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Abstract. We define 2-calibrated structures, which are analogs of symplectic
structures in odd dimensions. We show the existence of differential topologi-

cal constructions compatible with the structure by developing an appropriate

approximately holomorphic geometry for 2-calibrated structures.
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1. Introduction and statement of results

In recent years there has been an enormous success in the study of symplectic
manifolds using approximately holomorphic methods. These methods -introduced
by S. Donaldson in 1996 [11]- amount to treating symplectic manifolds as genera-
lizations of Kähler manifolds. To this end it is convenient to think of a symplectic
manifold -once a compatible almost complex structure J has been fixed- as a Kähler
manifold (P, J,Ω) for which the integrability condition for J has been dropped.

Let M be any hypersurface of the Kähler manifold (P, J,Ω). M inherits on
the one hand a codimension one distribution D := JTM ∩ TM endowed with an
integrable almost complex structure J : D → D (i.e. a CR structure of hypersur-
face type), and on the other hand a closed 2-form ω := Ω|M which is no-where
degenerate when restricted to D. A 2-calibrated structure on M -together with a
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compatible almost complex structure- is the structure obtained when the integra-
bility assumption on J : D → D is dropped.

Let us assume that the CR distribution of the 2n+ 1-dimensional CR manifold
(of hypersurface type) (M,D, J) is co-oriented (i.e the real line bundle TM/D is
trivial and a positive side has been chosen). The Levi-form is the symmetric tensor

L : D ×D → TM/D

(u, v) −→ [U, JV ]/ ∼ ,

where U, V are local sections of D extending u, v ∈ TxM , and we consider the class
of the above Lie bracket at x in the quotient real line bundle TM/D, where we can
make sense of positive and negative values. We can distinguish several interesting
geometries according to the behavior of the Levi-form:

(1) If L is strictly positive (resp. negative) we get a strictly pseudo-convex
(resp. pseudo-concave) CR structure. If we drop J what remains is a co-
oriented contact structure (these always carry almost complex structures
along the contact distribution).

(2) If L ≡ 0 then D integrates into a codimension one foliation whose leaves
inherit a Kähler structure. If J is dropped what we obtain is a class of
regular Poisson manifolds that include mapping tori associated to sym-
plectomorphisms and more generally cosymplectic structures (defined by a
closed 1-form α and a closed 2-form ω such that α ∧ ωn is a volume form).
When n = 1 the latter are nothing but smooth taut foliations.

(3) If n = 1 and L ≥ 0, by dropping J we obtain a class of structures that
include all taut confoliations (see section 3.5 in [15]).

Definition 1.1. A 2-calibrated structure on M2n+1 is a pair (D,ω), where D is a
codimension one distribution and ω a closed 2-form no-where degenerate on D.

We call the triple (M,D,ω) a 2-calibrated manifold. We also say that ω is
positive on D. If D is integrable we speak of 2-calibrated foliations.

(M,D,ω) is said to be integral if [ω] ∈ H2(M ;R) is in the image of the integer
cohomology, in which case we choose a lift h ∈ H2(M ;Z) of [ω] that we fix once
and for all. The pre-quantum line bundle (L,∇) is the unique -up to isomorphism-
Hermitian line bundle with compatible connection with Chern class h and curvature
−2πiω.

As we saw 2-calibrated structures do contain contact structures, cosymplectic
structures and 3-dimensional taut confoliations.

A 2-calibrated manifold (M,D,ω) always admits compatible almost complex
structures J : D → D. The purpose of this paper is to explore how to adapt
approximately holomorphic geometry to the tuple (M,D,ω, J), and see how we
can apply this theory to know more about (M,D,ω).

In what follows all our manifolds will be closed and smooth, and all tensors and
maps smooth unless otherwise stated.

The first application we will obtain is an analog of the existence of transverse
cycles through any point of a 3-dimensional taut foliation.

The appropriate generalization of a transverse cycle is as follows:

Definition 1.2. W is a 2-calibrated submanifold of (M,D,ω) if TW ∩ D has
codimension one inside TW and ω is positive when restricted to it. In other words,
W must intersect D transversely and in a symplectic sub-distribution of (D,ω).

The existence of submanifolds -which extends the main result for contact mani-
folds in [24]- is the content of the following
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Proposition 1.1. Let (M2n+1, D, ω) be an integral 2-calibrated manifold and L⊗k

the sequence of powers of its pre-quantum line bundle (definition 1.1). For any fixed
point y ∈M , any m = 1, . . . , n, and any rank m complex vector bundle E →M , it
is possible to find for all k ∈ N large enough 2-calibrated submanifolds Wk of M of
codimension 2m through y with the following properties:

• The inclusion l : Wk ↪→ M induces maps l∗ : πj(Wk) → πj(M) which are
isomorphisms for j = 0, . . . , n−m−1, and an epimorphism for j = n−m.
The same result holds for the homology groups.
• The Poincaré dual of [Wk] is cm(E ⊗ L⊗k).

The submanifolds in proposition 1.1 are obtained by pulling back the 0 section
of a vector bundle. Something similar can be done with the determinantal loci of
a homomorphism of complex vector bundles (see theorem 1.6 in [31] and corollary
5.2 in [4]).

Proposition 1.2. Let (M,D,ω) be an integral 2-calibrated manifold and L⊗k the
sequence of powers of its pre-quantum line bundle. Let E, F be Hermitian vector
bundles with connections and consider the sequence of bundles Ik = E∗⊗F⊗L⊗k =
Hom(E,F ⊗ L⊗k). Then for all k ∈ N large enough there exist sections τk of Ik
for which the determinantal loci Σi(τk) = {x ∈ M | rank(τk(x)) = i} are integral
2-calibrated submanifolds stratifying M .

The Poincaré Dual of the closure of Σi(τk) is given by the Porteous formula [34]:

∆E,F⊗L⊗k,i =

∣∣∣∣∣∣∣∣∣
cn−i cn−i+1 · · ·
cn−i−1 cn−i · · ·

. . .

cn−m+1 · · · cn−i

∣∣∣∣∣∣∣∣∣ ,
where rankE = m, rankF = n, and cj is the j-th Chern class cj(F ⊗ L⊗k − E)
defined by the equality

1 + c1(F ⊗ L⊗k − E) + c2(F ⊗ L⊗k − E) + · · · =
(1 + c1(F ⊗ L⊗k) + c2(F ⊗ L⊗k) + · · · )/(1 + c1(E) + c2(E) + · · · ).

If the rank of E and F , and i are chosen so that Σi−1(τk) is empty, then Σi(τk) is
a closed 2-calibrated submanifold.

Corollary 1.1. Let (M,α), α ∈ Ω1(M), be an exact contact manifold of dimension
2n+ 1. Let E,F be complex vector bundles and let i be a positive integer such that

• The codimension in Hom(E,F ) of the strata of homomorphisms of rank i
is not bigger than 2n+ 1.

• The codimension in Hom(E,F ) of the strata of homomorphisms of rank
i− 1 is bigger than 2n+ 1.

Then there exist contact submanifolds whose Poincaré dual is ∆E,F,i. In particular,
for any even cohomology class which is a Chern class of some complex vector bundle
over M , there exist a contact submanifold Poincaré dual to it.

Remark 1.1. One is expecting that the determinantal submanifolds coming propo-
sition 1.2 will be more general than the zeroes of vector bundles coming from propo-
sition 1.1. A more detailed discussion of this issue appears in Appendix B.

The next application is an analog for 2-calibrated manifolds of the embedding
theorem for symplectic manifolds of [31] (theorem 1.2), extending results of [32] for
contact manifolds.

Corollary 1.2. Let (M2n+1, D, ω) be an integral 2-calibrated manifold. Then it is
possible to find maps φk : M → CP2n so that for all k ∈ N large enough one has:
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• dφk|D is injective (φk is an immersion along D).

• [φ∗kωFS ] = [kω], where ωFS is the Fubini-Study 2-form of CP2n.

In particular if (M3, D) is a 3-manifold with a (smooth) taut confoliation, it is
possible to find immersions along D in CP2.

The previous corollary can be improved in two directions:

Corollary 1.3. (see [31], corollary 2.6) Let (M2n+1,D, ω) be a manifold with an
integral 2-calibrated foliation. Then the maps of corollary 1.2 can be composed from
the right with diffeomorphisms of M , so that for all k ∈ N large enough the equality
[φ∗kωFS ] = [kω] holds also at the level of foliated 2-forms, i.e. φ∗kωFS |D = kw|D.

The second improvement is that the immersion along D can be perturbed to be
transverse to any finite collection of complex submanifolds of projective space.

Another application is the existence of Lefschetz pencil structures, introduced in
[23].

Definition 1.3. (see section 1 in [13]) Let (M,D,ω) be a 2-calibrated manifold
and x ∈ M . A chart ϕ : (Cn × R, 0) → (M,x) is compatible with (D,ω) (at x) if
at the origin it sends the foliation of Cn × R by complex hyperplanes into D, and
ϕ∗ω(0) restricted to the subspace Cn × {0} is of type (1,1).

Definition 1.4. (see [35]) A Lefschetz pencil structure for (M,D,ω) is a triple
(f,B,∆) whereB ⊂M is a codimension four 2-calibrated submanifold, and f : M\B →
CP1 is a smooth map such that:

(1) f is a submersion along D away from ∆, a 1-dimensional manifold trans-
verse to D where the restriction of the differential of f to D vanishes.

(2) For any x ∈ ∆ there exist a chart ϕ compatible with (D,ω) at x and a
complex coordinate ζ of CP1 defined about f(x), such that

ζ ◦ f ◦ ϕ(z, s) = (z1)
2

+ · · ·+ (zn)
2

+ t(s), (1)

where t ∈ C∞(R,C).
(3) For any x ∈ B exist a chart ϕ compatible with (D,ω) at x and a complex

coordinate ζ of CP1 defined about f(x), such that B ≡ z1 = z2 = 0 and
ζ ◦ f ◦ ϕ(z, s) = z1/z2.

(4) f(∆) is an immersed curve with generic self intersections.

Theorem 1.1. Let (M,D,ω) be an integral 2-calibrated manifold and let h be an
integer lift of [ω]. Then for all k ∈ N large enough there exist Lefschetz pencils
(fk, Bk,∆k) such that:

(1) The regular fibers are Poincaré dual to kh.
(2) The inclusion l : Wk ↪→M induces maps l∗ : πj(Wk)→ πj(M) (resp.

l∗ : Hj(Wk;Z)→ Hj(M ;Z)) which are isomorphisms for j ≤ n− 2 and an
epimorphism for j = n− 1.

All the stated results follow mostly from a general principle of (estimated) trans-
versality along D (theorems 7.1 and 7.2).

In a problem P of transversality along D we have three ingredients: (i) the
bundle E → (M,D,ω), (ii) the submanifold or more generally the stratification
S ⊂ E, and (iii) the section τ : M → E to be perturbed to become transverse along
D to S.

In section 2 we will define the class of sections and bundles we will work with, the
so called sequences of very ample bundles and approximately holomorphic sections.

As in the approximately holomorphic theory for symplectic manifolds (see [11,
4]), transversality problems will be solved by patching local solutions. The right
strategy to solve the corresponding local problems for sections is to turn them into
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local problems for approximately holomorphic functions. This will be done through
the use of reference sections, which can be thought of as the bump functions of the
theory. The necessary local analysis needed to construct such sections is developed
in section 3.

There is a second strategy to solve P. It is not only true that the natural example
of a 2-calibrated structure is a hypersurface inside a symplectic manifold, but every
2-calibrated manifold (D co-oriented) admits a symplectization (M × [−ε, ε],Ω)
(lemma 3.4). We will introduce a new transversality problem P̄ for a stratification
S̄ of a bundle Ē → (M × [−ε, ε],Ω), so that a solution τ̄ : M × [−ε, ε] → Ē to P̄
restricts to τ̄|M a solution to P. The advantage of this point of view is that since

we are in a symplectic manifold, as long as the extension P̄ falls in the right class of
problems we can use the existing approximately holomorphic theory for symplectic
manifolds to solve it. Still, the existing approximately holomorphic theory turns
out not to be enough for our purposes, so we need to develop further the relative
approximately holomorphic theory introduced by J.P. Mohsen [30]. We will make
an exposition of both the intrinsic and the relative approximately holomorphic
theories, and we will prove the main transversality theorem using the latter.

