VARIATIONAL PRINCIPLE FOR THE ENTROPY

LUCIAN RADU

1. Metric entropy

Let (X, \mathcal{B}, μ) a measure space and I a countable family of indices.

Definition 1. We say that $\xi = \{C_i : i \in I\} \subset \mathcal{B}$ is a measurable partition if:

- μ(U_{i∈I} C_i) = μ(X) and μ(C_i) > 0 for every i ∈ I;
 μ(C_i ∩ C_j) = 0 for every i, j ∈ I with i ≠ j.

We define also $\xi \lor \eta$ by:

$$\xi \lor \eta = \{C \cap D : C \in \xi, D \in \eta, \mu(C \cap D) > 0\}.$$

Definition 2. The entropy of a measurable partition is given by

$$H_{\mu}(\xi) = -\sum_{C \in \xi} \mu(C) \log \mu(C)$$

Let $T: X \to X$ be measurable, μ -T invariant and ξ a measurable partition.

Definition 3. The entropy of T with respect to μ and the partition ξ is given by:

$$h_{\mu}(T,\xi) = \inf_{n} \frac{1}{n} H_{\mu} \Big(\bigvee_{k=0}^{n-1} T^{-k} \xi \Big) = \lim_{n \to \infty} \frac{1}{n} H_{\mu} \Big(\bigvee_{k=0}^{n-1} T^{-k} \xi \Big)$$
(1)

and the entropy of T with respect to μ by:

 $h_{\mu}(T) = \sup\{h_{\mu}(T,\xi):\xi \text{ a measurable partition with } H_{\mu}(\xi) < \infty\}$

From (1) we observe that

$$h_{\mu}(T,\xi) \le H_{\mu}(\xi).$$

We can see that in order to calculate the entropy of T with respect to μ we have to consider $h_{\mu}(T,\xi)$ for every measurable partition ξ with $H_{\mu}(\xi) < \infty$. Sometimes it is possible to compute the entropy of T with respect to μ using only one special partition described below.

Definition 4. If T is invertible (mod 0) let $\bigvee_{k=-\infty}^{\infty} T^{-k}\xi$ be the smallest σ -algebra which contains $\bigvee_{k=-n}^{n} T^{-k}\xi$ for every $n \in \mathbb{N}$, then we say that ξ is a (two-sided) generator if

$$\bigvee_{k=-\infty}^{\infty} T^{-k}\xi = \mathcal{B} \pmod{\theta}.$$

In the same way,

Definition 5. If T is non-invertible (mod 0) let $\bigvee_{k=0}^{\infty} T^{-k}\xi$ be the smallest σ -algebra which contains $\bigvee_{k=0}^{n-1} T^{-k}\xi$ for every $n \in \mathbb{N}$, then we say that ξ is a (one-sided) generator if

$$\bigvee_{k=0}^{\infty} T^{-k} \xi = \mathcal{B} \pmod{\theta}.$$

Now we have

Proposition 6. If ξ is a generator with $H_{\mu}(\xi) < \infty$ then

$$h_{\mu}(T) = h_{\mu}(T,\xi)$$

Proposition 7. The following proprieties hold:

- 1. $h_{\mu}(id) = 0;$
- 2. $h_{\mu}(T^k) = kh_{\mu}(T)$ for every $k \in \mathbb{N}$;
- 3. If an invertible measure preserving transformation possesses a onesided generator then $h_{\mu}(T) = 0$.

2. Examples of calculation of metric entropy

2.1. Markov measures. We will study the entropy of the two-sided shift, $\sigma : \{1, ..., k\}^{\mathbb{Z}} \to \{1, ..., k\}^{\mathbb{Z}}$, with respect to a Markov measure i.e. a stochastic pair (P, p) where P is a stochastic matrix, p is a probability vector, $\sum_{i=1}^{k} p_i = 1$, associated to P and:

1. $\sum_{j=1}^{k} p_{ij} = 1$ for each i = 1, ..., k;

2.
$$\sum_{i=1}^{n} p_i p_{ij} = p_j$$
 for each $j = 1, ..., k$.

