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DIMENSION OF MEASURES FOR SUSPENSION FLOWS

L. BARREIRA, L. RADU, AND C. WOLF

Abstract. We consider hyperbolic flows and more generally suspen-
sion flows over two-sided subshifts of finite type, and establish an ex-
plicit formula for the pointwise dimension of an arbitrary measure (in
particular the measure is not necessarily ergodic and it may not possess
a local product structure). The applications of this formula include the
description of the Hausdorff dimension of a given measure in terms of
an ergodic decomposition, and the proof of the existence of measures of
maximal dimension.

1. Introduction

Suspension flows naturally occur as models for flows possessing hyperbolic
behavior. In particular, in the case of uniformly hyperbolic flows one can use
the Markov systems introduced by Bowen [6] and Ratner [13] to associate
suspension flows to the dynamics. This approach conveniently allows us to
work with the symbolic dynamics on the base of a suspension flow and then
to transfer the results to the original flow (in many cases this transference
requires a great care although this problem is of different nature, and es-
sentially depends on the point of view of our approach, namely topological,
dimensional, etc).

We consider suspension flows over a subshift of finite type and we intro-
duce an appropriate metric on the base of the suspension that unlike the
“standard” symbolic metrics may be “nonuniform”. This corresponds to
the existence of possibly nonconstant Lyapunov exponents λs(x) and λu(x)
(or more precisely of an appropriate version of Lyapunov exponents) for
the subshift of finite type along the “stable” and “unstable” directions (see
Section 2.3 for the definition). This approach also allows us to describe the
Hausdorff dimension of a set that is invariant under the suspension flow in
terms of a Carathéodory dimensional characteristic that is essentially de-
fined in terms of the Lyapunov exponents.

Our main result is an explicit formula for the pointwise dimension of an
invariant measure. Namely, let ν be a probability measure invariant under
a suspension flow Φ on the space Y . We show that for ν-almost every x ∈ Y
we have (see Theorem 1)

lim
r→0

log ν(B(x, r))

log r
= hν(x)

(

1

λu(x)
−

1

λs(x)

)

+ 1. (1)
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Here B(x, r) is the ball of radius r centered at x with respect to the so-
called Bowen–Walters distance (see Section 2.1 for the definition), which
is the natural distance on the phase space of a suspension flow, and hν(x)
denotes the local entropy of ν at x (see Section 3). The limit on the left-
hand side of (1), whenever it exists, is called the pointwise dimension of ν
at x.

In the case of conformal hyperbolic flows (see Section 5.1) Pesin and
Sadovskaya [12] established (1) for equilibrium measures of a Hölder con-
tinuous potential (note that these measures are ergodic and possess a local
product structure), while we consider arbitrary measures. In fact, we fol-
low a different approach developed by Barreira and Wolf in [5] to establish
(1) for an arbitrary measure invariant under conformal hyperbolic dynam-
ics. It should be pointed out that (1) is a version of the formula obtained
by Young in [16] in the case of ergodic measures invariant under surface
diffeomorphisms with nonzero Lyapunov exponents.

We provide two applications of the formula in (1). The first is a de-
scription of the Hausdorff dimension of an invariant measure (again not
necessarily ergodic) in terms of an ergodic decomposition. We recall that
the Hausdorff dimension of a probability measure ν on Y is defined by

dimH ν = inf{dimH Z : ν(Z) = 1},

where dimH Z denotes the Hausdorff dimension of the set Z. For any ergodic
decomposition of ν we have (see Theorem 3)

dimH ν = ess supρ dimH ρ,

with the essential supremum taken with respect to the ergodic decompo-
sition. The second application is a proof of the existence of ergodic in-
variant measures of maximal dimension (see Theorem 4). This means that
there exists an ergodic invariant measure which attains the supremum of
the Hausdorff dimensions over all invariant measures (including the noner-
godic measures). The main difficulty of this problem is that the function
ν 7→ dimH ν is not upper-semicontinuous.

The following is a description of the contents of the paper. In Section 2 we
introduce some basic notions and present the least possible requirements for
the suspension flows that allow our approach to work. Section 3 contains
a proof of formula (1) and the description of the Hausdorff dimension of
invariant measures in terms of ergodic decompositions. Section 4 addresses
the existence of measures of maximal dimension. In section 5 we consider
the case of hyperbolic flows. Our approach closely follows the approaches
developed in [4, 5] for hyperbolic diffeomorphisms and is based on the ther-
modynamic formalism. All the necessary results from the thermodynamic
formalism are recalled or briefly established in the appendix. Instead of re-
peating the arguments in [4, 5] we carefully highlight the required changes.

2. Suspension flows

2.1. Basic notions. Let σ : X → X be a homeomorphism of the compact
metric space X, and let τ : X → (0,∞) be a continuous function. We
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consider the space

Y = {(x, t) ∈ X × R : 0 ≤ t ≤ τ(x)},

with the points (x, τ(x)) and (σ(x), 0) identified for each x ∈ X. The sus-

pension flow over σ with height function τ is the flow Φ = {ϕt}t∈R on Y
with ϕt : Y → Y defined by ϕt(v, s) = (v, s+ t). We extend τ to a function
τ : Y → R by

τ(x) = min{t > 0 : ϕtx ∈ X × {0}},

and we extend σ to a map σ : Y → X × {0} by σ(x) = ϕτ(x)x. Since there
is no danger of confusion we continue to use the symbols τ and σ for the
extensions and we identify the base X × {0} with X.

One can introduce in a natural way a topology on Y which makes Y
a compact topological space. This topology is induced by a distance dY

introduced by Bowen and Walters in [8] (see for example the appendix of
[2] for details), that we call Bowen–Walters distance in this paper.

