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ABSTRACT. A class of codimension one foliations has been recently introduced
by imposing a natural compatibility condition with a closed maximally non-
degenerate 2-form. In this paper we study for such foliations the information
captured by a Donaldson type submanifold. In particular we deduce that their
leaf spaces are homeomorphic to leaf spaces of 3-dimensional taut foliations.
We also introduce surgery constructions to show that this class of foliations is
broad enough. Our techniques come mainly from symplectic geometry.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Codimension one foliations are too large a class of structures to obtain strong
structure theorems for them. According to a theorem of Thurston [38] a closed
manifold admits a codimension one foliation if and only if its Euler characteristic
vanishes. In order to draw significant results it is necessary to assume the existence
of other structures compatible with the foliation.

From the point of view of symplectic geometry it is natural to consider the
following class of codimension one foliations:

Definition 1. [21] A codimension one foliation F of M*"*! is said to be 2-
calibrated if there exists a closed 2-form w such that wx™ is no-where vanishing

(we also say that w™ is no-where vanishing on F ).
The 2-calibrated foliation is said to be integral if [w] € H*(M;Z).

The notation wz" in definition 1 stands for the restriction of w™ to the leaves of
F. We will be using the subscript F (respectively W, if W is a submanifold of M)
to denote the restriction of a form, connection, ete, to the leaves of F (respectively
to W). In what follows the manifolds will always be closed and oriented, the
codimension one foliations co-oriented and all the structures and maps smooth.

In the next paragraphs we are going to describe how the 2-calibrated condi-
tion appears naturally when looking at the problem of constructing submanifolds
transverse to a codimension one foliation.

Recall that a codimension one foliation F is said to be taut if every leaf meets
a transverse 1-cycle. Tautness in codimension one can be characterized in several
ways using forms, metrics and currents [37, 32, 18]. The characterization we are
interested in, says that a rank p codimension one foliation F is taut if and only if
there exists a closed p-form £ no-where vanishing on F (and furthermore according
to proposition 2.7 in [18], it is possible to construct a metric g so that £ is a
calibration for (M, F)). Note in particular that a 2-calibrated foliation (M, F,w)
is always taut, since £ := w™ is no-where vanishing on F. In dimension three
2-calibrated foliations are the same as taut foliations.
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Let us analyze one direction of the aforementioned characterization: the exis-
tence of a closed p-form whose restriction to each leaf is a volume form, is equivalent
to a reduction of the structural pseudogroup of (M, F) to Vol(RP, Zg») x Diff (R),
where

Ere :=dz1 A -+ - Adzp,

x1,...,Tp are coordinates on RP, and Vol(RP,Zgs) (respectively Diff(R)) is the
pseudogroup of local diffeomorphisms of R? (respectively R) preserving the volume
form Zgs. Let U be any open subset of a leaf of F. Poincaré recurrence theorem
implies that the flow of any vector field spanning ker defines a first return map
from U’ C U to U” C U. A straightforward consequence is that closed transverse
1-cycles through any given © € M can be constructed by slightly deflecting integral
curves of ker€.

The first return map belongs to the pseudogroup Vol(RP, Zg»). If p = 2, that
is, if we have a taut foliation on a 3-manifold, then under certain circumstances we
can deduce interesting geometric information about the existence of more closed
orbits (Poincaré-Birkhoff theorem). If p > 2 we have little geometric control on the
return map because assuming for simplicity that U’ and U” are diffeomorphic to a
ball, the only invariant is the total volume ([16], theorem 1). Therefore problems
such as the existence of transverse submanifolds of dimension bigger than one seem
difficult to attack.

It has been known for some time that the right setting to obtain higher dimen-
sional generalizations of Poincaré-Birkhoff theorem is not volume geometry but
symplectic geometry ([19], chapter 6; [26], chapter IV). It can be checked (see sec-
tion 2) that the existence of a closed 2-form w which makes the leaves of (M, F)
symplectic manifolds, amounts to a reduction of the structural pseudogroup of
(M, F) to Symp(R?", Qg2») x Diff(R), where Symp(R?", Qg2.) is the pseudogroup
of local diffeomorphisms of R?” preserving the standard symplectic form

QRQn = i d.TCl A dyl

i=1

Thus, return maps associated to the flow of vector fields generating kerw belong to
Symp(R?", Qg2»). Symplectomorphisms are much more rigid than transformations
preserving the volume form Qf,,, = n!Zgen. They preserve the symplectic invariants
of subsets of R2", so for example these cannot be squeezed along symplectic 2-
planes ([19], chapters 2 and 3; [26], section 12). Naively, one might try to construct
transverse 3-manifolds by choosing tiny 2-dimensional symplectic pieces Y inside
a leaf, whose image by the first return map is a small 2-dimensional symplectic
manifold that can be isotoped to X through symplectic surfaces. The isotopy would
be used to connect both symplectic surfaces in nearby leaves, and thus get a piece
of transverse 3-dimensional taut foliation. Of course this idea seems difficult to
be carried out because different pieces should be combined to construct a closed
3-manifold. However, it provides some insight on why 2-calibrated foliations are
expected to have embedded 3-dimensional taut foliations.

In [21], corollary 1.2, it was proved that for any 2-calibrated foliation (M, F,w)
there exists an embedding of a 3-dimensional submanifold W?2 < M, such that
W3 is transverse to F and wy is no-where vanishing on Fyy; the 3-dimensional
submanifold W3, which inherits a taut foliation, is a Donaldson type submanifold
[7, 2]. Its existence is an elementary consequence of the extension to 2-calibrated
foliations of the approximately holomorphic techniques for symplectic manifolds
introduced by Donaldson [7].
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1.1. Statement of results. Let (M, F,w) be a 2-calibrated foliation and let W —
(M, F) be a 3-dimensional Donaldson type submanifold. In this paper we are
mainly concerned with finding out which properties of (M, F) are captured by W.