k

The measurable partition $\xi = \{C_1, ..., C_k\}$ is in fact a two-sided generator because:

$$\bigvee_{k=-n}^{\infty} \sigma^{-k} \xi = \{C_{i_{-n}...i_n} : i_{-n}, ..., i_n \in \{1, ..., k\}\}$$

and the cylinders generate the Borel σ -algebra. Then

$$H_{\mu}\left(\bigvee_{k=0}^{n-1} \sigma^{-k}\xi\right) = -\sum_{i_{0}...i_{n-1}} \mu(C_{i_{0}...i_{n-1}}) \log \mu(C_{i_{0}...i_{n-1}})$$

$$= -\sum_{i_{0}...i_{n-1}} p_{i_{0}} p_{i_{0}i_{1}}...p_{i_{n-2}i_{n-1}} \log(p_{i_{0}}p_{i_{0}i_{1}}...p_{i_{n-2}i_{n-1}})$$

$$= -\sum_{i_{0}...i_{n-1}} p_{i_{0}} p_{i_{0}i_{1}}...p_{i_{n-2}i_{n-1}} \log p_{i_{0}}$$

$$-\sum_{i_{0}...i_{n-1}} p_{i_{0}} p_{i_{0}i_{1}}...p_{i_{n-2}i_{n-1}} \sum_{j=0}^{n-2} \log p_{i_{j}i_{j+1}}$$

$$= -\sum_{i=1}^{k} p_{i} \log p_{i} - (n-1) \sum_{i,i=1}^{k} p_{i} p_{ij} \log p_{ij}$$

and so

$$h_{\mu}(\sigma) = h_{\mu}(\sigma,\xi) = \lim_{n \to \infty} \frac{1}{n} H_{\mu} \Big(\bigvee_{k=0}^{n-1} \sigma^{-k} \xi\Big) = -\sum_{i,j=1}^{k} p_{i} p_{ij} \log p_{ij}$$

2.2. Rotations. We will se that any rotation $R_w : \mathbb{T} \to \mathbb{T}$, where $w = e^{2\pi i \tau}$ and $R_w(z) = wz$, has zero entropy with respect to the Lebesgue measure. There are two cases:

- $\tau \in \mathbb{Q}$ or $\{w^n : n \in \mathbb{Z}\}$ is not dense in \mathbb{T} i.e. w is not a root of unity. Them exists $m \in \mathbb{N}$ such that $R_w^m(z) = z$ for every $z \in \mathbb{T}$ so $h_\lambda(R_w) = 0$;
- $\tau \notin \mathbb{Q}$ or $\{w^n : n \in \mathbb{Z}\}$ is dense in \mathbb{T} . let $\xi = \{A_1, A_2\}$ the partition of the circle into the upper semi-circle and the lower semi-circle. For every n > 0, $R_w^{-n}\xi$ consists of semi-circles beginning at w^{-n} and $-w^{-n}$. Since $\{w^{-n} : n \in \mathbb{N}\}$ is dense, any semi-circle belong to $\bigvee_{n=0}^{\infty} R_w^{-n}\xi$. Hence any arc belong to $\bigvee_{n=0}^{\infty} R_w^{-n}\xi$ and so $h_{\lambda}(R_w) = 0$.

3. The entropy map

Let (X, d) be a compact metric space $T : X \to X$ continuous. Let M(X,T) be the space of all probability measures on $(X, \mathcal{B}(X))$ that are T-invariant. We know that M(X,T) is a non-empty convex set which is compact in the weak*-topology, by the Krylov-Bogolubov theorem.

Definition 8. The entropy map is $\mu \mapsto h_{\mu}(T)$ from M(X,T) to $[0,\infty]$.

Proposition 9. The entropy map is affine, i.e. if $\mu, m \in M(X,T)$ and $t \in [0,1]$ then

$$h_{t\mu+(1-t)m}(T) = th_{\mu}(T) + (1-t)h_m(T).$$

The entropy map is not in general continuous.

We will give a counterexample in the case of the two-sided shift on $\{0, 1\}^{\mathbb{Z}}$. Let us consider the measures μ_p , for $p \in \mathbb{N}$, concentrated on the p periodic points, giving to each such a point measure $1/2^p$. We have that $\mu_p \in M(X, \sigma)$ and $h_{\mu_p}(\sigma) = 0$, for every p, because the measure is concentrated on a finite set of points. And let μ be the (1/2, 1/2)-Bernoulli measure, which we know, has $h_{\mu}(\sigma) = \log 2$. Now the collection of functions that depends only on a finite number of coordinates form a dense subset F(X) of C(X) by the Stone-Weierstrass theorem. If $f \in F(X)$ then exists N such that $\int_X f d\mu_p = \int_X f d\mu$ if $p \geq N$. Therefor $\mu_p \to \mu$ and so the entropy map is not continuous.

