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Poly Bergman spaces on domains Mobius equivalent to a disk
Abstract

Let U be a complex domain, which is the image of a disk by a Mobius
transformation and let j be a non zero integer. The talk will focusses on
explicit representation of the poly-Bergman projection of order j in terms
of the canonical two-dimensional singular integral operators Sy j. One
also discuss how the Lebesgue space L?(U, d A) decompose on the true
poly-Bergman spaces, where d A is the element of Lebesgue area
measure. The poly-Bergman kernels of U are explicitly calculated.
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Poly Bergman spaces

@ U C C open connected set ; dA(z) = dxdy area measure

10 0 1/0 0
= (Z4i2), g =2 <L 1.1
% 2<8x+’0y>' 0 2(ax IOy) (1.1)

Definition (Poly and anti-poly Bergman spaces)

f € A7(U) if f € L? (U, dA), f is smooth and

E)’Z;f =0 and 9;/f =0, respectively if j €7, and j € Z_

@ f is j-analytic function if is smooth and satisfies (1.1) respectively if
j€Zy and j€Z_
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Poly Bergman spaces

Af(U) are reproducing kernel Hilbert spaces. Indeed [Kos-77]

f e A3(D)

1) < =il (S5 e

If d, := dist(z; OU) then for every j € Z., it follows straightforward that

Ul
) <

\J\
fHB(D(z,dz)) S HfHB , ZeU, fe A} (V)

Definition (Poly Bergman kernels and projections)

Ky j(z,w), j € Z is the j-Poly Bergman reproducing kernel for U, i.e.
the unique function such that Ky j(z, w) := ky  .(w) and

f(z) = (f kuz) ; fEA(U),j€Zs, z€ U.

By, is the orthogonal projections from L* (U, d A) onto A7 (U). m
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Poly Bergman kernels and projections

@ By, is an integral operator with kernel given by Ky j, j € Z, i.e.

By f(z) = /U Kuj(z, w)f(w)dA(w) ; f € L>(U,dA), j € 74

@ Koshelev formula for poly the Bergman kernel of unit disk [Kos-77]

-1 citk= — 20—k 2(k—1
Sy T L w2z wPY

Ko, = :
I (1—wz)?

With C’f o k),,jEZ+
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Dzhuraev's Formulas

@ Two-dimensional Singular Integrals and Dzhuraev's operators

I A P
Suife)= P [ A

PUJ' =/ - SU,,J'SUJ

@ Likewise for all j € Z. we define
1 1
Suf(z) = Su1f(z) = —— /U 2P f(w)d A(w)

Du_j =/ - (Su)J(SD)J and DU$,j =/ - (SB)J(Su)J

@ If U is bounded finitely multi connected, U is smooth then [D-92]
Su_’j — (SD)J e

Byj—Dyje K and .
U,j U,j N SU.fj _ (SU)J eK

v J €Ly,
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Variation of the domain

Definition (Inner exhaustive sequence [P-Submitted])

Let U C C be a domain. {U,}.en is a Inner exhaustive sequence for U if

Un - Un+1 cu 9 UNGN Un =U.

Theorem (Inner variation of the domain [P-Submitted])

If {U,}nen is a Inner exhaustive sequence for U then
@ By =slim,xuyBu,jxu;
o limy | xu.ku,jz — kU_J-,ZHLQ(U) = 0, uniformly for z within U;

@ limy, ||Kuy, j(z,w) — Kuj(z, W)HLOQ( =0, F1, /> C U compact;

F1><F2)
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000800

Poly Bergman kernel function for

@ The variation of the domain permits to overcome the
non-conformal invariance of poly Bergman spaces

@ In particular, the kernel function Kp; is easily calculated:

o Indeed, because lim, ... Kp(in ) j(z, w) = Kn j(z, w), then

Theorem (Kernel Function of upper half plane [P-Submitted], see

also [V-99])
K ( ) J ZJ:( 1)k+j—lcjcj+k—1(w_2)j_k ‘ ‘2(‘(_1)
n,j\z, w = = - P S ok = w
= ! (w— Z)Hk
J / ktj—1 ~j Fj+k—1 (z - W)jik 2(k—1)
Kn—j(z,w) = p Z(*l) GG g 2w
k=1 (z—w) »
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Explicit Dzhuraev s formulas on the unit disk

clspan {272 : k=0, j—1; me N} = AX(D), j € Zy,

Proposition ([KP-08])

) (S3wT)(e) = gl 24712 4 MRGRES o2

ii) BDJ =1/ - 5@5_1'513_’_1‘ , J € 24
III) S]D,,j = Sﬁ]) and S]]])J = (S{«F)J , J € Z+