If F is a compact leaf of (M, F,w), an appropriate version of the Lefschetz hyper-
plane theorem ([7], proposition 39) asserts that W N F is connected. A codimension
one foliation (M, F) has non-compact leaves unless it is a fibration over the circle
(a mapping torus). If F' is a non-compact leaf then describing global properties
of W N F seems very difficult. Our main result is a rather surprising and coun-
terintuitive global property of such intersections for appropriate Donaldson type
submanifolds.

Theorem 1. Let (M, F,w) be a 2-calibrated foliation. Then there exists Donaldson
type submanifolds W? < (M, F), such that for every leaf F of F the intersection
W N F is connected.

Remark 1. Any integral 2-calibrated foliation (M, F,w) admits embeddings in com-
plex projective spaces CPYN of large dimension, with the property that the ambient
Fubini-Study symplectic form restricts to a multiple of w ([21], corollary 1.3). The
3-dimensional transverse submanifolds in theorem 1 can be arranged to appear as
intersections of M C CPN with appropriate projective subspaces. Theorem 1 should
be understood as a leafwise Lefschetz hyperplane type result for mg.

An important consequence of theorem 1 is the following result:

Theorem 2. Let (M,F,w) be a 2-calibrated foliation. Then there exists a 5-
dimensional embedded taut foliation such that the inclusion (W3, Fy) < (M, F)
descends to a homeomorphism of leaf spaces W/ Fw — M/ F.

Thus, leaf spaces of 2-calibrated foliations are no more complicated than those of
3-dimensional taut foliations.

A second goal of this paper is showing that 2-calibrated foliations are a broad
enough class of foliations. In this respect there are three basic families of 2-
calibrated foliations: products, cosymplectic foliations and symplectic bundle foli-
ations.

In a product we cross a 2-calibrated foliation -typically a 3-dimensional taut
foliation- with a (non-trivial) symplectic manifold, and put the product foliation
and the obvious closed 2-form.

A cosymplectic foliation is a triple (M, a,w), where « is a no-where vanishing
closed 1-form and (M, kera, w) is a 2-calibrated foliation.

A bundle foliation with fiber S is by definition an S'-fiber bundle 7: M — X
endowed with a codimension one foliation F transverse to the fibers. If the base
space admits a symplectic form o, then (M, F,7*0) is a 2-calibrated foliation which
we refer to as a symplectic bundle foliation.

The second topic of this paper concerns the introduction of two surgery cons-
tructions for 2-calibrated foliations: normal connected sum and generalized Dehn
surgery or Lagrangian surgery. Using surgery we have obtained the following result:

Proposition 1. There exist 2-calibrated foliations (of dimension bigger than three)
which are neither products, nor cosymplectic foliations, nor symplectic bundle foli-
ations.

The paper is organized as follows. In section 2 we introduce definitions and
basic facts on 2-calibrated foliations, and address their relation to regular Poisson
structures.

Section 3 describes how to adapt the normal connected sum for symplectic and
Poisson manifolds to integral 2-calibrated foliations; this is the surgery used to
prove proposition 1.
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In section 4 we present a surgery based on generalized Dehn twists. Generalized
Dehn surgery is the natural extension to 2-calibrated foliations of positive Dehn
surgery along a curve in a leaf of a 3-dimensional taut foliation (M3, F).

It is a classical result of Lickorish [25] that positive Dehn surgery along a curve
~v has an alternative description: - carries a canonical framing and therefore it
determines an elementary cobordism from M? to M’, which amounts to attaching
a 2-handle to the trivial cobordism M x [0, 1]. The “new” boundary component M’
is endowed with a canonical foliation which coincides with positive Dehn surgery
on (M, F) along .

If (M2 F w) is a 2-calibrated foliation, a parametrized Lagrangian n-sphere
inside a leaf of F canonically determines the attaching of a (n + 1)-handle. We
show that the corresponding elementary (2n + 2)-dimensional cobordism admits a
symplectic structure, which induces a 2-calibrated foliation on the new boundary
component of the cobordism. We call this construction Lagrangian surgery. In
theorem 4 we extend Lickorish’ result by proving that generalized Dehn surgery
and Lagrangian surgery produce equivalent 2-calibrated foliations. The importance
of this result stems from the fact that the aforementioned symplectic elementary
cobordisms do appear in a natural way associated to Lefschetz pencil structures.
As a byproduct we get an application to contact geometry that we have included
in an appendix: it is a proof of a result announced by Giroux and Mohsen [11],
relating generalized Dehn surgery along a parametrized Lagrangian sphere L in
an open book decomposition compatible with a contact structure, and Legendrian
surgery along L. Results in this section require a fine analysis of the symplectic
monodromy about the singular fiber of the complex quadratic form.

