is a p-local �nite group, and A is a normal subgroup
in T , then T =A is a transporter system associated to the fusion system F=A.

Proof. We will denote by [f ] the morphism in MorT =A(P=A;Q=A) represented by f
in MorT (P;Q), and by f=A the morphism in MorF=A(P=A;Q=A) induced by f in
MorF(P;Q). So all morphisms in T =A have the form [f ] for some f 2 Mor(T ), and all
morphisms in F=A have the form f=A for some f 2 Mor(F).

Let � : T =A �! F=A be the functor induced by � : T �! F , i.e., �([f ]) = �(f)=A.
Let " : TOb(T =A)(S=A) �! T =A be the functor which is the identity on objects, and
where

"P=A;Q=A : NS=A(P=A;Q=A)
=NS(P;Q)=A

������! MorT =A(P=A;Q=A)
=MorT (P;Q)=A

is de�ned by setting "P=A;Q=A(gA) = ["P;Q(g)], for all g 2 NS(P;Q).

Axiom (A1) holds by de�nition of �.

Axiom (A2): E(P=A) acts freely on MorT =A(P=A;Q=A). Assume ' 2 MorT (P;Q)
and � 2 AutT (P ) are such that [']�[�] = ['] and [�] 2 E(P=A). Then '�� = '�"P;P (a)
for some a 2 A, � = "P;P (a) by Lemma 3.2(b), and hence [�] is the identity in E(P=A).

�P;Q is the orbit map for the E(P )-action on MorT =A(P=A;Q=A). Fix P and Q, and
';  2 MorT (P;Q). If [ ] = [']�[�] for some [�] 2 E(P=A), then clearly �([ ]) = �([']).
Conversely, assume that �([']) = �([ ]); we must show that they are in the same
E(P=A)-orbit. We have

�(')(P )=A = Im(�(['])) = Im(�([ ])) = �( )(P )=A;
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and so �(')(P ) = �( )(P ). Since every morphism in F factors as an F -isomorphism
followed by an inclusion, this implies that there is � 2 AutF(P ) such that �( ) =
�(') ��. So by Lemma 3.2(a), there is � 2 AutT (P ) such that  = ' �� and �(�) = �.
Then �([�]) = �=A = IdP=A, and hence [�] 2 E(P=A).

E(Q) acts freely on MorT (P;Q). Assume ' 2 MorT (P;Q) and � 2 AutT (Q) are
such that [�] � ['] = ['] and [�] 2 E(Q=A). Then for some a 2 A,

� � ' = ' � "P;P (a) = "Q;Q(�(')(a)) � '

where the second equality holds by axiom (C) for a transporter system; �(')(a) 2 A
since A is normal in F ; � = "Q;Q(�(')(a)) by Lemma 3.8; and hence [�] is the identity
in E(Q=A).

Axiom (B) for T =A follows directly from axiom (B) for T .

Axiom (C) for T =A is a consequence of axiom (C) applied to T . More precisely, for
each f 2 MorT (P;Q) and each g 2 P ,

[f ] � "P=A;P=A(gA) = [f ] � ["P;P (g)] = [f � "P;P (g)] = ["Q;Q(�(f)(g)) � f ]

= "Q=A;Q=A(�(f)(g)A) � [f ] = "Q=A;Q=A(�([f ])(gA)) � [f ] :

Axiom (I): By axiom (I) for T , "S;S(S) is a Sylow p-subgroup of AutT (S). So upon
diving out by A, we get that "S=A;S=A(S=A) is a Sylow p-subgoup of AutT =A(S=A).

Axiom (II): Fix [f ] 2 IsoT =A(P=A;Q=A), and let P=A C P=A � S=A and Q=A C

Q=A � S=A be such that

[f ] � "P=A;P=A(P=A) � [f ]
�1 � "Q=A;Q=A(Q=A):

Then for any lifting of [f ] to f 2 IsoT (P;Q),

f � "P;P (P ) � f
�1 � "Q;Q(Q):

So f extends to some f 2 MorT (P ;Q) by axiom (II) applied to T , and thus [f ] extends

to [f ] in MorT =A(P=A;Q=A). �

The next proposition shows that a transporter system over S which contains all
subgroups of S as objects is the transporter category of a �nite group.

Proposition 3.12. Let T be a transporter system over a p-group S for which Ob(T )
is the set of all subgroups of S. Set G = AutT (1), and identify S as a subgroup of G
via "1;1. Then S 2 Sylp(G), and there is an isomorphism of 4-tuples�

T ;F ; �; "
�
�=
�
TS(G);FS(G); (g 7! cg); incl

�
:

Proof. Note �rst that S 2 Sylp(G) by axiom (I0) (Proposition 3.4), applied with P = 1.
By (II) (applied with P = Q = 1), for each P;Q � S and each g 2 NG(P;Q),
there is some b"P;Q(g) 2 MorT (P;Q) which extends g 2 AutT (1), and this extension is
unique by Lemma 3.8. If R is another subgroup and h 2 NG(Q;R), then b"P;R(hg) =b"Q;R(h) � b"P;Q(g) by the uniqueness of the construction.
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We have thus de�ned a functor b" from TS(G) to T which is the identity on objects.
Consider the following diagram:

TS(S)
incl

//

Id

��

TS(G)
(g 7!cg)

//

b"
��

FS(G)

Id

��

TS(S)
"

// T
�

// F .

By Lemma 3.3 (applied with P = Q = 1), for g 2 NG(P;Q), �(b"P;Q(g)) is conjugation
by g. This proves that FS(G) � F , and that the right hand square in the diagram
commutes. For g 2 NS(P;Q), "P;Q(g) is an extension of "1;1(g) (since " is a functor).
So " is the restriction of b" to TS(S), and thus the left hand square commutes.

It remains to show that b" is an isomorphism of categories; it then follows from the
surjectivity of � that FS(G) = F . For all P;Q � S and ' 2 MorT (P;Q), there is a
uniquely de�ned restriction 'j1;1 2 AutT (1) = G by Lemma 3.2(c). Set g = 'j1;1 for
short. By Lemma 3.3 again, gxg�1 = �(')(x) 2 Q for all x 2 P (recall that we identify
S as a subgroup of G via "1;1), and thus g 2 NG(P;Q). It follows that ' = b"P;Q(g); g
is unique by the uniqueness of the restriction; and thus b"P;Q is a bijection. �

More generally, if (S;F ; T ) is a transporter system, and there is some Q 2 Ob(T )
such that Q C T , then one can show that T is isomorphic to a full subcategory of
TS(AutT (Q)).

We next describe another way to construct new transporter systems as quotients
of other transporter systems; a construction which will be useful in Section 6. As in
De�nition 3.1, for a transporter system (S;F ; T ), we let E(P ) be the kernel

E(P ) = Ker
�
AutT (P ) ����! AutF(P )

�
for all P 2 Ob(T ). We regard E as a functor E : T op ���! Gps: for each ' 2
MorT (P;Q) and each x 2 E(Q), E(')(x) 2 E(P ) is the unique morphism such that

' � E(')(x) = x � ' 2 MorT (P;Q):

Proposition 3.13. Fix a transporter system (S;F ; T ). Let E0 : T
op ���! Gps be a

subfunctor of E which satis�es the following two conditions for each P;Q 2 Ob(T ) and
each ' 2 MorT (P;Q):

(a) E0(P ) has order prime to p, and

(b) E0(Q) = E(')�1(E0(P )).

Let T =E0 be the quotient category which has the same objects as T , and where

MorT =E0
(P;Q) = MorT (P;Q)=E0(P ):

Then T =E0 is a transporter system associated to F .

Proof. The assumption that E0 is a subfunctor implies that T =E0 is a category (i.e.,
that composition is well de�ned). The structure functors

TOb(T )(S)
"0

������! T =E0
�0

������! F

are de�ned in the obvious way. Most of the axioms in De�nition 3.1 are easily carried
over from T to T =E0. The injectivity of "

0, and axiom (I) ("0S;S(S) 2 Sylp(AutT =E0
(S)))

follow from (a). The freeness of the action of E(Q)=E0(Q) on MorT (P;Q)=E0(P ) (part
of axiom (A2)) follows from (b).
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The only axiom which requires a little more explanation is (II). Fix '0 = ['] in

IsoT =E0
(P;Q) (where ' 2 IsoT (P;Q)). Assume P and Q are such that P C P , Q C Q,

and
'0 � "0P;P (P ) � '

0�1 � "0Q;Q(Q) � AutT =E0
(Q):

Equivalently, in T , this means that

' � "P;P (P ) � '
�1 � "Q;Q(Q)�E0(Q):

Since jE0(Q)j is prime to p, "Q;Q(Q) is a Sylow p-subgroup of "Q;Q(Q)�E0(Q). Hence

there is � 2 E0(Q) such that (�') � "P;P (P ) � (�')�1 � "Q;Q(Q). Thus �' can be

extended to some ' 2 MorT (P ;Q) by axiom (II) for T , and so '0 = ['] = [�'] extends

to the morphism '0 = ['] 2 MorT =E0
(P ;Q). �

The following is an example of how Proposition 3.13 will be applied in Section 6. Fix
a �nite group G, a normal subgroup H C G, and a Sylow subgroup S 2 Sylp(G). Let
H be the set of all subgroups P � S such that (Z(P ) \H) 2 Sylp(CH(P )). For each
P 2 H, CH(P ) = (Z(P ) \ H) � C 0

H(P ), where C
0
H(P ) is the set (a subgroup) of all

elements of CH(P ) of order prime to p. Then C
0
H is a subfunctor of CG which satis�es

conditions (a) and (b) in Proposition 3.13, and hence TH(G)=C
0
H is a transporter system

associated to FS(G). WhenH = G, then this is of course just the centric linking system
LcS(G).

The next proposition describes the opposite of this construction: it describes general
conditions for an extension of a transporter system to again be a transporter system
associated to the same fusion system. However, its main purpose is to show how to
construct any centric transporter system associated to a given F | any transporter
system whose objects are the F -centric subgroups | as an extension of a linking system
associated to F .

We refer to De�nition A.5 for the de�nition of a source regular extension of a category.
For any source regular extension T 0 �

���! T of T , we let eK : T 0op ���! Gps denote the
\kernel functor", de�ned on objects by setting eK(P ) = Ker[AutT 0(P ) ���! AutT (P )],

and on morphisms by sending ' 2 MorT 0(P;Q) to the unique homomorphism eK(') 2

Hom( eK(Q); eK(P )) such that � � ' = ' � eK(')(�) for all � 2 eK(Q). (Note that eK as
de�ned here is a functor from T 0 to groups, as opposed to the functor K� from T to
groups up to conjugacy de�ned in Lemma A.7(c).)

Proposition 3.14. Fix a transporter system (S;F ; T ) and a source regular extension

T 0 �
���! T of T . Let eK : T 0op ���! Gps be the kernel functor. Then T 0 can be given

a structure of a transporter system associated to F if the following conditions hold for
all P 2 Ob(T 0) = Ob(T ):

(a) eK(P ) is �nite of order prime to p.

(b) eK(') is a monomorphism for all ' 2 Mor(T ).

(c) For all g 2 P , eK("P;P (g)) = Id eK(P ).

(d) If P � P � NS(P ) and x 2 eK(P ) are such that eK(�P;P (g))(x) = x for all g 2 P ,

then x 2 Im( eK(�
P;P

)).

Proof. Let TOb(T )(S)
"

���! T
�
���! F be the structure functors for T , and set �0 = ���.

By (c) (applied with P = S), there is a unique homomorphism "0S;S : S ���! AutT 0(S)
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such that �S;S � "0S;S = "S;S. For each P � S, choose some "0P;S(1) 2 MorT 0(P; S) such
that �P;S � "0P;S(1) = "P;S(1). By Lemma A.7(a), for each P;Q 2 Ob(T 0) and each
g 2 NS(P;Q), there is a unique morphism "0P;Q(g) 2 MorT 0(P;Q) such that

"0Q;S(1) � "
0
P;Q(g) = "0S;S(g) � "

0
P;S(1);

and this de�nes a functor "0 such that � � "0 = ".

Axiom (A1) for T 0 follows immediately, (A2) by (b) and since � is source regular,
(B) since �0 �"0 = ��", and (I) from (a) and the corresponding axiom for the transporter
system T ).

We next check axiom (C). Fix ' 2 MorT 0(P;Q) and g 2 P , and set h = �0(')(g)
for short. By Lemma A.7(a), there is a unique automorphism 
 2 AutT 0(P ) such that
�P;P (
) = "P;P (g), and such that the following square commutes in T 0:

P
'

//




��

Q

"0Q;Q(h)

��

P
'

// Q .