In section 4 we give an account of the notion of estimated transversality of a
section along a distribution. For the intrinsic theory (problem P) the distribution
will be D, whereas for the relative theory the problem P̄ will amount to achieving
transversality over M ⊂ (M × [−ε, ε],Ω). We will also introduce the right class
of stratifications S (already defined in the symplectic setting in [4]), the so called
approximately holomorphic finite Whitney stratifications, whose strata roughly be-
have as the zero section of a vector bundle in the sense that locally they will be
given by approximately holomorphic functions and they will be transverse enough
to the fibers. The fundamental technical result (lemma 4.5) will be that locally
estimated transversality along D (resp. over M) of an approximately holomorphic
section to S (resp. S̄), will be equivalent to estimated transversality along D (resp.
over M) to 0 of a related Cl-valued approximately holomorphic function.

Section 5 is devoted to the study of bundles of pseudo-holomorphic jets, needed to
obtain what we call generic approximately holomorphic maps to projective spaces,
constructed by projectivizing (m+1)-tuples of approximately holomorphic sections
of powers of the pre-quantum line bundle L⊗k (i.e. analogs of generic linear systems
in complex geometry); genericity will be defined as the solution of a uniform strong
transversality problem to a stratification S in these bundles of pseudo-holomorphic
jets. Several difficulties have to be overcome. Firstly, since we want to obtain a
strong transversality result the jet of the section to be perturbed has to be itself an
approximately holomorphic section, so that the transversality problem falls in the
right class, something which fails to hold due to the uniform positivity along D of
the sequence L⊗k. This is solved by introducing a new connection in the bundles of
pseudo-holomorphic jets. Secondly, we need to define a stratification S of the right
kind. This is done in section 6 by introducing the bundles of pseudo-holomorphic
jets for maps to projective spaces, and defining there PS -a “linear” analog of
the Thom-Boardman stratification-; S is then constructed by pulling back PS by
the corresponding jet extension of the projectivization map π : Cm+1\{0} → CPm.
The properties of both the map and of PS are used to conclude that S is indeed
of the right kind, and thus the transversality problem falls in the right class. The
necessary modifications for the relative theory are also described.

In section 7 we give the main strong transversality result.
The proofs of the theorems stated in this introduction are given in section 8.
Our results are based on the existence of plenty of approximately holomorphic

sections of very ample line bundles. In the integrable setting the existence of enough
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meromorphic functions/holomorphic sections has been used to prove results of sim-
ilar nature to ours:

(i) In [16] E. Ghys gave conditions on a compact space laminated by Riemann
surfaces for the existence of plenty of meromorphic functions. More ge-
nerally, B. Deroin has extended those results to laminations by complex
leaves without vanishing cycle, and endowed with positive Hermitian line
bundles [10]. The work of Ghys and Deroin proves the existence of leafwise
holomorphic embeddings into projective spaces of the aforementioned la-
minated spaces (compare with corollary 1.2), though the maps -even in the
case of smooth foliations- are in general only continuous in the transverse
directions. The strategy they follow is working in the universal cover of the
leaves of the lamination. Interestingly enough, Deroin’s results are obtained
by extending some techniques of approximately holomorphic geometry to
the leaves, which are open Kähler manifolds with bounded geometry.

(ii) In [33] Ohsawa and Sibony gave a solution to the tangential Cauchy-Riemann
equation with L2-estimates for sections of a positive CR line bundle over
a Levi-flat compact manifold. As a consequence they were able to produce
CR embeddings into projective space of any prescribed order of regularity
(though in general non-smooth).

Part of the results of the present paper were announced in [22, 23] (proposition
1.1, corollary 1.2, corollary 1.3, theorem 1.1 and theorem 7.1), where an account
of the results available through an intrinsic approximately holomorphic theory was
presented.

While a more detailed study of 2-calibrated structures is feasible, we do not
think the results that could be obtained would be relevant enough to justify its
undertaking.

There are two main reasons to develop an approximately holomorphic theory
for 2-calibrated structures. The first one is because they contain contact structures
and 2-calibrated foliations. Approximately holomorphic geometry has already been
introduced in the contact setting [24, 35, 30, 32]. Its most important application
has been the construction of compatible open book decompositions for contact
manifolds of arbitrary dimension [17]. Our contribution in this paper to contact
geometry is the construction of a large class of contact submanifolds and the deter-
mination of their homology class (corollary 1.1). We want to propose 2-calibrated
foliations as an interesting higher dimensional generalization of 3-dimensional taut
foliations. In [26] -and building on the results of this paper- it is shown that any such
foliation (M,D, ω) contains a 3-dimensional taut foliation (W 3,DW ) ↪→ (M,D) so
that the inclusion descends to a homeomorphism between leaf spaces. This is done
by showing that W 3 can be chosen to intersect each leaf of (M,D) in a unique con-
nected component; this is somehow surprising since often the leaves are immersed
submanifolds dense in M .

The second reason to develop an approximately holomorphic theory for 2-calibrated
structures is that sometimes they appear as auxiliary structures. If M is an odd
dimensional manifold and ω a maximally non-degenerate closed 2-form, any distri-
bution D complementary to the kernel of ω endows M with a 2-calibrated structure.
In [27] this idea was applied to almost contact manifolds to construct (via approxi-
mately holomorphic theory) open book decomposition with control on the topology
of the leaves (see also [36]).

If (M,D, J) ↪→ (CPN , ωFS) is a CR manifold of hypersurface type which has a
CR embedding in projective space, then in [25] we show that the constructions of
this paper can be performed in the CR category. In particular CR Lefschetz pencils
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are constructed, yielding CR Morse functions defined away from a CR submanifold
of base points.

All the applications outlined so far for contact manifolds, 2-calibrated foliations,
and projective CR manifolds use at most pseudo-holomorphic 1-jets. If the CR
manifold is Levi-flat then it makes sense to speak about r-generic CR functions.
These are defined to be leafwise r-generic holomorphic functions, i.e. functions
whose leafwise holomorphic r-jet is transverse to the Thom-Boardman stratification
of the bundle of holomorphic r-jets over each leaf. In [25] we show that Levi-
flat CR manifolds embedded in projective space admit for all k � 1 r-generic
linear systems. These are (holomorphic) linear systems of O(k) → CPN of rank
m(r) whose restriction to M define r-generic CR functions away from base points
(definition 5.1). Briefly, such functions are easily seen to be CR functions whose
CR r-jet prolongation solve Pint a transversality problem over the leaves of the
foliation D in the bundle of CR r-jets of CR maps from M to CPm(r). One has
to show that it can be “linearized” to a transversality problem Plin, (the bundle,
the stratification, and the notion of CR r-jet all have to be replaced by “linear”
analogs) that fits into the ones solved in theorem 7.2; solutions are shown to exist
among restrictions of holomorphic sections O(k). Finally, it has to be checked that
the CR solution to Plin is also a solution of Pint.

We think that the existence of r-generic linear systems for projective Levi-flat CR
manifolds is a relevant result by itself and justifies the extension of the approxima-
tely holomorphic theory to higher order jet bundles, which is technically awkward.
We expect it to be useful to analyze such manifolds. For example one can use it to
define r-generic functions f : (M2n+1,D, J)→ CPn (with no base points) for which
the regular level sets are unions of circles (with variable number of components),
and using the analysis of the singularities define a dynamical system transverse to
D (at least for low values of n ≥ 2); by iterating the Lefschetz pencil construction
(the dimensional induction of [6], section 5) one can also define maps to CPn−1

whose fibers (by [26]) are 3-manifolds intersecting each leaf of D in a connected
Riemann surface.

We point out that the results in [25] do not include those of Ghys and Deroin
[16, 10] and those of Ohsawa and Sibony [33]. Our results require starting with a
CR embedding into projective space ([33] gives sufficient conditions to produce it).

1.1. Acknowledgements. I wish to express my gratitude to Alberto Ibort for the
numerous fruitful conversations that helped to improve many aspects of this work.
It is also my pleasure to thank Denis Auroux, Vicente Muñoz, Fran Presas and
Ignacio Sols for their helpful comments, and Étienne Ghys for kindly pointing me
to very relevant literature on the subject. I am also grateful to the referees for their
valuable comments and suggestions.

2. Ample bundles and approximately holomorphic sections

Let (M,D,ω) be an integral 2-calibrated manifold. Let us fix once and for
all a compatible almost complex structure J : D → D, and a metric g so that
g|D = ω(·, J). The kernel of ω is required to be g-orthogonal to D, so as to make
some of the computations in the local theory simpler. Notice that for any such
metric the closed 2n-form ωn is a calibration for D [21].

If we forget about the 2-form what remains is the following structure.

Definition 2.1. An almost CR structure is a tuple (M,D, J, g) where D is a
codimension one distribution, J : D → D an almost complex structure, and g
a metric whose restriction to D is compatible with J (J is g-orthogonal and g-
antisymmetric).
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Let (L,∇)→M be any Hermitian line bundle -or more generally vector bundle-

with compatible connection. Let D̂ denote the pullback to L of D; let Ĵ and ĝ
be the almost complex structure and metric on L, which extend the Hermitian
structure on the fibers and are defined on the horizontal distribution associated to
∇ by pulling back J and g respectively. Then (L, D̂, Ĵ , ĝ) is an almost CR manifold.

Our goal is to be able to construct sections τ : M → L which (i) are close enough

to satisfying τ∗J = Ĵτ∗ (for which we use the adjective almost holomorphic instead
of almost CR to be consistent with the terminology of [24] and [35]), and (ii)
transverse to suitable submanifolds of the total space of L. In the almost complex
setting we know that what ensures their existence is roughly speaking asking the
curvature of the connection to be of type (1,1) and positive.

Definition 2.2. (see [4], definition 2.1) Given c > 0, δ ≥ 0, a Hermitian line bundle
with compatible connection (L,∇)→ (M,D, J, g) is (c, δ)-ample (or just ample) if

its curvature F verifies iF (v, Jv) ≥ cg(v, v),∀v ∈ D, and |F|D − F 1,1
|D |g ≤ δ, where

we use the supremum norm.
A sequence (Lk,∇k) of Hermitian line bundles with compatible connections is

asymptotically very ample (or just very ample) if fixed constants c > 0, δ, (Cj)j≥0 ≥
0 exist, so that for all k � 1 the following inequalities for the curvatures Fk hold:

(1) iFk(v, Jv) ≥ ckg(v, v),∀v ∈ D.

(2) |Fk|D − Fk1,1
|D |g ≤ δk

1/2.

(3) |∇jFk|g ≤ Cjk.

Another motivation for the previous definition is the case of Levi-flat CR mani-
folds, where according to the results of Ohsawa and Sibony [33] leafwise positivity
grants the existence of plenty of CR sections (with an appropriate twisting by a
line bundle).

The fundamental example of an ample bundle is the pre-quantum line bundle
L of an integral 2-calibrated manifold (M,D,ω) (with c = 2π, δ = 0). Its tensor
powers L⊗k define a very ample sequence of line bundles.

From now on we will only consider almost CR structures on 2-calibrated mani-
folds defined by compatible almost complex structures and metrics. Similarly, we
will only consider the very ample sequence L⊗k.

For any τk ∈ Γ(L⊗k) we use J to split the restriction of ∇τk to D

∇Dτk = ∂τk + ∂̄τk, ∂τk ∈ Γ(D∗1,0 ⊗ L⊗k), ∂̄τk ∈ Γ(D∗0,1 ⊗ L⊗k).

We can see ∂̄τk as a section of T ∗M ⊗L⊗k by declaring it to vanish on D⊥, and
then use the Levi-Civita connection on T ∗M to define∇r−1∂̄τk ∈ Γ(T ∗M⊗r⊗L⊗k).

Let us denote the rescaled metric kg by gk.

Definition 2.3. A sequence of sections τk of L⊗k is approximately J-holomorphic
(or approximately holomorphic or simply A.H.) if positive constants (Cj)j≥0 exist

such that

|∇jτk|gk ≤ Cj , |∇j−1∂̄τk|gk ≤ Cjk−1/2.

If we want to make the bounds explicit speak of an A.H.(Cj) sequence.

Remark 2.1. The original notion of A.H. sequence introduced in [24, 35] is a bit
more general than definition 2.3. The difference -as well as the fact that only a finite
number of derivatives were taken into account- is that the direction orthogonal to
D had a different treatment. The main theorem of [24] produced appropriate A.H.
sequences of sections with good control on any finite number of derivatives along
D, but little along D⊥. Using the relative theory one can obtain solutions with
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control in all directions, so we can avoid using the technically more complicated
definition of [24, 35].

