VARIATIONAL PRINCIPLE FOR THE ENTROPY

LUCIAN RADU

1. METRIC ENTROPY
Let (X, B, ;1) a measure space and I a countable family of indices.

Definition 1. We say that { = {C; : i € I} C B is a measurable partition
if:
. u(Uiel Ci> = w(X) and p(C;) > 0 for every i € I;
o 1(CiNCj) =0 for everyi,j € I withi# j.
We define also £ V 7 by:
Evn={CnD:Ce&DenulCnD)>0}.
Definition 2. The entropy of a measurable partition is given by
= - pu(C)logpu(C
ceg

Let T : X — X be measurable, u-7" invariant and £ a measurable parti-
tion.

Definition 3. The entropy of T with respect to ;i and the partition
& is given by:

h, (T, €) :i%f%H <\/ T- ’fg) — lim 1H (\/ T- ’fg) (1)

n—oo n

and the entropy of T with respect to u by:
hu(T) = sup{h,(T,§) : £ a measurable partition with H,(§) < oo}
From (1) we observe that

hu(T,€) < Hp(6)-

We can see that in order to calculate the entropy of T' with respect to u we
have to consider h, (7, §) for every measurable partition £ with H,(§) < oo.
Sometimes it is possible to compute the entropy of T with respect to u using
only one special partition described below.

Definition 4. If T is invertible (mod 0) let \/7—

=—00

T~k¢ be the smallest
o-algebra which contains \/}__, T—k¢ for every n € N, then we say that &
is a (two-sided) generator if

{7 T%¢ =B (mod0).

k=—o00

In the same way,
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Definition 5. If T' is non-invertible (mod 0) let \/3. T "¢ be the smallest

o-algebra which contains \/Z;é T—F¢ for every n € N, then we say that € is
a (one-sided) generator if

\/ T*¢ =B (mod0).
k=0

Now we have

Proposition 6. If £ is a generator with H,(§) < oo then
hu(T) = hu(Taf)
Proposition 7. The following proprieties hold:
1. h,(id) = 0;
2. hy(T*) = kh,(T) for every k € N;
3. If an invertible measure preserving transformation possesses a one-
sided generator then h,(T) = 0.

2. EXAMPLES OF CALCULATION OF METRIC ENTROPY

2.1. Markov measures. We will study the entropy of the two-sided shift,
o:{1,....k}* — {1,...,k}?*, with respect to a Markov measure i.e. a sto-
chastic pair (P,p) where P is a stochastic matrix, p is a probability vector,
Zlepi = 1, associated to P and:

1. Z?lezj =1foreachi=1,... k;

2. Z?:lpipij =DPj for each ] = 1, ceey k.
The measurable partition & = {C1,...,Cy} is in fact a two-sided generator
because:

n
\ o ={Ci_, i iionyin € {1, k}}
k=—n
and the cylinders generate the Borel o-algebra. Then
n—1
HM< \ af’%‘) == Y wCiyip_)log 1(Ciy i)
k=0 10...tn—1
= Z PioPigiy ++Din_2in 1 108(PioPigiy -+-Pin_2in 1)
i()---in—l
= - Z PioPigiy-Pip—_2in—1 log Dig
01
n—2
- Z piopioil --~pin,2in,1 E 10gpijij+1
00 in—1 J=0
k k
== pilogp; — (n—1) > pipijlogpi
i=1 i,j=1
and so
n—1 k

hu(o) = hu(o,§) = lim lHu( \/ U_kﬁ) =— Z Pipij log pij

n—oo n s
k=0 i,7=1
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2.2. Rotations. We will se that any rotation R,, : T — T, where w = 27"
and R, (z) = wz, has zero entropy with respect to the Lebesgue measure.
There are two cases:

e7 € Qor {w":n € Z} is not dense in T i.e. w is not a root of
unity. Them exists m € N such that R]'(z) = z for every z € T so
ha(Ruw) = 0;

e 7 ZQor {w":n € Z}isdensein T. let £ = {A;, Ao} the partition
of the circle into the upper semi-circle and the lower semi-circle. For
every n > 0, R "¢ consists of semi-circles beginning at w™" and
—w~ ™. Since {w™™ : n € N} is dense, any semi-circle belong to
Vo2 o Ryp"€. Hence any arc belong to \/;~ , R;;"¢ and so hy(R.) = 0.