We briefly recall its definition. Without loss of generality one can assume
that the diameter diamX of X is at most 1. If this is not the case then
since X is compact one can simply consider the new distance dX/diamX
on X. We first assume that τ = 1 on X, and introduce the Bowen–Walters
distance d1 on the corresponding space Y . We shall first consider horizontal
and vertical segments. Given x, y ∈ X and t ∈ [0, 1] we define the length of
the horizontal segment [(x, t), (y, t)] by

ρh((x, t), (y, t)) = (1 − t)dX(x, y) + tdX(σx, σy).

Note that

ρh((x, 0), (y, 0)) = dX(x, y) and ρh((x, 1), (y, 1)) = dX(σx, σy).

Furthermore, given (x, t), (y, s) ∈ Y on the same orbit we define the length
of the vertical segment [(x, t), (y, s)] by

ρv((x, t), (y, s)) = inf{|r| : ϕr(x, t) = (y, s) and r ∈ R}.

Finally, given two points (x, t), (y, s) ∈ Y the distance d1((x, t), (y, s)) is
defined as the infimum of the lengths of paths between (x, t) and (y, s)
composed by a finite number of horizontal and vertical segments. We now
consider the case of an arbitrary function τ , and introduce the Bowen–
Walters distance dY on Y . Given two points (x, t), (y, s) ∈ Y , we set

dY ((x, t), (y, s)) = d1((x, t/τ(x)), (y, s/τ(s))).

Given (x, t), (y, s) ∈ Y we set

dπ((x, t), (y, s)) = min







dX(x, y) + |t− s|,
dX(σx, y) + τ(x) − t+ s,
dX(x, σy) + τ(y) − s+ t







.

It was established by Barreira and Saussol in [2] that there exists a constant
c > 1 such that if p, q ∈ Y then

c−1dπ(p, q) ≤ dY (p, q) ≤ cdπ(p, q). (2)

We denote by MΦ(Y ) the space of Φ-invariant probability measures on Y
and by Mσ(X) the space of σ-invariant probability measures on X. There
is a canonical identification between these two spaces. Namely, for each
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measure µ ∈ Mσ(X) andm the Lebesgue measure on R the product measure
µ×m attributes zero measure to the base X×{0} and we can define a map
T : Mσ(X) → MΦ(Y ) by

T (µ) = Tµ = (µ×m)|Y /(µ×m)(Y ). (3)

The relation between the measures µ and Tµ is given by
∫

Y

a dTµ =

∫

X
∆a dµ

∫

X
τ dµ

(4)

for each continuous function a : Y → R, where ∆a : Y → R is defined by

∆a(x) =

∫ τ(x)

0
a(ϕtx) dt.

It is straightforward to verify that T is onto and one-to-one. In particular
any measure in MΦ(Y ) is of the form Tµ for some measure µ ∈ Mσ(X).

See Section 5.1 for the principal examples of suspension flows over a topo-
logical Markov chain, obtained from hyperbolic flows and the associated
so-called Markov systems.

2.2. Metric on the base and Hausdorff dimension. We now consider
the case when σ : X → X is a two-sided topological Markov chain on X ⊂
{1, . . . , p}Z. We equip X with the topology induced by the cylinders

Ci
−n···im = {(· · · j0 · · · ) : jk = ik for −n ≤ k ≤ m},

where i−n, . . ., im ∈ {1, . . . , p}. Let βs : X → R and βu : X → R be contin-
uous negative functions and write

ds(Ci
−n···im) = sup

x∈Ci
−n···im

exp
m

∑

k=0

βs(σ
k(x)),

du(Ci
−n···im) = sup

x∈Ci
−n···im

exp
n

∑

k=0

βu(σ−k(x)).

We define a distance d on X by

d((· · · i0 · · · ), (· · · j0 · · · )) = |i0 − j0| + ds(Ci
−nu ···ins

) + du(Ci
−nu ···ins

),

where

ns = max{n ∈ N : ik = jk for k ≤ n},

nu = max{n ∈ N : ik = jk for k ≥ −n}.

It is straightforward to verify that the diameter of a cylinder C computed
with respect to the distance d is given by

diamd C = ds(C) + du(C). (5)

The distance d was introduced by Barreira and Saussol in [2]. The topology
induced by d coincides with the topology generated by the cylinders. It
makes X a compact metric space and it is straightforward to verify that βs

and βu are Hölder continuous with respect to the distance d.
The distance d also induces a Bowen–Walters distance dY on Y . In this

paper we always compute the Hausdorff dimension of subsets of Y with
respect to this distance.
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We now give an alternative definition of the Hausdorff dimension as a
Carathéodory dimensional characteristic (for a detailed introduction to the
theory of Carathéodory dimensional characteristics we refer to the book by
Pesin [11]). Given α ∈ R and Z ⊂ X we consider the function

M(Z,α) = lim
`→0

inf
Γ

∑

C∈Γ

exp(−αds(C) − αdu(C)),

where the infimum is taken over all covers Γ of Z by cylinders Ci
−n···im with

m > ` and n > `. The (βs, βu)-dimension of Z is defined by

dimβs,βu
Z = inf{α : M(Z,α) = 0}.

It follows from (5) that the (βs, βu)-dimension coincides with the Hausdorff
dimension with respect to d.

2.3. Lyapunov exponents. We now introduce numbers that play the role
of Lyapunov exponents in the case of suspension flows. We note that given
a function β : X → R there always exists a continuous function a : Y → R

such that ∆a|X = β. For example, we can define a : Y → R by

a(ϕtx) =
β(x)

τ(x)
ψ′

(

t

τ(x)

)

for each x ∈ X and t ∈ [0, τ(x)], where ψ : [0, 1] → [0, 1] is any fixed nonde-
creasing C1 function such that ψ(0) = 0, ψ(1) = 1, and ψ ′(0) = ψ′(1) = 0.
We now consider continuous functions ζs : Y → R

− and ζu : Y → R
+ such

that
∆ζs

|X = βs and ∆ζu
|X = −βu. (6)

With the help of Proposition 17 in [2] one can easily verify that if τ is Hölder
continuous then ζs and ζu are also Hölder continuous.