In section 5 we prove theorems 1 and 2. The main tool are Lefschetz pencil
structures for (M, F,w), which are appropriate analogs of leafwise complex Morse
functions and whose existence is an application of approximately holomorphic geo-
metry for 2-calibrated foliations. A regular fiber of a Lefschetz pencil structure
is a Donaldson type submanifold. A Lefschetz pencil structure admits a leafwise
symplectic connection. Its associated leafwise symplectic parallel transport is the
key ingredient to prove our main theorem relating the leaf space of any regular
fiber of the pencil to the leaf space of (M, F,w). Symplectic parallel transport also
allows us to compare the 2-calibrated foliations induced on different regular fibers.
Namely, in theorem 7 we show that any two regular fibers of a Lefschetz pencil
structure for (M, F,w) are related by a sequence of symplectic handle attachings
along Lagrangian spheres. By the symplectic analog of Lickorish’s result proved in
section 4, we conclude that any two regular fibers of a Lefschetz pencil structure
are related by a sequence of generalized Dehn surgeries. We finish the section by
discussing some open problems.

The author is very grateful to the referee for his/her corrections and numerous
suggestions.

2. DEFINITIONS AND BASIC RESULTS

In this section we introduce some basic definitions, results and examples. We
also address the relation of 2-calibrated foliations to Poisson structures.

Definition 2. Let (M,F,w) be a 2-calibrated foliation and let I: N — M be a
submanifold. We say that N is a 2-calibrated submanifold if (N,I*F,l*w) is a
2-calibrated foliation.

The definition of a 2-calibrated foliation can be given locally.

Definition 3. A 2-calibration for (M,F) is a reduction of its structural pseu-
dogroup to Symp(R?", Qgan) x Diff(R).
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Definitions 1 and 3 are equivalent. A standard Darboux type result (see for ex-
ample [26], chapter 3, for basic material on symplectic geometry) implies that about
any point in M there exists a foliated chart with coordinates x1,y1, .. ., Tn, Yn, t (the
image of F in R?"*! is the foliation by affine hyperplanes with constant coordinate
t), such that w is the pullback of

n
WR2n+1 1= Z dzx; A dy;.
i=1

It is clear that on a given manifold 2-calibrated foliations are an open subset
of the set of codimension one foliations in the C°-topology. More precisely, in the
product space of codimension one foliations and closed 2-forms, pairs corresponding
to 2-calibrated foliations are an open set in the C%-topology.

The first examples of 2-calibrated manifolds are 3-dimensional taut foliations. In
this paper we are concerned with higher dimensional 2-calibrated foliations. An ele-
mentary family is obtained by applying the product construction to 3-dimensional
taut foliations and non-trivial symplectic manifolds.

Another important family of 2-calibrated foliations are cosymplectic foliations.
Recall that they are given by a triple (M?"*! a,w), a a closed 1-form and w a
closed 2-form such that o A w™ is a volume form. An example of cosymplectic
foliation is a 2-calibrated foliation whose leaves are the fibers of a fibration over
the circle; the closed 1-form defining the foliation is the pullback of any volume
form on the circle. Each fiber is a closed symplectic manifold and the first return
map associated to the kernel of the calibrating 2-form is a symplectomorphism. We
refer to such cosymplectic foliations as symplectic mapping tori. In fact, symplectic
mapping tori are characterized as cosymplectic foliations whose defining 1-form has
rank one period lattice. This characterization implies that symplectic mapping tori
are C%-dense in cosymplectic foliations. The reason is that the defining 1-form can
be approximated by closed 1-forms with rational periods.

Cosymplectic foliations appear naturally in symplectic geometry as follows: re-
call that a vector field Y on a symplectic manifold (Z,{2) is called symplectic if
LyQ = 0. If Y is a symplectic vector field transverse to 0Z, then its symplectic
annihilator

Ann(Y)® = {v e TZ|Q(Y,v) = 0}
is an integrable codimension one distribution. Since it contains the vector field Y,
it induces a codimension one foliation F on OM. Let a := iy Q. It can be checked
that (OM, asnr, Qo) is a cosymplectic foliation.

The previous construction leads to an analogy between cosymplectic foliations
and contact structures. The reason is that on a symplectic manifold (Z, ?) endowed
with a vector field Y transverse to the boundary and satisfying Ly ) = €1, the
restriction of iy to OM is a contact form. Following this analogy, we define
the Reeb vector field R of a cosymplectic foliation (M, o, w) to be the vector field
characterized by the equations igw = 0, igax = 1. The foliation is invariant under
the flow of the Reeb vector field. In fact, a cosymplectic foliation can be defined as
a 2-calibrated foliation endowed with a vector field R spanning the kernel of w and
whose flow preserves the foliation; we say that R is a Reeb vector field.

A third family of 2-calibrated foliations are symplectic bundle foliations *, which
are defined as bundle foliations with fiber S! over symplectic manifolds. There is a
very rough way of associating symplectic bundle foliations to any bundle foliation
7: M — X with fiber S'. The latter is characterized by a conjugacy class of
representations of 1 (X, ) in Diff (S). A result of Gompf ([14], theorem 0.1) asserts

IThis family of 2-calibrated foliations was pointed out to the author by the referee.
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that there exist closed symplectic manifolds (of dimension 4) whose fundamental
group isomorphic to 71 (X, z).

Example 1. Let 21,91, 2,2, t be coordinates on R® and consider the canonical
2-form wgs. It descends to T® = R®/Z5 to a closed 2-form wrs. Let F be any of the
foliations on T° induced by a constant 1-form a on R® whose kernel is transverse
to %. Then (T3, o, wrs) is a 2-calibrated foliation. Its leaves are all diffeomorphic
to R x T*~¢, where i € {0,...,4} depends on the slopes of the kernel of the 1-form.

By construction (T®, a,wrs) is both a cosymplectic foliation and a symplectic
bundle foliation. It is a product (respectively a mapping torus) if and only if the

leaves are diffeomorphic to R x T4~ i < 2 (respectively T*).