Set jhj = pk. By juxtaposing copies of the above square (and by the uniqueness in

Lemma A.7(a)), 
p
k
= Id. By (c), ��1P;P ("P;P (P )) is the product of eK(P ) with a p-

group, hence "P;P (g) has a unique lifting to AutT 0(P ) of p-power order, and this proves
that 
 = "0P;P (g).

It remains to prove axiom (II) for T 0. Fix P C P � S, Q C Q � S, and ' 2

IsoT 0(P;Q) such that '"0P;P (P )'
�1 � "0Q;Q(Q). Then �(') extends to a morphism on

P by axiom (II) for T , and hence there is  2 MorT 0(P ;Q) such that �( jP;Q) = �(').

Let � 2 eK(P ) be the unique element such that  jP;Q = ' � �; then � normalizes

"0P;P (P ). Since � 2
eK(P ) which is normal in AutT 0(P ), this shows that

[�; "0P;P (P )] 2 eK(P ) \ "0P;P (P ) = 1;

where the intersection is trivial since one of the groups has order prime to p and
the other is a p-group. We can now apply condition (d) to show that � extends to

� 2 AutT 0(P ), and hence  � ��1 is an extension of ' to P . �

4. Homotopy properties of transporter systems

We collect here some results about the fundamental group, the homotopy type, and
the cohomology of nerves of transporter systems. Several results from the appendix
will be needed when proving these.

By Proposition A.3(a), for any transporter system (S;F ; T ), �1(jT j) is the free group
on the morphisms in T , modulo relations given by composition, and by setting inclusion
morphisms �P;Q equal to the identity. More precisely, let

� : Mor(T ) �����! �1(jT j)

be the map which sends ' 2 MorT (P;Q) to the loop (based at the vertex S) formed
by the edges �Q;S�'��P;S

�1 (composed from right to left). This clearly sends composites
to products and sends inclusions to the identity, and Proposition A.3 says that � is
universal among all maps de�ned on Mor(T ) with these properties.
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If '0; ' 2 Mor(T ) are such that '0 is a restriction of ', then they di�er by com-
position with inclusion morphisms, and hence �('0) = �('). Thus by Proposition
3.10 (Alperin's fusion theorem for transporter systems), �1(jT j) is generated by the
subgroups �(AutT (P )) for fully normalized T -radical subgroups P 2 Ob(T ).

The following proposition describes one way to construct transporter subsystems, as
\kernels" of homomorphisms de�ned on the fundamental group.

Proposition 4.1. Let (S;F ; T ) be a transporter system. Fix a �nite group �, and a
homomorphism �: �1(jT j) ���! �. We also identify � with � � �; i.e., as a function
de�ned on Mor(T ) which sends composites to products and inclusion morphisms to the
identity. For each subgroup H � �, set SH = (� � "S;S)

�1(H), a subgroup of S, and
assume that S1 2 Ob(T ). Let TH � T be the subcategory de�ned by setting

Ob(TH) = fP 2 Ob(T ) jP � SHg and MorTH (P;Q) = f' 2 MorT (P;Q) j�(') 2 Hg:

Let FH � F be the fusion system over SH generated by �(TH), and let

TOb(TH)(SH)
"H;H
�����! TH

�H�����! FH

be the restrictions of " and �. Then the following hold for each H � �.

(a) �(Mor(T )) = �(AutT (S1)).

(b) TH is a transporter system associated to the fusion system FH if and only if
"S1;S1(SH) 2 Sylp(AutTH (S1)). In particular, TH is a transporter system when-
ever H C �.

(c) Assume that "S1;S1(SH) 2 Sylp(AutTH (S1)); and also that for all P � S fully cen-
tralized in F , CS1(P ) � P implies P 2 Ob(T ) (� is an admissible homomorphism
in the sense of De�nition 5.10). Then FH is a saturated fusion system.

(d) Assume P 2 Ob(T ) implies P \ S1 2 Ob(T ). Then jTH j has the homotopy type
of the covering space of jT j with fundamental group ��1(H).

Proof. In general, for any P � S, we write P1 = P \ S1 for short. We �rst claim, for
all P;Q � S such that P1; Q1 2 Ob(T ), that there is a well de�ned restriction map

r = rP;Q : MorT (P;Q) ������! MorT (P1; Q1):

In other words, for all  2 MorT (P;Q),

�Q1;Q � r( ) =  � �P1;P for all  2 MorT (P;Q). (1)

By Lemma 3.2(c), this means proving that �( )(P1) � Q1. For all g 2 P1,

�("S;S(�( )(g))) = �("Q;Q(�( )(g))) = �( )��("P;P (g))��( )
�1 = 1

by axiom (C) for T , so �( )(g) 2 S1. Thus �( )(P1) � Q1, and these restriction maps
are all de�ned. Note also that (1) implies �(r( )) = �( ) for all  .

(a) By Proposition 3.10 (Alperin's fusion theorem for transporter systems), �(Mor(T ))
is contained in the subgroup generated by all �(AutT (P )) for fully normalized P 2
Ob(T ). So it su�ces to show that �(AutT (P )) � �(AutT (S1)) for all P 2 Ob(T )
fully normalized in F . Fix such a P , and �x � 2 AutT (P ). We can assume inductively
that �(AutT (Q)) � �(AutT (S1)) for all Q � S such that Q 	 P . If P � S1, then
rP;P (�) 2 AutT (S1), and so �(�) = �(r(�)) 2 �(AutT (S1)).

We are thus reduced to the case where P � S1. Then P � PS1, so P � NPS1(P ) =
P �NS1(P ). Since P is fully normalized, "P;P (NS(P )) 2 Sylp(AutT (P )) by axiom (I0).
Set

Aut1(P ) = Ker
�
AutT (P )

�
���! �

�
;
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so that
"P;P (NS1(P )) = Aut1(P ) \ "P;P (NS(P )) 2 Sylp(Aut1(P )):

Since all Sylow p-subgroups of Aut1(P ) are conjugate,

�"P;P (NS1(P ))�
�1 = �"P;P (NS1(P ))�

�1

for some � 2 Aut1(P ), and thus ��1 � � normalizes "P;P (NS1(P )). By axiom (II),
��1 � � extends to an automorphism � 2 AutT (NPS1(P )); i.e., �jP;P = ��1 � �. Then
�(�) = �(��1 � �) = �(�). Since �(�) 2 �(AutT (S1)) by the induction hypothesis,
this �nishes the proof of (a).

(b) The axioms (A1), (A2), (B), (C), and (II) of a transporter system for TH follow
easily from the corresponding axioms for T , without any restrictions on H. Hence TH
is a transporter system if and only if axiom (I) holds.

Set A = AutT (S1) and AH = AutTH (S1) = f� 2 A j�(�) 2 Hg for short. Consider
the restriction map

rSH ;SH : AutT (SH) ������! A = AutT (S1)

as de�ned above; an injective map by Lemma 3.8. By axiom (II) (and Lemma 3.3),
Im(rSH ;SH ) is the normalizer in A of "S1;S1(SH). Thus

"SH ;SH (SH) 2 Sylp(AutTH (SH)) () "S1;S1(SH) 2 Sylp
�
NAH ("S1;S1(SH))

�
:

Since a proper subgroup of a p-group is properly contained in its normalizer, this shows
that axiom (I) holds if and only if "S1;S1(SH) 2 Sylp(AH).

Now, S1 is fully normalized in F , since it is the only subgroup in its F -conjugacy
class. Hence "S1;S1(S) 2 Sylp(A) by axiom (I0). So if H C �, then "S1;S1(SH) is a Sylow
subgroup of AH by Lemma 1.9(b).

(c) Now assume "S1;S1(SH) 2 Sylp(AutTH (S1)). Hence TH is a transporter system
by (b). Assume also that for all P � S fully centralized in F , CS1(P ) � P implies
P 2 Ob(T ). In particular, if P � SH is FH-centric, then P � CSH (P ) � CS1(P ), and
thus P 2 Ob(TH). So FH is saturated by Proposition 3.6.

(d) We must prove that jTH j is homotopy equivalent to a covering space of jT j. Let
T 0
H � T be the subcategory with Ob(T 0

H) = Ob(T ), and where MorT 0
H
(P;Q) is the set

of all ' 2 MorT (P;Q) such that �(') 2 H. By Proposition A.4, jT 0
H j is homotopy

equivalent to the covering space of jT j with fundamental group ��1(H). Condition (1)
in Proposition A.4 follows by point (a) here.

It remains to prove that jT 0
H j ' jTH j. For all P;Q 2 Ob(T 0

H), all ' 2 MorT 0
H
(P;Q),

and all g 2 P , ' � "P;P (g) � '�1 = "Q;Q(�(')(g)) by axiom (C), and thus �(') 2
H conjugates �("P;P (g)) to �("Q;Q(�(')(g))). In particular, g 2 SH if and only if
�(')(g) 2 SH , and thus �(')(P \ SH) � Q \ SH . So by Lemma 3.2(a), there is a
unique restriction map

rHP;Q : MorT 0
H
(P;Q) ������! MorTH (P \ SH ; Q \ SH):

De�ne a retraction functor rH : T 0
H ���! TH by sending an object P to P \ SH ,

and sending  2 MorT (P;Q) to r
H
P;Q( ). The inclusion morphisms de�ne a natural

transformation of functors from incl � rH to IdT 0
H
, and thus jT 0

H j ' jTH j. �

We next look at the cohomology of the nerve of a transporter system T . By Propo-
sition A.3(b), for any abelian group A with action of �1(jT j), H

�(jT j;A) �= lim �
T

�(�)

for a certain functor �: T op ���! Ab which sends all objects to A. So we must study
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the higher limits of functors on T . A more general discussion of higher limits is given
in the appendix.

When (S;F ; T ) is a transporter system, the orbit category O(T ) of T is de�ned to
be the category whose objects are the objects of T , and where

MorO(T )(P;Q) = "Q;Q(Q)nMorT (P;Q):

When T = TS(G) is the category of a �nite group G with Sylow subgroup S, then
O(T ) is the usual orbit category of G:

MorO(T )(P;Q) = QnNG(P;Q) �= mapG(G=P;G=Q):

The relation between higher limits of p-local functors on T and on O(T ) (i.e., functors
which take values in Z(p)-modules) is described in the following lemma.

Lemma 4.2. Fix a transporter system (S;F ; T ), and let �: T op ���! Z(p)-mod be
any functor. Then there is a spectral sequence

Eij
2 = lim �

i

O(T )

(Hj(�; �(�))) =) lim �
T

i+j(�): (2)

Proof. This is a special case of Proposition A.11. �

The reason for working with higher limits over O(T ) instead of looking directly at
higher limits over T is that certain techniques developed when studying higher limits
over other orbit categories also apply to this situation. We refer to the appendix for
the de�nition of graded groups ��(G;M), when G is any �nite group and M is a
Z(p)-module (and the prime p is understood). Their relation to limits over O(T ) is
described by the following lemma.

Lemma 4.3. Fix a transporter system (S;F ; T ), and let

�: O(T )op ������! Z(p)-mod

be any functor which vanishes except on the F-conjugacy class of one subgroup Q 2
Ob(T ). Then

lim �
�

O(T )

(�) �= ��(AutO(T )(Q); �(Q)):

Proof. Since the result is independent of the choice of Q in its F -conjugacy class, we can
assume that Q is fully normalized. Set � = AutO(T )(Q), and set � = "Q;Q(NS(Q))=Q 2
Sylp(�).

Let Op(�) be the p-subgroup orbit category: the category whose objects are the p-
subgroups of �, and with morphism sets MorOp(�)(P;Q) = QnN�(P;Q). By de�nition,
for any Z(p)[�]-module M ,

��(�;M) = lim �
�

Op(�)

(FM) where FM(P ) =

(
M if P = 1

0 if P 6= 1.

(See the discussion before Proposition A.2.) LetO�(�) � Op(�) be the full subcategory
with objects the subgroups of �; this is clearly a subcategory equivalent to Op(�).

De�ne a functor

� : O�(�) ������! O(T )
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as follows. For each subgroup P=Q � �, set �(P=Q) = P . For each P=Q; P 0=Q � �
and each 
 2 AutT (Q) (i.e., Q
 2 �) such that P 0
 2 MorO(�)(P=Q; P

0=Q), 
 extends
to a unique morphism ' 2 MorT (P; P

0) by axiom (II), and we set

�(Q
) = P 0' 2 MorO(T )(P; P
0):

We want to apply Proposition A.2 ([BLO3, Proposition 4.3]) to this functor �. Point
(a) (� �= EndO(T )(Q)) holds by construction. Point (c) follows from Lemmas 3.8 and
A.8(b): all morphisms in O(T ) are epimorphisms in the categorical sense since all
morphisms in T are epimorphisms. It remains to check the other two hypotheses.