Sometimes is not even upper semi-continuous, but for a special class of maps we will prove that the entropy map is upper semi-continuous.

Definition 10. $T: X \to X$ is called an **expansive homeomorphism** if $\exists \delta$ with the property that if $x \neq y$ then $\exists n \in \mathbb{Z}$ with $d(T^n x, T^n y) > \delta$.

Teorem 11. If T is an expansive homeomorphism then the entropy map is upper semi-continuous, i.e., if $\mu \in M(X,T)$ and $\varepsilon > 0$ then exists a neighborhood U of μ in M(X,T) such that $m \in U$ implies that

$$h_m(T) < h_\mu(T) + \varepsilon.$$

Proof. Let δ be an expansive constant for $T, \mu \in M(X, T)$ and $\varepsilon > 0$.

Let now $\xi = \{C_1, ..., C_k\}$ be a finite partition with diam $(C_j) < \delta$. Then $h_{\mu}(T) = h_{\mu}(T,\xi)$. Let N so that

$$\frac{1}{N}H_{\mu}\Big(\bigvee_{k=0}^{N-1}T^{-k}\xi\Big) < h_{\mu}(T) + \varepsilon$$

Fix $\varepsilon_1 > 0$ to be chosen later. As μ is regular we choose compact sets:

$$K_{i_0\dots i_{N-1}} \subset \bigcap_{k=0}^{N-1} T^{-k} C_{i_k}$$

with $\mu \Big(\bigcap_{k=0}^{N-1} T^{-k} C_{i_k} \setminus K_{i_0\dots i_{N-1}} \Big) < \varepsilon_1.$
Then
$$\bigcup_{k=0}^{N-1} \bigcup_{i_1\dots i_j} T^k K_{i_0,\dots i_{N-1}} \subset C_j$$

The sets $L_j := \bigcup_{k=0}^{N-1} \bigcup_{i_k=j} T^k K_{i_0,\dots,i_{N-1}}$ are compact and disjoint so there is a partition $\eta = \{D_1,\dots,D_k\}$ with diam $(D_j) < \delta$ and $L_j \subset \operatorname{int}(D_j)$. We have

$$K_{i_0\dots i_{N-1}} \subset \operatorname{int}\left(\bigcap_{k=0}^{N-1} T^{-k} D_{i_k}\right)$$

By Uryson's lemma we can choose $f_{i_0...i_{N-1}} \in C(X)$ such that:

- $0 \leq f_{i_0\dots i_{N-1}} \leq 1$ equals 1 on $K_{i_0\dots i_{N-1}}$

• vanishes on
$$X \setminus \operatorname{int}\left(\bigcap_{k=0}^{N-1} T^{-k} D_{i_k}\right)$$

Let now

$$U_{i_0...i_{N-1}} := \left\{ m \in M(X,T) : \left| \int f_{i_0...i_{N-1}} dm - \int f_{i_0...i_{N-1}} d\mu \right| < \varepsilon_1 \right\}$$

The set $U_{i_0...i_{N-1}}$ is open is M(X,T) and if $m \in U_{i_0...i_{N-1}}$ then

$$m\Big(\bigcap_{k=0}^{N-1} T^{-k} D_{i_k}\Big) \ge \int f_{i_0...i_{N-1}} dm > \int f_{i_0...i_{N-1}} d\mu - \varepsilon_1 \ge \mu(K_{i_0...i_{N-1}}) - \varepsilon_1$$

and

$$\mu\Big(\bigcap_{k=0}^{N-1} T^{-k} C_{i_k}\Big) - m\Big(\bigcap_{k=0}^{N-1} T^{-k} D_{i_k}\Big) < 2\varepsilon_1$$

Now if $U := \bigcap_{i_0 \dots i_{N-1}} U_{i_0 \dots i_{N-1}}$ and $m \in U$ then:

$$\left|\mu\left(\bigcap_{k=0}^{N-1}T^{-k}C_{i_k}\right) - m\left(\bigcap_{k=0}^{N-1}T^{-k}D_{i_k}\right)\right| < 2\varepsilon_1 k^N$$

because if $\sum_{i=1}^{m} a_i = 1 = \sum_{i=1}^{m} b_i$ and also exists c > 0 with $a_i - b_i < c$ foe every i then $|a_i - b_i| < cm$ $\forall i$, as $b_i - a_i = \sum_{j \neq i} (a_j - b_j) < cm$. So if $m \in U$ and ε_1 small enough the continuity of $x \log x$ gives:

