ANÁLISE MATEMÁTICA I (LEIC-Tagus, LERCI, LEGI e LEE) 1° Sem. 2005/06

2ª Ficha de Exercícios

I. Axioma de Supremo e Propriedade Arquimediana

- 1) Dados $a, x, y \in \mathbb{R}$, mostre que se $a \le x \le a + y/n$ para todo o $n \in \mathbb{N}$, então x = a.
- 2) Seja A um subconjunto de \mathbb{R} majorado e não-vazio, com supremo $s = \sup A$. Mostre que para qualquer $\epsilon > 0$ existe $a \in A$ tal que $a > s \epsilon$ (i.e. para qualquer $\epsilon > 0$ o conjunto $V_{\epsilon}(s) \cap A$ é não vazio).
- 3) Seja A um subconjunto de \mathbb{R} majorado e não-vazio, com supremo $s = \sup A$. Seja ainda $m \in \mathbb{R}$ um majorante de A distinto de s. Mostre que existe $\epsilon > 0$ tal que $a < m \epsilon$ para todo o $a \in A$ (i.e. existe $\epsilon > 0$ tal que o conjunto $V_{\epsilon}(m) \cap A$ é vazio).
- 4) Sejam $A \in B$ dois subconjuntos de \mathbb{R} .
 - (a) Prove que se sup $A < \inf B$ então $A \in B$ são disjuntos.
 - (b) Mostre por meio de exemplos que se $\sup A \ge \inf B$ então A e B podem ser ou não disjuntos.
- 5) Sejam A e B dois subconjuntos não-vazios de \mathbb{R} . Considere o subconjunto $C \subset \mathbb{R}$ definido por

$$C = A + B \stackrel{\text{def}}{=} \{x \in \mathbb{R} : x = a + b \text{ com } a \in A, b \in B\}.$$

Mostre que:

- (a) Se A e B têm supremo, então C também tem supremo e sup $C = \sup A + \sup B$.
- (b) Se $A \in B$ têm ínfimo, então C também tem ínfimo e inf $C = \inf A + \inf B$.
- 6) Sejam $A \in B$ dois subconjuntos não-vazios de \mathbb{R} , tais que

$$a \leq b$$
, para quaisquer $a \in A$ e $b \in B$.

Mostre que existem o supremo de A e o ínfimo de B, e que sup $A \leq \inf B$.

7) Sejam A e B dois subconjuntos de \mathbb{R} , limitados e não-vazios, tais que

$$\inf A < \sup B$$
.

Mostre que existem $a \in A$ e $b \in B$ com a < b.

8) Dados $a, b \in \mathbb{R}$ com a < b, prove que existe pelo menos um $c \in \mathbb{R}$ tal que a < c < b.