(b) For each P 2 Ob(O(T )) such that P and Q are not T -isomorphic, all isotropy
subgroups of the �-action on MorO(T )(Q;P ) (via right composition) are nontrivial
p-subgroups. For f 2 MorT (Q;P ), the isotropy subgroup of [f ] 2 MorO(T )(Q;P )
is the subgroup of all classes [�] for � 2 AutT (Q) such that f � � = "P;P (x) � f for
some x 2 P . By Lemma 3.2, for any given x 2 P , there is at most one � which
satis�es this equation, and there is such � if and only if

�(f)(Q) = �("P;P (x) � f)(Q) = x��(f)(Q)�x�1:

Thus the stabilizer subgroup of [f ] is isomorphic to NP (�(f)(Q))=Q, which is a
nontrivial p-group since �(f)(Q) � P .

(d) For any P=Q � �, any R 2 Ob(O(T )), and any ' 2 MorO(T )(Q;R) which is
P=Q-invariant, there is some ' 2 MorO(T )(P;R) such that ' = ' � �Q;P . This
follows from axiom (II).

Thus, by Proposition A.2, the natural map

lim �
�

O(T )

(�)
��

������!
�=

lim �
�

O�(�)

(� � �) = ��(�; �(Q))

is an isomorphism. �

Lemma 4.3 can now be combined with results in [JMO] about the functors ��(�;�),
to obtain the following corollary.

Corollary 4.4. Fix a transporter system (S;F ; T ).

(a) Assume

�: O(T )op ������! Z(p)-mod

has the property that for all P 2 Ob(T ) such that �(P ) 6= 0, there is an element
of order p in AutO(T )(P ) which acts trivially on �(P ). Then

lim �
�

O(T )

(�) = 0:

(b) Assume

	: T op ���! Z(p)-mod

has the property that for every fully centralized subgroup P 2 Ob(T ) such that
	(P ) 6= 0, there is g 2 CS(P )rP such that "P;P (g) acts trivially on 	(P ). Then
lim �
T

�(	) = 0.

Proof. By [JMO, Proposition 5.5], for any �nite group � and any Z(p)[�]-module M
such that some element g 2 � of order p acts via the identity on M , ��(�;M) = 0. In
particular, by the hypothesis in (a), ��(AutO(T )(P ); �(P )) = 0 for each P 2 Ob(T ).
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Point (a) now follows from Lemma 4.3, together with an appropriate �ltration of �
and the long exact sequences in higher limits for extensions of functors on O(T ).

Point (b) follows from (a), together with Lemma 4.2. �

We can now look at consequences for the homology of jT j.

Proposition 4.5. Fix a �nite group G, a Sylow subgroup S 2 Sylp(G), and a full sub-
category T � TS(G) whose set of objects is closed under G-conjugacy and overgroups.
Let A be an Z(p)[G]-module, regarded also as a functor from T to Z(p)-mod which sends
all objects to A and which sends a morphism g 2 NG(P;Q) to the action of g on A.
Let S1 � S be the subgroup of elements which act on A via the identity. Assume, for
all P � S such that CS1(P ) � P , that P 2 Ob(T ) (the action of T on A is admissible
in the sense of De�nition 5.10). Then

H�(jT j;A) �= lim �
T

�(A) �= H�(G;A);

where the �rst group means cohomology with coe�cients twisted via the natural homo-
morphism �1(jT j) ���! G.

Proof. The �rst isomorphism follows from Proposition A.3(b). To prove the second,
let �0 � �: TS(G) ���! Z(p)-mod be the functors

�(P ) = A for all P � S and �0(P ) =

(
A if P =2 Ob(T )

0 if P 2 Ob(T ).

In both cases, g 2 NG(P;Q) acts on A via the Z(p)[G]-module structure.

Let Tf1g(G) � TS(G) be the full subcategory with the trivial subgroup as the only
object. We claim that

lim �
�

TS(G)

(�) �= lim �
�

Tf1g(G)

(�) �= H�(G;A) and lim �
�

TS(G)

(�0) = 0:

The �rst isomorphism holds because TS(G) contains Tf1g(G) as a deformation retract
(every morphism restricts to a unique automorphism of 1), and the second because
functors from Tf1g(G) to abelian groups are the same as Z[G]-modules. The last iso-
morphism follows from Lemma 4.4(b), since whenever P =2 Ob(T ), CS1(P ) � P , and
for any g 2 CS1(P )rP , "P;P (g) acts trivially on A.

It now follows that

lim �
T

�(A) �= lim �
�

TS(G)

(�=�0) �= lim �
�

TS(G)

(�) �= H�(G;A):

Here, the �rst isomorphism holds since C�(T ;A) �= C�(TS(G); �=�0) (the chain com-
plexes de�ned in Lemma A.1). �

As a second application of the results in this section, we show that the nerve of a
transporter system (S;F ; T ) has the same p-completed homotopy type as the nerve of
the associated linking system, in the sense of Proposition 3.7.

Proposition 4.6. Fix a transporter system (S;F ; T ) such that Ob(T ) contains all
subgroups P � S which are F-centric and F-radical. Let T c be the full subcategory
with objects the F-centric subgroups which are in Ob(T ), and let L be the linking
system associated to T c. Then the inclusion T c ,! T and the projection T c ��� L
induce homotopy equivalences

jT j^p ' jT
cj^p ' jLj

^
p :
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Proof. By [BLO1, Lemma 1.3], if � : eC ���! C is any source regular functor (see De�-

nition A.5) such that Ker(�ec;ec) is �nite of order prime to p for each ec 2 Ob(eC), then j� j
induces an isomorphism from H�(jeCj;Fp) to H�(jCj;Fp), and hence a homotopy equiv-

alence jeCj ' jCj. This is the situation for the projection of T c onto L (by axiom (A2)
for T ), and hence jT cj ' jLj.

Let �: T op ���! Ab be the constant functor which sends all objects to Fp and all
morphisms to the identity. Let �0 � � be the subfunctor

�0(P ) =

(
�(P ) if P =2 Ob(T c)

0 if P 2 Ob(T c).

Then
H�(jT j;Fp) �= lim �

T

�(�) and H�(jT j; jT cj;Fp) �= lim �
T

�(�0):

For each P 2 Ob(T )rOb(T c) which is fully centralized, and each g 2 CS(P )rP ,
"P;P (g) acts trivially on �(P ). So lim �

�(�0) = 0 by Lemma 4.4(b). It follows that
the inclusion of jT cj into jT j is a mod p homology equivalence, and hence induces a
homotopy equivalence of p-completions. �

Since a space is p-good if its p-completion is p-good [BK, Proposition I.5.2], and the
p-completion of a linking system is p-good by [BLO2, Proposition 1.12], Proposition
4.6 implies that jT j is p-good whenever Ob(T ) contains all F -centric subgroups. In
fact, the same argument as that used in the proof of [BLO2, Proposition 1.12] can be
used in this situation (together with Proposition 3.10) to show directly that for any
transporter system T , jT j is p-good.

We �nish the section by describing one situation where an inclusion of transporter
systems actually induces a homotopy equivalence between their uncompleted nerves.

Let (S;F ; T ) be a transporter system. Recall that a subgroup P 2 Ob(T ) is T -
radical if Op(AutT (P )) = "P;P (P ). We let T r � T denote the full subcategory whose
objects are the T -radical subgroups of S.

The following proposition generalizes [BCGLO1, Theorem 3.5].

Proposition 4.7. Let (S;F ; T ) be a transporter system. Then jT rj ' jT j. More
generally, jT 0j ' jT j for any full subcategory T 0 � T which contains T r.

Proposition 4.7 is an immediate consequence of the following lemma, whose proof is
modelled on that of [BCGLO1, Proposition 3.11].

Lemma 4.8. Let (S;F ; T ) be a transporter system. Let T0 � T be any full subcategory
such that Ob(T0) is closed under F-conjugacy. Let P � S be maximal among those
subgroups in Ob(T )rOb(T0), and let T1 � T be the full subcategory whose objects are
the objects in T0 together with all subgroups F-conjugate to P . Assume furthermore that
P is not T -radical. Then the inclusion of nerves jT0j � jT1j is a homotopy equivalence.

Proof. Throughout this proof, \extensions" and \restrictions" of morphisms are taken
as usual with respect to the inclusions �P;Q for P � Q � S. Also, for ' 2 MorT (Q;Q

0)
and R � Q, we write '(R) = �(')(R) � Q0.

We must show that the inclusion functor I : T0 ! T1 induces a homotopy equivalence
jT0j ' jT1j. By Quillen's Theorem A (see [Q]), it will be enough to prove that the
undercategory P 0#I has contractible nerve (i.e., jP 0#Ij ' �) for each P 0 in T1. This
is clear when P 0 is not isomorphic to P (since P 0#I has initial object (P 0; Id) in that
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case), so it su�ces to consider the case P 0 = P . Since P was arbitrarily chosen in its
isomorphism class, we can also assume that P is fully normalized.

By assumption, P is not T -radical, and thus Op(AutT (P )) 	 "P;P (P ). De�nebP = "�1P;P (Op(AutT (P ))) :

Since P is fully normalized, "P;P (NS(P )) 2 Sylp(AutT (P )) contains Op(AutT (P )).

Hence "P;P ( bP ) = Op(AutT (P )), and so bP 	 P .

Recall that the objects in P#I are the pairs (Q;') for Q 2 Ob(T0) and ' 2
MorT (P;Q); and that MorP#I((Q;'); (R; )) is the set of all � 2 MorT (Q;R) such
that � � ' =  . Consider the full subcategories

C2 � C1 � C0 � P#I;

de�ned by setting

Ob(C0) = f(Q;') j'(P ) C Qg

Ob(C1) = f(Q;') j'(P ) = P C Qg

Ob(C2) = f(Q;') j'(P ) = P C Q; bP � Qg :

We will prove that jP#Ij ' jC0j ' jC1j ' jC2j ' �.

Let r1 : P#I ���! C0 be the retraction which sends (Q;') to (NQ('(P )); '
0), where

'0 2 MorT (P;NQ('(P ))) is the restriction of ', and which sends a morphism to its
restriction. All of these restrictions are well de�ned by Lemma 3.2(a). There is a
natural transformation of functors from incl � r1 to the identity on P#I which sends an
object (Q;') to the inclusion �NQ('(P ));Q, and thus jP#Ij ' jC0j.

Now let (Q;') be an object in C0, and set P 0 = '(P ) C Q and '0 = 'jP;P 0 2
IsoT (P; P

0). Since P is fully normalized, "P;P (NS(P )) 2 Sylp(AutT (P )), and hence the
p-subgroup '0�1"P 0;P 0(Q)'

0 is conjugate in AutT (P ) to a subgroup of "P;P (NS(P )). Let
� 2 AutT (P ) be such that (�'0�1)"P 0;P 0(Q)(�'

0�1)�1 is contained in "P;P (NS(P )). By
axiom (II) for T , �'0�1 extends to some morphism  2 MorT (Q;NS(P )) such that
 (P 0) = P . Then ( (Q);  �') is isomorphic to (Q;'); and ( (Q);  �') is in C1 since
 '(P ) = P . Thus every object in C0 is isomorphic to an object in C1, and this proves
that jC0j ' jC1j.

Now de�ne a retraction r2 : C1 ���! C2 as follows. On objects, we set r2(Q;') =

(Q bP ; �Q;Q bP �'). Fix � 2 MorC1((Q;'); (R; )); then �(P ) = P since '(P ) = P =  (P ),

so the restriction �0
def
= �jP;P 2 AutT (P ) is de�ned. Since �0 normalizes "P;P ( bP ) =

Op(AutT (P )), and since �0 conjugates "P;P (Q) to "P;P (R) by Lemma 3.3, there is an

extension r2(�) 2 MorT (Q bP ;R bP ) of �0 by axiom (II), which is unique (and also an
extension of �) by Lemma 3.8. Thus r2(�) is a morphism in C2 from r2(Q;') to
r2(R; ), and the uniqueness of this extension implies that r2 is a functor. There is a
natural transformation of functors from incl � r2 to IdC1 which sends an object (Q;')
to the morphism �Q;Q bP , and hence jC1j ' jC2j.

It remains to show that jC2j is contractible. For any object (Q;') in C2, axiom (II)

can again be used to construct an extension of ' to ' 2 MorT ( bP ;Q), thus a morphism
in C2 from ( bP ; �P; bP ) to (Q;'), and this morphism is unique by Lemma 3.8. Hence

( bP ; �P; bP ) is an initial object in C2, and jC2j ' �. �
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5. Extensions of transporter systems

We are now ready to study extensions of transporter systems and the resulting
extensions of fusion systems. We �rst give a precise de�nition of what we mean by
an extension of a transporter system. Afterwards, we show that any such extension is
itself a transporter system, give conditions for when it is a linking system, and look at
the obstruction theory for such extensions.