A7 -1

$$\frac{1}{N}H_m\Big(\bigvee_{k=0}^{N-1}T^{-k}\eta\Big) < \frac{1}{N}H_\mu\Big(\bigvee_{k=0}^{N-1}T^{-k}\xi\Big) + \frac{\varepsilon}{2}$$

4

Hence, $m \in U$ and ε_1 small enough then:

$$h_m(T) = h_m(T,\eta) \le \frac{1}{N} H_m\left(\bigvee_{k=0}^{N-1} T^{-k}\eta\right)$$
$$< \frac{1}{N} H_\mu\left(\bigvee_{k=0}^{N-1} T^{-k}\xi\right) + \frac{\varepsilon}{2} < h_\mu(T) + \varepsilon.$$

4. Topological entropy

We can define topological entropy in the same way we defined the metric entropy, with open covers, α , taking the place of the measurable partitions and $H(\alpha) = \log N(\alpha)$, where $N(\alpha)$ is the minimal cardinality of a subcover of α . But in order to prove the variational principle we will use also Bowen's definition. Let (X, d) be a compact metric space, $T : X \to X$ a continuous map:

$$h_{top}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log N_d(T, \varepsilon, n)$$

Where $N_d(T, \varepsilon, n)$ is the maximum number of point in X with pairwise d_n^T -distances at least ε , with

$$d_n^T := \max_{0 \le i \le n-1} d(T^i x, T^i y).$$

We will call such a set of points (n, ε) -separated.

5. VARIATIONAL PRINCIPLE

In this section we prove the relationship between topological entropy and the metric entropy for a continuous map T of a compact metric space i.e. :

 $h_{top}(T) = \sup\{h_{\mu}(T) : \mu \in M(X,T)\}.$

• In 1968 L.W.Goodwyn proved the inequality:

$$\sup\{h_{\mu}(T): \mu \in M(X,T)\} \le h_{top}(T).$$

- In 1970 E.I. Dinaburg proved equality when X has finite covering dimension.
- In 1970 T.N.T.Goodman proved equality in the general case.

The elegant proof we will give is due to M.Misiurewicz.

Lemma 1. Let X be a compact metric space, μ a Borel probability measure on X.

- 1. For $x \in X$, $\delta > 0$ there exists $\delta' \in (0, \delta)$ such that $\mu(\partial B(x, \delta')) = 0$.
- 2. For $\delta > 0$ there exists a finite measurable partition $\xi = \{C_1, ..., C_k\}$ with $diam(C_i) < \delta$ for all i and $\mu(\partial \xi) = 0$.
- *Proof.* 1. $\bigcup_{\delta' \in (0,\delta)} \partial B(x,\delta')$ is an uncountable disjoint union with finite measure.

LUCIAN RADU

2. By 1) (and X compact) there is a finite open cover $\{B_1, ..., B_k\}$ by balls of radius less then $\delta/2$ with $\mu(\partial B_j) = 0$ for all j. Let $C_1 = \overline{B_1}$, $C_i = \overline{B_i} \setminus \bigcup_{j=1}^{i-1} \overline{B_j}$ for i > 1 and $\xi = \{C_1, ..., C_k\}$. Then ξ is as desired as $\partial \xi \subset \bigcup_{i=1}^k \partial B_i$.

Note that if $\mu(\partial \xi) = 0$ then $\mu\left(\partial \bigvee_{k=0}^{n-1} T^{-k}\xi\right) = 0.$ Now we will describe a method of constructing measures of large entropy.