3. THE ENTROPY MAP

Let (X,d) be a compact metric space T' : X — X continuous. Let
M(X,T) be the space of all probability measures on (X,B(X)) that are
T-invariant. We know that M (X,T) is a non-empty convex set which is
compact in the weak*-topology, by the Krylov-Bogolubov theorem.

Definition 8. The entropy map is j1 — h,(T) from M(X,T) to [0, 00].

Proposition 9. The entropy map is affine, i.e. if uym € M(X,T) and
t €[0,1] then

Pyt (1-tym (T) = thy(T') + (1 = ) hn (T').

The entropy map is not in general continuous.

We will give a counterexample in the case of the two-sided shift on {0, 1}%.
Let us consider the measures p,, for p € N, concentrated on the p pe-
riodic points, giving to each such a point measure 1/2P. We have that
pp € M(X,0) and hy,(0) = 0, for every p, because the measure is con-
centrated on a finite set of points. And let u be the (1/2,1/2)-Bernoulli
measure, which we know, has h,(0) =log2. Now the collection of functions
that depends only on a finite number of coordinates form a dense subset
F(X) of C(X) by the Stone-Weierstrass theorem. If f € F(X) then exists
N such that fX fdp, = fX fdp if p > N. Therefor p, — p and so the
entropy map is not continuous.

Sometimes is not even upper semi-continuous, but for a special class of
maps we will prove that the entropy map is upper semi-continuous.

Definition 10. T : X — X is called an expansive homeomorphism if
36 with the property that if x # y then In € Z with d(T"x, T"y) > 6.

Teorem 11. If T is an expansive homeomorphism then the entropy map
is upper semi-continuous, i.e., if u € M(X,T) and € > 0 then exists a
neighborhood U of p in M(X,T) such that m € U implies that

hn(T) < hy(T) + €.

Proof. Let § be an expansive constant for T,y € M(X,T) and € > 0.
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Let now ¢ = {C1,...,Ci} be a finite partition with diam(C;) < §. Then
hu(T) = h,(T,&). Let N so that

1 N-1
NHM< \/ T—kg) < hu(T) +e
k=
Fix &1 > 0 to be chosen later. As yu is regular we choose compact sets:
N-1
KiO---iN—l C ﬂ Tﬁkcik
k=0

with (o T75Ciy \ Kiguaix 1 ) < 21

Then
N—1
U U TkKio,...iN,l C Cj
k=0 ix=j
The sets L; := g:_ol Uik:j TkKiO,._,iNfl are compact and disjoint so there

is a partition n = {D1,..., Dy} with diam(D;) < 6 and L; C int(D;). We

have
N-1

Kig..in, Cint( () T7D;,)
k=0
By Uryson’s lemma we can choose f;, iy_, € C(X) such that:

e 0< in---iNfl <1
e cquals 1 on Kj, iy,

e vanishes on X \ int ( ﬂ,ivzj)l T_kDik>
Let now

Uig.in_1 = {m € M(X,T): ‘/fz‘o...m_ldm— /fio...iN_ldH‘ < 61}
The set Us,...in_, is open is M(X,T) and if m € Uy,._;,_, then

N—1
m( ﬂ T_kDik) > /fio...iN_ldm > /fig...iN_ldM_gl > w(Kiy.in_y) —€1
k=0

and
N—1 N-1
p( N 17he,) =m( () T7"Dy,) < 221
k=0 k=0
Now if U := ﬂio_._m_l Uig...iy_, and m € U then:

< 261]{7N

N-1 N-1
Wit n( flrin,)
k=0 k=0
because if Y ;" a; =1 =", b; and also exists ¢ > 0 with a; — b; < ¢ foe

every i then |a; — bj| <em Vi, as b —a; =3, (aj — bj) <cm.
So if m € U and €1 small enough the continuity of xlogx gives:

1 N—-1 1 N—-1 c
—k —k
NHm<k\/OT n) < NH“<’>/()T &)+
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Hence, m € U and ¢; small enough then:

N-1

k=0
N-1

1
< NH“< k\:/o T‘k§> - % < hu(T) +¢.