De�nition 5.1. Let (S;F ; T ) be a transporter system. An extension T consists of a

category eT and a functor � : eT �! T , such that for all P ;Q 2 Ob(eT ),
(a) � is a bijection on objects;

(b) K
P

def
= Ker

�
�
P ;P

: AuteT (P ) ���! AutT (�(P ))
�
is a �nite p-group;

(c) K
P
acts freely on MoreT (P ;Q) by right composition and � is the orbit map of this

action; and

(d) K
Q
acts freely on MoreT (P ;Q) by left composition, and � is the orbit map of this

action.

Conditions (a), (c), and (d) above are equivalent to saying that � : eT ���! T is a
source and target regular extension, in the sense of De�nition A.5.

We want to show that every extension of a transporter system in this sense is again
a transporter system; moreover, that an extension of T is equivalent to a transporter
system eT with normal subgroup A C eT such that eT =A �= T . In order to show thateT is a transporter system, we need �rst to associate a �nite p-group eS, and a fusion
system eF over eS, to the category eT .
De�ne eS to be the pull-back of � �S; �S and "S;S:

eS e"eS
//

q

��

AuteT ( �S)
� �S; �S

��

S
"S;S

// AutT (S) .

(1)

Thus eS = f(g; f) 2 S � AuteT ( �S) j "S;S(g) = �(f)g. Let q : eS �! S and e"eS : eS �!
AuteT ( �S) be the structure maps of the pull-back, so q is surjective and e"eS is injective.

Set A = Ker(q), and set eP = q�1(P ) for each P � S. So A and eP are subgroups of eS,
and each eP contains A. In fact, for each P 2 Ob(T ), the group eP is an extension of
the form

1 ���! A
i

�����! eP qj eP�����! P ���! 1

(including the case of S), where i is the inclusion map. Since the functor � is a bijection

on objects and we de�ned a group eP � eS for each P 2 Ob(T ), we will consider that

the objects in eT are subgroups of eS (all containing A as a normal subgroup) and will

denote by eP the object in eT such that �( eP ) = P .

The pull-back square (1) also shows that e"eS restricts to an isomorphism from A to

Ker(�eS). In particular, A is a p-group by condition (b) in De�nition 5.1, and so eS is
also a p-group.
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The following lifting lemma is the analogy for extensions of transporter systems to
Lemmas 1.7 and Lemma 3.2.

Lemma 5.2. Let T be a transporter system and let eT be an extension of T by the

p-group A. Fix morphisms P
'
���! Q

 
���! R in T , and let f ' 2 MoreT ( eP ; eR) be any

lifting of  � '.

(a) For any lifting e' 2 MoreT ( eP ; eQ) of ', there is a unique morphism e 2 MoreT ( eQ; eR)
such that �( e ) =  and e � e' = f '.

(b) For any lifting e 2 MoreT ( eQ; eR) of  , there is a unique morphism e' 2 MoreT ( eP ; eQ)
such that �(e') = ' and e � e' = f '.

Proof. These are special cases of Lemmas A.7(a) and A.8(a). �

Next, we de�ne the functors

TOb(eT )(eS) e"
������! eT e�

������! Gps

which will give eT the structure of a transporter system. Notice that we already have
a group monomorphism e"eS : eS �! AuteT (eS), and we will be using it in the proofs of
Lemmas 5.3 and 5.4.

For each eP , choose a lifting e� eP 2 MoreT ( eP ; eS) of �P 2 MorT (P; S). These are chosen

arbitrarily, except that we require e�eS = IdeS in eT . (Recall that �P = "P;P (1).)

Lemma 5.3. For each eP ; eQ 2 Ob(eT ) and each ex 2 NeS( eP ; eQ), there is a unique

morphism e" eP ; eQ(ex) in eT that makes the following diagram commute:

eP e� eP
//

e" eP; eQ(ex)
��

eS
e"eS(ex)

��eQ e� eQ
// eS .

(2)

Furthermore, e" eP ; eP (A) = Ker(� eP ; eP ), and thus Ker(� eP ; eP ) �= A.

Proof. The �rst statement follows immediately from lifting Lemma 5.2(b), applied withe = e� eQ, f ' = e"eS(ex) � e� eP , and ' = "P;P (q(ex)).
By Lemma 5.2, there is a unique bijection � : Ker(� eP ; eP ) �=

���! Ker(�eS;eS) such that
the square

eP e� eP
//

�

��

eS
�(�)

��eP e� eQ
// eS .

commutes for all � 2 Ker(� eP ; eP ). Since �(e" eP ; eP (a)) = e"eS(a) for a 2 A by (2), ande"eS(A) = Ker(�eS;eS) by de�nition of e"eS, this shows that e" eP ; eP (A) = Ker(� eP ; eP ). �

We thus get a well-de�ned map from Mor(TOb(eT )(eS)) to Mor(eT ) which sends ex toe" eP ; eQ(ex). By putting together two squares of the form (2) we see that this de�nes a
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functor e" : TOb(eT )(eS) ������! eT
which is the identity on objects. Notice that e" eP ; eQ is de�ned so that the square

NeS( eP ; eQ) e" eP; eQ
//

q

��

MoreT ( eP ; eQ)
� eP; eQ

��

NS(P;Q)
"P;Q

// MorT (P;Q)

(3)

commutes in eT , i.e., e" eP ; eQ is a lifting of "P;Q.

Lemma 5.4. For all eP ; eQ 2 Ob(eT ), the map e" eP ; eQ : NeS( eP ; eQ) �! MoreT ( eP ; eQ) is
injective.

Proof. Let ex; ey 2 NeS( eP ; eQ) be such that e" eP ; eQ(ex) = e" eP ; eQ(ey). Thene"eS(ex) � e� eP = e� eQ � e" eP ; eQ(ex) = e� eQ � e" eP ; eQ(ey) = e"eS(ey) � e� eP
by (2). Also, by (3), q(ex) = q(ey), so e"eS(ex) and e"eS(ey) are liftings of the same morphism
"S;S(q(ex)). Thus e"eS(ex) = e"eS(ey) by Lemma 5.2(a). But e"eS is injective by construction
(see (1)), so ex = ey. �

Lemma 5.5. Given a morphism f 2 MoreT ( eP ; eQ), there is a unique group homorphism

' 2 Hom( eP ; eQ) such that the diagram

eP f
//

e" eP; eP (x)
��

eQ
e" eQ; eQ('(x))

��eP f
// eQ

(4)

commutes for all x 2 eP .
Proof. Set �x = q(x). By axiom (C) of the transporter system T ,

�(f) � "P;P (�x) = "Q;Q(�(�(f))(�x)) � �(f) ;

for all �x 2 P . So the result follows from the lifting Lemma 5.2(a). �

Now we can de�ne the functor e� : eT �! Gps to be the identity on objects, and
to send a morphism f 2 MoreT ( eP ; eQ) to the unique group homomorphism de�ned in
Lemma 5.5. Again, by putting together commutative squares of the form (4), one sees
that e� is indeed a functor.

Let eF be the fusion system generated by the image of the functor e�. Thus wheneP ; eQ 2 Ob(eT ), Mor eF( eP ; eQ) is the image under e� of MoreT ( eP ; eQ). For arbitrary sub-

groups R;R0 � eS, MoreT (R;R0) � Inj(R;R0) is the set of all monomorphisms which are

composites of restrictions of eF -morphisms between objects in eT .
Proposition 5.6. The category eT , together with the maps e" eP ; eQ and the functor e� de-

�ned in Lemmas 5.3 and 5.5, de�ne a transporter system associated to eF . In particular,eF is an Ob(eT )-saturated fusion system. Furthermore, A C eT , and (eS=A; eF=A; eT =S) �=
(S;F ; T ).
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Proof. The last statement is clear, and the saturation of eF follows from Proposition 3.6,
once we know that eT is a transporter system. So we need only check that eT satis�es
the axioms of De�nition 3.1. Axiom (A1) follows from the conditions in De�nition 5.1

for the extension eT , and axiom (C) holds by construction of e�.
For each eP ; eQ � eS, the injectivity of e" eP ; eQ was shown in Lemma 5.4. The compositee� eP ; eQ � e" eP ; eQ sends g 2 NeS( eP ; eQ) to cg 2 Hom eF( eP ; eQ) by the construction of e� using

Lemma 5.5 (applied with f = " eP ; eQ(g)). This proves axiom (B).

We next check axiom (A2). For each eP 2 Ob(eT ), seteE( eP ) = Ker
�
AuteT ( eP ) ���! Aut eF( eP )�:

Then � eP ; eP ( eE( eP )) � E(P ). So the free actions of E(P ) and E(Q) on MorT (P;Q) lift

to free actions of eE( eP ) and eE( eQ) on MoreT ( eP ; eQ). If f; f 0 are two morphisms such thate�(f) = e�(f 0), then �(�(f)) = �(�(f 0)), so �(f 0) = �(f) �� for some � 2 E(P ) by axiom

(A2) for T . By the lifting Lemma 5.2(b), � lifts to a unique e� 2 AuteT ( eP ) such that

f 0 = f � e�, and e� 2 eE( eP ) since e�(f 0) = e�(f).
Axiom (I) for eT (e"eS;eS(eS) 2 Sylp(AuteT (eS))) follows from axiom (I) for T .

Axiom (II) is a consequence of the same axiom applied to T . Given a morphism

' 2 MoreT ( eP ; eQ), and subgroups eP � eP 0 � NeS( eP ) and eQ � eQ0 � NeS( eQ) such that

' �e" eP ; eP ( eP 0) �'�1 � e" eQ; eQ( eQ0), apply the functor � : eT �! T to the last inclusion. Then

axiom (II) for T implies that there is some f 2 MoreT ( eP 0; eQ0) such that �(f)jP;Q =
�('). Hence by Lemma 5.3 (Ker(� eP ; eP ) = e" eP ; eP (A)), there is a 2 A such that f j eP ; eQ =

' � e" eP ; eP (a). So ' def
= f � e" eP 0; eP 0(a�1) is an extension of '. �

We now look at the action of T on A induced by an extension of transporter systems.

Lemma 5.7. Fix a transporter system (S;F ; T ), and an extension

1 ���! A ���! eT �
���! T ���! 1:

Then this de�nes an action � : Mor(T ) �! Out(A) of Mor(T ) on A as follows. For

each f 2 MorT (P;Q), choose any ef 2 MoreT ( eP ; eQ) such that �( ef) = f , and sete�( ef) = e�( ef)jA 2 Aut(A):
Then the class �(f) = [e�( ef)] 2 Out(A) is well de�ned, independently of the choice of

lifting ef , and satis�es the following conditions.

(a) �(f) � �(f 0) = �(f � f 0) for any composable pair of morphisms f; f 0 in T .

(b) For any lifting ef 2 Mor(eT ) of f , the following square commutes for all a 2 A:

eP ef
//

e" eP; eP (a)
��

eQ
e" eQ; eQ(e�( ef)(a))

��eP ef
// eQ .

(5)

Proof. If ef 0 is another lifting of f , then there is some a 2 A such that ef 0 = ef � e" eP ; eP (a).
Then e�( ef 0) = e�( ef) � ca, and so [e�( ef 0)jA] = [e�( ef)jA] in Out(A). This proves that �(f) is
well de�ned in Out(A), independently of the choice of lifting.
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Point (a) is immediate from the de�nition, and (b) follows from axiom (C) for eT . �

Extensions of transporter systems in the sense of De�nition 5.1 give one class of
examples of extensions of categories which are both source regular and target regular, in
the sense of De�nition A.5. By that de�nition, an extension of the transporter system T
is exactly the same as a source regular extension of T by a functor F : T op ���! Gps�
such that F sends all objects in T to �nite p-groups and sends all morphisms to
isomorphisms.

The general obstruction theory for constructing extensions of categories which are
source and target regular and have abelian kernels is described in Proposition A.9 (with
some remarks on the nonabelian case). The following proposition deals with the special
case of extensions of transporter systems. Since any extension of a transporter system
by a �nite p-group can be factored as the composite of a sequence of extensions by
abelian p-groups, the assumption that the kernel be abelian is not a major restriction.

Proposition 5.8. Fix a transporter system (S;F ; T ). Then extensions of T by a given
�nite abelian p-group A are in one-to-one correspondence with actions � of �1(jT j) on
A, together with elements of H2(jT j;A) (with coe�cients twisted by �).