- 9) Dado $a \in \mathbb{R}$ arbitrário, prove que existem números inteiros $m, n \in \mathbb{Z}$ tais que m < a < n.
- **10)** Dado $\epsilon \in \mathbb{R}^+$ arbitrário, prove que existe $n \in \mathbb{N}$ tal que $0 < 1/n < \epsilon$.
- 11) Dado $a \in \mathbb{R}$ arbitrário, prove que existe um único inteiro $m \in \mathbb{Z}$ tal que $m \le a < m+1$. Este $m \in \mathbb{Z}$ designa-se por **parte inteira** de a e representa-se por [a].
- 12) Dado $a \in \mathbb{R}$ arbitrário, prove que existe um único inteiro $m \in \mathbb{Z}$ tal que $a \leq m < a+1$.
- 13) Dados $a, b \in \mathbb{R}$ com a < b, prove que existe pelo menos um número racional $r \in \mathbb{Q}$ tal que a < r < b. Esta propriedade é designada por **densidade de** \mathbb{Q} **em** \mathbb{R} .
- **14)** Dados $x \in \mathbb{Q}$ e $y \in \mathbb{R} \setminus \mathbb{Q}$, mostre que x + y, x y, xy, x/y $(y \neq 0), y/x$ $(x \neq 0) \in \mathbb{R} \setminus \mathbb{Q}$.
- 15) A soma ou o produto de dois números irracionais é sempre um número irracional?
- **16)** Dados $a, b \in \mathbb{R}$ com a < b, prove que existe pelo menos um número irracional $x \in \mathbb{R} \setminus \mathbb{Q}$ tal que a < x < b. Esta propriedade é designada por **densidade de** $\mathbb{R} \setminus \mathbb{Q}$ **em** \mathbb{R} .
- 17) Um número inteiro $n \in \mathbb{Z}$ diz-se **par** se n = 2m para algum $m \in \mathbb{Z}$, e **ímpar** se n + 1 é par. Demonstre as seguintes proposições.
 - (a) Um inteiro não pode ser simultaneamente par e ímpar.
 - (b) Qualquer inteiro ou é par ou é impar.
 - (c) A soma ou o produto de dois inteiros pares é par. O que pode dizer quanto à soma ou produto de dois inteiros ímpares.
 - (d) Se $n \in \mathbb{Z}$ é impar então n^2 também é impar. De forma equivalente, se n^2 é par então n também é par.
 - (e) Se $a^2 = 2b^2$ com $a, b \in \mathbb{Z}$, então a e b são ambos pares.
 - (f) Qualquer racional $r \in \mathbb{Q}$ pode ser escrito na forma r = a/b com $a, b \in \mathbb{Z}$ e pelo menos um deles ímpar.
- **18)** Prove que não existe $r \in \mathbb{Q}$ tal que $r^2 = 2$.
- 19) Mostre que o conjunto dos números racionais Q satisfaz a propriedade Arquimediana mas não o Axioma do Supremo.

II. Indução Matemática

- 1) Demonstre por indução as relações seguintes (entre parentesis, cada relação é escrita usando o símbolo de somatório, cf. exercícios do grupo III).
 - (a) $1 + 2 + 3 + \dots + n = n(n+1)/2$ para qualquer $n \in \mathbb{N}$. $(\sum_{k=1}^{n} k = n(n+1)/2)$
 - (b) $1+3+5+\cdots+(2n-1)=n^2$ para qualquer $n \in \mathbb{N}$. $(\sum_{k=1}^{n} (2k-1) = n^2)$
 - (c) $1^2 + 2^2 + 3^2 + \dots + n^2 = n(n+1)(2n+1)/6$ para qualquer $n \in \mathbb{N}$. $\left(\sum_{k=1}^n k^2 = n(n+1)(2n+1)/6\right)$
 - (d) $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$ para qualquer $n \in \mathbb{N}$. $\left(\sum_{k=1}^n k^3 = \left(\sum_{k=1}^n k\right)^2\right)$
 - (e) $0^3 + 1^3 + \dots + (n-1)^3 < n^4/4 < 1^3 + 2^3 + \dots + n^3$ para qualquer $n \in \mathbb{N}$. $\left(\sum_{k=1}^n (k-1)^3 < n^4/4 < \sum_{k=1}^n k^3\right)$
 - (f) $1/\sqrt{1} + 1/\sqrt{2} + \dots + 1/\sqrt{n} > \sqrt{n}$ para qualquer $n \in \mathbb{N}$ tal que $n \ge 2$. $\left(\sum_{k=1}^{n} 1/\sqrt{k} > \sqrt{n}\right)$
- 2) Seja P(n) a proposição: $n^2 + 3n + 1$ é par para todo o $n \in \mathbb{N}$.
 - (a) Mostre que se P(k) é verdadeira para um dado $k \in \mathbb{N}$, então P(k+1) também é verdadeira.
 - (b) Critique a afirmação: "Por indução fica provado que P(n) é verdadeira para todo o $n \in \mathbb{N}$ ".
 - (c) Prove que $n^2 + 3n + 1$ é impar para todo o $n \in \mathbb{N}$.
- 3) Seja P(n) a proposição: $1+2+3+\cdots+n=(2n+1)^2/8$ para todo o $n\in\mathbb{N}.$
 - (a) Mostre que se P(k) é verdadeira para um dado $k \in \mathbb{N}$, então P(k+1) também é verdadeira.
 - (b) Critique a afirmação: "Por indução fica provado que P(n) é verdadeira para todo o $n \in \mathbb{N}$ "
 - (c) Modifique P(n), mudando a igualdade para uma desigualdade que seja verdadeira para todo o $n \in \mathbb{N}$.
- 4) Mostre a desigualdade de Bernoulli, i.e. $(1+x)^n \ge 1 + nx$ para qualquer $n \in \mathbb{N}$ e qualquer $x \in \mathbb{R}$ tal que $x \ge -1$.