For each x ∈ Y we define the numbers

λs(x) = lim
t→+∞

1

t

∫ t

0
ζs(ϕrx) dr and λu(x) = lim

t→+∞

1

t

∫ t

0
ζu(ϕrx) dr, (7)

whenever the corresponding limit exists. By Birkhoff’s ergodic theorem
λs(x) and λu(x) are well-defined ν-almost everywhere with respect to any
Φ-invariant probability measure ν on Y , and

∫

Y

λs dν =

∫

Y

ζs dν and

∫

Y

λu dν =

∫

Y

ζu dν. (8)

It is straightforward to verify that the domains of these functions are Φ-
invariant and that each of the functions is Φ-invariant on its domain. We
observe that

n−1
∑

k=0

∆a(σ
k(x)) =

∫ τn(x)

0
a(ϕtx) dt,

where τn(x) =
∑n−1

k=0 τ(σ
k(x)). This implies that

λs(ϕtx) = lim
n→+∞

1

τn(x)

n−1
∑

k=0

βs(σ
k(x)),

λu(ϕtx) = − lim
n→+∞

1

τn(x)

n−1
∑

k=0

βu(σk(x)),

(9)
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whenever the corresponding limit exists. These identities show that the
definition of the functions λs and λu in (7) is independent of the particular
extensions ∆ζs

of βs and ∆ζu
of −βu to the space Y .

3. Pointwise dimension and ergodic decompositions

Let Φ be a suspension flow on Y over the map σ : X → X and let ν ∈
MΦ(Y ). For ν-almost every x ∈ Y there exists the limit

hν(x) = lim
ε→0

lim
t→∞

−
1

t
log ν(B(x, t, ε)), (10)

where

B(x, t, ε) = {y ∈ Y : d(ϕry, ϕrx) < ε whenever 0 ≤ r ≤ t}. (11)

The number hν(x) is called the local entropy at x. The function x 7→ hν(x)
is ν-integrable, Φ-invariant ν-almost everywhere, and the Kolmogorov–Sinai
entropy hν(Φ) of Φ with respect to ν is given by

hν(Φ) =

∫

Y

hν(x) dν(x).

The lower and upper pointwise dimensions of ν at the point x ∈ Y are
defined by

dν(x) = lim inf
r→0

log ν(B(x, r))

log r
and dν(x) = lim sup

r→0

log ν(B(x, r))

log r
,

where B(x, r) is the ball of radius r centered at x with respect to the Bowen–
Walters distance (see Section 2.1). It follows from (2) that if x = (y, t) with
y ∈ X and t ∈ [0, τ(y)] then

BX(y, r/c) × (t− r/c, t+ r/c) ⊂ B(x, r) ⊂ BX(y, cr) × (t− cr, t+ cr)

for all sufficiently small r > 0. Using (3), this implies that if µ ∈ Mσ(Y ) is
the unique σ-invariant probability measure on X such that T (µ) = ν (see
Section 2.1) then

µ(BX(y, r/c))2r/c

(µ×m)(Y )
≤ ν(B(x, r)) ≤

µ(BX(y, cr))2cr

(µ×m)(Y )
,

and hence

dν(x) = dµ(y) + 1 and dν(x) = dµ(y) + 1.

Our first result is an explicit formula for the pointwise dimension of ν in
terms of the local entropy and of the Lyapunov exponents.

Theorem 1. Let Φ be a suspension flow on Y over a two-sided topological

Markov chain with Hölder continuous height function, and ν a Φ-invariant

probability measure on Y . Then, for ν-almost every x ∈ Y we have

dν(x) = dν(x) = hν(x)

(

1

λu(x)
−

1

λs(x)

)

+ 1.

Proof. By Birkhoff’s ergodic theorem, for ν-almost every x ∈ Y there exists
the limit

χ(x) = lim
n→∞

τn(x)

n
. (12)
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Using the Shannon–McMillan–Breiman theorem, we can show that for ν-
almost every x = (v, s) ∈ Y we have

hν(x) =
1

χ(x)
lim

n,m→∞

−
1

n+m
log µ(Rn,m(v)), (13)

where µ denotes the measure induced by ν on X, and Rn,m(v) = Ci
−m···in

is any cylinder such that v ∈ Rn,m(v). Let now Z be a full ν-measure
Φ-invariant set of points x ∈ Y such that:

1. the numbers λs(x) and λu(x) in (7) and χ(x) in (12) are well-defined;
2. the number hν(x) in (10) is well-defined and satisfies (13).

Fix ε > 0 sufficiently small. For each x = (v, s) ∈ Z there exists p(x) ∈ N

such that if m, n ≥ p(x) then

τm(x)(λs(x) − ε) <
m−1
∑

k=0

βs(σ
k(v)) < τm(x)(λs(x) + ε),

τn(x)(λu(x) − ε) < −

n−1
∑

k=0

βu(σk(v)) < τn(x)(λu(x) + ε),

n(χ(x) − ε) < τn(x) < n(χ(x) + ε),

−hν(x)χ(x) − ε <
1

n+m
log µ(Rn,m(v)) < −hν(x)χ(x) + ε.

Fix now ` ∈ N and define the set Q` = {x ∈ Z : p(x) ≤ `}. This plays
the role of a Pesin set. For each x = (v, s) ∈ Z there exists r(x) > 0 such
that for every r ∈ (0, r(x)) we can choose m = m(x, r) and n = n(x, r) with
τm(x), τn(x) ≥ p(x) such that

exp

m−1
∑

k=0

βs(σ
k(v)) ≥ r and exp

m
∑

k=0

βs(σ
k(v)) < r,

exp

n−1
∑

k=0

βu(σk(v)) ≥ r and exp

n
∑

k=0

βu(σk(v)) < r.

Set R(x, r) = Rn(x,r),m(x,r)(v). By approximating the ball B(x, r) by the set
R(x, r)× Ir(x), where Ir(x) is some interval of length 2r, we can proceed in
a similar way to that in [5, Theorem 15] to establish the desired result. For
completeness we include the detailed argument here.