Proof. By Proposition A.3(a), an action of �1(jT j) on A correspond to maps from
Mor(T ) to Aut(A) which send composites to products and inclusions to the identity.
Hence the action of �1(jT j) on A is described in Lemma A.7(c); and is the same as
that de�ned by Lemma 5.7 by point (b) of that lemma. By Proposition A.9, the set of
extensions which realize a given action of �1(jT j) on A are in one-to-one correspondence
with lim �

2(K), where K(P ) �= A for all P , and this group is isomorphic to H2(jT j;A)
by Lemma A.3(b). �

We now examine conditions for an extension of T to be a linking system, and also for
its associated fusion system to be exotic. We �rst give an example of the complications
which can arise if one doesn't impose extra conditions. Set p = 2, and let L be the
centric linking system of A6. Since �1(jLj) �= �4 �

D8

�4, it surjects onto A6
�= PSL2(9)

and onto PSL2(7); in fact, onto PSL2(q) for any q � �7 (mod 16) which is a prime
or the square of a prime. Let jLj act on A = C7

2 via the faithful action of A6 on C
4
2

and that of PSL2(7) �= GL3(2) on C
3
2 . The resulting extension of L by A is an exotic

transporter system; but not very interesting, since it has too few objects to generate a
saturated fusion system.

We now want to de�ne the concept of an \admissible" action or extension of a
transporter system, in order to avoid such examples. We �rst need one more lemma to
motivate the precise conditions in the de�nition.

When � : eT ���! T is an extension of T by A, we let

�P;Q : MorT (P;Q) �����! Out(A) and �P : E(P ) �����! Out(A)

be the restrictions of the action � to the corresponding sets of morphisms. Recall
that E(P ) = Ker(�P;P ) � AutT (P ), so �P is a group homomorphism. We also writeeE( eP ) = Ker(e� eP ; eP ).
Lemma 5.9. Fix a transporter system (S;F ; T ), and an extension

1 ���! A �����! eT �
�����! T ���! 1:
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Let eF �F����! F and eS q
����! S be the extensions of fusion systems and p-groups asso-

ciated to eT . Set
S1 = q(CeS(A)) = Ker

�
S

"S;S
����! AutT (S)

�S;S
����! Out(A)

�
:

Then the following hold for any subgroup P 2 Ob(T ), where eP = q�1(P ).

(a) If P is fully normalized in F , then eE( eP ) � e" eP ; eP (CeS( eP )) if and only if Ker(�P ) is
a p-group.

(b) If eP � eS is any subgroup which is eF-centric and eF-radical, or more generally

any eF-centric subgroup such that OuteS( eP ) \ Op(Out eF( eP )) = 1, then eP � A and
CS1(P ) � P .

(c) If CS1(P ) � P , then eP is eF-centric.
Proof. (a) Consider the following commutative diagram:

1 // eE( eP ) //

��

AuteT ( eP ) e�
//

� eP; eP
����

Aut eF( eP )
 

��

1 // Ker(�P ) // AutT (P )
(�;�)

// Out(A)� AutF(P )

where  (f) = (f jA; f=A) for f 2 Aut eF( eP ). By Lemma 1.9(a), Ker( ) is a p-group.

Hence for each x 2 Ker(�P ), x
pk 2 � eP ; eP ( eE( eP )) for some k; and this implies that

� eP ; eP � eE( eP )� has p-power index in Ker(�P ). Since Ker(� eP ; eP ) �= A is a p-group, it now

follows that eE( eP ) is a p-group if and only if Ker(�P ) is a p-group. In particular, ifeE( eP ) � " eP ; eP (CeS( eP )), then Ker(�P ) is a p-group.

Now assume conversely that Ker(�P ) is a p-group. We have just shown that eE( eP )
is a p-group. Since P is fully normalized, eP is also fully normalized, and so axiom (I0)

for eT implies that e" eP ; eP (NeS( eP )) is a Sylow p-subgroup of AuteT ( eP ). Since a normal
p-subgroup of a �nite group is contained in all of its Sylow p-subgroups, this shows
that eE( eP ) � e" eP ; eP (NeS( eP )):
Furthermore, by axiom (C) for eT , every element of eE( eP ) commutes with every element
of e" eP ; eP ( eP ), and thus eE( eP ) � e" eP ; eP (CeS( eP )).
(b) Assume eP � eS is eF -centric and OuteS( eP ) \ Op(Out eF( eP )) = 1, and consider the
following diagram with exact rows:

1 // CeS( eP ) //

�

��

NeS( eP ) conj
//

q

����

Aut eF( eP )
 

��

1 // CS1(P ) // NS(P )
conj

// Out(A)� AutF(P ) .

Then �
g 2 NeS( eP ) �� cg 2 Ker( )	 � CeS( eP ) � eP : (6)
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the �rst inclusion since Ker( ) � Op(Aut eF( eP )), and the second since eP is eF -centric.
In particular, A � eP . Also, for all g 2 CS1(P ), there is eg 2 NeS( eP ) such that q(eg) = g,eg 2 eP by (6), and so g 2 P .

(c) If CS1(P ) � P , then q(CeS( eP )) � P , and so eP is eF -centric. �

Conditions (b) and (c) above help to motivate the following de�nition.

De�nition 5.10. Fix a transporter system (S;F ; T ).

(a) A homomorphism �: �1(jT j) ���! � is called admissible if, upon setting S1 =
Ker(� � "S;S), P � S fully centralized in F and CS1(P ) � P imply P 2 Ob(T ).

(b) An action �: �1(jT j) ���! Out(A) of T on a p-group A is called admissible if the
homomorphisms � is admissible.

(c) An extension 1 ! A ! eT ! T ! 1 is called admissible if the action of T on A
de�ned in Lemma 5.7 is admissible.

Recall, for any fusion system F over S and any A � S, the centralizer fusion system
CF(A) is the fusion system over CS(A) where for each P;Q, HomCF (A)(P;Q) is the set of

those f 2 HomF(P;Q) which extend to f 2 HomF(PA;QA) such that f jA = IdA (see
[BLO2, x2]). As a consequence of Lemma 5.9, when applied to admissible extensions,
we now get:

Theorem 5.11. Fix a transporter system (S;F ; T ) and an admissible extension 1!

A ! eT ! T ! 1, and let eS and eF be the p-group and fusion system associated
to eT . Let �: �1(jT j) ���! Out(A) be the action de�ned in Proposition 5.7, and let
(S1;F1; T1) be the \kernel" transporter system of � in the sense of Proposition 4.1.
Then the following hold.

(a) Ob(eT ) contains all subgroups of eS which are eF-centric and eF-radical. Moreover,

every eF-centric subgroup eP � eS not in Ob(eT ) is eF-conjugate to some eP 0 such

that OuteS( eP 0) \Op(Out eF( eP 0) 6= 1.

(b) eF is a saturated fusion system.

(c) Let eL be the full subcategory of eT whose objects are those eF-centric subgroups of eS
in Ob(eT ). Then eL is a linking system if and only if Ker[�P : E(P ) ���! Out(A)]

is a p-group for all P 2 Ob(T ) such that eP 2 Ob( eL).
(d) If eF is the fusion system of a �nite group eG, then F is the fusion system of

N eG(A)=A, and F1 is the fusion system of C eG(A)=A. Thus if F1 is exotic (not the

fusion system of any �nite group), then so is eF .
Proof. Point (a) follows immediately from Lemma 5.9(b), and point (b) then follows
from Proposition 3.6.

By de�nition, eL is a linking system associated to eF if and only if eE( eP ) � e" eP ; eP (Z( eP ))
for all eP 2 Ob( eL), and Z( eP ) = CeS( eP ) for all such eP . Also, if this condition holds for

any subgroup in the eF -conjugacy class of eP , it also holds for eP . So (c) follows from
Lemma 5.9(a).

It remains to prove (d). By construction, A C eF , eF=A �= F , and C eF(A)=A �= F1. IfeF �= FeS( eG) for some �nite group eG, then since A C eF , eF is also the fusion system of
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N eG(A). Thus F is the fusion system of N eG(A)=A. Also, by de�nition, a morphism ineF lies in C eF(A) if and only if it is conjugation by an element in C eG(A). Hence C eF(A)
is the fusion system of C eG(A), and so F1 is the fusion system of C eG(A)=A. �

We �nish the section with some tools which are useful when computing the obstruc-
tion groups which appear in Proposition 5.8.

Lemma 5.12. Fix a transporter system (S;F ; T ), a �nite abelian p-group A, and an
admissible action �: T ���! Aut(A). Set S1 = Ker(� � "S;S) C S, and assume that
P 2 Ob(T ) implies P \ S1 2 Ob(T ). Let T1 � T be the transporter subsystem of
Proposition 4.1: Ob(T1) is the set of subgroups of S1 which are in Ob(T ), and Mor(T1)
is the set of morphisms  in T between objects of T1 such that �( ) = 1. Then there
is a spectral sequence

Eij
2 = H i(�;Hj(jT1j;A)) =) H i+j(jT j;A) ;

where � = Im(�) � Aut(A). Here, H�(jT1j;A) is ordinary cohomology with untwisted
coe�cients. The action of � on Hj(jT1j;A) is induced by the action of � on A, together
with the homotopy action of � �= AutT (S1)=AutT1(S1) on jT1j via restrictions.

Proof. This is the spectral sequence induced by the �bration sequenceeX ������! E���
eX ������! B�;

where eX denotes the covering space of jT j with fundamental group Ker(�). By Propo-

sition 4.1(d), eX ' jT1j. The action of � on eX induces the homotopy action on jT1j
described above via the construction in the proof of Propositions 4.1(d) and A.4. �

In the above situation, if one wants to determine the action of � on H�(jT1j;A)
in concrete situations where the actions on jT1j and on A are both nontrivial, then
more precision is needed when formulating the above statement. But this formulation
su�ces for our purposes here.

The following is an immediate corollary to Lemma 5.12.

Corollary 5.13. Let (S;F ; T ), �: T ���! Aut(A), S1 C S, and T1 � T be as in
Lemma 5.12, and set � = Im(�) � Aut(A). Assume, furthermore, that H i(jT1j;Fp) =
0 for i = 1; 2. Then H i(jT j;A) �= H i(�;A) for i = 1; 2. Thus there is a bijective
correspondence between extensions of T by A and group extensions of � by A (with the
given actions of T and � on A). �

6. Examples

We �rst look at conditions which imply that an admissible extension of the trans-
porter category of a �nite group (or one of its full subcategories) is again the transporter
category of a �nite group. Afterwards, we give some examples of \exotic" extension,
where the target is the transporter category of a �nite group but the source is not.

Recall that for any transporter system (S;F ; T ),

� : Mor(T ) ������! �1(jT j)

is the map which sends ' 2 MorT (P;Q) to the loop �Q;S�'��P;S
�1 (composed from right

to left). When T = TS(G) for some �nite group G and some S 2 Sylp(G), there is also
a map Mor(T ) ���! G induced by the inclusions of the transporter sets MorT (P;Q) =
NG(P;Q) into G. This map clearly sends composites to products and inclusions 1 2
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NG(P; S) to the identity. Hence by the universality property of � (Proposition A.3(a)),
there is a unique homomorphism

�G : �1(jTS(G)j) ������! G

such that �G(�(x)) = x for all P;Q � S and all x 2 NG(P;Q). To keep the notation
simple, we also write �G for the analogous homomorphism de�ned on �1(jT j) when T
is a full subcategory of TS(G) which contains S.

Proposition 6.1. Fix a �nite group G, a Sylow subgroup S 2 Sylp(G), and a set H
of subgroups of S which is closed under G-conjugacy and overgroups. Let

1 ���! A �����! eT �
�����! TH(G) ���! 1

be an admissible extension where A is a �nite p-group. Assume furthermore that the
homomorphism

�: �1(jTH(G)j) �����! Out(A)

of Lemma 5.7 factors through G: that � = �0
� �G for some �0 2 Hom(G;Out(A)).

Then there is an extension of groups

1 ���! A �����! eG �
�����! G ���! 1

such that eT is a full subcategory of T��1(S)( eG).
Proof. Assume �rst that A is abelian. In this case, by Proposition 5.8, the extensions
of T = TH(G) which realize the given action � are in bijective correspondence with
elements of H2(jT j;A). By Proposition 4.5, �G induces an isomorphism

��G : H
�(G;A)

�=
������! H�(jT j;A):

Furthermore, by the construction of the cohomology invariants, ��G sends the element
in H2(G;A) which describes a group extension to the element of H2(jT j;A) �= lim �

T

2(A)

which describes the extension of categories. Thus each extension of categories is induced
by an extension of groups, which is what we wanted to prove.

Now assume A is nonabelian, and set T = eT =Z(A). We can assume, by induction
on jAj, that the proposition holds for the extension

1 ���! A=Z(A) �����! T
�

�����! TH(G) ���! 1 :

Thus there is an extension G of G by A=Z(A), a Sylow subgroup S 2 Sylp(G), and a

set H of subgroups of S, such that T �= TH(G).