)

N k := span {2/25:l:O,...,j—l;s:O,...,k—l} , dimN; , = jk
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Explicit Dzhuraev's formulas on |'|. Variation of the domain

Bﬂ,j = s-lim BD(in,n),j =s-lim DD(imn),j = D|-|7j

Theorem (Dzhuraev formulas for  [P-Submitted, RS-03, V-08])

Bnj = I—(SnY(ShY =1—5n-;Sn,
I = (SpY(SnY =1—=SniSn—j

Theorem ([V-99, V-08, P-Submitted])

JEZLy

.
|

Bn,jBn’,kZO for kel

Simple proof based on the variation of the domain
Consider W,,, with ¢, : D — D(in,n) , ¢n(z) =nz+in
Invariance for dilations and translations gives that
B|-|7J'Br|’,k = s—Iim W:;n BD’J'BH,,;( an = s—Iim W;n 'D’Vj,k an
w-limp00 Wy, =0 and Py, € K imply that BnjBn —« =0
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The complement of a disk

o Let ¢(z) := (az+ b)/(cz + d) be a non constant Mdbius map
@ (D) is either a disk, a half-space or the complement of a disk

@ We have considered the disk D := {z : |z| < 1} and the half-space
MN:={z:Imz>0

@ Define Q = {z: |z| > 1}

The guidelines for what follows will be
@ Exact Dzhuraev's formulas for Q;
@ The poly Bergman kernel for €.

Recall some examples of domains not admitting Dzhuraev’s formulas
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Violation of Dzhuraev's formulas

@ Let U be bounded domain admitting Dzhuraev's formulas

@ /, a half-Straight line outgoing from z € U
Proposition ([KP-08])

U\I, does not admit Dzhuraev’s formulas.

@ [, is the sector {7z : 0 < argz < ¢} for 0 < ¢ < 27

Proposition ([P-Submitted])

o [1, admits Dzhuraev's formulas iff p = 7.

o Let U C C be in the following conditions
AUCvUIf1<A<v and Uy>1 AU =Tl,.

If U admits Dzhuraev’s formulas then ¢ = .
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SIO and poly Bergman projections on some sectors

If My = {z :Imz™ > 0}, m=2,--- then [KP-08]

Bn, = I|—(Sn,+Rn,)(Sn, +Rn,)"

m

Bn, = 1—(Sn,+ Rn,)" (Sn, + Rn,)

where W, f(z) = epf(emz) for £, := e™/™ and

Em

m—1
Rn, = Z Rm.x and Rm.x = xn,, W2%Sxn,
k=1
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Isomorphism with the punctured disk

@ Define vj(z) := (Z/z) and p(z) = 1/z
o W:L2(D)— L2(Q) , WF(z)=f(p(2)¢'(2)
@ The punctured domain Us = U\{¢}

Proposition ([P-Submitted-2])

The following operator is an onto unitary operator

Vit AF(Do) = A2(Q) , Vi=yaW.

Guidelines
@ To study the poly Bergman space of a punctured domain

@ To estimate the norm of every point evaluation of a derivative
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Point evaluations of derivatives

One has that [P-Submitted-2]
O2f(0) = (f.pny) , f € AZ(D) (neN)
where the polynomial p, (z,Z) is given by the following recursive formula
(n+ 1),

Pn,1 = z

Jj—1 k
_ (Sp)*Pnt2kj—k .
n.i . = n — 1 l E ) - 2
Pnj(2.2) Py = (n+1) < (n+ k+ 1)1k J

Observe that [KP-08]

_ m 7n+lzm71 mln{o n+1-— m} Zm7n72
n+1 m+1 '
For derivatives in order to Z we consider Vekua's derivation formulas

0:Suf = 0,f | 0,S;f =0:F fe C®(U)NLAU)

(Spw"w™)(z)
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Poly Bergman spaces on punctured domains

Proposition ([P-Submitted-2])
Let U C C be a domain and z € U. For every k,n=0,1,---

ne M .
|0705f(2)] < Iy I, e AF(U) (€ Zy),

where M is a positive constant only depending on n, k and j.