It follows from (2) and the construction of R(x, r) that there exists γ > 0
(independent of x and r) such that B(x, γr) ⊃ R(x, r) × Ir(x). Thus, for
each x ∈ Z \X and each sufficiently small r we obtain

ν(B(x, γr)) ≥ µ(R(x, r))2r ≥ exp[(−hν(x)χ(x) − ε)(n+m)]2r

≥ exp[−hν(x)(τn(x) + τm(x)) − (hν(x) + 1)ε(n +m)]2r

≥ exp [(−hν(x) − a(x)ε)(τn(x) + τm(x))] 2r,

where a(x) = (hν(x) + 1)κ with κ = 1/min{minX τ, τ(x)}. Therefore

ν(B(x, γr)) ≥ exp

[

(hν(x) + a(x)ε)

(

log r

λu(x) − ε
−

log r

λs(x) + ε

)]

2r.
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Taking logarithms, dividing by log r, and letting r → 0 it follows readily
from the arbitrariness of ε that

dν(x) ≤ hν(x)

(

1

λu(x)
−

1

λs(x)

)

+ 1

for every x ∈ Z \X and hence for ν-almost every x ∈ Y .
The lower bound for the pointwise dimension requires additional argu-

ments. Given x in the full ν-measure set Z we consider the set Γ(x) of
points y ∈ Z such that

|λs(y)−λs(x)| < ε, |λu(y)−λu(x)| < ε, |χ(y)−χ(x)| < ε, |hν(y)−hν(x)| < ε.

The Φ-invariant sets Γ(x) cover Z and we can choose points yi ∈ Z for i = 1,
2, . . . such that Γi = Γ(yi) satisfy ν(Γi) > 0 for each i, and

⋃

i∈N
Γi has full

ν-measure. Proceeding in a similar way to that in [11, Section 22], for each
x ∈ Γi∩Q` and r > 0, we denote by R′(x, r) the largest rectangle containing
x with the property that R′(x, r) = R(y, r) for some y ∈ R′(x, r) ∩ Γi ∩Q`

and that R(z, r) ⊂ R′(x, r) for any z ∈ R′(x, r) ∩ Γi ∩Q`. Two sets R′(x, r)
and R′(y, r) either coincide or intersect at most along their boundaries.

The Borel density lemma (see for example [9, Theorem 2.9.11]) tells us
that for ν-almost every x ∈ Γi ∩Q` we have

lim
r→0

ν(B(x, r) ∩ Γi ∩Q`)

ν(B(x, r))
= 1.

Therefore, for ν-almost every x ∈ Γi ∩Q` there exists r(x) > 0 such that

ν(B(x, r)) ≤ 2ν(B(x, r) ∩ Γi ∩Q`)

for each r ∈ (0, r(x)). Furthermore, there exist a constant K > 0 (indepen-
dent of x and r) and points x1, . . ., xk ∈ Γi ∩Q` with k ≤ K such that the
sets R′(xj , r) × Ir(xj) for j = 1, . . ., k cover B(x, r) ∩ Γi ∩Q`. We obtain

ν(B(x, r)) ≤ 2ν(B(x, r) ∩ Γi ∩Q`) ≤ 4r
k

∑

j=1

ν(R′(xj , r))

≤ 4r
k

∑

j=1

exp[(−hν(xj)χ(xj) + ε)(n(xj , r) +m(xj, r))]

≤ 4r

k
∑

j=1

exp [(−hν(xj) + a(xj)ε) (τn(xj) + τm(xj))]

≤ 4r

k
∑

j=1

exp

[

b(yi)

(

log r − minβu

λu(xj) + ε
−

log r − minβs

λs(xj) − ε

)]

≤ 4rK exp

[

c(x)

(

log r − minβu

λu(x) + 2ε
−

log r − minβs

λs(x) − 2ε

)]

,

where

b(yi) = hν(yi) − ε− (hν(yi) + ε+ 1)εκ,

c(x) = hν(x) − 2ε− (hν(x) + 2ε+ 1)εκ.
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Taking logarithms, dividing by log r, and letting r → 0 we conclude from
the arbitrariness of ε that

dν(x) ≥ hν(x)

(

1

λu(x)
−

1

λs(x)

)

+ 1 (14)

for ν-almost every x ∈ Γi ∩Q`. Letting `→ ∞ we conclude that (14) holds
for ν-almost every x ∈ Γi. Since

⋃

`∈N
Γi has full ν-measure (14) holds for

ν-almost every x ∈ Y . �

We emphasize that we do not require the measure ν to be ergodic and
that it may have only an “almost” local product structure (in the sense
of [1]) instead of a local product structure as in the case of Gibbs measures.

The following is a simple consequence of Theorem 1.

Corollary 2. If Φ is a suspension flow on Y over a two-sided topological

Markov chain with Hölder continuous height function, and ν is a Φ-invariant

probability measure on Y , then

dimH ν = ess sup

{

hν(x)

(

1

λu(x)
−

1

λs(x)

)

+ 1 : x ∈ Y

}

. (15)

If, in addition, ν is ergodic then

dimH ν = hν(Φ)

(

1
∫

Y
λu dν

−
1

∫

Y
λs dν

)

+ 1

= hµ(σ)

(

−
1

∫

X
βu dµ

−
1

∫

X
βs dµ

)

+ 1,

(16)

where µ denotes the measure on X induced by ν.

Proof. We have (see for example [5, Proposition 3])

dimH ν = ess sup{dν(x) : x ∈ Y }, (17)

and hence the identity in (15) follows immediately from Theorem 1. When ν
is ergodic, the first identity in (16) follows immediately from (15) and from
the Φ-invariance of the functions hν , λs, and λu. For the second identity we
observe that by (4), (6), and (8),

∫

Y

λs dν =

∫

X

βs µ/

∫

X

τ dµ and

∫

Y

λu dν =

∫

X

βu µ/

∫

X

τ dµ.