III. Símbolo de Somatório

Dado $n \in \mathbb{N}$ e uma sequência de números reais $a_1, a_2, \dots, a_n \in \mathbb{R}$, o símbolo de somatório $\sum_{k=1}^n a_k$ define-se por recorrência da seguinte forma:

$$\sum_{k=1}^{n} a_k = a_1 \text{ se } n = 1, \quad \sum_{k=1}^{n} a_k = \left(\sum_{k=1}^{n-1} a_k\right) + a_n \text{ se } n > 1.$$

Resolva os exercícios seguintes com base nesta definição.

1) Determine os valores numéricos das seguintes somas:

(a)
$$\sum_{i=1}^{8} (2i-3)$$
; (b) $\sum_{k=1}^{7} (k-4)^2$; (c) $\sum_{j=1}^{4} j(j+1)(j+2)$; (d) $\sum_{i=1}^{4} 6$;

(e)
$$\sum_{j=1}^{3} j^{2j}$$
; (f) $\sum_{k=1}^{7} (-1)^k (2k-3)$; (g) $\sum_{n=1}^{5} \frac{1}{n(n+1)}$.

2) Demonstre as seguintes propriedades do somatório:

(a)
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
 (propriedade aditiva);

(b)
$$\sum_{k=1}^{n} (c \, a_k) = c \sum_{k=1}^{n} a_k$$
 para qualquer constante $c \in \mathbb{R}$ (homogeneidade);

(c)
$$\sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0$$
 (propriedade telescópica).

3) Utilizando os resultados do Exercício II.1 e as propriedaes anteriores do somatório, calcule:

(a)
$$\sum_{k=1}^{18} (k+1)$$
; (b) $\sum_{k=1}^{20} (2k-1)^2$; (c) $\sum_{k=1}^{15} (k-3)^3$;

(d)
$$\sum_{k=1}^{20} \left(\frac{1}{k+1} - \frac{1}{k} \right)$$
; (e) $\sum_{k=1}^{20} \left(3^k - 3^{k+2} \right)$.

4) Dados $m \in \mathbb{Z}$ e $n \in \mathbb{N}$, considere as seguintes duas definições do símbolo $\sum_{k=m+1}^{m+n} a_k$:

(i)
$$\sum_{k=m+1}^{m+n} a_k = a_{m+1}$$
 se $n = 1$, $\sum_{k=m+1}^{m+n} a_k = \left(\sum_{k=m+1}^{m+n-1} a_k\right) + a_{m+n}$ se $n > 1$.

(ii)
$$\sum_{k=m+1}^{m+n} a_k = \sum_{k=1}^n a_{k+m}.$$

Mostre por indução que são equivalentes.

5) Prove por indução que, para qualquer $n \in \mathbb{N}$,

$$\sum_{k=n+1}^{2n} \frac{1}{k} = \sum_{m=1}^{2n} \frac{(-1)^{m+1}}{m} \ .$$

6) Usando as propriedades do Exercício 2, calcule:

$$\sum_{k=3}^{23} \frac{1}{2k-1} - \sum_{k=8}^{28} \frac{1}{2k-9} .$$

7) Mostre que para qualquer $n \in \mathbb{N}$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

pelos seguintes dois métodos distintos:

- (a) usando indução.
- (b) observando que $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$ e usando as propriedades do Exercício 2.
- 8) Mostre que para quaisquer $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

pelos seguintes dois métodos distintos:

- (a) usando indução.
- (b) aplicando as propriedades do Exercício 2 a $(1-r)\sum_{k=0}^{n} r^{k}$.