3. The local approximately holomorphic theory

Maybe the most important idea on Donaldson’s work [11] was the construction
of localized A.H. sections (inspired in the work of Tian [38]) by adopting a unitary
point of view instead of a holomorphic one. The use of a unitary connection in
a Darboux chart allowed him to find a model for the coupled Cauchy-Riemann
equation invariant under rescaling -provided one worked in the appropriate tensor
power of the pre-quantum line bundle- and explicitly write concentrated solutions
giving rise to the so called reference sections.

The local approximately holomorphic theory, both using an intrinsic construction
or the symplectization to be introduced in subsection 3.1, is based on the choice of
appropriate families of charts. In the intrinsic local theory we need as well a local
model for the coupled Cauchy-Riemann equations and a good choice of explicit
solution.

For 2-calibrated manifolds the local model for the intrinsic approximately holo-
morphic theory -that can only be achieved asymptotically when k → ∞- is the
following:

• The domain is Cn × R, with coordinates z1, . . . , zn, s (sometimes we write
them as x1, . . . , x2n+1 or x1, . . . , x2n, s).

• The distribution Dh is the tangent space to the level hyperplanes of the
vertical or real coordinate s.

• The identification of each leaf with Cn means that we have fixed the leafwise
standard almost complex structure J0.

• The metric is the Euclidean one g0 with Levi-Civita connection d (usual
partial derivatives), and the distance is the Euclidean norm | · |.

• The 2-form in the fixed coordinates is required to be

ωstd =
i

2

n∑
i=1

dzi ∧ dz̄i. (2)

• We ask for a choice of unitary trivialization of the line bundle whose con-
nection form is

A =
1

4

n∑
i=1

zidz̄i − z̄idzi. (3)

In RN with coordinates x1, . . . , xN let Rp denote the distribution by p-planes
span < ∂/∂xi1 , . . . , ∂/∂xip >, 1 ≤ i1 < · · · < ip ≤ N ; its Euclidean orthogonal
is denoted by RN−p. If we have a distribution D′ of dimension p in RN which is
transverse to RN−p, we can measure its distance to Rp to order j with respect to the
flat connection d as follows: D′ can be identified with an element of Hom(Rp,RN−p).
We let vil , l = 1, . . . , p, be the vector field in RN−p such that ∂/∂xil + vil ∈ D′.
Then we define

|dj(Rp −D′)|g0 = max{|djvi1 |g0 , . . . , |d
jvip |g0},

which by definition is coordinate dependent.
In the previous local model let us denote the line field spanned by ∂/∂s by Dv.

According to the previous paragraph we can measure the distance in Cn×R to Dh

(resp. Dv) of any codimension one (resp. dimension one) distribution transverse
to Dv (resp. Dh).

Definition 3.1. Let ϕk,x : (Cn × R, 0) → (Uk,x, x), for all x ∈ M and all k �
1, be a family of charts with coordinates z1

k, . . . , z
n
k , sk. We call them a family
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of approximately holomorphic coordinates if there exist constants independent of
k, x (uniform) so that the following estimates hold for all k � 1 at the points of
B(0, ρk1/2), ρ > 0:

(1) The Euclidean and the induced metric are comparable to any order, i.e.

1

γ
g0 ≤ gk ≤ γg0, γ > 0, and |∇jϕ−1

k,x|g0 ≤ O(k−1/2),∀j ≥ 2,

where ∇ denotes the Levi-Civita connection with respect to g.
(2) The kernel of ω, which is D⊥, is sent to a line field ϕ∗k,xD

⊥ transverse to
Dh and such that

|ϕ∗k,xD⊥ −Dv|g0 ≤ |(zk, sk)|O(k−1/2),

|dj(ϕ∗k,xD⊥ −Dv)|g0 ≤ O(k−1/2), ∀j ≥ 1.

The pullback of D is transverse to Dv and

|ϕ∗k,xD −Dh|g0 ≤ |(zk, sk)|O(k−1/2),

|dj(ϕ∗k,xD −Dh)|g0 ≤ O(k−1/2), ∀j ≥ 1.

(3) Regarding the antiholomorphic components,

|∂̄ϕ−1
k,x(zk, sk)|g0 ≤ |(zk, sk)|O(k−1/2),

|∇j ∂̄ϕ−1
k,x(zk, sk)|g0 ≤ O(k−1/2),∀j ≥ 1,

where ∂̄ϕ−1
k,x is the antiholomorphic component of ∇D(πDh

◦ ϕ−1
k,x), with

πDh
: Cn × R→ Cn the projection onto the first factor.

We speak of Darboux coordinates when the additional condition ϕ∗k,xkω = ω0

holds.

Remark 3.1. According to condition (2) (resp. (3)) we have ϕ∗k,xD = Dh,

ϕ∗k,xD
⊥ = Dv (resp. ϕ∗k,xJ = J0) at the origin. For most of our constructions it is

enough to require the equality up to a summand of size O(k−1/2) at most, but since
these equalities are needed to prove results concerning pseudo-holomorphic jets (in
particular the identities concerning local representations and subsets of transverse
holonomy of lemma 6.2) we choose to ask for them from the very beginning.

Remark 3.2. If we are in an almost complex manifold then conditions (1) and (3)
((2) makes no sense) recover the notion of approximately holomorphic charts (resp.
Darboux charts if we add the Darboux condition on the 2-form).

A chart centred at a point for which the Darboux condition holds can always be
obtained: (M,D,ω) is a coisotropic submanifold of its symplectization, as defined
in lemma 3.4. The local normal form theorem for coisotropic submanifolds ([39],
theorem 3.4.10) provides such a chart. Families of Darboux charts can be construc-
ted using the same local normal form. Since this would fall into the relative theory
we prefer to give a different proof.

Lemma 3.1. Let (M,D,ω) be a (compact) 2-calibrated manifold (with J , g already
fixed). Then a family of Darboux charts can always be constructed.

Proof. Let us fix a family of charts ψx : R2n+1 → Ux depending smoothly on x,
where x ∈M1 a small enough subset of M , so that ψ∗xD = Dh, ψ∗xD

⊥ = Dv at the
origin. Denote by x1, . . . , x2n, s the coordinates on R2n+1. We compose ψx with the
diffeomorphism Θx : R2n+1 → R2n+1 which is the identity on R2n × {0}, preserves
setwise the horizontal foliation Dh and sends Kerψ∗xω to Dv. The diffeomorphisms
Θx depend smoothly on x.
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Now we fix J0 to identify R2n+1 with Cn × R and compose with an element
of Gl(2n,R) ⊂ Gl(2n + 1,R) (again depending smoothly on x ∈ M1), so that we
obtain charts ϕx for which the pullback of J at the origin equals J0.

By compactness M can be covered with a finite number of subsets M1, . . . ,Mh

in which the above charts can be constructed. In this way we obtain charts centred
at every x ∈ M (we might have more than one chart for each x ∈ M , but that is
not relevant) so that the bounds on tensors pulled back from M to a ball of fixed
radius in the domain of the charts will not depend on x.

We define ϕk,x to be the composition ϕx◦γk−1/2 , where γk−1/2 : Cn×R→ Cn×R
is the homothety by factor k−1/2. The equalities at the origin together with the
smooth dependence on x of the constructions previous to the rescaling, imply that
we have obtained approximately holomorphic coordinates.

To obtain Darboux charts we need to modify ϕk,x as follows: we apply Dar-
boux’ lemma with estimates (lemma 2.2 in [4]) to the almost complex manifolds
(Cn × {0}, ϕ∗k,xJ|Cn×{0}, ϕ

∗
k,xg|Cn×{0}) and the 2-forms ϕ∗k,xω|Cn×{0}. We get dif-

feomorphisms Ψk,x on this leaf that are extended to Cn × R independently of the
vertical coordinate sk. The bounds on Ψk,x and their derivatives coming from
lemma 2.2 in [4] imply that the compositions ϕk,x ◦ Ψk,x : (Cn × R, 0) → (Uk,x, x)
still define approximately holomorphic coordinates. Moreover, we can assume
(ϕk,x ◦Ψk,x)∗J = J0 at the origin.

Since ∂/∂sk generates the kernel of

(ϕk,x ◦Ψk,x)
∗
ω =

∑
1≤i<l≤2n

ωildx
i
k ∧ dxlk +

∑
1≤i≤2n

ωidx
i
k ∧ dsk,

all ωi vanish. Closedness implies that each function ωil is independent of sk. There-
fore (ϕk,x ◦Ψk,x)

∗
ω is determined by its restriction to Cn × {0}, which by cons-

truction is ωstd|Cn×{0}. Thus, ω is sent to ωstd. �

Darboux charts are useful because there local computations become simpler.
Let dk denote the distance defined by the metric gk.
Recall that in the domain of a Darboux chart we can always fix ξk,x a unitary

trivialization of L⊗k whose connection form is A (equation (3)).

Lemma 3.2. Let ϕk,x : (Cn ×R, 0)→ (Uk,x, x) be a family of Darboux charts with

coordinates x1
k, . . . , x

2n
k , x

2n+1
k . Let F be a bundle associated to either TM or D

and let Fk,x → B(0, ρk1/2) ⊂ Cn × R denote the pullback of F by ϕk,x. Associated
to the Darboux coordinates there is a canonical trivialization ζk,x,j of Fk,x. Let Tk
be a sequence of sections of F ⊗L⊗k and use the frames ζk,x,j⊗ξk,x to write ϕ∗k,xTk
locally as a function T ′k,x. Let Pj be a polynomial such that for any multi-index α

of length j = 0, . . . , r, at the points of B(0, ρk1/2) and for all k � 1 we have:∣∣∣∣ ∂

∂xαk
T ′k,x

∣∣∣∣
g0

≤ Pj(|(zk, sk)|)O(k−1/2).

Then |∇rTk(y)|gk ≤ Qr(dk(x, y))O(k−1/2), where the polynomial Qr depends only
on P1, . . . , Pr. Conversely, from bounds using the global metric elements gk, dk,∇
we obtain similar bounds for the local Euclidean elements.

Proof. This is a simple calculation based on items (1) and (2), and in the Darboux
condition in definition 3.1. Also notice that the presence of the connection form
and its derivatives is absorbed by the polynomial, since |A| ≤ O(|(zk, sk)|) and its
derivatives are of order O(1). �

Remark 3.3. Lemma 3.2 admits different modifications. It holds in a similar
fashion for bounds of order O(1) instead of order O(k−1/2); also for sections Tk of
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F instead of F ⊗ L⊗k (with Fk,x locally trivialized by ζk,x,j); it is also possible to

consider the inequalities in the ball of (uniform) radius ρ > 0, rather than ρk1/2.
There is also a version for symplectic manifolds.

Let ∂̄0 denote the (0,1)-component with respect to J0 : Cn ×R→ Cn ×R of the
leafwise derivation operator dDh

.

Lemma 3.3. Let ϕk,x : (Cn ×R, 0)→ (Uk,x, x) be a family of Darboux charts with

coordinates x1
k, . . . , x

2n
k , sk. Let Lk,x → B(0, ρk1/2) ⊂ Cn×R denote the pullback of

L⊗k by ϕk,x. Let τk be a sequence of sections of L⊗k such that ϕ∗k,xτk = fk,xξk,x. Let
Pj , Pj′ be polynomials such that for any multiindices α, β of length j = 0, . . . , r−1,

and j′ = 0, . . . , r, respectively, at the points of B(0, ρk1/2) and for all k � 1 the
following inequalities hold:

∣∣∣∣∣ ∂∂xβk fk,x
∣∣∣∣∣
g0

≤ P ′j(|(zk, sk)|)O(1). (4)∣∣∣∣ ∂

∂xαk
(∂̄0 +A0,1)fk,x

∣∣∣∣
g0

≤ Pj(|(zk, sk)|)O(k−1/2). (5)

Then we have

|∇rτk(y)|gk ≤ Q′r(dk(x, y))O(1), (6)

|∇r−1∂̄τk(y)|gk ≤ Qr−1(dk(x, y))O(k−1/2), (7)

where the polynomial Qr−1 (resp. Q′r) depends only on P1, . . . , Pr−1, P
′
1, . . . , P

′
r

(resp. P ′1, . . . , P
′
r). Conversely, from bounds using gk, dk,∇, J we obtain similar

bounds for g0, | · |,d +A, J0.

Proof. The equivalence between equations (4) and (6) is the content of lemma 3.2,
but for bounds of order O(1) (see remark 3.3). The equivalence of equations (4), (5)
and equations (6), (7) follows again easily from the properties of Darboux charts.
We sketch the case r = 1.

From now on ϕ∗k,xJ, ϕ
∗
k,xD,ϕ

∗
k,xgk, and all the tensors and sections pulled back

to the domain of the charts will be denoted by J,D, gk, . . . whenever there is no
risk of confusion.