Deciding which manifolds admit a 2-calibrated foliation can be divided in several
subproblems which in general are very hard. A 2-calibrated foliation (M, F,w) is the
superposition of several compatible structures. Firstly the foliation. Secondly the
2-form restricts to a closed non-degenerate foliated 2-form wx. The pair (F,wr)
defines a (regular) Poisson structure on M and as such it is also defined by an
appropriate bivector field II. And thirdly the foliated symplectic form wr admits
a lift to a global closed 2-form w.

Determining which codimension one foliations are the symplectic foliations of
a Poisson structure is very complicated; there exist partial results which use h-
principles and only apply to open manifolds [4, 5, 9]. The existence of a closed lift
of a foliated 2-form wx is controlled by three obstructions associated to the spectral
sequence which relates basic cohomology, leafwise cohomology and the cohomology
of the total space [8] (see [1] for a treatment in the setting of Poisson geometry); if
the foliation is defined by a closed 1-form, then the obstruction to the existence of
a closed lift admits a simpler description ([17], section 2.2).

We would like to regard a 2-calibrated foliation as a codimension one regular
Poisson manifold with a lift of wr to a closed 2-form w. We are not fully interested
in the 2-form w, as the following definition reflects.

Definition 4. Let (M;,F;,w;), j = 1,2, be 2-calibrated foliations. They are said
to be equivalent if there exists a diffeomorphism ¢: My — Moy such that
e ¢ is a Poisson morphism or equivalence (it preserves the foliations together
with the leafwise 2-forms);
o [¢p*ws] = [w1] € H*(M1;R) and ¢ preserves the co-orientations.

For symplectic mapping tori an equivalence is just a Poisson diffeomorphism pre-
serving co-orientations. Alternatively, equivalent symplectic mapping tori are those
with the same symplectic leaf an isotopic first return maps (the isotopy through
symplectomorphisms).

As we shall see in the following sections, the notion of equivalence is the right
one to remove the dependence on choices in our surgeries.

3. NOrRMAL CONNECTED SUM

In the previous section we saw that deciding whether a manifold supports a 2-
calibrated foliation is very complicated. It is thus natural to look for procedures
to build new 2-calibrated foliations out of given ones. In this section we intro-
duce the normal connected sum of integral 2-calibrated foliations, and we use it to
give examples of 2-calibrated foliations which do not belong to either of the three
elementary families, hence proving proposition 1.

Symplectic normal connected sum is a surgery construction in which two sym-
plectic manifolds are glued along two copies of the same codimension two symplec-
tic submanifold, which enters in the manifolds with opposite normal bundles ([14],
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theorem 1.3). A parametric version of this surgery gives rise to an analogous cons-
truction for regular Poisson manifolds ([20], theorem 1). We propose the following
extension to integral 2-calibrated foliations.

Theorem 3. Let (Mf"“,fj,wj), 7 =1,2, be integral 2-calibrated foliations. Let
(N?=1 Fn,wn) be a 2-calibrated foliation which is a symplectic mapping torus.
Assume that we have maps l;: N — Mj, j = 1,2, embedding N as a 2-calibrated
submanifold of M; (definition 2), such that the following properties hold:

(1) The 2-calibrated foliations induced by the embeddings are equivalent to the
given one (N, Fn,wn) (definition 4).
(2) The normal bundles of [;(N) C Mj, j =1,2, are trivial.
(3) The fiber of N — S* is simply connected.
Then there exist gluing maps v such the Poisson structure 11 on M#Ms
characterized by matching on M;\l;(N) the Poisson structures II; associated to
(M;, Fj,wj), j =1,2, admits a lift to a 2-calibrated structure.

Proof. By assumptions 1 and 2 Poisson surgery produces a Poisson structure II
on Mi#yMs, [20]. Very briefly, there is a gluing map ¢ identifying 4; — A,
annular neighborhoods of I (N) and l5(N) (by this we mean tubular neighborhoods
from which we remove [;(N), j = 1,2) defined as follows: by assumption 2 the
normal bundles are trivial and by Darboux-Weinstein theorem with parameters the
(smooth) leaf space of N ([26], chapter 3), there exist trivializations in which II;,
j = 1,2, split. One factor is the leafwise symplectic form on ;(NN) and the other one
is the standard symplectic form dx A dy on the normal disk with coordinates z,y.
On each normal disk v is the unique rotationally independent symplectomorphism
of the punctured disk of radius § > 0 which reverses the orientation of the radii.

Let (F,wr) denote the foliation and leafwise symplectic form associated to II. If
there is a lift of wr to an integral closed 2-form w, then there must be a Hermitian
line bundle L and a compatible connection V such that

—2miw = Fy,

where Fy is the curvature of the connection.
Because wj, j = 1, 2, represent integral cohomology classes there exist (L;, V) —
M; Hermitian line bundles with compatible connections such that

—2riw; = Fy,. (1)
We look for a lift of ¢ to a bundle isomorphism
W Lija, = Laja,,
to define a (Hermitian) line bundle
L= Li#y Lo — Mi#yMo.
Let ¢j, 7 = 1,2, denote the Chern classes of L; which are integral lifts of the

J ‘A b
restrictions of w; to A;. An isomorphism lifting wjexists if and only if
Yoy =c1 € H* (A Z). (2)

Because the fiber of N — S! is simply connected, the Wang sequence for the
mapping torus A; — St implies that H?(A;;Z) is torsion free. Therefore equation
(2) is equivalent to

[ w2 a,] = [w1)a,] € H*(A1; R). (3)
Because wj, j = 1,2, extend to A; Ul; and the cohomology of the tubular neigh-
borhoods is concentrated in ;(N), equation (3) is equivalent to

[I5wa] = [ljwi] € H?(N;R),
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which holds true because by assumption 1 the 2-calibrations induced by [; and Iy
on NN are equivalent.