Proposition ([P-Submitted-2])
Let U C C be a bounded domain and (& € U. If j =2,--- then

AZ(Ug) = span 3% (z_g)k:zs‘»eA?(U)'kzl---.j—1-/:1.-~-k
i T(z=9 T T o '

The Hilbert space A (Ug) & A (U) has finite dimension |j|(|j| —1)/2.
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The Dzhuraev’s operator

Let ¢ : U — V be an analytic bijection, ¢(z) = (az + b)/(cz + d)
We: B(V) = L2(U) . W,f(2) = f(e(2))¢'(2)

Proposition (Mbius Change of Variable in SIO [P-Submitted-2])

WySv W, = ¢iy1Sujci-1, J € Z+

where for every j € Z the unitary functions c; are defined by the following

NI <Cz+d

J
; =—|— ), A:=ad-—0>b 0.
CJ(Z) ‘A‘J CZ+d> ’ a C#

Proposition (Dzhuraev's formulas [P-Submitted-2])
VjBD’j \/j‘< = PQJ and BQJ = PQJ + Qj

Q; is the orthogonal projection of L?(2) onto the |j|(|j| — 1)/2
dimensional subspace A?(Q2) © V;(A?(D)) -
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Orthogonality between poly and anti-poly Bergman spaces

clspan {z"Z': 1=0,--- ,j— 1, k=0,1,---} = A2(D)
[KP-08] ez,
(:lspem{?kzl:lzo,---,j—l;k:0,1,~-~} = A% (D)
Because V(A7 (D)) = A;(2) and A% (Do) = A;(D) & ,EJ then

Proposition ([P-Submitted-2])

17 , 5
clspan{zzzk:/:0,~--,J—1;k:/,---} = A (Q)
J €Ly
1z
(tlspan{Zk:/O,-~-,j1;k/,~-~} = Aaj(Q)
z°z

Proposition ([P-Submitted-2])

Let j k € Z. If jk < O then Ba Bax = 0.
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Singular integral operators and partial isometries

Sj=FY(¢/€YF , j€Zs (Mikhlin Symbol)

Proposition

The application 7. > j — S; is a group homomorphism (S :=I)

Paj=1-xaS5-;(1—xp)Sixa = (xpSixa) (xnSixa) , j € Z+.

Recall: P :H; — H; is a partial isometry with initial space A C H if
Ker P = A" and P acts unitarily on A; Im P is its final space.

Proposition (Well known)

Let P : Hi — Ho be a bounded operator. The assertions are equivalent:
@ P is a partial isometry with initial space N and final space M;
@ P* is a partial isometry with initial space M and final space N;

@ P*P and PP* are projections of H1 onto N and of H, onto M. ori
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Different Dzhuraev’s formulas

Definition

Pi(Q) :=ImPq; =V, [AJQ(]D))} C AJZ(Q) ,JELy.

Proposition ([P-Submitted-2])

e P;(Q2) and ./42_1-(1])) are respectively the initial and final spaces of the
partial isometry xpSjxa;

o A%(D) and P_;(XQ) are respectively the initial and final spaces of
the partial isometry xqS;xn.

Proposition ([P-Submitted-2])

Dqj:=1— (Sa)Y(Ss) is an orthogonal projection and Tm Dq j C .AJZ(Q).

Dq jDok = Da,m , jk >0 and Do ;Do =0, jk <0

where m := sgn(j) min{|j|, |k|}.
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The Singular integral operators and

The proof of the previous Proposition is technical and only depends on:
@ OzSyf =0,f , 9,S;f =0:f fe C(U)nL>U)
@ orthogonality between poly and anti-poly Bergman spaces of Q2
@ the evident equality Do = Dq 1+ (So) ' Ba(Ss) !
In what follows we relate the operators So ; and (Sg), for j € Z.
Sa,j = xaS"Sj—1xa = xaS" (xa+xp)Sji-1Xa = 5950,j-1+XaS xDSj-1Xa-

For every j € Z. define the operator

T L2(Q) = L2(Q) , T;=xaS"xpSixa-
Thus
j—2
Saj =535 1+ Tj1=---=(5) + Z(Sg*z)ijflfk
k=0 UL
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The Singular integral operators and

Definition

N; == AA(D)NAZ,(D), X; := xaS—jxp (N;). Y = xaS xp (N;); j € Zy

Proposition ([P-Submitted-2])

@ Nj=span{z' :/1=0,1,...,j —1};
® X;j and Y; are j-dimensional and X; C A7(Q) and Y; C A2(Q);
@ X; L X for every j, k € Zy such that j # k;

@ T; is a partial isometry with initial space X; and final space Y.
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The Singular integral operators and
Proposition ([P-Submitted-2])

(S5)< and (Sq)* are partial isometries with initial spaces [Dx ()]
[D_«(Q)]* and final spaces [D_x(Q)]* and [D(Q)]*, for k € Zy.

- and

Proposition ([P-Submitted-2])

(S5)<T, is a partial isometry with initial and final spaces respectively
given by X, and (S3)%(Y,), forn,k =0,---.