Let ei be any of the local vector fields associated to the first 2n coordinates. By
condition (2) in definition 3.1 there exists ui a local vector field such that ei +ui is
tangent to D and

|ui|g0 ≤ |(zk, sk)|O(k−1/2), |djui|g0 ≤ O(k−1/2), j ≥ 1. (8)

The endomorphism J is defined on D. We can use the orthogonal projection w.r.t
g0 onto Dh to induce out of J another almost complex structure JDh

: Dh → Dh.
Condition (3) in definition 3.1 implies that

|J0 − JDh
|g0 ≤ |(zk, sk)|O(k−1/2), |dj(J0 − JDh

)|g0 ≤ O(k−1/2), j ≥ 1. (9)

By definition ∂̄ei+uiτk = 1/2∇ei+uiτk + i/2∇J(ei+ui)τk.
Equation (8) combined with lemma 3.2 implies

|∇uiτk|gk ≤ P ′1(dk(x, y))O(k−1/2).

Again equations (8) and (6), condition (3) in definition 3.1, and lemma 3.2 imply

|∇J(ei+ui)τk −∇Jheiτk|gk ≤ P
′′
1 (dk(x, y))O(k−1/2).



THE GEOMETRY OF 2-CALIBRATED MANIFOLDS 13

Therefore the bounds in equation (7) we want for ∂̄ei+ui
τk are equivalent to the

same kind of bounds for

1/2∇eiτk + i/2∇Jheiτk,
and by equation (9) for

1/2∇eiτk + i/2∇J0eiτk,
and by definition

1/2∇eiτk + i/2∇J0eiτk = ((∂̄0 +A0,1)eifk,x)ξk,x.

Bounds for higher order derivatives are proven similarly. �

Definition 3.2. (see [4], definition 2.2) A sequence of sections of L⊗k has Gaussian
decay with respect to x if there exist polynomials (Pj)j≥0 and a constant λ > 0, so
that ∀y ∈M and ∀j ≥ 0

|∇jτk(y)|gk ≤ Pj(dk(x, y))e−λdk(x,y)2 .

The main purpose of the use of Darboux charts is the construction of reference
sections τ ref

k,x.

Corollary 3.1. Let (M,D,ω) be a compact 2-calibrated manifold. Then for all
x ∈M A.H. sections τ ref

k,x with Gaussian decay with respect to x can be constructed.
The bounds are uniform on k, x and these sections have norm greater than some
constant κ in Bgk(x, ρ), where κ, ρ > 0 are uniform on k, x.

Proof. We follow Donaldson’s ideas in [11], section 2. Let us fix Darboux charts
and ξk,x trivializations of L⊗k for which the connection form is A. Let β be a
standard cut-off function of a single variable, with β(t) = 1 when |t| ≤ 1/2 and
β(t) = 0 when |t| ≥ 1.

Define βk(zk, sk) = β(k−1/6|(zk, sk)|).
In the points where the derivatives of βk do not vanish we have |(zk, sk)| ≥ Ck1/6,

C uniform (on k, x). Using this inequality we deduce

|dβk|g0 ≤ |(zk, sk)|2O(k−1/2),

|d2βk|g0 ≤ |(zk, sk)|O(k−1/2),

|djβk|g0 ≤ O(k−1/2), j ≥ 3. (10)

Consider the function f(zk, sk) = e−|(zk,sk)|2/4. We have

∂̄0f +A0,1f = 0. (11)

The reference sections are

τ ref
k,x := βkfξk,x. (12)

Equation (10) implies that for any multi-index α of length j ≤ r,∣∣∣∣ ∂

∂xα
βkf

∣∣∣∣
g0

≤ Pj(|(zk, sk)|)|f |O(1).

Therefore, lemma 3.2 for bounds of type e−λ
′|(x,y)|2O(1), λ′ > 0, gives the Gaussian

decay with respect to x:

|∇rτ ref
k,x(y)|gk ≤ Qr(dk(x, y))e−λdk(x,y)2O(1), λ > 0,

where λ appears when relating the distance induced by g and g0. The Gaussian
decay also implies

|∇rτ ref
k,x|gk ≤ O(1).
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The bound for |∇r−1∂̄τ ref
k,x|gk is obtained using the same ideas: from equations

(10) and (11) it follows that for any multi-index α of length j ≤ r − 1∣∣∣∣ ∂

∂xα
(∂̄0 +A0,1)βkf

∣∣∣∣
g0

≤ Pj(|(zk, sk)|)|f |O(k−1/2).

Lemma 3.3 for bounds of type e−λ
′|(x,y)|2O(1), e−λ

′|(x,y)|2O(k−1/2), λ′ > 0 (in
equations (4) and (5) resp.), gives for some λ > 0

|∇r−1∂̄τ ref
k,x|gk ≤ Qr(dk(x, y))e−λdk(x,y)2O(k−1/2) ≤ O(k−1/2).

The existence of constants κ, ρ > 0 such that |τ ref
k,x| ≥ κ in Bgk(x, ρ), can be

easily checked. �

We observe that many of the inequalities we are using (for global tensors) have
the same pattern. We will introduce a definition that will avoid the excessive
appearance in the notation of such inequalities.

Let E be a Hermitian bundle with connection, F a bundle associated either to
TM or to D, and let Ek denote the sequence F ⊗ E ⊗ L⊗k.

Definition 3.3. Let Tk,x, x ∈ M , be a family of sequences of sections of Ek. We
say that Tk,x is Cr-approximately vanishing (or that the sequence vanishes in the
Cr-approximate sense) and denote it by Tk,x ur 0, if positive constants C0, . . . , Cr
exist so that

|∇jTk,x|gk ≤ Cjk−1/2, j = 0, . . . , r. (13)

There is an analogous definition for sequences Tk of sections of Ek (i.e. without
extra dependence on the point x ∈M).

Using the above language one of the conditions for a sequence τk of L⊗k to
be A.H. (definition 2.3) is that ∂̄τk ∈ Γ(D∗0,1 ⊗ L⊗k) has to be approximately
vanishing.

Remark 3.4. Given τk an approximately holomorphic sequence of sections of L⊗k,
we have defined ∇r−1∂̄τk ∈ T ∗M⊗r ⊗ L⊗k by taking covariant derivatives of ∂̄τk
thought of as a section of T ∗M ⊗L⊗k. We might have equally defined ∇r−1∂̄τk as
the image of ∇rτk by the projection p̄r : T ∗M⊗r⊗L⊗k → T ∗M⊗r−1⊗D∗0,1⊗L⊗k,
for using Darboux charts and lemmas 3.2 and 3.3 (with the inequalities |∇jτk|gk ≤
O(1), j ≥ 0), one checks that ∂̄τk u 0 if and only if |p̄j(∇jτk)|gk ≤ O(k−1/2), j ≥ 1.

3.1. Relative approximately holomorphic theory and symplectizations.

Definition 3.4. Let (P,Ω) be a symplectic manifold and (M,D,ω) a 2-calibrated
manifold. We say that l : M ↪→ P embeds M as a 2-calibrated submanifold of P if
l∗Ω = ω.

Lemma 3.4. Let (M,D,ω) be a compact co-oriented 2-calibrated manifold. Then
it is possible to define a symplectization so that (M,D,ω) embeds as a 2-calibrated
submanifold. Any fixed compatible almost complex structure and metric can be ex-
tended to a compatible almost complex structure and metric in the symplectization.

Proof. Let J and g be fixed compatible almost complex structure and metric. The
symplectization (M×[−ε, ε], J, g,Ω) is constructed as follows: let t be the coordinate
of the interval. Let α be the unique 1-form of pointwise norm 1 (and positively
oriented) whose kernel is D. The closed 2-form Ω is defined to be ω+ d(tα), where
α and ω represent the pullback of the corresponding forms to M × [−ε, ε]. If ε is
chosen small enough then Ω is symplectic.

In the points of M the almost complex structure is extended by sending the
positively oriented g-unitary vector in D⊥ to ∂/∂t; in those points ∂/∂t is also
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defined to have norm 1 and to be orthogonal to TM . It is routine to further extend
J to a compatible almost complex structure on the symplectization. The metric
defined by Ω and the almost complex structure also extends g. We will not use
different notation for the extension of the almost complex structure and metric if
there is no risk of confusion.

We also fix G a J-complex distribution on the symplectization restricting to D
at the points of M . To do that we choose any line field that at the points of M
contains ∂/∂t; this line field spans a complex line field. Its orthogonal with respect
to g is by construction J-complex and extends D. �

Remark 3.5. We want to work out a relative theory for embeddings in arbitrary
symplectic manifolds -not just in symplectizations- because of our applications to
CR manifolds, where we need an ambient complex manifold with plenty of holo-
morphic sections.

Let (M,D,ω) be a 2-calibrated submanifold of (P,Ω). Let us fix J a compatible
almost complex structure on (P,Ω) so that D is J-invariant, and let us define
g = Ω(·, J ·). The restriction of (J, g) to (M,D) induces an almost CR structure.
We also choose G a J complex distribution that coincides with D at the points of
M . The main example to have in mind is the symplectization of (M,D,ω) with an
almost complex structure as defined in lemma 3.4.

We have at our disposal the approximately holomorphic theory for symplectic
manifolds [4]. At this point we pause to warn the reader that throughout this sub-
section and the rest of the paper we will be using A.H. sequences of sections defined
in both 2-calibrated (definition 2.3) and symplectic manifolds (see definitions in [4]
or definition 2.3 for an almost complex base space). Whenever there is no risk of
confusion about the base space we will just speak about A.H. sequences of sections.

Let (LΩ,∇) → (P,Ω) be the pre-quantum line bundle. Its powers (L⊗kΩ ,∇k)
define a very ample sequence of line bundles (in the sense of [4]), which restricts to
a very ample sequence of line bundles (L⊗k,∇k)→ (M,D, J, gk) (definition 2.2).

One expects that if τk ∈ Γ(L⊗kΩ ) is a (symplectic) A.H. sequence of sections,
then τk|M : M → L⊗k is also an A.H. sequence of sections (definition 2.3). Even
more, we will see that it is possible to construct reference sections by restricting
(symplectic) reference sections centred at points of M . The key point to prove
these results is the choice of appropriate charts.

Recall that in Cp = R2p we denote the foliation whose leaves are associated to
g distinguished complex coordinates (resp. d distinguished real coordinates) by Cg
(resp. Rd); its Euclidean orthogonal is denoted by Cp−g (resp. R2p−d). From now
on if we compare the distance of Cg to any distribution of the same dimension, we
will assume the latter to be transverse to Cp−g.

Definition 3.5. Let (P,Ω) be a compact symplectic manifold and G a J-complex
distribution of complex dimension g. A family of (symplectic) approximately holo-
morphic coordinates (resp. Darboux charts) ϕk,x : (Cp, 0)→ (Uk,x, x) is said to be
adapted to G if

|Cg −G|g0 ≤ |(zk, sk)|O(k−1/2), |dj(Cg −G)|g0 ≤ O(k−1/2), ∀j ≥ 1.

|Cp−g −G⊥|g0 ≤ |(zk, sk)|O(k−1/2), |dj(Cp−g −G⊥)|g0 ≤ O(k−1/2), ∀j ≥ 1.

The existence of approximately holomorphic (resp. Darboux) charts adapted to
G is straightforward: once we have approximately holomorphic (resp. Darboux)
charts, we compose with a unitary transformation sending G to Cg at the origin.

Given a 2-calibrated submanifold (M,D) ↪→ (P,Ω), in order to select coordinate
charts adapted to M we fix a distribution T ||M defined in a tubular neighborhood
of M as follows: the neighborhood is defined by flowing a little bit the geodesics
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normal to M . For each point y in the neighborhood, let x ∈ M be the starting

point of the unique geodesic normal to M through y. Then T
||
yM is the result of

parallel transport of TxM along that geodesic.

Definition 3.6. Let (M,D) ↪→ (P,Ω) be a 2-calibrated submanifold, G a J-
complex distribution which extends D (perhaps defined in a tubular neighborhood
of M), and T ||M a distribution constructed as above. A family of (symplectic) A.H.
coordinates ϕk,x : (Cp, 0) → (Uk,x, x) (centred at every point of P ) is adapted to
(M,G), if it is adapted to G and for the charts centred at points of M the following
conditions hold:

(1) M sits in each chart as a fixed linear subspace R2n+1 × {0} ⊂ Cp and at
the origin D = R2n × {0} ⊂ R2n+1 × {0}, D⊥ = {0} × R ⊂ R2n+1 × {0}.