Therefore we obtain L — M;#,M> a Hermitian line bundle with two not ev-
erywhere defined compatible connections V1, Vs, overlapping on A; C My #yMo.
Remark that by equation (1) the leafwise curvatures match on 4;. We are going to
use the assumptions to modify V; and V5 (the latter away from I5(N)), so that we
obtain the leafwise equality of connections on A;. Then a convex combination of
both connections associated to a partition of the unity subordinated to M;\l,;(IV),
Jj =1,2,is a connection on M;+#,M> whose leafwise curvature is —2miwr.

The difference

V1 —=15Vs (4)
is a leafwise closed 1-form on N (recall that N is a mapping torus and therefore
all leaves are compact). By assumption 3 it is leafwise exact and therefore we can
modify say Vs, by adding a smooth leafwise primitive function so the 1-form in
equation (4) is leafwise vanishing.

Triviality of the normal bundles implies the existence of normal forms for the
leafwise connections on tubular neighborhoods of ;(N), j = 1,2, which only de-
pend on the restrictions of the leafwise connections to I;(NN); the normal forms
amount to fixing a primitive 1-form for dx A dy. The connections can be assumed
to coincide with the normal forms. Finally the difference V; — ¥*Vs is not still
leafwise vanishing; on each normal annulus it is the differential of an (explicit)
function, and what we do is modifying accordingly Vs on Ma\lo(N).

As for dependence of the construction on choices, remark that the choice of iso-
topy classes of trivializations of the normal bundles (the framings), may affect the
diffeomorphism class of M;#,,M,. For fixed isotopy classes of trivializations of the
normal bundles, the underlying Poisson structure is unique up to Poisson diffeo-
morphism. The reason is that the leafwise symplectic form is unique up to isotopy
supported near N. This follows from an elementary argument which is going to
be used several times: because the leaves of IV have no first cohomology group the
local path of symplectomorphisms provided by Moser’s argument is Hamiltonian
([26], chapter 3). The choice of primitive Hamiltonian function can be done coher-
ently for all leaves of N. By extending the corresponding function to a global one
supported near IV, we construct a path of transformations connecting both Poisson
structures. Also, if we fix a isotopy class of lifts ¥, the 2-calibrated structure pro-
vided by the normal connected sum is unique up to equivalence. This is because
the cohomology class of the calibrating 2-form is the image in real cohomology of
the first Chern class of the bundle L, which is fixed by the choice of isotopy class
of lifts. O

Remark 2. The hypothesis needed to define normal connected sum of reqular Pois-
son manifolds are much weaker than the requirements in theorem 3. In particular
the normal bundles 1;(N), j = 1,2, are not required to be trivial, just opposite.
Triviality of the normal bundles is necessary if we want to produce an integral 2-
calibrated foliation extending the given Poisson structures II; on Mj\l;(N), j = 1,2.
The reason is that already in the symplectic setting, having non-trivial normal bun-
dle gives rise to choices in the construction which result into symplectic forms with
different volume; this is a well known issue that appears when blowing up symplectic
submanifolds ([26], chapter 7).

Perhaps the assumptions in theorem 3 can be weakened if we just require the
ezxistence of a 2-calibration on the normal connected sum.

The normal connected sum can be applied to construct integral 2-calibrated
foliations, that use as building blocks 2-calibrated foliations which are products
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and symplectic mapping tori, but which are neither products, nor cosymplectic
foliations nor symplectic bundle foliations.

Proof of proposition 1. Let (P*,Q) be an integral symplectic 4-manifold which con-
tains a symplectic sphere S? with trivial normal bundle; let A € Z be the induced
area form on the sphere. Let ¢ € Symp(P,Q) such that ¢ g> = Id; for example
¢ can be the identity. We define (M7, F1,w1) to be the symplectic mapping torus
associated to (.

Let (Ms, Fa,w2) be the product 2-calibrated foliation with factors any taut fo-
liation (Y3, F3,0) and the sphere (52, A); via a small perturbation and a rescal-
ing of o, we may take ws to be integral. Let C be a fixed transverse cycle for
(Y3, F3 o) and 0: S — C any fixed positive parametrization with respect to the
co-orientation.

Let N3 be the result of applying the mapping torus construction to Id € Symp(S?, A)
(N = S x 5?). Since ¢jg2 = 1d, there is an obvious embedding Iy : N < M;. The
embedding I5 is the product map 6 x Id: N — M,.

By construction the embeddings fulfill the hypothesis of theorem 3, so we obtain
a 2-calibrated foliation (M;#y M, F,w).

We impose the following additional constraints on the summands to make sure
that (My#y My, F,w) does not belong to the three basic families:

e (Y3, F3) contains compact and non-compact leaves.

e There is a compact leaf ¥ of (Y3, F?) which intersects C' in exactly one
point, and (P*,) is an odd Hirzebruch surface ([26], chapter 4).

e The genus of ¥ is greater than one, and 71 (Y') is not isomorphic to 71 (5! x
).