What about Lj = 37, 70(S8)" T-1-k 1= 2o Lj#?
Definition
@ Define the true projections Dq (11) := Dq +1 jointly with
DQAV(J‘) = DQJ‘ = DQ_J‘_]_ P =2,

@ The true images D(;)(Q2) :=ImDq ;) , j € Z+
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The Singular integral operators and

Proposition ([P-Submitted-2])
Let j € Z,. The operators
(Sa) : Dwy(Q) — Dusp(Q) ; keZy
(SaY : Duy(Q) — DupQ) ; kezZ_ , j<—k
jointly with the following ones
(SaY © D) — Du—j(Q) ; keZ_
(SaY © D) — Du—p(Q) ; keZy , j<k
are isometric isomorphisms. Furthermore
Ker (S5Y = Dj(Q) > A%(Q) and Ker (So) = D_;(Q) > A%(Q).

@ Ly :=(54) T;—1_x has initial and final spaces given by
X1k and (Sp)(Yj 1 k) C (SHD 1)

@ initial and final spaces of L; , and of L;; are orthogonal (k # /) A
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Different Dzhuraev'’s operators

Proposition ([P-Submitted-2])

Saj = (S5Y + Lj, where L; == 5,2 L; , is a partial isometry with initial
and final spaces having dimension j(j — 1)/2 and given by

Jj—2 Jj=2
P X1« and  (Sa) (Vi-1-)-
k=0 k=0

Sa,—iSaj = (SaY(Ss) + (Sa¥L; + Li(SaY + L L.
From the action of (S5)* on D_1(Q) we deduce

Jj—2 Jj—2
L = PSa) (Y1) DD v 1(Q)
k=0 k=0

Luis V. Pessoa Poly-Bergman spaces on domains Mobius equivalent to a disk



The complement of a disk
00000000000000080000000

Different Dzhuraev’s formulas

Proposition ([P-Submitted-2])

Daj=Pa;+Fj,jels

Fj is an orthogonal projection onto a |j|(|j| — 1)/2 dimensional space and

j—1 U\*l
IInFj =3 @Xk 7_/. > 1 Elnd IIHFJ' = @Xik.l < -1
k=1 LS

Proposition ([P-Submitted-2])

If j € Z then the Dzhuraev's formula Bq j = Dq j is valid.
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The Singular integral operators and

Proposition ([P-Submitted-2])
Let j € Z,. The operators

(SQ)Jj : A(zk)(Q) — A(kﬂ Q) ; keZs

(Sa) Afk)(Q) — A2 (Q)  keZ-o , j<-—k
Jointly with the following ones

(5;5)1: DAN(Q) = AL_H(Q) 5 keZe

(Sgy - A%k)(Q) — A(k_J)( ) . ke€Zy , j<k
are isometric isomorphisms. Furthermore

Ker (S5)Y = A2(Q) D A%(Q) and Ker (Sp) = A2,(Q) > A%(Q).

(k+))
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Poly Bergman kernel function

. 7t 1 1\ wi!
Vo Vi F(2) = [ ks (07 ) e F)dAw) = B, (2),

w z

Thus

(zw)y 1! 1 1Y)
KQJ’(Z’W):WKDOJ ;,W y Z,WEQ.
If {¢j«} is an orthonormal base for the space Af(]D)o) S Af(]D) then

ORE- (DR SNONO

11 —
= WKDJ <Zq' W> + Z \/j@j-k(z)\/j‘fgj-,k(w)
k
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Poly Bergman kernel function

Thus {Vj@j «}« is an orthonormal base for the space
A (Q) & V;(A(D @Xk j=2,

Due to Xk := xaS_«xn (Nk) we obtain an orthonormal base for X

Ek

;F(fk.,/;l;lf |z|72), I=1,--- ,k

Yr(z) =

where F(—k, b; c; z) is the (2, 1)-hypergeometric function given for
b,z € C, CEC\{07172 ..... ,—k+1}and k=0,1,2,... by
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Poly Bergman kernel function

Proposition ([P-Submitted-2])
Let j € Z..The j-poly-Bergman kernel of Q) is given by

- i Z{,:l(fl)nil (J) <j+3{71) ‘1 - WZ|2(J'7")|Z o W|2(n71)

n

J T (1-wz)¥
& k=141 (zw)* , ,
e F(—k, ;11— |2|2)F (=K, ;11 — |w|~
+3 30—k L A 31— Wl )

Additionally, for every j € Z.. one has that

Kaj(z,w) = Ko, _j(w,z); z,w € Q.
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