Furthermore, by Abramov’s formula, hν(Φ) = hµ(σ)/
∫

X
τ dµ, and we obtain

the second identity in (16). This completes the proof. �

In the case of conformal hyperbolic flows and equilibrium measures with
a Hölder continuous potential, the identity in (16) was established by Pesin
and Sadovskaya in [12].

We now describe the behavior of the Hausdorff dimension of an invariant
measure under an ergodic decomposition.

Theorem 3. Let Φ be a suspension flow on Y over a two-sided topological

Markov chain with a Hölder continuous height function, and ν a Φ-invariant

probability measure on Y . Then, for any ergodic decomposition τ of ν we

have

dimH ν = ess sup{dimH ρ : ρ ∈ MΦ(Y )},

with the essential supremum taken with respect to τ .
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Proof. If ν(Y \ B) = 0 then ρ(Y \ B) = 0 for τ -almost every ρ ∈ MΦ(Y ).
Hence, dimH B ≥ dimH ρ for τ -almost every ρ ∈ MΦ(Y ), and thus

dimH B ≥ ess sup{dimH ρ : ρ ∈ MΦ(Y )}.

Taking the infimum over all the sets B with ν(Y \ B) = 0 we obtain

dimH ν ≥ ess sup{dimH ρ : ρ ∈ MΦ(Y )}.

The opposite inequality can be obtained from a straightforward modification
of arguments in [5, Theorem 17] using Corollary 2. �

4. Measures of maximal dimension

Let now Φ be a suspension flow on Y over a two-sided topological Markov
chain σ : X → X with Hölder continuous height function. Let βs and βu be
(Hölder) continuous negative functions on X, and let ζs and ζu be defined
as in Section 2.3. For each ν ∈ MΦ(Y ) we define

λs(ν)
def
=

∫

Y

λs(x) dν(x) and λu(ν)
def
=

∫

Y

λu(x) dν(x). (18)

Our approach to establish the existence of measures of maximal dimension
is based on the study of the topological pressure of the two-parameter family
(p, q) 7→ −pζu+qζs (see the appendix for details about topological pressure).
Consider the function Q : R

2 → R defined by

Q(p, q) = PΦ(−pζu + qζs).

Since ζs and ζu are Hölder continuous, the results in the appendix imply that
Q is real-analytic. Furthermore, for each (p, q) ∈ R

2 the function −pζu +qζs
possesses a unique equilibrium measure νp,q which is ergodic.

Since the maps ν 7→ λs(ν) and ν 7→ λu(ν) defined by (18) are continuous
on MΦ(Y ), and MΦ(Y ) is compact, we can define

λmin
s = minλs(MΦ(Y )), λmax

s = max λs(MΦ(Y )),

and

λmin
u = minλu(MΦ(Y )), λmax

u = max λu(MΦ(Y )).

Consider the intervals

Is = (λmin
s , λmax

s ) and Iu = (λmin
u , λmax

u ).

Note that Is 6= ∅ (respectively Iu 6= ∅) if and only if ζs (respectively ζu) is
not cohomologous to a constant (see the appendix for the definition).

We are now ready to establish the existence of ergodic measures of max-
imal dimension.

Theorem 4. Let Φ be a suspension flow on Y over a topologically mixing

two-sided topological Markov chain with Hölder continuous height function.

Then there exists an ergodic measure ν ∈ MΦ(Y ) such that

dimH ν = sup{dimH ρ : ρ ∈ MΦ(Y )}. (19)

Proof. The proof of this theorem goes along the lines of the proof of the
corresponding result in the case of hyperbolic diffeomorphisms (see [4]).
Therefore, we will only provide a sketch.
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We denote by ME ⊂ MΦ(Y ) the set of ergodic Φ-invariant probability
measures on Y . Since any ergodic decomposition attributes full measure to
ME , we conclude from Theorem 3 that

sup{dimH ρ : ρ ∈ MΦ(Y )} = sup{dimH ρ : ρ ∈ ME}.

Therefore, it is sufficient to establish the existence of ν ∈ ME with

dimH ν = sup{dimH ρ : ρ ∈ ME}.

We consider a sequence (νn)n∈N of measures in ME such that

lim
n→∞

dimH νn = sup{dimH ν : ν ∈ ME}. (20)

Since MΦ(Y ) is compact in the weak∗ topology, we can also assume that
(νn)n∈N converges to some measure m ∈ MΦ(Y ). Since the map MΦ(Y ) 3
ν 7→ hν(Φ) is upper semi-continuous, it follows from (16) and the continuity
of ν 7→ λu(ν) and ν 7→ λs(ν) that

lim
n→∞

dimH νn ≤ hm(Φ)

(

1

λu(m)
−

1

λs(m)

)

+ 1
def
= d(m). (21)

Using (20) and (21) we obtain

sup{dimH ν : ν ∈ ME} ≤ d(m).

Therefore, in order to establish the existence of a measure ν ∈ ME satisfying
(19), it is sufficient to show that there exists ρ ∈ ME with

dimH ρ = d(m). (22)

We note that when m is ergodic, it follows from (16) that dimH m = d(m),
and hence (19) holds for the measure m. However, a priori it is not clear
whether m must be ergodic.

Analogously as in [4] we can show that it is enough to consider the fol-
lowing four cases:

1. λs(m) ∈ Is and λu(m) ∈ Iu;
2. λs(m) ∈ Is and ζu is cohomologous to a constant;
3. λu(m) ∈ Iu and ζs is cohomologous to a constant;
4. λs(m) 6∈ Is and λu(m) 6∈ Iu.

For the proof of the existence of ρ ∈ ME satisfying (22) we can now proceed
in an analogous manner to that in the proof of Theorem 6 in [4]. For this
we use in particular results from the thermodynamic formalism which are
established in Theorem 11 in the appendix.