(2) |R2n+1 − T ||M |g0 ≤ |(zk, sk)|O(k−1/2), |dj(R2n+1 − T ||M)|g0 ≤ O(k−1/2),
∀j ≥ 1.

We speak of A.H. charts adapted to (M,G) and Darboux over M if

ϕ∗k,xω|M = ω0. (14)

Lemma 3.5. Let (M,D) ↪→ (P,Ω) be a 2-calibrated submanifold. Then approxi-
mately holomorphic charts adapted to (M,G) and Darboux over M can always be
constructed.

Proof. We start by fixing approximately holomorphic coordinates adapted to G.
Then we forget about the ones centred at points of M , that are going to be
substituted by new ones. For every x ∈ M we fix initial charts ϕx depending
smoothly on the center -at least in a small neighborhood about each point- with
(ϕxJ

∗, ϕ∗xg) = (J0, g0) at the origin. Then we compose with maps Θx : (Cp, 0) →
(Cp, 0) that are tangent to the identity map at the origin and send M to a vector
space in Cp. The image of the distribution D is J0-complex at the origin. By
composing with a unitary transformation (Dx, TxM) can be assumed to be sent to
(Cn × {0},R2n+1 × {0}) ⊂ R2p.

Next we essentially apply lemma 3.1 on the leaf R2n+1 × {0} ⊂ R2p to get Dar-
boux charts for M : let Ξx : R2n+1 → R2n+1 be the map which is the identity on
Cn×{0}, preserves the foliation by complex hyperplanes, and sends the kernel of ω
to the “vertical” or real line field in R2n+1×{0}. We extend it to a diffeomorphism
of R2p independently of the coordinates x2n+2, . . . , x2p. Since the map is by cons-
truction tangent to the identity at the origin, we keep the properties at the origin
described in the previous paragraph.

We now apply Darboux’ lemma on R2n × {0} for each x. The result is a diffeo-
morphism on R2n that can be assumed to preserve J0 at the origin. We extend it
independently of x2n+1, . . . , x2p to a diffeomorphism of Cp. Notice that (Dx, TxM)
goes to (R2n×{0},R2n+1×{0}), Jx to J0, Gx⊕G⊥x to Cn⊕Cp−n, and Kerω|Dx

to the

Euclidean orthogonal of R2n×{0} ⊂ R2n+1×{0}. Hence if we apply the homothety
γk−1/2 : R2p → R2p we obtain a family of charts with the desired properties. �

Lemma 3.6. A family of A.H. charts ϕk,x : (Cp, 0)→ (Uk,x, x) adapted to (M,G)
and Darboux over M constructed as in lemma 3.5 restricts to M to Darboux charts.

Proof. It follows because the charts in lemma 3.5 are obtained by applying a cons-
truction depending smoothly on the center of the chart to obtain a number of
equalities for tensors and distributions at the origin, and then rescaling. Therefore
when we restrict the charts to M condition (1) in definition 3.1 holds. Conditions
(2) and (3) follow because before rescaling Dx ⊕D⊥x is sent to R2n ⊕ R and Jx to
J0. The Darboux condition (equation (14)) holds by construction. �
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Lemma 3.7. Let ϕk,x : (Cp, 0)→ (P, x) be charts coming from lemma 3.5. Then in

B(0, ρk1/2) ⊂ Cp it is possible to fix a family of unitary trivializations of ϕ∗k,xL
⊗k
Ω

with connection forms Ak,x, such that for all k � 1

(1) |Ak,x|g0 ≤ O(|zk|), |dAk,x|g0 ≤ O(1), |djAk,x|g0 ≤ O(k−1/2), j ≥ 2.

(2) Ak,x|M = 1
2

∑n
i=1(x2i−1

k ∧ dx2i
k − x2i

k ∧ dx
2i−1
k ).

Proof. By construction |ϕ∗k,xkω|g0 ≤ O(1), |djϕ∗k,xkω|g0 ≤ O(k−1/2), j ≥ 1, on

B(0, ρk1/2). Hence, we deduce the existence unitary trivializations with connection
forms A′k,x satisfying the bounds of condition (1).

When we restrict the connection forms to M they coincide with A up to a
exact 1-form dFk,x defined on R2n+1 × {0}; its bounds are as in item (1) above,
but on R2n+1 × {0} instead of on Cp. We extend it to Cp independently of the
remaining coordinates and still denote it by Fk,x. It is always possible to find a

unitary trivialization ξk,x of ϕ∗k,xL
⊗k
Ω whose connection form is A′k,x+dFk,x. These

trivializations give the desired result. For simplicity we will denote the family by
A when there is no risk of confusion. �

Let G be the J-complex distribution on P that extends D. Given τk ∈ Γ(L⊗kΩ ),
the restriction of the covariant derivative of τk to G will be denoted by ∇Gτk ∈
Γ(G∗ ⊗ L⊗kΩ ). Since G is J-complex we can write

∇Gτk = ∂̄Gτk + ∂Gτk, ∂̄Gτk ∈ Γ(G∗0,1 ⊗ L⊗kΩ ), ∂Gτk ∈ Γ(G∗1,0 ⊗ L⊗kΩ ).

Lemma 3.8.

(1) If τk : P → L⊗kΩ is an A.H. sequence then τk|M : M → L⊗k is also an A.H.
sequence.

(2) Moreover, the restriction of a family of reference sections of (L⊗kΩ ,∇k) →
(P,Ω) centred at the points of M (as defined in [4]) is a family of reference
sections of (L⊗k,∇k)→ (M,D,ω).

(3) If τk : P → L⊗kΩ is an A.H. sequence then ∂̄Gτk u 0.

Proof. We fix a family of A.H. charts adapted to (M,G) and Darboux over M , and

trivialize the bundles L⊗kΩ as in lemma 3.7. Let x1
k, . . . , x

2p
k be the coordinates and

write τk,x = fk,xξk,x.
We first observe that lemmas 3.2 and 3.3 for symplectic manifolds also hold for

the connection forms Ak,x provided by lemma 3.7. By lemma 3.6 the restriction
of the coordinates to M are Darboux charts. We can apply lemma 3.2 for almost
complex manifolds, bounds of order O(1), and the connection forms provided by
lemma 3.7, to conclude that the partial derivatives of fk,x are bounded by O(1)
in the ball B(0, ρ) ⊂ R2p. In particular we get the same bounds if we only take
into account the partial derivatives with respect to the variables x1

k, . . . , x
2n+1
k and

restrict our attention to B(0, ρ) ⊂ R2n+1. Now if we apply back lemma 3.2 (this
time for almost CR manifolds) we conclude that |∇j(τk|M )|g0 ≤ O(1), ∀j ≥ 0, in

B(0, ρ) ⊂ R2n+1 and for all x ∈M , the constants being independent of x. Therefore
|∇j(τk|M )|gk ≤ O(1), ∀j ≥ 0, in all the points of M .

Lemma 3.3 for symplectic manifolds and the connections of lemma 3.7 gives∣∣∣∣ ∂

∂xαk
(∂̄0 +A0,1

k,x)fk,x

∣∣∣∣
g0

≤ O(k−1/2) (15)

in B(0, ρ) ⊂ R2p. Let us consider the splitting Cn × Cp−n. The operator ∂̄0 +

A0,1
k,x and its derivatives can be split into two pieces using it. We consider the

part involving dz̄1
k, . . . , dz̄

n
k , for which the above inequalities also hold, but now in

B(0, ρ) ⊂ R2n+1. Since the restriction of Ak,x to Cn ×R is A, the restriction to M
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of the piece of ∂̄0 +A0,1
k,x involving dz̄1

k, . . . , dz̄
n
k is the operator ∂̄0 +A0,1 of lemma

3.3. Thus we can apply this lemma (we already have the required bounds for the
partial derivatives of fk,x) to conclude ∂̄(τk|M ) u 0, and this proves item (1).

It is also easy to check that reference sections for L⊗kΩ centred at the points of
M restrict to reference sections for L⊗k, and hence item (2) also holds.

To prove ∂̄Gτk u 0 we use the previous ideas: equation (15) and lemma 3.3 give

|∇j ∂̄Cnτk|g0 ≤ O(k−1/2), ∀j ≥ 0

in B(0, ρ) ⊂ R2p, where ∂̄Cn is the part of ∂̄0 + Ak,x involving dz̄1
k, . . . , dz̄

n
k . The

choice of A.H. charts adapted to G and the bounds |∇jτk|g0 ≤ O(1), ∀j ≥ 0, easily
imply

|∇j(∂̄Cnτk − ∂̄Gτk)|g0 ≤ O(k−1/2), ∀j ≥ 0,

and therefore ∂̄Gτk u 0. �

Remark 3.6. Notice that item (3) in lemma 3.8 is an assertion about a section
defined on P , and not on M unlike in item (1).

3.2. Higher rank ample bundles. So far we have only considered approximately
holomorphic theory for the sequence of line bundles (L⊗k,∇k) → (M,D,ω), but
there are obvious extensions for sequences of the form E⊗L⊗k, where E is any Her-
mitian bundle of rank m with compatible connection. Regarding the local theory
the role of the reference sections is played by the reference frames τ ref

k,x,1, . . . , τ
ref
k,x,m,

where each τ ref
k,x,j is an A.H. sequence with Gaussian decay with respect to x and

they are a frame of E comparable to a unitary one in Bgk(x, ρ), ρ > 0. Reference
frames are constructed by tensoring reference sections for L⊗k with local unitary
frames of E.

4. Estimated transversality and finite, Whitney (A), approximate
holomorphic stratifications

Let τk be an A.H. sequence of sections of L⊗k → (M,D,ω). Proposition 1.1
for codimension two submanifolds is proved by pulling back the 0 section of L⊗k.
To obtain Wk a 2-calibrated submanifold τk has to be transverse along D, so that
TWk ∩D defines a codimension one distribution on Wk. Next, to make sure that
Wk ∩ D is a symplectic distribution the ratio |∂̄τk(x)|/|∂τk(x)| has to be smaller
than 1; since ∇D = ∂̄ + ∂, ∇Dτk(x) has to be asked to be not only to be surjective
but also to have norm greater than O(k−1/2) (estimated transversality).

For each point x we can use the reference sections to turn the local estimated
transversality problem along D on Bgk(x, ρ), into an estimated transversality pro-
blem along Dh for an A.H. sequence of functions

Fk,x : B(0, ρ′) ⊂ Cn × R→ C,
where τk ◦ϕk,x = Fk,x ·(τ ref

k,x◦ϕk,x) (more generally Cm-valued functions for bundles

of rank m). Equivalently, we have to solve an estimated transversality problem for
a 1 real parameter family of A.H. functions

Fk,x(·, sk) : B(0, ρ′) ⊂ Cn → C.
This problem is known to have a solution [5, 24]. The solution of the local trans-
versality problem along Dh will produce a new function Fk,x − uk,x, and therefore
a perturbation

χk,x := (−uk,x ◦ ϕ−1
k,x) · τ ref

k,x

so that we obtain estimated transversality along D for τk + χk,x over the ball

Bgk(x, ρ). But the reference section is supported in Bgk(x, ρ′′k1/6), being the con-
sequence that there will be interference among different local solutions. However,
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unlike transversality, estimated transversality does behave well under addition, and
in the presence of “enough” local estimated transversality, Donaldson’s globaliza-
tion procedure gives global estimated transversality (see the proof of theorem 7.2).

Definition 4.1. Let (P, g) be a Riemannian manifold, (E,∇) a Hermitian bundle
over it, and Qx a subspace of TxP . We say that τ : P → E is η-transverse to 0 at
x along Qx, if either |τ(x)| ≥ η or ∇Qx

τ(x) has a right inverse with norm bounded
by η−1.

If Q is a distribution we say that τ is η-transverse along Q to 0 if the above
condition holds at all the points where Q is defined. When Q is the tangent bundle
of a submanifold we also say that τ is η-transverse over the submanifold to 0.

Let (M,D,ω) be a 2-calibrated manifold, Ek := E ⊗ L⊗k, and τk : (M, gk) →
(Ek,∇k) a sequence of sections. We say that the sequence τk is uniformly transverse
along D to 0 if η > 0 exist such that τk is η-transverse along D to 0 for all k � 1.

For a symplectic manifold the definition of uniform transversality along a distri-
bution Q (possibly the tangent bundle to a 2-calibrated submanifold) is analogous.