Consider the following diagram:

�1(jTH(G)j)
proj

//

�
G

��

�1(jTH(G)j)
�

//

�G

��

Out(A)
Res

// Aut(Z(A))

G
proj

// G .

�0

77pppppppppppppppppp

(1)

The triangle commutes by assumption, and the square by the naturality of �G. The

action of �1(jT j) on Z(A) de�ned by the extension

1 ���! Z(A) �����! eT �
�����! T

H
(G) ���! 1 (2)

is the composite of the upper row in (1) (see the de�nition of the action in Lemma 5.7),

and it thus factors through G by the commutativity of (1). So by the abelian case of
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the proposition, applied to (2), there is an extension eG of G by Z(A) such that eT is a

fully subcategory of TeS( eG). Also, eG is an extension of G by A, since TH(G) �= eT =A. �

Thus, in order to �nd an exotic extension, we must �nd an admissible action of some
TH(G) on a p-group A which does not factor through G. The following example was
suggested to us by Albert Ruiz; it is just the simplest of a large family of such examples
which he has constructed in [Rz]. The example is stated in terms of the linking system
of G, but it also holds if LcS(G) is replaced by the transporter system T cS (G) with the
same objects.

Example 6.2. Fix a prime p � 5. Let q be another prime, let e be the order of q in
F�p (thus ej(p � 1)), and assume e > 2. Set G = GLep(q), �x S 2 Sylp(G), and set
F = FS(G) and L = LcS(G). Let A be cyclic of order p. Then there is a homomorphism

�: �1(jLj) = �1(jL
c
S(G)j) ������! Aut(A);

where jIm(�)j = e, which does not factor through G. Also, there is an admissible
extension

1 ���! A �����! eL �����! LcS(G) ���! 1;

where eL is a linking system associated to a saturated fusion system eF which is not the
fusion system of any �nite group.

Proof. Set V = (Fqe)p (with the canonical basis). Fix an Fq-basis for Fqe , which also
yields an Fq-basis for V . This allows us to identify GLp(qe) = AutFqe (V ) as a subgroup
of GLpe(q) = AutFq(V ).

Let � � F�p be the subgroup of order e generated by q. We identify this with
Gal(Fqe=Fq) (�eld automorphisms) by identifying q 2 F�p with the automorphism x 7!
xq. Set H = (Fqe)� o �, regarded as a subgroup of GLe(q) = AutFq(Fqe) (vector space
automorphisms). This de�nes an embedding of H o �p = Hp o �p into GLep(q).

Now,

jGj =

ep�1Y
i=0

(qep � qi) = qep(ep�1)=2�

epY
i=1

(qi � 1);

where pj(qi � 1) only when eji, and (qei � 1)=(qe � 1) � i (mod p). We leave it as an
exercise to show that (qep � 1)=(qe � 1) is divisible by p but not by p2. Thus if p` is
the largest power of p dividing qe � 1, then pp`+1 is the largest power of p dividing jGj
and jH o �pj; and this proves that H o �p contains a Sylow p-subgroup of G.

Fix � 2 Sylp((Fqe)
�), a cyclic group of order p`, and set S = � oCp 2 Sylp(H o�p) �

Sylp(G). Set T = �p � S: the set of elements of S which are diagonal in GLp(q
e).

We now want to de�ne a homomorphism 	0 from �1(jFj) onto �, for which the
kernel fusion system (in the sense of Proposition 4.1) is exotic. The existence of such
a homomorphism is shown in [Rz], but we give a more explicit construction here.

Let V �= (Fq)ep be the vector space upon which G acts. Consider the subset

X =
�
g 2 S

�� jgj = p; Ker(g � IdV ) = 0
	
;

i.e., the set of elements of S of order p whose action on V does not have 1 as eigenvalue.
Every element of SrT acts on V with characteristic polynomial (Xp � 1)e, which has
1 as root, and thus X � T . So if we �x z 2 (Fqe)� of order p, and again identify
GLp(q

e) � GLep(q) (and (Fqe)p �= (Fq)pe), then

X = fdiag(zi1 ; : : : ; zip) j i1; : : : ; ip 2 F
�
p g:
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By de�nition of X, any morphism in F = FS(G) sends elements of X to elements of
X.

Now, AutF(T ) = AutG(�
p) �= � o �p: the subgroup generated by the �eld auto-

morphisms � = Aut(Fqe) � Aut(�), and by all permutations of the p factors. De�ne
	: AutF(T ) ���! � to be the composite

	: AutF(T ) �= �p o �p ����� �� �p
pr1

����� �:

Thus for all � 2 AutF(T ), if �(diag(z; z; : : : ; z)) = diag(zi1 ; : : : ; zip), then 	(�) =
i1 � � � ip 2 � � F�p . So 	(�) depends only on �jZ(S)\X .

For each pair of subgroups P;Q � S which are p-centric in G, de�ne

�0
P;Q : HomF(P;Q) ������! �

as follows. For ' 2 HomF(P;Q), 'jhP\Xi extends to some ' 2 AutF(T ) by axiom (II)
(and since T is the unique abelian subgroup of index p in S), and we set �0

P;Q(') =
	('). Since 	(') depends only on 'jZ(S)\X and P � Z(S), this is independent
of the choice of extension '. If  2 HomF(Q;R) is another morphism in F c, and

 2 AutF(T ) is an extension of  jhQ\Xi, then  � ' is an extension of ( � ')jhP\Xi
(since '(P \X) � Q \X) and thus �0

P;R( � ') = �0
Q;R( )��

0
P;Q(').

We have thus de�ned a map �0 from Mor(F c) to � which sends composites to
products and sends inclusions to the identity. So by Proposition A.3(a), �0 can be
identi�ed with a homomorphism from �1(jF

cj) to �. Set

� = �0
� �1(j�j) : �1(jLj) ������! �:

Let (eS; eF ; eL) be the semidirect product extension of (S;F ;L) by A induced by �;
i.e., the extension which corresponds to the zero element in H2(jT j;A). In the notation

of Theorem 5.11, S1 = S, and so the extension is admissible. Hence eF is a saturated
fusion system by Theorem 5.11(b). Also, since L = LcS(G) is a linking system, E(P )

is a p-group for all P 2 Ob(L), and thus eL is a linking system by Theorem 5.11(c).

Let L1 � L and F1 � F be the \kernel" linking and fusion systems:

Mor(L1) = f' 2 Mor(L) j�(') = 1g and Mor(F1) = f' 2 Mor(F) j�0(') = 1g:

Thus by Proposition 4.1, F1 is a saturated fusion system over S and L1 is a linking
system associated to F1. By construction, AutF1(T )

�= �p�1 o �p. So by [BLO2,
Example 9.4] (or more directly by [BLO2, Proposition 9.5]), F1 is not the fusion system
of any �nite group. (This is where we need to assume that e > 2, and hence that p � 5.)

Hence by Theorem 5.11(d), eF is not the fusion system of any �nite group. �

We next make some cohomology computations, to illustrate the use of Lemma 5.12
and Corollary 5.13, and to show that the extension in Example 6.2 is the only one (up
to isomorphism) with that action on the kernel.

Lemma 6.3. Let G = GLep(q), S 2 Sylp(G), A
�= Cp, and �1(jL

c
S(G)j)

�
���! Aut(A)

be as in Example 6.2, set F = FS(G) and L = LcS(G), and let F1 � F and L1 � L be
the kernel subsystems. Then for i = 1; 2, H i(jLj;A) �= H i(jL1j;Fp) = 0.

Proof. Set H = (F�qe o Ce) o �p, regarded as a subgroup of G which contains S via the
embedding (F�qe o Ce) � GLe(q). Let 	 denote the composite

	: H = (F�qe o Ce) o �p ����� Ce o �p ����� Ce � �p
pr1

����� Ce � F
�
p ;
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where the second homomorphism takes the product of the p coordinates in Ce, and set
H1 = Ker(	). Set

H1 = H1 \ (F
�
qe o Ce)

p �= (F�qe)
p o (Ce)

p�1:

Then

H i(H1;Fp) = H i((F�qe)
p;Fp)

(Ce)p�1

vanishes for i = 1; 2, and similarly for

H i(�p;Fp)
mono
�����! H i(Cp o Cp�1;Fp):

So by the spectral sequence for the semidirect product, H i(H1;Fp) = 0 for i = 1; 2.

By [BLO2, Theorem B], the inclusion B(S) � L1 induces a monomorphism

H�(jL1j;Fp) ������! H�(S;Fp);

and this factors through H�(H1;Fp). Hence H i(jL1j;Fp) = 0 for i = 1; 2. So by
Corollary 5.13, if �1(jLj) acts on A via �, then H2(jLj;A) �= H2(�;A) = 0 (since �
has order prime to p). �

By Lemma 6.3 and Proposition 5.8, it now follows that the only extension of L by
A (with the given action) is the \semidirect product" constructed in Example 6.2.

Example 6.2 is interesting as an example of an exotic fusion system with normal p-
subgroup for which the quotient is the fusion system of a group. But it is \too simple"
in some sense, and leaves a lot of questions as to what other sorts of extensions can
occur. This motivates the following list of problems.

In all cases, in the following list, 1! A! eT ! T ! 1 is an extension of transporter
systems, associated to fusion systems eF and F over p-groups eS and S (and where A is
abelian). We always let � denote the action of �1(jT j) on A. The phrase \interesting
extension" is intentionally left imprecise, but at least means an extension of transporter
systems 1! A! eT ! T ! 1 which is not induced by an extension of �nite groups.

(1) Find interesting extensions for which Im(�) has order a multiple of p.

(2) Find interesting extensions where subgroups which are centric and radical in eF
are not all sent to subgroups which are quasicentric in F .

(3) Find an extension where F and F1 (the kernel subsystem) are both fusion systems

of groups, but where eF is exotic. Essentially, this means �nding F1 C F which
are fusion systems of groups, but not fusion systems of a pair of groups G1 and G
such that G1 C G with appropriate quotient.

We refer to [BCGLO1, De�nition 3.1] for the de�nition of an F -quasicentric sub-
group. When F = FS(G) for a �nite group G, then a subgroup P � S is F -quasicentric
if and only if CG(P ) has a normal subgroup of order prime to p and of p-power index.
Question (2) is motivated by [BCGLO1, Theorem B], which says that for any p-local
�nite group (S;F ;L), there is a linking system Lq � L for which Ob(Lq) is the set of
all F -quasicentric subgroups of S, and that for any full subcategory L0 � L

q which
contains all F -centric F -radical subgroups of S, jL0j, jLj, and jL

qj all have the same
homotopy type.

In the remaining part of this section, we describe some constructions which are
simple modi�cations of the one in Example 6.2, and which show that problems (1)
and (2) have solutions if one keeps the requirements for \interesting extensions" to a
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minimum. What this really shows is that we want more restrictive conditions on what
makes them \interesting".

Let p, q, and e be as in Example 6.2: p is a prime with p � 5, q is a prime power
with p - q, and e � 3 is the order of q in F�p . Set H = GLpe(q

p), and let G = H o Cp
where Cp acts via the �eld automorphism of order p on Fqp . Fix S0 2 Sylp(H) and
S = S0 o Cp 2 Sylp(G), and set L0 = L

c
S0
(H). Set

H = fP � S jZ(P ) \H 2 Sylp(CH(P ))g:

For each P 2 H, CH(P ) = (Z(P ) \ H) � C 0
H(P ) where C

0
H(P ) is the subgroup of

elements of order prime to p in CH(P ), and we set

T = TH(G)=C
0
H :

This is a transporter system by Proposition 3.13. Also, L0 is the kernel linking system
of the homomorphism from �1(jT j) to Cp induced by the surjection of �1(jTH(G)j) onto
G=H. Hence the homomorphism of Example 6.2 extends to a homomorphismb�: �1(jT j) �����! �� Cp � Aut(A); (A �= Cp2)

and the homomorphism is admissible by construction of T . The kernel linking system

of b� is the same as the kernel system for �1(jL0j)
�0���! �, which was shown to be

exotic in Example 6.2. So by Theorem 5.11, for any extension

1 ���! A �����! eL �����! T ���! 1

which realizes this action of T on A, eL is a linking system associated to an exotic fusion
system. Using Lemmas 5.12 and 6.3, we see that H2(jLj;A) �= H2(Ce �Cp;A) = 0, so
there is a unique extension of this type.

A similar, but slightly more complicated example can be constructed by setting
H = GLpe(q)

p, G = GLpe(q) o �p = H o �p, S 2 Sylp(G), and T = TH(G)=C
0
H for an

appropriate class H of subgroups of S. One can then de�ne � from �1(jT j) to � o �p,
where � again is cyclic of order e, and look at the induced extensions of A = (Cp)

p by
T .