In the cases 1, 2, and 3 we obtain that m = νp,q for some p, q ∈ R, and
in particular (22) holds for m. In the case 4 we can establish the existence
of a measure ν ∈ ME with dimH ν = d(ν) possibly differing from m in (22).
We refer to [4, 5] for full details. �

5. Hyperbolic flows

5.1. Hyperbolic flows and Markov systems. We now describe an exam-
ple of a suspension flow over a topological Markov chain. Let Φ = {ϕt}t∈R

be a C1 flow on a Riemannian manifold. A compact Φ-invariant set Λ ⊂M
is hyperbolic for Φ if there exist a continuous splitting of the tangent bundle
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TΛM = Es ⊕Eu ⊕E0 and constants c > 0 and λ ∈ (0, 1) such that for each
x ∈ Λ the following properties hold:

1. the vector d
dt

(ϕtx)|t=0 generates E0
x;

2. dxϕt(E
s
x) = Es

ϕtx
and dxϕt(E

u
x) = Eu

ϕtx
for each t ∈ R;

3. ‖dxϕtv‖ ≤ cλt‖v‖ for every v ∈ Es
x and every t > 0;

4. ‖dxϕ−tv‖ ≤ cλt‖v‖ for every v ∈ Eu
x and every t > 0.

For example, geodesic flows on compact Riemannian manifolds with strictly
negative sectional curvature have the whole unit tangent bundle as a hyper-
bolic set. Furthermore, time changes and small C 1 perturbations of flows
with a hyperbolic set also possess a hyperbolic set.

Let Λ be a compact invariant locally maximal hyperbolic set for Φ. Con-
sider a Markov system R1, . . ., Rp for Φ on Λ (see for example [2] for the
definition) and its associated transfer function τ : Λ → [0,∞) defined by
τ(x) = min{t > 0 : ϕtx ∈

⋃p
i=1Ri}. We also define a map T : Λ →

⋃p
i=1Ri

by T (x) = ϕτ(x)x. By work of Bowen [6] and Ratner [13], there exist Markov
systems of arbitrarily small diameter.

We define a p× p matrix A with entries aij = 1 if int TRi ∩ intRj 6= ∅,

and aij = 0 otherwise. Consider the set X ⊂ {1, . . . , p}Z defined by

X = {(· · · i−1i0i1 · · · ) : ainin+1
= 1 for every n ∈ Z},

and the topological Markov chain σ : X → X. The coding map π : X →
⋃p

i=1Ri defined by π(· · · i0 · · · ) =
⋂

j∈Z
T−j intRij satisfies π ◦ σ = T ◦ π.

This construction shows that with the help of a Markov system we can
naturally associate a suspension flow (the suspension flow over σ with height
function τ ◦ π) to each given compact invariant locally maximal hyperbolic
set. In many situations it is convenient to establish a result for the hyperbolic
flow Φ by first establishing an appropriate version on a suspension flow
associated to Φ and then to transfer this result to Φ.

Assume now that the flow Φ = {ϕt}t∈R is conformal on Λ. This means
that the maps

dxϕt|E
u
x : Eu

x → Eu
ϕtx and dxϕt|E

s
x : Es

x → Es
ϕtx

are multiples of isometries for each x ∈ Λ and t ∈ R. In this case the Haus-
dorff dimension of subsets of Λ coincides with a certain (βs, βu)-dimension.
To see this we consider the functions βs : X → R and βu : X → R defined
by

βs(x) = log‖dπxϕτ(πx)|E
s(πx)‖, βu(x) = − log‖dπxϕτ(πx)|E

u(πx)‖. (23)

Note that

n−1
∑

k=0

βs(σ
k(x)) = log‖dπxϕτn(πx)|E

s(πx)‖,

n−1
∑

k=0

βu(σ−k(x)) = − log‖dπxϕ−τn(πx)|E
u(πx)‖.

(24)

By work of Schmeling in [15], for every Φ-invariant set B ⊂ Λ,

dimH B = 1 + dimβs,βu
π−1B.



DIMENSION OF MEASURES FOR SUSPENSION FLOWS 13

Let ν be a Φ-invariant probability measure on Λ. By Birkhoff’s ergodic
theorem, for ν-almost every x ∈ Λ there exist the limits

κu(x) = lim
t→+∞

1

t
log‖dxϕt|E

u
x‖ and κs(x) = lim

t→+∞

1

t
log‖dxϕt|E

s
x‖.

As observed by Pesin and Sadovskaya in [12] we have

κu(x) = lim
t→+∞

1

t

∫ t

0
ζu(ϕr(x)) dr and κs(x) = lim

t→+∞

1

t

∫ t

0
ζs(ϕr(x)) dr,

where

ζu(x) =
∂

∂t
log‖dxϕt|E

u
x‖

∣

∣

∣

∣

t=0

= lim
t→0

1

t
log‖dxϕt|E

u
x‖,

ζs(x) =
∂

∂t
log‖dxϕt|E

s
x‖

∣

∣

∣

∣

t=0

= lim
t→0

1

t
log‖dxϕt|E

s
x‖.

For the functions βs and βu in (23), it follows from (9) and (24) that κu(x) =
λu(x) and κs(x) = λs(x), whenever any of the corresponding limits exist.

5.2. Dimension of measures. We now consider hyperbolic flows and for-
mulate corresponding statements to those in the former sections in the case
of suspension flows. The first two statements are respectively versions of
Theorems 1 and 3, and were established by Barreira and Wolf in [5]. The
third statement is new and gives a version of Theorem 4 for hyperbolic flows.
Namely, it establishes the existence of measures of maximal dimension for
hyperbolic flows.

Theorem 5 ([5, Theorem 15]). Let Φ be a C1+ε flow with a hyperbolic set

Λ ⊂ M on which Φ is conformal, and ν a Φ-invariant probability measure

on Λ. Then, for ν-almost every x ∈ Λ we have

dν(x) = dν(x) = hν(x)

(

1

λu(x)
−

1

λs(x)

)

+ 1.