It is possible to attain estimated transversality along D using both the intrinsic
and the relative point of view. Using the former what we do is (locally) solving
transversality problems for 1-parameter families of A.H. functions from Cn to Cm.
Regarding the latter we follow the ideas of J.-P Mohsen developed for contact
manifolds, working in the symplectization (M×[−ε, ε],Ω) and solving the estimated
transversality problem for A.H. sections, but this time over M . Then we can use
the following

Lemma 4.1. [[30], second lemma in subsection 6.1] Let (M,D,ω) be a 2-calibrated
manifold. If in the symplectization (M × [−ε, ε],Ω) we are able to find an A.H.

sequence τk η-transverse over M to 0, then for any constant C, 0 < C <
√

2/2,
there exists k0(C) such that for any k ≥ k0 the section τk|M is Cη-transverse along
D to 0.

The proof is just an estimated version of the following elementary fact: if a
J0-complex linear function l : Cn × R → Cm is surjective, then it has a surjective
restriction to each complex hyperplane. Otherwise the kernel of the restriction -
being complex- would have real dimension bigger than 2(n −m) + 2, and l could
not be surjective.

4.1. Geometric reformulation of estimated transversality. We recall that in
this section we deal with estimated transversality along D in a 2-calibrated manifold
(intrinsic theory), or with estimated transversality over a 2-calibrated submanifold
M inside a symplectic manifold P (relative theory). Sometimes we might refer to
both situations as transversality along a distribution Q in the Riemannian manifold
P .

As remarked in the previous subsection, for sequences of 1-parameter families of
A.H. functions Fk,x(·, sk) : B(0, ρ) ⊂ Cn → Cm one can achieve estimated transver-
sality, and thus the use of reference frames allows us to get local estimated trans-
versality along D to the 0 section of very ample vector bundles Ek. More generally,
one expects to be able to attain estimated transversality along D to sequences of
submanifolds Sk ⊂ Ek of very ample vector bundles, where the Sk locally look like
the zero section of a trivial vector bundle: more precisely, the sequence of submani-
folds should be locally defined by functions fk : Uk ⊂ Ek → Cl, Sk ∩ Uk = f−1

k (0),
which are approximately holomorphic with respect to to the almost CR structure
in the total space of the bundles (Ek,∇k) → (M,D, J, gk) induced by the one on
M , the connection, and the Hermitian metric on Ek, so that

fk ◦ τk ◦ ϕk,x : B(0, ρ) ⊂ Cn × R→ Cm
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is an A.H. sequence of functions (or a weaker property that ensures this last con-
dition). That should allow us to find an A.H. perturbation

χk,x : Bgk(x, ρ′′k1/6)→ Ek

so that the A.H. sequence

fk ◦ (τk + χk,x) : Bgk(x, ρ)→ Cm

is uniformly transverse along D to 0. Finally, we should make sure that this implies
enough estimated transversality along D to Sk for the sequence of sections

τk + χk,x : Bgk(x, ρ)→ Ek

to make Donaldson’s globalization procedure work.
In the relative context τk : P → Ek the estimated transversality problem over

M ⊂ P to the 0 section has the same difficulty as the usual estimated transversality
problem to the 0 section (this is the work of J.-P. Mohsen [30], section 5). Thus,
one expects this principle to be valid in the case of relative estimated transversality
to more complicated strata Sk.

To give a global definition of what transversality to a submanifold S ⊂ E is,
we need to recall a more geometric definition of estimated transversality along a
distribution Q, together with the following concepts.

Definition 4.2. Let W be a vector space with non-degenerate inner product so
that for any u, v ∈ W we can compute the (unoriented) angle ∠(u, v). Given
U ∈ Gr(p,W ) and V ∈ Gr(q,W ), p, q > 0, the maximal angle of U and V ,
∠M(U, V ), is defined as follows:

∠M(U, V ) := maxu∈U\{0}minv∈V \{0}∠(u, v).

In general the maximal angle is not symmetric, but when p = q it has symmetry
and defines a distance in the corresponding Grassmannian (see [31]).

The minimum angle between transverse complementary subspaces is defined as
the minimum angle between two non-zero vectors, one on each subspace. An ex-
tension of this notion for transverse subspaces with non-trivial intersection is:

Definition 4.3. (Definition 3.3. in [31]) Using the notation of definition 4.2,
∠m(U, V ) -the minimum angle between U and V non-void subspaces of W - is de-
fined as follows:

• If dimU + dimV < dimW , then ∠m(U, V ) := 0.
• If the intersection is non-transverse, then ∠m(U, V ) := 0.
• If the intersection is transverse, we consider the orthogonal to the intersec-

tion and its intersections Uc and Vc with U and V respectively. We define
∠m(U, V ) := minu∈Uc\{0}minv∈Vc\{0}∠(u, v).

The minimum angle is symmetric.

The most important property relating maximal and minimal angle is:

Proposition 4.1. (Proposition 3.5 in [31]) For non-void subspaces U, V,W of Rn
the following inequality holds:

∠m(U, V ) ≤ ∠M(U,W ) + ∠m(W,V ).

We will also be using the following

Lemma 4.2 (lemma 3.8 in [31]). Let U, V be non-zero subspaces of Rn and let
h : U → V ⊥ be the projection from U with respect to the decomposition Rn =
V ⊕ V ⊥. If h has a right inverse θ satisfying |θ| < η−1 then ∠m(U, V ) > η.
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Let τ : P → E be a section of a Hermitian bundle with connection and Q a
distribution on P . Let us denote the pullback of Q to E by Q̂. Let H be the
horizontal distribution associated to the linear connection and let HQ denote its

intersection with Q̂. Finally let TQτ denote the intersection of the tangent bundle

of the graph of τ with Q̂.

Lemma 4.3. There exists a constant C > 0 determined by upper bounds on
|∇Qτ(x)|, |τ(x)| such that:

(1) If ∇Qτ(x) has a right inverse with norm bounded by η−1 then ∠m(HQ, TQτ) ≥
C−1η (the angle measured in Q̂τ(x)).

(2) If ∠m(HQ, TQτ) ≥ η then ∇Qτ(x) has a right inverse with norm bounded
by (Csinη)−1.

Proof. Let us assume Q = TP . The vector space Tτ(x)E = Hτ(x) ⊕ T vEx is
endowed with the direct sum metric. We compose with an isometry preserving the
direct sum structure so that Hτ(x) ⊕ T vEx becomes Ra ⊕ Rb with the Euclidean

metric. Let h : Tτ(x)→ Rb be the orthogonal projection. By lemma 4.2 applied to
U = Tτ(x) and V = Ra × {0} = Hτ(x), if h has a right inverse θ with |θ| ≤ η−1

then ∠m(Hτ(x), T τ(x)) ≥ η.
By definition ∇τ(x) : TxP → T vEx = Ex is the composition h ◦ dτ(x), with the

differential dτ(x) : TxP → Tτ(x), which is an isomorphism. Now if θ′ is a right
inverse for ∇τ(x), |θ′| ≤ η−1, then dτ(x) ◦ θ′ is a right inverse for h with norm
bounded by |dτ(x)|η−1. Thus, by lemma 4.2 ∠m(Hτ(x), T τ(x)) ≥ |dτ(x)|−1η.

Conversely, the projection h has always a right inverse θ of minimum norm. Let
us define W := Tτ(x) ∩ Hτ(x) and Uc := Tτ(x) ∩W⊥. If we compose θ with the

orthogonal projection Tτ(x) → Uc, we obtain a right inverse θ̂ for h|Uc
such that

|θ| = |θ̂|. If now ∠m(Hτ(x), T τ(x)) ≥ η then the equation involving inequalities of
lemma 3.8 in [31] implies

|θ̂| ≤ (sinη)−1, (16)

and therefore dτ(x)−1 ◦ θ is a right inverse for ∇τ(x) with norm bounded by
|dτ(x)|−1(sinη)−1.

In the case Q 6= TP we fix an isometry sending (HQ,H) at τ(x) to (Ra′×{0},Ra)

with the Euclidean metric, and apply the above arguments to Ra′ ⊕ Rb.
Note that we have C = |dQτ(x)|, with dQτ(x) the restriction of dτ(x) to Qx.

Observe that a bound for |dQτ(x)| can be obtained from upper bounds for |τ(x)|
and |∇Qτ(x)|. �

Remark 4.1. In the definition of minimum angle ∠m(U, V ), when U, V are not
complementary we work with the intersections in (U ∩V )⊥ where we can apply the
usual notion of minimum angle for complementary subspaces. Instead of (U ∩ V )⊥

one might choose any other subspace W complementary to U ∩V to give a different
notion of minimum angle. In certain situations this is a good strategy because there
are natural complementary subspaces available. It is easy to see that the new notion
of minimum angle is comparable to the one of definition 4.3, and the comparison is
given by multiplying by a constant depending only on ∠m(U ∩ V,W ) (there is no
ambiguity since these are complementary subspaces). Actually, those new notions
depending on the complementary coincide with the one given in 4.3, but for a new
metric, which is comparable to the Euclidean one in terms of ∠m(U ∩ V,W ) (very
much as it happened with the isomorphism dQτ(x) in the previous lemma).

We need a second result relating angles and intersections.
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Lemma 4.4. Let U, V,W be linear subspaces of Rn such that ∠m(V,W ) ≥ γ > 0.
Let ∠M(U, V ) ≤ δ. Then there exists C(γ,dimV, n) > 0 such that

∠M(U ∩W,V ∩W ) ≤ Cδ.

Proof. For each u ∈ U\{0}, we have ∠(u, V ) = ∠(u, h(u)), where h : Rn → V
is the orthogonal projection. We consider a complementary space to V possibly
different from V ⊥: because ∠m(V,W ) ≥ γ > 0 the dimension of W is greater or
equal than the codimension of V , and the intersection of V and W is transverse.
As a consequence any subspace (of W ) complementary to V ∩ W in W is also
complementary to V in Rn. We let VW be the orthogonal to V ∩W in W , and we
define hW : Rn → V to be the projection along VW (whose restriction to W is the
orthogonal projection onto V ∩W ). It follows that ∠(u, hW (u)) ≤ C∠(u, h(u)) =
C∠(u, V ), and by construction if u ∈ U ∩W then ∠(u, hW (u)) = ∠(u, V ∩W ). �

Let S ⊂ E be a submanifold in the total space of the vector bundle E over either
a 2-calibrated or a symplectic manifold, transverse to the fibers. Let ĝ be the metric
in E induced by the connection, the bundle metric, and the metric g in the base.
The submanifold might not have a tubular neighborhood of positive radius. If we
assume S to be in a compact region -as it will be the case in our applications-
then the problem comes from the behavior near its boundary ∂S = S̄\S. Thus a
reasonable extension of definition 4.1 to our non-linear setting must deal separately
with points close to ∂S and with the other points of S.

Definition 4.4. Given η̄ > 0 the points of S η̄-far from (resp. η̄-close to) the
boundary are those points in S at ĝ-distance of ∂S greater or equal (resp. smaller)
than η̄ > 0. For any η > 0 -typically much smaller than η̄- we define NS(η, η̄) to be
those points that can be joined to a point η̄-far from the boundary by a geodesic
arc normal to S and of length smaller or equal than η.

We now define the distribution T ||S at the points of NS(η, η̄) by parallel trans-
port of TS along the geodesics normal to S, starting at the points η̄-far from the
boundary of S.

T ||S plays the role of H. We use the notation T
||
QS := T ||S ∩ Q̂.

Definition 4.5. τ is (η, η̄)-transverse along Q to S at x if either (i) τ(x) misses the

union of S with NS(η, η̄), or (ii) τ(x) enters in NS(η, η̄) so that ∠m(TQτ, T
||
QS) ≥

η at τ(x), or (iii) τ(x) intersects S at the points η̄-close to the boundary with
∠m(TQτ, TQS) ≥ η̄ at τ(x).

Uniform transversality of τk along Q to Sk is defined as (η, η̄)-transversality for
some η, η̄ > 0 and for all k � 1.

Conditions on a sequence of submanifolds Sk of complex codimension l (or more
generally on stratifications) can be imposed, so that local estimated transversality
along Q of τk,x at the points of Bgk(x, ρ) to the points of Sk far from ∂Sk, is
equivalent to estimated transversality along Q of a related Cl-valued function to 0
(lemma 4.5).

We will consider stratifications S = (Sak), a ∈ Ak, which are (i) finite in the sense
that #(Ak) must be bounded independently of k, and (ii) the boundary of each
strata ∂Sbk = S̄bk\Sbk will be the union of the strata of smaller dimension

∂Sbk =
⋃
a<b

Sbk.