Lemma 2. Let (X,d) be a compact metric space, $T: X \to X$ a homeomorphism, $E_n \subset X$ an (n,ε) -separated set, $\nu_n := (1/card(E_n)) \sum_{x \in E_n} \delta_x$ the uniform δ -measure on E_n , and $\mu_n := (1/n) \sum_{i=0}^{n-1} T_*^i \nu_n$. Then there is an accumulation point μ of $\{\mu_n\}_{n \in \mathbb{N}}$ (in the weak* topology) that is T-invariant and satisfies

$$\limsup_{n \to \infty} \frac{1}{n} \log card(E_n) \le h_{\mu}(T).$$

Proof. Since M(X) is compact we can choose a subsequence $\{n_k\}$ such that:

- lim_{k→∞} 1/n_k log card(E_{nk}) = lim sup_{n→∞} 1/n log card(E_n)
 μ_{nk} converges in M(X) to some μ ∈ M(X)

In fact $\mu \in M(X,T)$ because $T_*\mu_n - \mu_n = (T^n_*\nu_n - \nu_n)/n$ $(T_* \text{ cont. as in}$ the proof of K-B theorem) and ν_n are probability measures.

We choose now a partition ξ with diameter less then ε and $\mu(\partial \xi) = 0$ as in Lemma 1. Then

$$H_{\nu_n}\Big(\bigvee_{k=0}^{n-1} T^{-k}\xi\Big) = \log card(E_n)$$

Since each $C \in \bigvee_{k=0}^{n-1} T^{-k} \xi$ contains at most one $x \in E_n$ so there are $card(E_n)$ elements of ν_n -measure $1/card(E_n)$ in $\bigvee_{k=0}^{n-1} T^{-k}\xi$.

Now suppose 0 < q < n and for every $0 \le k < q$ define a(k) := [(n-k)/q].

• If we fix $0 \le k < q$ then

$$\{0,1,...,n-1\} = \{k+rq+i: 0 \le r \le a(k), 0 < i \le q\} \cup S$$

where $S = \{0, 1, ..., k, k + a(k)q + 1, ..., n - 1\}$ and

$$card(S) \leq 2q$$

since $k + a(k)q \ge k + \left[\frac{n-k}{q} - 1\right]q \ge n - q$.

Then we have

$$\bigvee_{k=0}^{n-1} T^{-k} \xi = \Big(\bigvee_{r=0}^{a(k)-1} T^{-(rq+k)} \Big(\bigvee_{i=0}^{q-1} T^{-i} \xi\Big)\Big) \vee \Big(\bigvee_{j \in S} T^{-j} \xi\Big)$$

6

and

$$\begin{split} \log card(E_n) &= \ H_{\nu_n} \Big(\bigvee_{h=0}^{n-1} T^{-h} \xi \Big) \\ &\leq \sum_{r=0}^{a(k)-1} H_{\nu_n} \Big(T^{-(rq+k)} \bigvee_{i=0}^{q-1} T^{-i} \xi \Big) + \sum_{j \in S} H_{\nu_n} \Big(T^{-j} \xi \Big) \\ &\leq \sum_{r=0}^{a(k)-1} H_{T_*^{rq+k}\nu_n} \Big(\bigvee_{i=0}^{q-1} T^{-i} \xi \Big) + 2q \log card(\xi). \end{split}$$

Then

$$q \log card(E_n) = \sum_{k=0}^{q-1} H_{\nu_n} \left(\bigvee_{h=0}^{n-1} T^{-h} \xi \right)$$

$$\leq \sum_{k=0}^{q-1} \left(\sum_{r=0}^{a(k)-1} H_{T_*^{rq+k}\nu_n} \left(\bigvee_{i=0}^{q-1} T^{-i} \xi \right) + 2q \log card(\xi) \right)$$

$$\leq n H_{\mu_n} \left(\bigvee_{i=0}^{q-1} T^{-i} \xi \right) + 2q^2 \log card(\xi)$$

Thus

$$\limsup_{n \to \infty} \frac{1}{n} \log card(E_n) \le \lim_{k \to \infty} \frac{H_{\mu_{n_k}}\left(\bigvee_{i=0}^{q-1} T^{-i}\xi\right)}{q} = \frac{H_{\mu}\left(\bigvee_{i=0}^{q-1} T^{-i}\xi\right)}{q}$$

and that implies

$$\limsup_{n \to \infty} \frac{1}{n} \log card(E_n) \le h_{\mu}(T,\xi) \le h_{\mu}(T).$$

Teorem 12. Let (X,d) be a compact metric space, $T: X \to X$ a homeomorphism, then

$$h_{top}(T) = \sup\{h_{\mu}(T) : \mu \in M(X,T)\}.$$

Proof. (1) Let $\mu \in M(X,T)$ we will show that $h_{\mu}(T) \leq h_{top}(T)$. Let $\xi = \{C_1, ..., C_k\}$ be a finite measurable partition and $0 < \varepsilon < \frac{1}{k \log k}$. Since μ is regular there exist compact sets $B_i \subset C_i$ with $\mu(C_i \setminus B_i) < \varepsilon$. Let $\eta = \{B_0, B_1, ..., B_k\}$ the partition with $B_0 = X \setminus \bigcup_{i=1}^k B_i$.