It follows from Theorem 5 and (17) that

dimH ν = ess sup

{

hν(x)

(

1

λu(x)
−

1

λs(x)

)

+ 1 : x ∈ Λ

}

.

This identity can then be used to establish the following.

Theorem 6 ([5, Theorem 17]). Let Φ be a C1+ε flow with a hyperbolic set

Λ ⊂ M on which Φ is conformal, and ν a Φ-invariant probability measure

on Λ. Then, for any ergodic decomposition τ of ν we have

dimH ν = ess sup{dimH ρ : ρ ∈ MΦ(Λ)},

with the essential supremum taken with respect to τ .

Theorems 5 and 6 could alternatively be obtained in a straightforward
manner as consequences respectively of Theorems 1 and 3.

We finally discuss the existence of measures of maximal dimension.

Theorem 7. Let Φ be a C1+ε flow with a hyperbolic set Λ ⊂M on which Φ
is conformal and topologically mixing. Then there exists an ergodic measure

ν ∈ MΦ(Λ) such that

dimH ν = sup{dimH ρ : ρ ∈ MΦ(Λ)}.
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Proof. The proof can be obtained with slight changes from the proof of
Theorem 4, using the information given by Theorems 1 and 3. �

Appendix A. Thermodynamic formalism

We first recall some basic notions from the thermodynamic formalism for
suspension flows. Let σ be a homeomorphism on a compact metric space X
and τ : X → (0,∞) a continuous function. Let Φ = {ϕt}t∈R be a continuous
suspension flow over σ with height function τ on Y . Let u : Y → R be a
continuous function and given x ∈ Y , t > 0, and ε > 0 write

u(x, t, ε) = sup

{
∫ t

0
u(ϕsy) ds : y ∈ B(x, t, ε)

}

,

with B(x, t, ε) as in (11). We define the topological pressure of u (with
respect to Φ) by

PΦ(u) = lim
ε→0

lim sup
t→∞

1

t
log inf

Γ

∑

x∈Γ

exp(u(x, t, ε)),

where the infimum is taken over all finite or countable sets Γ = {xi} ⊂ Y
such that

⋃

iB(xi, t, ε) = Y . The topological pressure of u satisfies the
following variational principle.

Proposition 8. For every continuous suspension flow Φ on the compact

metric space Y and every continuous function u : Y → R we have

PΦ(u) = sup

{

hν(Φ) +

∫

Y

u dν : ν ∈ MΦ(Y )

}

. (25)

We say that ν ∈ MΦ(Y ) is an equilibrium measure for u (with respect to
the flow Φ) if the supremum in (25) is attained by this measure, that is,

PΦ(u) = hν(Φ) +

∫

Y

u dν.

When the map ν 7→ hν(Φ) is upper semi-continuous each continuous function
has an equilibrium measure (which need not be unique). In particular, if
Φ is expansive then the Kolmogorov–Sinai entropy depends upper semi-
continuously on the measure. Recall that Φ is expansive if there exists ε > 0
such that for any continuous function s : R → R with s(0) = 0 and points
x, y ∈M with

d(ϕtx, ϕs(t)x) < ε and d(ϕtx, ϕs(t)y) < ε for every t ∈ R

we have x = y. We refer to [10, 14] for more details.
Let Cα(Y ) denote the space of Hölder continuous functions on Y with

Hölder exponent α. The following proposition gathers results from [2, 3, 7].

Proposition 9. Let Φ be a suspension flow on Y over a topologically mixing

two-sided topological Markov chain with Hölder continuous height function.

If a ∈ Cα(Y ) then:

1. ∆a ∈ Cα(X) and Pσ(∆a − PΦ(a)τ) = 0;
2. there is a unique equilibrium measure νa of a with respect to Φ;

3. the measure νa is ergodic and νa = T (µ∆a−PΦ(a)τ ), where µ∆a−PΦ(a)τ

is the unique equilibrium measure of ∆a − PΦ(a)τ with respect to σ.
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We say that a function a : Y → R is Φ-cohomologous to a function b : Y →
R if there exists a bounded measurable function q : Y → R such that

a(x) − b(x) = lim
t→0

q(ϕtx) − q(x)

t

for every x ∈ Y . Recall that two functions A : X → R and B : X → R are
said to be σ-cohomologous if there exists a bounded measurable function
q : X → R such that A(x) −B(x) = q(σ(x)) − q(x) for every x ∈ X.

Proposition 10 (see [2]). Let Φ be a suspension flow on Y over a topo-

logically mixing two-sided topological Markov chain with Hölder continuous

height function. Then for all a, b ∈ Cα(Y ) we have νa = νb if and only

if a − b is Φ-cohomologous to a constant. Moreover, if a, b ∈ Cα(Y ) and

q : Y → R is bounded and measurable, then the following conditions are

equivalent:

1. a is Φ-cohomologous to b with

a(y) − b(y) = lim
t→0

q(ϕty) − q(y)

t
for every y ∈ Y ;

2. ∆a is σ-cohomologous to ∆b on X with

∆a(x) − ∆b(x) = q(σ(x)) − q(x) for every x ∈ X.

This proposition allows us to characterize the cohomological properties of
the flow Φ in terms of the cohomological properties of the map σ on the base.

Combining properties of the map u 7→ PΦ(u) with the Implicit Function
Theorem we obtain the following.

Theorem 11. Let Φ be a suspension flow on Y over a topologically mixing

two-sided topological Markov chain with Hölder continuous height function.