Definition 4.6. Let Ek = E ⊗ L⊗k → (M,D, J, gk) and let (Sak)a∈Ak
be finite

stratifications of Ek whose strata are transverse to the fibers. Let r ∈ N, r ≥ 2.
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The sequence of strata is Whitney Cr-approximately holomorphic (Cr-A.H.) if for
any bounded open set Uk of the total space of Ek and any ε > 0, constants Cε, ρε > 0
only depending on ε and on the size of Uk -but not on k- can be found, so that
for any point y ∈ Uk in a strata Sak for which dĝk(y, ∂Sak) > ε, there exist complex
valued functions f1, . . . , fl such that Bĝk(y, ρε)∩Sak is given f1 = · · · = fl = 0, and
the following properties hold:

(1) (Uniform transversality to the fibers + transverse comparison) The restric-
tion of df1 ∧ · · · ∧ dfl to T vEk is bounded from below by ρε.

(2) (Approximate holomorphicity along the fibers) The restriction of the func-
tion f = (f1, . . . , fl) to each fiber is Cr-A.H.(Cε).

(3) (Horizontal approximate holomorphicity + holomorphic variation of the
restriction to the fiber + estimated variation of the restriction to the fiber)
For any λ, k, and τ Cr-A.H.(λ) local section of Ek with image cutting
Bĝk(y, ρε), fj ◦ τ is Cr-A.H.(λCε). Moreover, if θ is a local Cr-A.H.(λ)
section of τ∗T vEk, dfτ (θ) is Cr-A.H.(λCε).

(4) (Estimated Whitney’s condition (A)) For each η > 0 small enough, there
exists δ(η) > 0 such that ∀y ∈ Sbk at distance smaller than δ of Sak ⊂ ∂Sbk,

∠M(T ||Sak , TS
b
k) at y is bounded by η.

Remark 4.2. If we give the corresponding definition using as base space an al-
most complex manifold instead of an almost CR manifold, we almost recover the
definition 3.2 in [4] (our condition (4) is a bit weaker).

Condition (1) is equivalent to the strata have minimum angle with the fibers
bounded from below. We just try to mimic the picture of the 0 section with
respect to the fibers of a vector bundle, in which case we even have orthogonality.

Conditions (2) and (3) guarantee that if τk : M → Ek is A.H., then the corres-
ponding Cl-valued function to be made transverse to 0 is A.H.

Recall that for a stratification S of some RN , a stratum Sb satisfies Whitney’s
condition (A) if for every converging sequence xn → x, xn ∈ Sb, x ∈ Sa ⊂ ∂Sb, so
that Txn

Sb is converging, the limit contains TxS
a. Condition (4) is an estimated

Whitney’s condition (A).

Definition 4.7. Let S be as in definition 4.6 (over either a 2-calibrated or a
symplectic manifold). Then τk is uniformly transverse along Q to S if there exists
strictly positive numbers (ηa, η̄a) for all a ∈ Ak such that:

(1) For all a ∈ Ak and for all k � 1 τk is (ηa, η̄a)-transverse along Q to Sak .
(2) For each b,

⋃
a<bNSa

k
(ηa, η̄a) contains the points of Sbk η̄b-close to ∂Sbk.

Now that we have the notion of uniform transversality of a sequence of sec-
tions to an appropriate stratification, we need tools to relate it with local uniform
transversality for sequences of (related) functions.

Lemma 4.5. Let Sak be a sequence of strata as those in the stratifications of de-
finition 4.6 for the base space P either an almost CR manifold (intrinsic theory)
or an almost complex manifold (relative theory). Let ε > 0 and 0 < η � ε. Let
y ∈ Ek be a point in the stratum ε-far from the boundary, and let f = (f1, . . . , fl)
be the corresponding local Cl-valued function defining the stratum in Bĝk(y, ρε). Let
τk be a section of Ek whose graph enters in Bĝk(y, ρε). Then there exist constants
ρ′(ε, η, |τk|), C(ε, |∇Qτk|, |τk|), C ′(ε, |∇Qτk|, |τk|) > 0 such that:

(1) If ∠m(TQτ, T
||
QS

a) ≥ η in Bĝk(y, ρε), then dQ(f ◦τ) has a right inverse with

norm bounded by (Csin(η/2))−1 in Bĝk(y, ρ′).
(2) If dQ(f ◦ τ) has a right inverse with norm bounded by η−1 in Bĝk(y, ρε),

then ∠m(TQτ, T
||
QS

a) ≥ C ′−1
η in Bĝk(y, ρ′).
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Proof. By simplicity we omit the subindices for the sections τk, the bundles, and
the strata.

Let us assume ∠m(TQτ, T
||
QS

a) ≥ η.

Step1: Show the existence of ρ′(ε, η, |τ |) > 0 such that ∠m(TQτ,Kerdf∩Q̂) ≥ η/2
in Bĝk(y, ρ′).

According to proposition 4.1 (proposition 3.5 in [31])

∠m(T
||
QS

a, TQτ) ≤ ∠M(T
||
QS

a,Kerdf ∩ Q̂) + ∠m(Kerdf ∩ Q̂, TQτ),

and therefore we need to prove the existence of ρ′ > 0 so that in Bĝk(y, ρ′)

∠M(T
||
QS

a,Kerdf ∩ Q̂) ≤ η/2. (17)

Condition (1) in definition 4.6 implies ∠m(Kerdf, Q̂) ≥ γ(ε). If we find ρ′ > 0 such
that in Bĝk(y, ρ′)

∠M(T ||Sa,Kerdf) ≤ C(γ(ε))−1η/2, (18)

we can apply lemma 4.4, where U = T ||Sa, V = Kerdf , W = Q̂, to conclude that
equation (17) holds.

Equation (18) is proven using appropriate charts. The situation we are trying
to mimic is that of a locally trivialized vector bundle and we measure the maximal
angle between the parallel copies of the 0 section (here the leaves of ker df) and H
(here T ||Sa).

Due to the bounds in definition 4.6 we can find a chart Φy : Ra → Bĝk(y, ρε) such
that in B(0, ρ′′) ⊂ Ra (i) the metrics g0 and Φ∗y ĝk (that we write ĝk if it is clear
that we work in the chart) are comparable, and the Christoffel symbols of ĝk are
bounded by O(1) (the bounds being uniform on k, y), and (ii) the foliation Kerdf
is sent to the foliation Ra−2l. In B(0, ρ′′) ⊂ Ra the stratum S becomes Ra−2l×{0}
and tubular neighborhoods for ĝk and g0 are comparable. At any point q in the
neighborhood, a vector in u ∈ T ||S is the result of parallel translating (with ĝk) a
vector v in Ra−2l ×{0} over y′ ∈ Ra−2l ×{0} along the corresponding ĝk-geodesic.
Since the Christoffel symbols are bounded, ∠(u, v) is bounded by eΓt−1, Γ > 0. So
by decreasing t, the distance of q to S, we bound the maximal angle by C(γ)−1η/2.
Therefore the final radius ρ′ depends on η, on ε (because C(γ) depends on ε), and
on how g0 and ĝk are related (to order one). This final relation depends on f (and
hence on ε) and on the metric ĝk (and hence on |τ |).

Step 2: Show that ∠m(TQτ,Kerdf ∩ Q̂) ≥ η/2 implies that dQ(f ◦ τ) has a right
inverse with norm bounded by (C(ε, |∇Qτ |, |τ |)sin(η/2))−1.

The proof of item (2) in lemma 4.3 implies that the orthogonal projection

h : TQτ → (Kerdf ∩ Q̂)
⊥

has a right inverse with norm bounded by (sin(η/2))
−1

(equation (16)). Let VE denote the orthogonal in the fiber T vE of (Kerdf∩Q̂)∩T vE.

Due to condition (1) in definition 4.6, this is a subspace complementary to Kerdf∩Q̂
and such that ∠m(VE ,Kerdf ∩ Q̂) is bounded from below in terms of ρε, and hence
in terms of ε.

Let hE : TQτ → VE be the projection along Kerdf ∩ Q̂. It follows that there
is a constant C1(ε)−1 > 0 and a right inverse for hE with norm bounded by

C1(ε)−1(sinη/2)
−1

. We now define

h′′ = df ◦ hE ◦ dQτ : Q→ Cl.
By construction h′′ = dQ(f ◦ τ). Condition (1) about the restriction of df to
the fiber implies the existence of a right inverse for h′′ with norm bounded by
|dQτ |−1C2(ε)−1C1(ε)−1(sinη/2)

−1
. Therefore, dQ(f ◦ τ) has a right inverse with

norm bounded by C(ε, |dQτ |)sin(η/2)−1 in Bĝk(y, ρ′(ε, η, |τ |)), this proving item
(1).
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Conversely, if dQ(f ◦ τ) has a right inverse Bĝk(y, ρε) with norm bounded by
η−1, step 2 above implies that hE ◦ dQτ has a right inverse with norm bounded by
(C ′1(ε)2η)−1.

Item (1) in lemma 4.3 gives

∠m(TQτ, ker df ∩ Q̂) ≥ C ′(ε, |∇Qτ |, |τ |)2η,
and combined with step 1 we conclude

∠m(TQτ, T
||
QS

a) ≥ C ′(ε, |dQτ |)η in Bĝk(y, ρ(ε, η, |τ |)).

Observe that the constants C,C ′ grow very large as ε and η tend to zero. �

Remark 4.3. The previous lemma does not involve almost complex structures at
all. Hence it also holds for arbitrary Hermitian bundles, sections, and strata which
fulfill condition (1) in definition 4.6.

Using appropriate choices of complementary subspaces to get a bound from below
for certain minimal angles -as noticed in remark 4.1- we can prove the following

Lemma 4.6. Let S = (Sak)a∈A be a sequence of approximately holomorphic stratifi-
cations as in definition 4.6. Assume that the sequence τk is uniformly transverse to
S along a distribution Q whose dimension is greater of equal than the codimension
of the strata, and that the uniform bounds |τk|, |∇τk|gk ≤ O(1) hold. Then for each

a ∈ A, τ−1
k (Sak) is a subvariety of M uniformly transverse to Q.

Proof. We must prove that for a sequence of points x(k) in τ−1
k (Sak) we have

∠m(Txτ
−1
k (Sak), Q) ≥ γ > 0 (19)

for all k � 1 independently of the points.
Denote τk(x) = q. We claim that equation (19) would follow from

∠m(τk∗Txτ
−1
k (Sak), τk∗Q) ≥ γ′ > 0, (20)

where the angle is measured in Tτk(x) with the induced metric. The reason is
that the bound on |τk| implies that the metric in Ek is comparable to the product
metric given by any trivialization by reference frames (and using on each factor the
Hermitian metric in the fiber and gk coming from the base). Then we use the bound
on |∇τk| to conclude that in this product metric ∠m(Tτk(x), T vEk(q)) ≥ δ1 > 0,
where T vEk is the tangent space to the fiber. Hence, our claim follows.

We can rewrite equation (20) as

∠m(TQτk(x), T τk ∩ TSak(q)) ≥ γ′ > 0. (21)

Our second claim is that

∠m(TSak(q), T vEk(q)) ≥ δ2 > 0. (22)

Indeed, this follows from condition (1) in definition 4.6 if we are in a point η̄-far from
the boundary of Sak . For points η̄-close, we use the estimated Whitney’s condition

(A) together with proposition 4.1 to prove equation (22). Since T vEk ⊂ Q̂, we also
conclude

∠m(TSak(q), Q̂) ≥ δ3 > 0. (23)

We will reinterpret equation (23) by choosing a suitable complementary space

to TSak ∩ Q̂(q) which is not its orthogonal W (see remark 4.1). Let W1 ⊂ Q̂

(resp. W2 ⊂ Q̂) be the intersection of Tτk(x) (resp. TSak(q)) with the orthogonal

of TSak ∩ Tτk ∩ Q̂(q) inside Q̂, and let W3 be the intersection of Tτk(x) with the

orthogonal of Q̂. From ∠m(Tτk(x), T vEk(q)) ≥ δ1 we obtain ∠m(Tτk(x), Q̂) ≥ δ1,
and by hypothesis ∠m(TQTτk(x), TQS

a
k(q)) ≥ δ4 > 0. Both inequalities imply that
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W ′ := W1 ⊕W3 can be used instead of W . By construction W ′ ∩ Q̂ = W1, so from
equation (23) we conclude

∠m(W ′ ∩ TSak(q),W1) ≥ δ5 > 0. (24)

Notice as well that to compute equation (21) we have to intersect the corres-

ponding vector subspaces with the orthogonal of TSak ∩ Tτk ∩ Q̂(q) inside Tτk(x).
From what we have seen, we can rather choose as complementary space W ′. Since
W ′ ∩TQτk(x) = W1 and W ′ ∩ (Tτk ∩TSak(q)) = W ′ ∩TSak(x), we have to compute
the left hand side of equation (23), so the result follows. �

In particular the following corollary is deduced:

Corollary 4.1. Let S = (Sak)a∈A be a sequence of A.H. stratifications over the 2-
calibrated manifold (M,D,ω) as in definition 4.6. Assume that the A.H. sequence
τk is uniformly transverse to S along D. Then for each a ∈ Ak, τ−1

k (Sak) is either
empty -if the codimension of Sak is bigger than the dimension of D (or M)- or a
subvariety uniformly transverse to D.