Because lo(N) intersects each leaf of (M, F2) in a unique connected component,
there is a one to one correspondence between leaves of (Y3, F3) and leaves of
(My#.4Ms, F). This correspondence sends a leaf F' of (Y3, F?) to the leaf which
contains (F x S?)\(l2(N) N (F x S5%)). Because the leaves of (Ma, F3) are compact,
the correspondence sends compact leaves to compact leaves and non-compact leaves
to non-compact leaves. Since (Y2, F?) contains compact and non-compact leaves
so does (My#4Ma, F,w), and hence it has non-trivial holonomy. Consequently,
(My#y M, F,w) cannot be a cosymplectic foliation.

Let ¥ be a compact leaf of 73 which intersects C' in one point. The correspon-
dence between leaves described in the previous paragraph sends X to a compact leaf
Fy,, which is the symplectic normal connected sum of the odd Hirzebruch surface
and (X x S, piw)s +p3A) along a symplectic sphere with trivial normal bundle. At
the differentiable level F; is the normal connected sum of the trivial S2-fibration
over ¥ and the twisted S2-fibration over S2, and hence it is the twisted S2-fibration
over ¥ (the fibers of our fibrations have a coherent orientation, since they are sym-
plectic). If Fy is diffeomorphic to a product of surfaces then we can only have
Fy, = §? x ¥; otherwise we could not have isomorphic fundamental groups. But
then Fs; would admit two different S2-fibration structures, and this is in contradic-
tion with [28]. Therefore (Mi#,Ms, F,w) cannot be a product.

If the normal connected sum is a symplectic bundle foliation 7: M #, My — X,
then Fy is a covering space of X. Because the fundamental group of Fy is the
fundamental group of X, our assumption on the genus of ¥ implies that the covering
must be trivial. Therefore 7w sends Fy; diffeomorphically onto X . This also implies
that the principal S'-bundle has a section, so M #Ms is the trivial bundle S x Fy,.
Hence 1 (Mi#Ms) is diffeomorphic to m(S* x ). But applying Seifert-Van
Kampen theorem to the open subsets M1 \l1(N), M2\l2(N) gives that w1 (M #, M)
is diffeomorphic to 1 (Y"), and this contradicts the assumption on 7 (Y).
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4. GENERALIZED DEHN SURGERY

In this section we introduce our second surgery, generalized Dehn surgery. We
give a first definition which is the most natural one from the viewpoint of folia-
tion theory. We present a second approach via handle attaching along Lagrangian
spheres; this is a very natural definition having into account the description of Leg-
endrian surgeries in contact geometry ([39], section Elementary Cobordisms). We
prove the equivalence of both constructions in theorem 4.

Generalized Dehn surgery is done, unlike normal connected sum, along a sub-
manifold inside one of the leaves. Let (M, F,w) be a 2-calibrated foliation. We
orient M so that a positive transverse vector followed by a positive basis of the leaf
with respect to the volume form w’, gives a positive basis.

Let T :=T*S™ and daay its canonical symplectic structure. Let

7T —>T

be a generalized Dehn twist. Recall that these are certain compactly supported
symplectomorphisms of (T, dacan) which induce the antipodal map on the zero
section. Let T'(A\) be the subset of cotangent vectors of length < A with respect
to the round metric. Generalized Dehn twists can be chosen to be supported in
the interior of T'(A) for any fixed A, and any two with such property are isotopic
in Symp“™P(T(X), dacan), the group of compactly supported symplectomorphisms
([36], lemma 1.10 in section 1.2). They are symplectic generalizations of Dehn
twists on T*S*.

A parametrized Lagrangian sphere L C (M, F,w) is a submanifold of a leaf F},
such that wy = 0, together with a parametrization {: S™ — L. By a theorem of
Weinstein ([26], chapter 3) there exists U a compact neighborhood of L inside FJ,
and A > 0, such that [=': L — S™ extends to a symplectomorphism

v: (Uywr) = (T(N), docan)-
Let us assume that if n = 1 the loop L has trivial holonomy; if n > 1 the absence of
holonomy is a consequence of Reeb’s theorem. In a neighborhood of L the foliation

is a product. We let R be a local positive Reeb vector field and we let &7 denote
its time ¢ flow, which by definition preserves F. Let ¢ > 0 small enough so that

PR [—e, el xU — M
(t,r) > &F(x)

is an embedding. We introduce the following notation:

Ule) := B ([—¢,¢] x U), U, .= dE(U),

Ut(e) := 7([0,e] x U), U () := dE([—¢,0] x U). (5)
The result of cutting U(e) along U is the manifold U~ (¢) [JU ¥ (¢) whose boundary
contains U~ =U x {0} C U (e), UT =U x {0} C U™ (e).

Definition 5. Let L C (M, F,w) be a parametrized Lagrangian sphere. If n =1
assume that L is a loop with trivial holonomy. Generalized Dehn surgery along L
is defined by cutting M along U as above and then gluing back via the composition

x: (U™, wr) 3 (TN, dacan) = (T(N), doean) = (UT,wr), (6)
where T is any choice of generalized Dehn twist supported in the interior of T'(\)

and we use the canonical identifications of U=, U™ with U.
We denote the resulting foliated manifold by (M*, FF).
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Proposition 2. The foliation (M*, FL) admits calibrations w™. If n > 1 then
(1) (ME, FL wl) is unique up to equivalence;
(2) [w] is integral if and only if [w*] is integral;
(3) mi(ML) = 7;(M) and H;(M';7Z) = H;(M;Z),0<i<n-—1.

Proof. We restrict our attention to U(e). After cutting U(e) along U and gluing
back using the identification x in equation (6), we obtain

Ul(e) .= U (e)#,U T (e) € M*.