We have $\mu(B_0) < k\varepsilon$ and

$$H_{\mu}(\xi|\eta) < -\sum_{i=0}^{k} \sum_{j=1}^{k} \mu(B_i)\phi\left(\frac{\mu(B_i \cap A_j)}{\mu(B_i)}\right)$$
$$= -\mu(B_0)\sum_{j=1}^{k}\phi\left(\frac{\mu(B_0 \cap A_j)}{\mu(B_0)}\right)$$
$$\leq \mu(B_0)\log k < k\varepsilon \log k < 1$$

 So

$$h_{\mu}(T,\xi) \le h_{\mu}(T,\eta) + H_{\mu}(\xi|\eta) \le h_{\mu}(T,\eta) + 1$$

LUCIAN RADU

The reason we can bring in the topological entropy is that $\alpha := \{B_0 \cup B_1, ..., B_0 \cup B_k\}$ is an open cover of X. We have

$$H_{\mu}\left(\bigvee_{k=0}^{n-1}T^{-k}\eta\right) \leq \log \operatorname{card}\left(\bigvee_{k=0}^{n-1}T^{-k}\eta\right) \leq \log\left(2^{n}\operatorname{card}\left(\bigvee_{k=0}^{n-1}T^{-k}\alpha\right)\right)$$

If δ_0 is the Lebesgue number of α i.e., the supremum of $\delta > 0$ such that every δ -ball is contained in an element of α , then δ_0 is the Lebesgue number of $\bigvee_{k=0}^{n-1} T^{-k} \alpha$ with respect to the d_n^T .

Since $\bigvee_{k=0}^{n-1} T^{-k} \alpha$ is a minimal cover every $C \in \bigvee_{k=0}^{n-1} T^{-k} \alpha$ contain a point x_C not in any other element of $\bigvee_{k=0}^{n-1} T^{-k} \alpha$.

The x_C set form a (δ_0, n) -separated set.

Then

$$h_{\mu}(T,\eta) \le h_{top}(T) + \log 2$$

and

$$h_{\mu}(T,\xi) \le h_{\mu}(T,\eta) + 1 \le h_{top}(T) + 1 + \log 2,$$

as this is also true for any iterate of T we have

$$h_{\mu}(T) \le \frac{h_{\mu}(T^n)}{n} \le \frac{h_{top}(T^n) + 1 + \log 2}{n} = h_{top}(T) + \frac{1 + \log 2}{n}$$

for all $n \in \mathbb{N}$ and hence

$$h_{\mu}(T) \le h_{top}(T)$$

(2) On the other hand applying Lemma 2 to maximal (n, ε) -separated sets in X we have

$$\limsup_{n \to \infty} \frac{1}{n} \log N_d(T, \varepsilon, n) \le h_\mu(T)$$
(2)

for a corresponding accumulation point $\mu \in M(X,T)$. Thus

$$\limsup_{n \to \infty} \frac{1}{n} \log N_d(T, \varepsilon, n) \le \sup_{\mu} h_{\mu}(T).$$

and letting $\varepsilon \to 0$ we get

$$h_{top}(T) \le \sup\{h_{\mu}(T) : \mu \in M(X,T)\}.$$

A measure $\mu \in M(X,T)$ is called a **measure of maximal entropy** for T if $h_{\mu}(T) = h_{top}(T)$.

We observe that for expansive homeomorphisms the existence of such a measure is assured by the upper semi-continuity of the entropy map and the compactness of M(X,T). But the same is true because in (2) the left hand side is equal to the topological entropy if ε is less then half its expansive constant, and so by Lemma 2 we can construct a measure of maximal entropy for such an ε .

DEPARTAMENTO DE MATEMÁTICA, INSTITUTO SUPERIOR TÉCNICO, 1049-001 LISBOA, PORTUGAL

E-mail address: lradu@math.ist.utl.pt