As yet another example, let p, q, and e be as in Example 6.2, set G1 = GLpe(q), and
set G2 = SL3(p). Fix Si 2 Sylp(Gi), and set G = G1 �G2 and S = S1 � S2 2 Sylp(G).
Set

H = fP � S jZ(P ) \G1 2 Sylp(CG1(P ))g:

For each P 2 H, CG1(P ) = (Z(P ) \ G1) � C 0
G1
(P ), where C 0

G1
(P ) consists of all

elements in CG1(P ) of order prime to p. Set T = TH(G)=C
0
G1
, a transporter system by

Proposition 3.13. De�ne

�: �1(jT j) �����! �1(jL
c
S1
(G1)j)� �1(jTS2(G2)j) �����! Aut(Cp)� Aut(C3

p);

where the �rst homomorphism is induced by the two projections, and the second is the
product of the homomorphism of Example 6.2 with the canonical action of G2 = SL3(p)
on C3

p . Set A = Cp � C
3
p , let

1 ���! A �����! eL �����! T ���! 1

be any extension which realizes �, and let eS and eF be the associated p-group and
fusion system. By Theorem 5.11 again, eF is a saturated fusion system over eS, but eF
is not the fusion system of any �nite group, since if it were the fusion system of some
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eG, then C eG(A)=A would have as fusion system the subsystem of index e in FS1(G1).
Also, for each P 2 Ob(T ),

Ker
�
�: CG(P )=C

0
G1
(P ) ���! Aut(A)

�
� CG1(P )=C

0
G1
(P )

is a p-group, and so the restriction of eL to eF -centric subgroups is a linking system by
Theorem 5.11(c).

If we now take P = S1 � 1 2 H, and let eP be such that eP=A = P , then eP is centric

and radical in eF . However, P is not quasicentric in FS(G), since its centralizer fusion
system involves the fusion system of G2.

Appendix A. General background on categories and higher limits

We begin with a description of the \bar resolution" for computing higher derived
functors of inverse limits of diagrams of abelian groups. For any small category C,
C-mod denotes the category of functors Cop ���! Ab.

Lemma A.1. Let C be any small category, and let F : Cop ���! Ab be any functor.

Let C�(C;F ) be the normalized chain complex for F :

Cn(C;F ) =
Y

c0!���!cn

F (c0);

where the product is taken over all composable sequences of nonidentity morphisms.

For � 2 Cn(C;F ), de�ne

d(�)(c0
'
�! c1 ! � � � ! cn+1) = F (')(�(c1 ! � � � ! cn+1))+

n+1X
i=1

(�1)i�(c0 ! � � � bci � � � ! cn+1) ;

where we set �(c ! � � � ! c0) = 0 for any sequence containing an identity morphism.

Then lim �
C

�(F ) �= H�(C�(C;F ); d).

Proof. The proof is the same as those in [GZ, Appendix II, Proposition 3.3] or [O1,
Lemma 2] (where the result is shown for the unnormalized chain complex). We sketch
the argument here. Let P�1 be the constant functor Z. For each n � 0, de�ne
Pn : C

op ���! Ab by letting Pn(c) be the free abelian group with basis the set of all

sequences c
'
�! c0

'1
�! � � �

'n
�! cn, modulo the subgroup generated by those sequences

for which some 'i for i � 1 is an identity morphism. Also, for  2 Mor(C), Pn( ) is
de�ned by composing the �rst morphism with  . For all n � 0 and all F in C-mod,

MorC-mod(Pn; F ) �= Cn(C;F ). Thus Pn is projective in C-mod for n � 0. Boundary
morphisms @ : Pn ���! Pn�1 are de�ned by setting

@([c! c0 ! � � � ! cn]) =
nX
i=0

(�1)i[c! c0 ! � � � bci � � � ! cn]:

This is seen to be exact (hence a projective resolution of Z) via the splitting homomor-

phisms Pn(c) ���! Pn+1(c) which send [c! c0 ! � � � ! cn] to [c
Id
�! c! c0 ! � � � !
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cn]. Since lim �
C

0(F ) �= MorC-mod(Z; F ),

lim �
C

�(F ) �= Ext�C-mod(Z; F ) �= H�(MorC-mod(P�; F ); @
�) �= H�(C�(C;F ); d): �

For any �nite group G, we let Op(G) be the p-subgroup orbit category of G: the
category whose objects are the p-subgroups of G, and where

MorOp(G)(P;Q) = QnNG(P;Q) �= mapG(G=P;G=Q):

Here, NG(P;Q) is the transporter set:

NG(P;Q) = fg 2 G j gPg
�1 � Qg:

If S 2 Sylp(G), then OS(G) � Op(G) denotes the full subcategory whose objects are
the subgroups of S. These two categories are clearly equivalent (every object in Op(G)
is isomorphic to an object in OS(G)). Note that OS(G) is not the same as the orbit
category of the fusion system FS(G).

For any Z[G]-module M , we de�ne

��(G;M) = lim �
�

Op(G)

(FM);

where FM : Op(G)
op ���! Ab is the functor FM(P ) = 0 if P 6= 1 and FM(1) = M .

The role these groups play in computing higher limits of certain functors is illustrated
by the following proposition, which is a special case of [BLO3, Proposition 4.3].

Proposition A.2. Fix a category C, a �nite group G, a Sylow subgroup S 2 Sylp(G),
and a functor

� : OS(G) ������! C:

Set c0 = �(1). For each object d in C, we regard the set MorC(c0; d) as a G-set via �
and composition. Assume that the following conditions hold:

(a) � sends G = AutOS(G)(1) bijectively to EndC(c0).

(b) For each d 2 Ob(C) such that d 6�= c0, all isotropy subgroups of the G-action on
MorC(c0; d) are nontrivial p-subgroups.

(c) For each � 2 Mor(Op(G)), �(�) is an epimorphism in the categorical sense: ' �

�(�) =  � �(�) implies ' =  .

(d) For each P � S, each d 2 Ob(C), and each ' 2 MorC(c0; d) which is �xed by the
P -action, there is some ' 2 MorC(�(P ); d) such that ' = ' � �(inclP1 ).

Let
� : Cop ������! Ab

be any functor which vanishes except on the isomorphism class of c0. Then the natural
map

lim �
C

�(�)
��

������!
�=

lim �
�

OS(G)

(� � �) �= ��(G; �(c0))

is an isomorphism. �

We now look at fundamental groups of nerves of categories. The next proposition
describes the relationship between an action of �1(jCj) and an action of Mor(C).

For any group �, B(�) denotes the category with one object and with automorphism
group �, and we identify jB(G)j = BG. This notation will be used in several of the
proofs in this section.
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Proposition A.3. Fix a small category C, and an object c0 in C. Assume, for each
c 2 Ob(C), that MorC(c; c0) 6= ?, and �x some distinguished \inclusion" morphism
�c 2 MorC(c; c0) (where �c0 = Idc0). For each morphism  2 MorC(c; d), let �( ) 2
�1(jCj; c0) be the element represented by the loop �d� ��c

�1 (where paths are composed
from right to left). Then the following hold:

(a) For any group �, and any function F : Mor(C) ���! � such that F (�c) = 1 for all
c and F ( �') = F ( )F (') when  �' is de�ned, there is a unique homomorphsm

F : �1(jCj; c0) ���! � such that F (�( )) = F ( ) for all  2 Mor(C). In other
words, �1(jCj; c0) is the free group on the morphisms in C modulo the relations
given by composition and the �c.

(b) Let F : C ���! Ab be any functor which sends all morphisms in C to isomorphisms
of groups. Set A = F (c0), and let F 0 be the functor which sends each object to A,
and where F 0( ) = F (�d) �F ( ) �F (�c)

�1 for  2 MorC(c; d). Then F
0 is naturally

isomorphic to F . Also,

lim �
C

�(F ) �= H�(jCj;A);

where the second group is cohomology twisted via the linear action of �1(jCj) on A
induced by F 0.

Proof. (a) By elementary homotopy theory, any element of �1(jCj; c0) is represented
by a loop which follows the edges of jCj, and hence is a product of loops of the form
�(') for ' 2 Mor(C). Thus �1(jCj) = hIm(�)i. This also proves the uniqueness of the

homomorphism F , and it remains to prove its existence.

Let eF : C ���! B(�) be the functor which sends all objects of C to the unique object
of B(�), and which sends morphisms via F . Set

F = �1(j eF j) : �1(jCj; c0) �����! � :

For each  2 Mor(C),

F (�( )) = F
�
�d� ��c

�1
�
= F (�d)�F ( )�F (�c)

�1 = F ( )

since F (�c) = F (�d) = 1 by assumption.

(b) The functor F 0 is naturally isomorphic to F via the natural isomorphism which
sends each c 2 Ob(C) to �c. The map from Mor(C) to Aut(A) de�ned by F 0 factors

through �1(jCj) by (a). The chain complex C�(C;F 0) of Lemma A.1 is precisely the
same as the chain complex C�(jCj;A) for cohomology with twisted coe�cients, and
thus

lim �
C

�(F ) �= lim �
C

�(F 0) �= H�(jCj;A): �

The following proposition describes very general conditions for the nerve of a sub-
category of C to have the homotopy type of a covering space of jCj.

Proposition A.4. Fix a small category C, a group �, and a surjective homomorphism

F : �1(jCj) ���! �. Set F = F � � : Mor(C) ���! �, where � is as in Proposition A.3.
For each H � �, let CH � C be the subcategory with the same objects, where for all
 2 Mor(C),  2 Mor(CH) if and only if F ( ) 2 H. Assume that

(1) for each c 2 Ob(C) and each g 2 �, there is an object d 2 Ob(C) and an isomor-
phism  2 IsoC(c; d) such that F ( ) = g.
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Then for each H � �, jCH j is homotopy equivalent to the covering space of jCj whose

fundamental group is F�1(H).

Proof. For any set X with left �-action, let E�(X) be the category with object set X,
and where

MorE�(X)(x; y) = fg 2 � j gx = yg:

Let eCH be the pullback category in the following square:eCH //

��

E�(�=H)

�

��

C
bF

// B(�) .

Here, bF and � send all objects to the unique object of B(�); bF sends morphisms via
F , and � sends g 2 MorE�(�=H)(aH; bH) (if gaH = bH) to g 2 Mor(B(�)). Thus

Ob(eCH) = Ob(C) � (�=H), and Mor(eCH) is the set of pairs of morphisms in C and

E�(�=H) which get sent to the same morphism in B(�). Then jeCH j is a covering space
of jCj by construction; and is the covering space with fundamental group F�1(H) since
�1(jE�(�=H)j) = H.

The subcategory CH can be identi�ed with the full subcategory of eCH whose objects
are the pairs (c; 1H) for c 2 Ob(C). Under this identi�cation, each object in eCH is

isomorphic to an object in CH by (1), and thus jCH j ' jeCH j. �

We now discuss extensions of categories. We want to look at the following very
general situation, which occurs in several di�erent contexts throughout the paper.

De�nition A.5. Let � : eC �����! C be a functor between categories which is a bijection
on objects and surjective on morphism sets. For each ec 2 Ob(eC), set

K(ec) def
= Ker

�
�ec;ec : AuteC(ec) ����! AutC(�(ec))�:

(a) We say that � is source regular (or a source regular extension of C by K) if for

all ec; ed 2 Ob(eC), K(ec) acts freely on MoreC(ec; ed) and �ec;ed is the orbit map for this
action.

(b) We say that � is target regular (or a target regular extension of C by K) if for

all ec; ed 2 Ob(eC), K(ed) acts freely on MoreC(ec; ed) and �ec;ed is the orbit map for this
action.

The next three lemmas list some of the elementary properties of these classes of
functors. For simplicity in notation throughout the rest of this section, when working
with functors eC ���! C which are source or target regular, we identify each c 2 Ob(eC)
with �(c) 2 Ob(C).