Since the flow of R preserves both w and the foliation, the restriction of w to U~ (¢)
and U™ (¢) defines closed 2-forms w™ and w™ independent of the coordinate t. When
we glue U~ to U™ using Y, being this map a symplectomorphism the 2-forms w™
and w* induce on UL (e) a 2-form w’. Then

L w in ME\UL(e),
w" =
wl in UL(e)

is the desired closed 2-form.

The 2-calibrated structure we obtain is unique up to equivalence. Firstly different
identifications ¢: (U,wzr) — (T(A),docan) are related by a global Poisson diffeo-
morphism. The reason is the same as in the proof of the uniqueness statement of
theorem 3: S™, n > 1, is simply connected. Secondly generalized Dehn twists are
symplectically isotopic by an isotopy supported in a neighborhood of the sphere.
Thirdly changing the Reeb vector field amounts to a change of variable in the
coordinate ¢, and this does not modify the construction.

The calibration is a real cohomology class determined by its values on closed 2-
chains (which by a theorem of Thom are always homologous to embedded surfaces).
If n > 1 the 2-chains can be homotoped to avoid the neighborhood U(e) of the
Lagrangian sphere L, where w’ coincides with w. Hence the integrality of the
2-calibrated foliation is unaffected by the surgery.

The same general position arguments imply that maps from CW complexes of
dimension less or equal than n can be homotoped to miss U (e). Therefore homology
and homotopy groups up to dimension n — 1 are unaffected by the surgery.

O

Remark 3. A “framed” Lagrangian n-sphere [35] is a parametrized n-sphere up
to isotopy and the action of O(n + 1). Generalized Dehn twists associated to two
parametrizations defining the same “framed” Lagrangian n-sphere are isotopic, the
isotopy by symplectomorphisms supported in a compact neighborhood of the La-
grangian sphere (remark 5.1 in [35] or paragraph after lemma 1.10 in [36]). There-
fore generalized Dehn surgery is well defined for “framed” Lagrangian spheres.

Remark 4. The flow of the local Reeb vector field R can be used to displace the
Lagrangian sphere L to a new Lagrangian sphere L' inside a nearby leaf. It follows
that (M™, FL wE) and (MY, FL' W) are equivalent.

If we use instead of T its inverse, we get a 2-calibrated foliation (ML, FL~ w ™)
referred to as negative generalized Dehn surgery along L; negative generalized Dehn
surgery is generalized Dehn surgery for the opposite co-orientation.

Generalized Dehn surgery along L and negative generalized Dehn surgery along
L are inverse of each other.

4.1. Lagrangian surgery. Let L C (M,F,w) be a parametrized Lagrangian
sphere, and let v(L) and vz(L) denote respectively a tubular neighborhood of
L and a tubular neighborhood of L inside the leaf containing L. The parametri-
zed Lagrangian sphere L carries a canonical framing pur: because L is Lagrangian
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vr(L) 2 T*L and we deduce
V(L) = vr(L) ®R=T*S" R 2R ., (7)

where in the last isomorphism in (7) a positive no-where vanishing section of Rign
is sent to the outward normal unit vector field. Therefore L determines up to
diffeomorphism an elementary cobordism Z, which amounts to attaching a (n +
1)-handle to the parametrized sphere L with framing uy ([15], chapter 4). The
boundary of the cobordism is 0Z = M [[ M*-.

This subsection addresses the construction of a 2-calibrated foliation (M#L, FHrL whL)
which extends (M, F,w) on the complement of a neighborhood of L (the comple-
ment understood as a subset of both M and M#~). We do it by using the relation
between symplectic manifolds and cosymplectic foliations presented in section 2:
we have to endow the cobordism Z with a symplectic form 2 -at least in a neigh-
borhood of the (n 4 1)-handle- and a symplectic vector field Y transverse to the
boundary. This produces automatically a cosymplectic foliation on 07, and that is
how we obtain (M#t, FFL wkL). Remark that our strategy is the same one used in
contact geometry to show that surgeries along Legendrian spheres give rise to new
contact manifolds ([39], paragraph 3 in page 242).

The elementary cobordism Z is the result of gluing a (n + 1)-handle to the
trivial cobordism P; := M X [—¢,¢]. We have to define symplectic structures and
symplectic vector fields transverse to the boundary on both the trivial cobordism
and the (n + 1)-handle, in a way that is compatible with the gluing.

We start with the trivial cobordism P;: by the coisotropic embedding [12] there
is a unique choice of symplectic structure on P; which extends the given closed 2-
form w on M x {0}. We now give a specific normal form for it which is convenient for
the purpose of describing a compatible gluing with the (n+1)-handle: let us denote
H, :=v(L). Since the gluing between the trivial cobordism and the (n + 1)-handle
occurs near v(L), we can assume without loss of generality that P = Hy X [—¢,¢€].
Let (F1,w1) denote the restriction of (F,w) to Hy. We select Ry a positive Reeb
vector field on H; with dual (closed) defining 1-form «; (iga; = 1, keray = Fy).
We let v be the coordinate on the interval [—¢,¢], and we extend «; and w; to
H; x [—¢,¢] independently of v.

We define on Py

Ql = wi + d(’l)O[l),

which is a symplectic form provided ¢ is small enough.

As symplectic vector field on (Py, ;1) we take Y7 := 6%, which is transverse to
H x {—¢e} and H x {e}.

We let P; denote the (n+1)-handle. Before defining the symplectic form Q5 and
a symplectic vector field Y3 on (Ps, Q5), we address the problem of gluing symplectic
cobordisms.