4. TOPOLOGICAL ENTROPY

We can define topological entropy in the same way we defined the metric
entropy, with open covers, «, taking the place of the measurable partitions
and H(a) = log N(«), where N(«) is the minimal cardinality of a subcover
of . But in order to prove the variational principle we will use also Bowen’s
definition. Let (X, d) be a compact metric space, T : X — X a continuous
map:

1
hiop(T) = iim lim sup — log Ny(T', e,n)

Where Ny(T,e,n) is the maximum number of point in X with pairwise
dX-distances at least €, with
dg = maxogign_ld(Tix, Tiy).

We will call such a set of points (n,c)-separated.

5. VARIATIONAL PRINCIPLE

In this section we prove the relationship between topological entropy and
the metric entropy for a continuous map 7" of a compact metric space i.e. :

hiop(T) = sup{h,(T) : p € M(X,T)}.
e In 1968 L.W.Goodwyn proved the inequality:
sup{hy(T) : o € M(X,T)} < heop(T).

e In 1970 E.I.Dinaburg proved equality when X has finite covering di-
mension.
e In 1970 T.N.T.Goodman proved equality in the general case.

The elegant proof we will give is due to M.Misiurewicz .
Lemma 1. Let X be a compact metric space, i a Borel probability measure
on X.

1. Forz € X, 6 > 0 there exists &' € (0,0) such that p(0B(z,d")) = 0.
2. For § > 0 there exists a finite measurable partition & = {C1,...,Cy}
with diam(C;) < 6 for all i and p(9§) = 0.

Proof. L. Uye(o,5) 0B(,d") is an uncountable disjoint union with finite
measure.
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2. By 1) (and X compact) there is a finite open cover {By, ..., Br} by
balls of radius less then §/2 with u(0B;) = 0 for all j. Let C; = By,
C; = E\U;;llﬁj fori>1and & = {C1,...,Ci}. Then ¢ is as desired
as 9¢ < U, 9B;.

U

Note that if (9¢) = 0 then M(@ Vo T"%) =0.
Now we will describe a method of constructing measures of large entropy.

Lemma 2. Let (X,d) be a compact metric space, T : X — X a homeomor-
phism, E, C X an (n,e)-separated set, v, := (1/card(Epn)) > ,cp, 0z the
uniform 6-measure on E,, and p, = (1/n) Z?:_ol Tiv,. Then there is an
accumulation point p of {iin tnen (in the weak™ topology) that is T-invariant
and satisfies

1
lim sup — log card(Ey) < h,(T).

n—oo M

Proof. Since M (X)) is compact we can choose a subsequence {ny} such that:

o limy nik log card(E,,) = limsup,,_, + log card(E,)
e [ip, converges in M(X) to some pu € M(X)

In fact p € M(X,T) because Tipin, — pin, = (TJvy, — vy)/n (T cont. as in
the proof of K-B theorem) and v, are probability measures.