Lemma A.6. If � : eC ���! C is either source or target regular, then a morphism in eC
is an isomorphism if and only if its image in C is an isomorphism. In particular, if all
endomorphisms in C are automorphisms, then the same is true of eC.
Proof. Clearly, � sends isomorphisms to isomorphisms, and we need only prove the

converse. Assume e 2 MoreC(c; d) is such that �c;d( e ) is an isomorphism, and choosee' 2 MoreC(d; c) such that �(e') = �( e )�1. Since �c;c is the orbit map for a free action of
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K(c), and �c;c(e'� e ) = �c;c(Idc), e'� e 2 K(c), and hence is an automorphism. Similarly,e � e' 2 K(d) � AuteC(d), and thus e and e' are both isomorphisms. �

Let Gps be the category of groups with homomorphisms. Let Gps� be the category
with the same objects, and where

MorGps�(G;H) = Rep(G;H)
def
= Inn(H)nHom(G;H):

Lemma A.7. The following hold for any source regular functor � : eC ���! C.
(a) For any sequence c0

'
�! c1

 
�! c2 of morphisms in C, and any pair of morphismse 2 MoreC(c1; c2) and f ' 2 MoreC(c0; c2) such that �( e ) =  and �(f ') =  ',

there is a unique morphism e' 2 MoreC(c0; c1) such that �(e') = ' and e � e' = f '.
(b) For each e 2 Mor(eC), e is a monomorphism in eC in the categorical sense (i.e.,e � e'1 = e � e'2 implies e'1 = e'2) if and only if �( e ) is a monomorphism in C.

(c) There is a functor K� : Cop ����! Gps�, de�ned on objects by setting

K�(c) = Ker
�
AuteC(c) �c;c

����! AutC(c)
�

for all c 2 Ob(eC). On morphisms, for f 2 MoreC(c; d), K�(�(f)) = [ ], where  2
Hom(K�(d); K�(c)) is the unique homomorphism such that the following square

commutes in eC for all � 2 K�(d):

c
f

//

 (�)

��

d

�

��

c
f

// d:

(1)

If � is also target regular, then K� sends all morphisms in C to isomorphisms.

Proof. (a) Let b' 2 MorT (c0; c1) be any lifting of '. Then there is an element � 2 K(c0)

such that f ' = e � b' � �, and we set e' = b' � �. If e'0 is any other lifting which satis�es

the same condition, then e'0 = e' � � for some � 2 K(c0), and � = 1 since e � e' = e � e'0
and K(c0) acts freely on MorT (c0; c2).

(b) Fix e 2 MoreC(c; d), and set  = �c;d( e ). Assume �rst that e is a monomorphism,
and let '1; '2 2 MorC(c0; c) be such that  � '1 =  � '2. By (a), applied to any given

lifting of  � '1, there are morphisms e'1; e'2 2 MoreC(c0; c) such that e � e'1 = e � e'2

and �c0;c(e'i) = 'i. Then e'1 = e'2 since e is a monomorphism, so '1 = '2, and  is a
monomorphism.

Conversely, assume  is a monomorphism, and let e'1; e'2 2 MoreC(c0; c) be such thate � e'1 = e � e'2. Then �c0;c(e'1) = �c0;c(e'2) since  is a monomorphism, and hencee'1 = e'2 by the uniqueness of the lifting in (a). So e is a monomorphism.

(c) By (a), for each f 2 MoreC(c; d) and each � 2 K�(d), there is a unique  (�) 2 K�(c)
which makes square (1) commute. By juxtaposing such squares, one sees that the
resulting function  : K�(d) ���! K�(c) is a homomorphism which depends only on f ,

and that this de�nes a functor eK from eC to Gps. For each c 2 Ob(C), eK sends each

morphism in K�(c) to an inner automorphism in K�(c) (by (1) again), and hence eK
factors through a functor K� from C to Gps�.
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If � is also target regular, then each  (�) determines a unique � in the situation of
(1), and so K� sends each morphism to an isomorphism. �

The following lemma is proven in exactly the same way as Lemma A.7.

Lemma A.8. The following hold for any target regular functor � : eC ���! C.
(a) For any sequence c0

'
�! c1

 
�! c2 of morphisms in C, and any pair of morphismse' 2 MoreC(c0; c1) and f ' 2 MoreC(c0; c2) such that �(e') = ' and �(f ') =  ',

there is a unique morphism e 2 MoreC(c1; c2) such that �( e ) =  and e � e' = f '.
(b) For each e 2 Mor(eC), e is an epimorphism in eC in the categorical sense (i.e.,e'1 �

e = e'2 �
e implies e'1 = e'2) if and only if �( e ) is an epimorphism in C.

(c) There is a functor K� : C ����! Gps�, de�ned on objects by setting

K�(c) = Ker
�
AuteC(c) �c;c

����! AutC(c)
�

for all c 2 Ob(eC). On morphisms, for f 2 MoreC(c; d), K�(�(f)) = [ ], where  2
Hom(K�(c); K�(d)) is the unique homomorphism such that the following square

commutes in eC for all � 2 K�(c):

c
f

//

�

��

d

 (�)

��

c
f

// d:

The obstruction theory for describing source or target regular extensions of C by a
given functor K from C to Gps� has been studied by Ho� [Hf]. For simplicity here,
we handle only the case where K takes values in abelian groups. The nonabelian case
is handled in [Hf] by using higher limits of functors with values in nonabelian groups
(when they exist). Alternatively, if one assumes that K restricts to a functor ZK
(where ZK(c) = Z(K(c))), then there is an obstruction theory which involves the
groups lim �

i(Z(K)) for i = 2; 3.

Now �x K : Cop ���! Ab, and let eC �
�����! C be a source regular extension of C by

K. Choose a section

s : Mor(C) ���! Mor(eC):
For each pair of composable morphisms c0

'
���! c1

 
���! c2 in C, let !(';  ) 2 K(c0)

be the unique element such that

s( ) � s(') = s( ') � !(';  ) 2 MoreC(c0; c2):
This de�nes an element ! 2 C2(C;K) (see Lemma A.1).

We next check that d! = 0. Fix a triple c0
'
���! c1

 
���! c2

�
���! c3 of composable

morphisms. Associativity in eC gives the relation
s(�) �

�
s( ) � s(')

�
= s(� ') � !( '; �) � !(';  )

=
�
s(�) � s( )

�
� s(') = s(� ') � !('; � ) �K(')(!( ; �)):

This gives the relation

!( '; �) � !(';  ) = !('; � ) �K(')(!( ; �)) 2 K(c0):



EXTENSIONS OF LINKING SYSTEMS WITH p-GROUP KERNEL 49

This proves that d! = 0, and hence that ! 2 Z2(C;K).

It remains to show that the class [!] 2 lim �
2(K) is independent of the choice of section

s. Let s0 be another section, and let � 2 C1(C;K) be such that s0(') = s(') � �(')

for all ' 2 MorC(c0; c1). Let !
0 2 C2(C;K) be the cochain analogous to the cochain !

already de�ned. Then for ' and  as above,

s0( ) � s0(') = s0( ') � !0(';  ) = s( ') � �( ') � !0(';  )

= s( ) � �( ) � s(') � �(') = s( ) � s(') �K(')(�( )) � �(') :

Thus, in the abelian group K(c0),

!(';  )�1 � !0(';  ) = �( ')�1 �K(')(�( )) � �(') = d�(';  );

and this proves that !0 = !�d�.

We have now shown how to assign a unique element of lim �
2(K) to each extension of

C by K. It is easy to show, using similar manipulations, that all elements of lim �
2(K)

can be realized in this way, and that extensions corresponding to the same element of
lim �

2(K) are isomorphic. This can all be summarized in the following proposition:

Proposition A.9. Fix a small category C, and a functor K : Cop ���! Ab. Then there
is a bijective correspondence between isomorphism classes of source regular extensions
of C by K and the group lim �

C

2(K). �

We next look at geometric realizations of source and target regular functors. The
following, very general result can be used in many situations to prove that certain
maps between linking or transporter systems are �brations with �ber BA, for a certain
p-group A.

Proposition A.10. Fix a group G, and a functor � : eC ���! C between small categories
which is both source regular and target regular. Assume jCj is connected, �x c0 2 Ob(eC),
and set G = Ker(�c0;c0). Then the map jeCj j� j

���! jCj of geometric realizations is a �ber
bundle with �ber BG.

Proof. We prove this by constructing a topological group, together with a principal
bundle over that group of which j� j is an associated bundle. For each c 2 Ob(C) =

Ob(eC), set K(c) = Ker(�c;c) C AuteC(c).
Let G be the category of self equivalences of B(G), where morphisms in G are natural

isomorphisms of functors. Thus

Ob(G) = Aut(G) and MorG(�; �) = fg 2 G j � = cg � �g:

Let P be the category of functors B(G) ���! eC which go isomorphically to one of the
\�bers" of � ; more precisely:

Ob(P) =
�
(c; �)

�� c 2 Ob(C); � 2 Iso(G;K(c))
	

MorP
�
(c; �); (d; �)

�
=
�
' 2 MoreC(c; d) ��� = c' � �

	
:

Consider the following square of categories and functors:

P � B(G)
pr2

//

ev
��

P

�
��eC �

// C ;

(2)
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where � is the forgetful functor �(c; �) = c, and ev is the \evaluation functor"

ev
�
g; (c; �)

'
�! (d; �)

�
=
�
c

'��(g)
�����!
=�(g)�'

d
�
:

For each n � 0, let Gn denote the set of n-simplices in the nerve of G, and similarly
for the other categories. Then Gn is a group with multiplication�

�0
g1
�! �1

g2
�! � � �

�
�
�
�0

h1�! �1
h2�! � � �

�
=
�
�0 � �0

g1��0(h1)
�����! �1 � �1

g2��1(h2)
�����! � � �

�
;

and the face and degeneracy maps are all homorphisms. So jGj is a topological group.
Furthermore, Gn has a free right action on Pn de�ned by�

(c0; �0)
'
�! (c1; �1)

�
�
�
�0

g
�! �1

�
=
�
(c0; �0 � �0)

'��0(g)
����! (c1; �1 � �1)

�
;

and a left action on B(G)n de�ned by�
�0

g
�! �1

�
�
�
�

h
�! �

�
=
�
�

g��0(h)
����! �

�
;

actions which again commute with face and degeneracy maps. Together with the
functors � and ev, these actions induce bijections

Pn=Gn �= Cn and Pn �Gn B(G)n
�= eCn

for all n. Hence the geometric realizations jevj and j�j are principal jGj-�brations (see,
e.g., [May, xx18{20] or [GJ, Corollary V.2.7]). In particular, ev induces a homeomor-

phism jeCj �= jPj �jGj BG, and hence j� j is a �ber bundle with �ber BG associated to

the principal bundle jPj
j�j
�! jCj. �

We now �nish by describing how the Grothedieck spectral sequence applies to de-
scribe higher limits over a target regular extension.

Proposition A.11. Fix small categories eC and C, and let � : eC �����! C be a target
regular functor. For each c 2 Ob(C), set

K(c) = Ker
�
AuteC(c) �

����! AutC(c)
�
:

Let �: eCop ���! Ab be any functor. Then there is a spectral sequence

Eij
2 = lim �

C

i
�
Hj(K(�); �(�))

�
=) lim �eC

i+j(�): (3)

Proof. This is shown using the Grothendieck spectral sequence (cf. [Wb, x5.8]). Con-
sider the following triangle of categories and functors:

eC-mod R�
//

lim � !!B
BB

BB
BB

BB
BB

C-mod

lim �}}||
||

||
||

||
|

Ab .

(4)

Here, R� : eC-mod ���! C-mod is right Kan extension by � . Since R� is right adjoint
to an exact functor (composition with � op), it sends injectives to injectives.

Let Ri
� be the i-th derived functor of R� . Thus for all � in eC-mod and all c 2 Ob(C),

Rj
� (�)(c) = lim �

j

(�#c)op
(� � �opc );
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where �c : �#c ���! eC is the forgetful functor. The Grothendieck spectral sequence for
the triangle (4) takes the form

Eij
2 = lim �

C

i
�
Rj
� (�)

�
=) lim �eC

i+j(�): (5)

Now, �#c is the overcategory with objects the pairs (d; ') for d 2 Ob(eC) and ' 2
MorC(�(d); c), and where

Mor�#c
�
(d; '); (d0;  )

�
=
�
f 2 MoreC(d; d0) �� � �(f) = '

	
:

Consider the functors

B(K(c))
S

�����! �#c
T

�����! B(K(c));

where S sends the unique object of B(K(c)) to (c; Id) and sends � 2 K(c) to � 2
Aut�#c(c; Id); and where T is de�ned as follows. Fix an arbitrary map of sets

s : Ob(�#c) �����! Mor(eC)
such that for all (d; '), s(d; ') 2 MoreC(d; c) and �d;c(s(d; ')) = '. For each morphism
f in �#c from (d; ') to (d0;  ), there is (since � is target regular) a unique element
T (f) 2 K(c) such that

T (f) � s(d; ') = s(d0;  ) � f:

This de�nes T . Furthermore, T �S = IdB(K(c)), while s de�nes a natural transformation
of functors from S � T to Id�#c.

It now follows that for all c and j,

Rj
� (�)(c) = lim �

j

(�#c)op
(� � �opc )

�= lim �
j

B(K(c))

(� � �c � S) �= Hj(K(c); �(c)):

The spectral sequence (3) now follows from this together with (5). �
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