Lemma 1 ([12], Extension theorem). Let (P;,Q;), j = 1,2, be symplectic mani-
folds, H; C P; hypersurfaces and Y; symplectic vector fields transverse to them, so
that we have product structures H; x [—¢,€]. Define w; = Qi aj = inQj\Hj
and F; the foliation integrating kercy;, j = 1,2. Suppose that ¢: Hy — Hy is a
diffeomorphism such that ¢*ws = w1 and ¢*as = aq (and therefore ¢*Fy = F1).
Then

¢ x Id: (Hy x [—¢e,¢e],1) — (Ha X [~€,¢],Q2)

is a symplectomorphism (obviously compatible with the symplectic vector fields).
Lemma 1 is the analog of proposition 4.2 in [39].

In our specific situation of gluing near Lagrangian spheres, the amount of infor-
mation needed to describe ¢ as in lemma 1 is much smaller.
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Corollary 1. Let (P;,Q;,H;,Y;), j = 1,2, be as in lemma 1 and assume further
that L; C H; are Lagrangian spheres and P; small tubular neighborhoods of L.
Let 0: L1 — Ly be a diffeomorphism. Then 0 extends to an isomorphism of

tuples
(P17QlyH13Y1) - (P27QQ7H23Y2)'

Proof. The symplectic vector fields give rise by contraction to closed 1-forms defin-
ing the foliations, and therefore to Reeb vector fields. We extend 6 to a symplecto-
morphism of neighborhoods of the spheres inside their leaves, and we further extend
it to ¢: (Hy1,a1,w1) — (Ha, az,ws) by declaring it to be equivariant with respect
to the Reeb flows. By construction ¢ is in the hypothesis of lemma 1.

Notice that the only choice is the identification of the symplectic neighborhoods
of Lj, j = 1,2, inside their respective leaves. O

4.1.1. The choice of symplectic form and symplectic vector field on the (n + 1)-
handle. Let W be a neighborhood of 0 € C**!. This neighborhood will contain
our (n + 1)-handle P;.

Let us consider the complex Morse function

h:C'tt — C
(215 2n41) > 254zl
We take Qo € Q2(W) to be any symplectic form of type (1,1) at the origin with
respect to the standard complex structure of C**!, and Y5 to be the Hamiltonian
vector field of —Imh.

Let us explain the reason behind the choice of (£22,Y¥3). In the construction of
the symplectic (n 4 1)-handle we have to reconcile several aspects:

The data (Py,9,Y3) has to determine the standard (n + 1)-handle: if Qo =
Qg2n+2 then Y5 is the gradient flow of —Reh with respect to the Euclidean metric,
whose dynamics determine the standard (n + 1)-handle. In lemma 2 we are going
to prove that for Q9 of type (1,1) at the origin, the Hamiltonian vector field Y5 has
a hyperbolic singularity at 0 € C**'. Therefore the flow of Y5 has both the right
dynamical behavior to construct a standard (n+ 1)-handle about 0 € C**! and the
right symplectic behavior.

The second aspect is that we want to define Lagrangian surgery along L so that
it becomes equivalent to generalized Dehn surgery. Generalized Dehn twists appear
in our current setting as follows: the origin 0 € C™*! is an isolated critical point
for h. Let h, denote the fiber h=(z) N W, 2z € C, and let Q be any closed 2-form
on W for which the fibers h, are symplectic. The annihilator with respect to 2
of the tangent space to the fibers is an Ehresmann connection for h: W\{0} — C.
Parallel transport over a path not containing the critical value 0 € C, defines a
symplectomorphism from the regular fiber over the starting point to the regular
fiber over the ending point. Seidel proves ([36], lemma 1.10 in section 1.2) that
for certain choice of closed 2-form €2, which is Kahler near the origin and for all
r € R>Y C C, parallel transport of the fiber h, over the boundary of the disk
D(r) C C counterclockwise, is conjugated to a generalized Dehn twist supported
in a given T'(\). An argument using Taylor expansions shows that for symplectic
forms of type (1,1) at the origin the fibers h, are symplectic near the origin, and
therefore there is an associated symplectic parallel transport with respect to (2s.
Besides, symplectic parallel transport with respect to 23 can be connected to sym-
plectic parallel transport with respect to €2,. The upshot is that symplectic parallel
transport over D(r) C C counterclockwise with respect to 2o can be isotoped to a
generalized Dehn twist, which is the property we need to prove the equivalence of
generalized Dehn surgery and Lagrangian surgery.
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The third aspect is that we need a flexible choice of symplectic form €25 on the
(n+1)-handle, so the cobordisms naturally associated to Lefschetz pencil structures
to be described in subsection 5.3, can be identified with Lagrangian surgery.

In the next lemma we collect some useful properties of parallel transport with
respect to forms of type (1,1) at the origin:

Lemma 2. Let Q € Q*(W) be a symplectic form of type (1,1) at the origin. Let
Y € X(W) be the Hamiltonian vector field of —Imh with respect to Q. Then the
following holds:

(1) Y is a section of Ann(Y)® which vanishes at 0 € C™+1.

(2) h.Y (p) is a strictly negative multiple of 2, where p € W\{0}, z = (z,y).

(3) Y has a non-degenerate singularity at the origin with n + 1 positive eigen-
values and n + 1 negative eigenvalues.

(4) For each r € R\{0} we have Lagrangian spheres ¥, C h, characterized as
the set of points contracting into the critical point by the parallel transport
over the segment [0,7]; the spheres come with a parametrization up