We choose now a partition £ with diameter less then € and p(9¢) = 0 as
in Lemma 1. Then

n—1
H,,n( \/ T_k’£> = log card(Ey,)
k=0

Since each C € \/Z;(l) T—%¢ contains at most one z € E, so there are
card(E,) elements of v,-measure 1/card(E,) in \/Z;é T k¢
Now suppose 0 < ¢ < n and for every 0 < k < ¢ define a(k) := [(n—k)/q].

e If we fix 0 < k < ¢ then
{0,1,...,n—1} ={k+rq+i:0<r<a(k),0<i<q}Us
where S ={0,1,....k, k+a(k)g+1,....,n— 1} and
card(S) < 2q

since k 4+ a(k)q > k + [”T_k —1jg>n—q.
Then we have

a(k)—1

:\/:Tké -(V T(T‘l*’“)(j\_/:T’E)) v (V1)

r=0 JjES
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and
n—1
log card(E,) = H,,n< \/ Tﬁhf)
h=0
a(k)—1
<>, (70 \/ T¢) + 3, (T¢)
r=0 JES
a(k)—1 q—1
< HTIq+kVn< \/ T_i§> + 2qlog card(§).
r=0 =0
Then
q—1 n—1
qlogcard(E,) = ZHZ,n< \/ T_hf)
k=0 h=0
qg—1 fa(k)— qg—1
-3 z (\/ rz‘g) + 2qlogcard(€)
k=0 i=0
q—1
<nH,, (\/ T‘%) + 2¢* log card(€)
i=0
Thus

| H,,, (VS T7¢) | Hu (VS T77%)
limsup — log card(E,,) < lim '

n—oo N k—o0 q q
and that implies
lim sup — log card(Ey) < hy(T,€) < hy(T).

n—oo TN

O

Teorem 12. Let (X,d) be a compact metric space, T : X — X a homeo-
morphism, then

hiop(T) = sup{hu(T) : p € M(X,T)}.

Proof. (1) Let p € M(X,T) we will show that h,(T") < hiop(T).
Let £ = {C1,...,Ck} be a finite measurable partition and 0 < ¢ < ngk'

Since p is regular there exist compact sets B; C C; with u(C; \ B;) < &
Let n = {By, B1, ..., By} the partition with By = X \ UX_, B;.
We have p(Byp) < ke and

k k . .
Hu(eln) < =3 > (B (%)

1(Bo) Z¢< BomA)>

u(Bo)logk < kelogk < 1

So
hu<T7 £ < hu<T7 n) + Hu(ﬁ!n) < hu<Ta n) +1
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The reason we can bring in the topological entropy is that o := {By U
By, ...,BoU By} is an open cover of X. We have

n—1 n—1 n—1
H, (\/ T’%) < logcard (\/ Tk77> < log (2”card (\/ Tka>>
k=0 k=0 k=0
If &g is the Lebesgue number of « i.e., the supremum of § > 0 such that
every d-ball is contained in an element of «, then §y is the Lebesgue number
of \/7Zy T~%a with respect to the dZ.
Since \/Z;é T *a is a minimal cover every C € \/Z;é T~%a contain a
point z¢ not in any other element of \/Z;é T *a.
The z¢ set form a (dg, n)-separated set.
Then
hu(T,n) < hiop(T) + log 2
and
hu(T,6) < hy(T,m) + 1 < hiop(T) + 1 +1og 2,
as this is also true for any iterate of T" we have

hu(T™) _ huop(T") +1+1log2 _
—— <

1+ log2
. = Iugp(T) + 52

hu(T) <
for all n € N and hence
hu(T) < hiop(T)
(2) On the other hand applying Lemma 2 to maximal (n,¢)-separated
sets in X we have
1
limsup —log Ng(T',e,n) < h,(T) (2)
n—oo N

for a corresponding accumulation point p € M (X, T). Thus

1
limsup —log Ng(T',e,n) < sup h,(T).
n p

n—oo
and letting ¢ — 0 we get
htop(T) < Sup{h,u(T) VS M(Xv T)}
O

A measure p € M(X,T) is called a measure of maximal entropy for
T if hy(T) = hiop(T).

We observe that for expansive homeomorphisms the existence of such a
measure is assured by the upper semi-continuity of the entropy map and the
compactness of M (X, T). But the same is true because in (2) the left hand
side is equal to the topological entropy if € is less then half its expansive
constant, and so by Lemma 2 we can construct a measure of maximal entropy
for such an €.
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