A que é igual a soma quando r = 1?

Nota: por definição, $r^0 = 1$.

9) O símbolo n!, designado por n-factorial, define-se por recorrência da seguinte forma:

$$0! = 1$$
 e $n! = n \cdot (n-1)!$, para qualquer $n \in \mathbb{N}$.

Observe que $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$. Dados inteiros $0 \le k \le n$, o **coeficiente binomial** $\binom{n}{k}$ (às vezes também representado por $\binom{n}{k}$) é definido por

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \,.$$

(a) Mostre que

$$\binom{n}{k} = \binom{n}{n-k} \qquad e \qquad \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

Esta última fórmula é a chamada **lei do triângulo de Pascal**, permitindo o cálculo rápido dos sucessivos coeficientes binomiais.

(b) Prove por indução a fórmula do desenvolvimento do binómio de Newton:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
, para quaisquer $a, b \in \mathbb{R}$ e $n \in \mathbb{N}_0$.

(c) Use a fórmula anterior para estabelecer as igualdades

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n} \quad \text{e} \quad \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = 0, \text{ para qualquer } n \in \mathbb{N}_{0}.$$

IV. Sucessões Reais

1) Determine, se existirem, os limites das seguintes sucessões.

(a)
$$x_n = \frac{2n+1}{3n-1}$$
 (b) $x_n = \frac{2n+3}{3n+(-1)^n}$ (c) $x_n = n - \frac{n^2}{n+2}$ (d) $x_n = \frac{n+\cos(n)}{2n-1}$ (e) $x_n = \frac{n^2-2}{5n^2}$ (f) $x_n = \frac{n-1}{\sqrt{n^2+1}}$ (g) $x_n = \sqrt{n} - \frac{n}{\sqrt{n}+2}$ (h) $x_n = \frac{\sqrt{n^4-1}}{n^2+3}$ (i) $x_n = \frac{(-1)^n n}{1+n^2}$ (j) $x_n = \frac{n^2-1}{\sqrt{3n^4+3}}$ (k) $x_n = \frac{\sqrt{n+1}}{2n+1}$ (l) $x_n = \frac{n}{n+1} - \frac{n+1}{n}$ (m) $x_n = \frac{n^2}{n+1} - \frac{n^2+1}{n}$ (n) $x_n = \frac{1+n^3}{n^2+2n+1}$ (o) $x_n = \sqrt{n+1} - \sqrt{n}$ (p) $x_n = \sqrt{n(n+1)} - \sqrt{n(n-1)}$ (q) $x_n = n\left(\sqrt{n^2+1} - n\right)$ (r) $x_n = \left(\sqrt{n+1} - \sqrt{n}\right)\sqrt{n+3}$ (s) $x_n = \frac{\sqrt{n^2+1} - \sqrt{n}}{n+1}$ (t) $x_n = a^n$, $\cos a \in \mathbb{R}$ (u) $x_n = \frac{2^n+1}{2^{n+1}-1}$ (v) $x_n = \frac{2^2n-3^n}{2^n-3^{2n}}$ (x) $x_n = \frac{(3^n)^2}{1+7^n}$

2) Cada uma das sucessões (x_n) das alíneas seguintes é convergente. Portanto, para qualquer $\epsilon > 0$ previamente dado, existe um natural $N \in \mathbb{N}$ dependendo de ϵ , tal que $|a_n - L| < \epsilon$ para todo o $n \ge N$, onde $L = \lim_{n \to \infty} x_n$. Determine em cada alínea o valor N adequado a cada um dos seguintes valores de ϵ : 1, 0.1, 0.01, 0.001.

(a)
$$x_n = \frac{1}{n}$$
 (b) $x_n = \frac{n}{n+1}$ (c) $x_n = \frac{(-1)^{n+1}}{n}$

(d)
$$x_n = \frac{1}{n!}$$
 (e) $x_n = \frac{2n}{n^3 + 1}$ (f) $x_n = (-1)^n \left(\frac{9}{10}\right)^n$

3) Sendo (u_n) e (v_n) sucessões convergentes tais que

$$u_n \le v_n$$
 para todo o $n \in \mathbb{N}$,

prove que $\lim u_n \leq \lim v_n$.