Then the following properties hold:

1. the map a 7→ PΦ(a) is real-analytic on Cα(Y );
2. for each a, b ∈ Cα(Y ),

d

dt
PΦ(a+ tb)

∣

∣

∣

t=0
=

∫

Y

b dνa;

3. for each a, e1, e2 ∈ Cα(Y ) we have

D2
aPΦ(e1, e2) =

Q∆a−PΦ(a)τ (∆e1
− τ

∫

Y
e1 dνa,∆e2

− τ
∫

Y
e2 dνa)

∫

X
τ dµ∆a−PΦ(a)τ

,

where

Qh(f1, f2) =
∞
∑

k=−∞

(
∫

X

f1(f2 ◦ T
k) dµh −

∫

X

f1 dµh

∫

X

f2 dµh

)

(26)

for all h, f1, f2 ∈ Cα(X);
4. for each a, b ∈ Cα(Y ) and t ∈ R we have

d2

dt2
PΦ(a+ tb) ≥ 0,

with equality if and only if b is Φ-cohomologous to a constant.
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Proof. Define g : Cα(Y )×R → Cα(X) by g(a, t) = ∆a−tτ . Since τ is Hölder
continuous, Proposition 9 implies that g is well-defined. Furthermore, we
define G : Cα(X) × R → R and f : Cα(Y ) → Cα(Y ) × R by

G = Pσ ◦ g and f(a) = (a, PΦ(a)).

It is well-known that G is analytic (see [14]). It follows from Ruelle’s for-
mulas for the derivatives of the pressure (see again [14]) that

DϕPσψ =

∫

X

ψ dµϕ and D2
hPσ(f1, f2) = Qh(f1, f2),

with Qh as in (26). We have

∂tG = Dg(a,t)Pσ∂tg = Dg(a,t)Pσ(−τ) = −

∫

X

τ dµg(a,t) < 0.

By Proposition 9 we have G(a, PΦ(a)) = 0 for all a ∈ Cα(Y ) and hence the
Implicit Function Theorem ensures that a 7→ PΦ(a) is real-analytic.

To prove the second statement we note that

∂aGb = Dg(a,t)Pσ ◦ ∂agb = Dg(a,t)Pσ(∆b) =

∫

X

∆b dµg(a,t).

Here we use the fact that a 7→ ∆a is linear and continuous. Since

DaPΦ = −[D2,(a,PΦ(a))G]−1D1,(a,PΦ(a))G,

we may conclude that

DaPΦ(b) = −

∫

X
∆b dµ(g◦f)(a)

−
∫

X
τ dµ(g◦f)(a)

=

∫

Y

b dνa.

In order to prove the third statement we notice that G(f(a)) = 0 for all
a ∈ Cα(Y ). Therefore

0 = D2
a(G◦f)(e1, e2) = Df(a)G(D2

af(e1, e2))+D
2
f(a)G(Dafe1, Dafe2). (27)

Using the identities Dafe = (e,DaPΦe) and D2
af = (0, D2

aPΦ), we conclude
that

Df(a)G(D2
af(e1, e2)) = D2,f(a)G(D2

aPΦ(e1, e2))

= −D2
aPΦ(e1, e2)

∫

X

τ dµ(g◦f)(a)

(28)

Set now u = f(a) and vi = Dafei for i = 1, 2. To calculate D2
uG(v1, v2) we

use the identities G(a, t) = Pσ(∆a − tτ) = Pσ(g(a, t)). We obtain

D2
uG(v1, v2) = Dg(u)Pσ(D2

ug(v1, v2)) +D2
g(u)Pσ(Dugv1, Dugv2).

Since g is linear and continuous we obtain Dug = g and D2
ug = 0, which

implies

D2
uG(v1, v2) = D2

g(u)Pσ(g(v1), g(v2)) = Qg(u)(g(v1), g(v2)).

Therefore

D2
f(a)G(Dafe1, Dafe2) = Q(g◦f)(a)(g(e1, DaPΦe1), g(e2, DaPΦe2)).
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It follows from (27) and (28) that

D2
aPΦ(e1, e2) = −

Df(a)G(D2
af(e1, e2))

∫

X
τ dµ(g◦f)(a)

=
D2

f(a)G(Dafe1, Dafe2)
∫

X
τ dµ(g◦f)(a)

=
Q(g◦f)(a)(∆e1

− τ
∫

Y
e1 dνa,∆e2

− τ
∫

Y
e2 dνa)

∫

X
τ dµ(g◦f)(a)

,

where (g ◦ f)(a) = ∆a − PΦ(a)τ .
The fourth statement follows from the fact that Qh(f, f) ≥ 0 for all h,

f ∈ Cα(X), where equality holds if and only if f is σ-cohomologous to a
constant. Observe first that

d2

dt2
PΦ(a+ tb) = D2

a+tbPΦ(b, b)

=
Q(g◦f)(a+tb)(∆b − τ

∫

Y
b dνa+tb,∆b − τ

∫

Y
b dνa+tb)

∫

X
τ dµ(g◦f)(a+tb)

≥ 0

for each a, b ∈ Cα(Y ) and t ∈ R. The equality holds if and only if
∆b − τ

∫

Y
b dνa+tb is σ-cohomologous to a constant. We will show that this

constant is zero. Therefore ∆b is σ-cohomologous to τ
∫

Y
b dνa+tb, which is

equivalent (by Proposition 10) to b being Φ-cohomologous to the constant
∫

Y
b dνa+tb.

If ∆b − τ
∫

Y
b dνa+tb is σ-cohomologous to a constant c, then for every

µ ∈ Mσ(X) we have
∫

X
(∆b − τ

∫

Y
b dνa+tb) dµ = c. By Proposition 9 and

Abramov’s formula we obtain
∫

Y

b dνa+tb =

∫

X
∆b dµ(g◦f)(a+tb)

∫

X
τ dµ(g◦f)(a+tb)

.

Since µ(g◦f)(a+tb) ∈ Mσ(X) we conclude that

c =

∫

X

(

∆b − τ

∫

Y

b dνa+tb

)

dµ(g◦f)(a+tb)

=

∫

X

(

∆b − τ

∫

X
∆b dµ(g◦f)(a+tb)

∫

X
τ dµ(g◦f)(a+tb)

)

dµ(g◦f)(a+tb) = 0.

This completes the proof. �
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