4) Sendo (u_n) e (v_n) sucessões de termos positivos tais que

$$1 \le \frac{u_n}{v_n} \le 1 + \frac{1}{n} \quad \text{para todo o } n \in \mathbb{N} \,,$$

prove que (u_n) converge sse (v_n) converge. Mostre também que, quando existem, os seus limites são iguais.

- 5) Use a definição de limite para provar que se $\lim_{n\to\infty} x_n = a$ e $\lim_{n\to\infty} y_n = b$ então $\lim_{n\to\infty} (x_n + y_n) = a + b$ e $\lim_{n\to\infty} c \cdot x_n = c \cdot a$ para qualquer constante $c \in \mathbb{R}$.
- 6) Use a definição de limite para provar que se $\lim_{n\to\infty} x_n = 0$ então $\lim_{n\to\infty} x_n^2 = 0$.
- 7) Use os dois exercícios anteriores para provar que se $\lim_{n\to\infty} x_n = a$ então $\lim_{n\to\infty} x_n^2 = a^2$.
- 8) Use os exercícios anteriores e a identidade

$$2x_n y_n = (x_n + y_n)^2 - x_n^2 - y_n^2$$

para provar que se $\lim_{n\to\infty} x_n = a$ e $\lim_{n\to\infty} y_n = b$ então $\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b$.

- 9) Seja (u_n) uma sucessão de números reais. Indique, justificando, quais das seguintes proposições são verdadeiras.
 - (a) Se o conjunto dos termos da sucessão não tem máximo nem mínimo, a sucessão é divergente.
 - (b) Se $u_n \to 0$ e $u_n > 0$ para todo o $n \in \mathbb{N}$, então (u_n) é decrescente.

V. Diversos

- 1) Seja $X \subset \mathbb{R}$ um conjunto não-vazio e majorado, com supremo $s \in \mathbb{R}$. Mostre que existe uma sucessão (x_n) de termos em X convergente para s.
- 2) Seja $x \in \mathbb{R}$ um número irracional. Mostre que existe uma sucessão (r_n) de números racionais convergente para x.
- 3) Mostre que para todo o $n \in \mathbb{N}$ são válidas as desigualdades

$$2\left(\sqrt{n+1}-\sqrt{n}\right) < \frac{1}{\sqrt{n}} < 2\left(\sqrt{n}-\sqrt{n-1}\right).$$

Use-as para provar que

$$2\sqrt{m+1} - 2 < \sum_{n=1}^{m} \frac{1}{\sqrt{n}} < 2\sqrt{m}$$

para todo o $m \in \mathbb{N}$. O que pode concluir sobre o limite da sucessão (x_m) definida para todo o $m \in \mathbb{N}$ por

$$x_m = \sum_{n=1}^m \frac{1}{\sqrt{n}}$$
 ?

4) Dado um número real $r \in \mathbb{R}$, considere a sucessão (x_n) definida para todo o $n \in \mathbb{N}$ por

$$x_n = \sum_{k=0}^n r^k \,.$$

Use os resultados do Exercício III.8 e da alínea (t) do Exercício IV.1, para mostrar que (x_n) é convergente sse |r| < 1, sendo neste caso o seu limite igual a 1/(1-r).

5) Usando a desigualdade triangular $(|x+y| \le |x| + |y|)$ e o método de indução, mostre que para todo o $n \in \mathbb{N}$ e quaisquer números reais $x_1, \ldots, x_n \in \mathbb{R}$ é válida a desigualdade

$$\left| \sum_{k=1}^{n} x_k \right| \le \sum_{k=1}^{n} |x_k| \ .$$

6) Mostre que para qualquer $n \in \mathbb{N}$ e quaisquer números reais $a, b \in \mathbb{R}$ é válida a igualdade

$$a^{n} - b^{n} = (a - b) \sum_{k=1}^{n} a^{n-k} b^{k-1}$$
.