For a symplectic manifold, transversality along the directions of a (compact)
subvariety N implies that either (i) τ−1

k (Sak) is at gk-distance of N bounded from
below or (ii) it is a subvariety (at least defined in a gk-neighborhood of N) uniformly
transverse to N .

If we analyze the proof of lemma 4.6, corollary 4.1 for 2-calibrated manifolds is
equivalent to saying that uniform transversality along D implies uniform transver-
sality over M (along TM). The converse is also true, extending therefore Mohsen’s
relative transversality result to appropriate sequences of stratifications.

Corollary 4.2. Let S = (Sak)a∈Ak
be a sequence of A.H. stratifications over the

2-calibrated manifold (M,D,ω) as in definition 4.6. Assume that the A.H. sequence
τk is uniformly transverse to S (over M), for suitable constants (ηa, η̄a), a ∈ Ak.
Then τk is also uniformly transverse along D to S.

Proof. By induction we can assume that τk is uniformly transverse along D to Sak ,
for every a < b. Let q ∈ Sbk, with τk(x) = q, η̄′-close to ∂Sbk. We want to show

∠m(TDτk(x), TDS
b
k(q), ) ≥ η̄′,

and we will do it by applying for some index a ∈ Ak the inequality

∠m(TDτk(x), T
||
DS

a
k(q)) ≤ ∠M(T

||
DS

a
k(q), TDS

b
k(q)) + ∠m(TDτk(x), TDS

b
k(q)). (25)

If η̄′ is small enough condition (2) in definition 4.7 implies the existence of an
index a ∈ Ak such that q ∈ NSa

k
(ηa, η̄a). If we apply induction we conclude

∠m(TDτk(x), T
||
DS

a
k(q)) ≥ ηa, so we only need to make

∠M(T
||
DS

a
k(q), TDS

b
k(q))� ηa.

This is done using lemma 4.4 with U = T ||Sa(q), V = TSb(q), W = D̂. We need
to check

∠M(T ||Sak(q), TSbk(q))� ηa, (26)

∠m(TSbk(q), D̂) ≥ γ. (27)

Equation (26) follows by the estimated Whitney’s condition by taking η̄′ small
enough; equation (27) uses again the inequality of proposition 4.1

∠m(D̂, T ||Sak(q)) ≤ ∠M(T ||Sak(q), TSbk(q)) + ∠m(D̂, TSbk(q)),
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together with ∠m(D̂, T ||Sak(q)) ≥ 2γ (by condition (1) in definition 4.6) and equa-
tion (26).

So far we deduced some η̄′-transversality only at the points η̄′-close to the boun-
dary of Sbk. Now let us assume that for some η > 0, ∠m(Tτk(x), T ||Sbk(q)) ≥ η
in the tubular neighborhood NSb

k
(η, η̄′) (here comes the requirement on the cons-

tants controlling the transversality, i.e. in those points η̄′-far from the boundary we
need to make sure that ∠m(Tτk(x), T ||Sbk(q)) is uniformly bounded from below). If
τk(x) ∈ NSb

k
(η, η̄′) then by lemma 4.5 η-transversality implies η′-transversality to

0 of the function f ◦ τk : Bgk(x, ρ′)→ Cl. From the approximate holomorphicity of

the composition f ◦ τk, for all k � 1 a result analogous to lemma 4.1 grants
√

2
3 η
′-

transversality along D, which again by lemma 4.5 gives η′′-transversality along D
to Sbk (we suppose η′′ ≤ η).

Therefore, it follows that τk is (η′′, η̄′)-transverse along D to Sbk. �

5. Pseudo-holomorphic jets

The main applications of the theory of approximately holomorphic geometry
for 2-calibrated manifolds are deduced from the existence of generic rank m linear
systems.

Let us assume that (M,D, J) is a Levi-flat CR manifold and L→M a positive
CR line bundle. Let Cm → M denote the trivial (and trivialized) bundle of rank
m endowed with the trivial connection.

Definition 5.1. A CR section τ : M → Cm+1 ⊗ L (or a rank m linear system of
L) is r-generic if its zero set B is a CR submanifold of the expected dimension, and
the projectivization φ : M\B → CPm is a leafwise r-generic holomorphic map, i.e.
when restricted to each leaf it is transverse to the Thom-Boardman stratification
of the bundle of holomorphic r-jets of holomorphic maps from the leaf to CPm.

The proof of the existence of r-generic linear systems (possibly of large enough
powers of L) is the main subject of [25].

The strong transversality property for a CR function φ : M → CPm to be r-
generic is as follows: we consider J rCR(M,CPm) the bundle of CR r-jets (of folia-
ted holomorphic r-jets) of CR maps from M to CPm. This bundle admits a CR
Thom-Boardman stratification PΣ, which restricts to each leaf to the corresponding
holomorphic Thom-Boardman stratification. A CR function φ is r-generic if and
only if its CR r-jet jrCRφ : M → J rCR(M,CPm) (which by definition is the foliated
holomorphic r-jet) is transverse along D to PΣ.

Assume that our CR submanifold embeds holomorphically in some complex ma-
nifold P and that D extends to a holomorphic foliation integrating the complex
distribution G. There is a canonical submersion pG : J r(P,CPm) → J rG(P,CPm)
from holomorphic r-jets to foliated ones. The foliated Thom-Boardman stratifica-
tion PΣ ⊂ J rG(P,CPm) restricts over M to the CR Thom-Boardman stratification
PΣ of J rCR(M,CPm). Let us denote the pullback pG

−1(PΣ) by PΣG.
For any holomorphic function φ : P → CPm it is an elementary fact that jrGφ ∈

Γ(J rG(P,CPm)) -the holomorphic r-jet along G- is transverse along G to PΣ at the
points of M , if and only if jrφ ∈ Γ(J r(P,CPm)) is transverse along G to PΣG at
the points of M . By the results of the previous section, this is equivalent to being
transverse over M to PΣG.

To obtain an r-generic linear system there is an additional complication coming
from the base locus. We first need to make sure that τ : P → Cm+1 ⊗ L is trans-
verse over M to the zero section, and then solve the r-genericity problem for the
projectivization (in a compact region of P\τ−1(0)). Instead of working first with
the section τ and then with the projectivization, following ideas of D. Auroux [4] we
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restate the whole issue as a unique transversality problem over M for the pseudo-
holomorphic r-jet extension of τ , a section of a vector bundle J r(Cm+1 ⊗ L). The
advantage is that we work with vector bundles and we can use the module structure
of sections.

5.1. The integrable case. Let E → P be a Hermitian bundle over a complex
manifold with compatible connection ∇, whose curvature verifies F 0,2

∇ = 0. The
total space of the bundle is a complex manifold (theorem 2.1.53 in [14]) and there
is a notion of holomorphic section and hence of holomorphic r-jet. The space of
r-jets has natural charts obtained out of holomorphic coordinates in the base and
a holomorphic trivialization of the bundle. They provide a local identification of
the holomorphic r-jets with J rn,m, the usual r-jets for holomorphic maps from Cn
to Cm.

Let ∂0 be the Cauchy-Riemann operator defined (locally) using the canonical
structure J0 in the base (the chart) and the trivial connection d in Cm. The
connection on the fiber bundle can be used to give a different notion of local holo-
morphic r-jet (in principle chart dependent) by just considering the operator ∂∇:
if the connection matrix in the trivialization is Ax = A1,0

x , then the coupled 1-jet
of a holomorphic section τ is defined to be (τ, ∂0τ + Axτ)). Higher order coupled
jets are constructed by induction using the connection induced by the flat metric
and ∇.

Observe that locally for the above choice of coordinates and trivialization of the
bundle, both the usual r-jets and coupled r-jets fill the bundle

(

r∑
j=0

(T ∗1,0Cn)�j)⊗ Cm = J rm,n,

where � stands for the symmetric part of the tensor product and (T ∗1,0Cn)�0⊗Cm
for Cm. This is due to the existence through any point of E of holomorphic frames
tangent to the horizontal distribution of the connection, together with the vanishing
F 2,0
∇ (the latter implying that dA and its derivatives are symmetric tensors when

evaluated on (1,0)-vectors).
For Levi-flat CR manifolds the local model for the pseudo-holomorphic jets to

be introduced is the following: the base space is (Cn × R, J0, g0) (or rather a ball
of Euclidean radius ρ > 0), the bundle is assumed to be trivialized by a CR frame
and the curvature is of type (1,1). The bundle of CR r-jets is denoted by J rDh,n,m

(foliated holomorphic r-jets along Dh); its fiber over each point is that of J rn,m.
There is an obvious notion of CR coupled r-jet. The hypothesis on the trivialization
and on the curvature imply that they are also symmetric, so they fill the bundle
J rDh,n,m

= J rn,m × R.
Using Darboux charts and suitable trivializations this model will be achieved in

an approximate way in the theory for 2-calibrated manifolds.
There is a final local model we wish to introduce that would appear in Kähler

manifolds P with a holomorphic foliation integrating a complex distribution G.
Locally, we have holomorphic coordinates Cg × Cp−g with G sent to Cg (which
integrates into the foliation with leaves Cg×{·}), and we work with foliated coupled
jets along the leaves of Cg. The corresponding bundle of coupled foliated r-jets is
denoted by J rCg,p,m. It coincides with J rg,m × Cp−g. Transversality problems for
this bundle will be transferred to transversality problems in J rp,m, so we need no
further analysis of its properties, though we will be interested at some point in
studying the natural submersion J rp,m → J rCg,p,m. This local model is achieved

in an approximate way in a symplectic manifold (with compatible almost complex
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structure and metric) with a J-complex distribution G -not necessarily integrable-,
by using approximate holomorphic charts adapted to G.

5.2. Pseudo-holomorphic jets. Denote sequence E ⊗ L⊗k → (M,D,ω) by Ek.
We define the bundles

J rDEk := (

r∑
j=0

(D∗1,0)
�j

)⊗ Ek,

where � stands for the symmetric part of the tensor product of complex vector
bundles. They carry Hermitian vector bundle metrics induced by gk|D, the one on
Ek, and the symmetrization map

symj : (D∗1,0)
⊗j → (D∗1,0)

�j
. (28)

The Levi-Civita connection induces a connection on D∗ (using the metric to see
D∗ ↪→ T ∗M and then projecting T ∗M → D∗) and therefore in D∗1,0 (using the
splitting D∗1,0 +D∗0,1); combined with the connection on Ek and the symmetriza-
tion map they define connections ∇k,r. The total spaces J rDEk also carry metrics
constructed in the usual fashion out of the metric in the base, the connection, and
the vector bundle Hermitian metric.

The definition of pseudo-holomorphic r-jets along D (or just pseudo-holomorphic
r-jets) for a sequence Ek of Hermitian vector bundles is given by induction (see
[4]). Let τk be a sequence of A.H. sections of Ek. By definition j0

Dτk = τk.

Let jr−1
D τk ∈ J r−1

D Ek be the (r − 1)-jet of τk. It has homogeneous components
of degrees 0, 1, . . . , r − 1. We will denote the homogeneous component of degree
j ∈ {0, . . . , r − 1} by ∂jsymτk ∈ Γ((D∗1,0)�j ⊗ Ek). The connection ∇k,r−1 is actu-

ally a direct sum of connections defined on the direct summands (D∗1,0)�j ⊗ Ek,
j = 0, . . . , r − 1. For simplicity and if there is no risk of confusion we will use the
same notation for the restriction of∇k,r−1 to each of the summands. The restriction
of∇k,r−1∂

r−1
symτk to D defines a section∇k,r−1,D∂

r−1
symτk ∈ Γ(D∗⊗(D∗1,0)�r−1⊗Ek).

For each x ∈ M it is a form on D with values in the complex vector space
(D∗1,0)�r−1 ⊗ Ek. Therefore we can consider its (1,0)-component ∂∂r−1

symτk ∈
Γ(D∗1,0⊗(D∗1,0)�r−1⊗Ek). By applying the symmetrization map symr of equation
(28) we obtain ∂rsymτk ∈ Γ((D∗1,0)�r ⊗ Ek).

Definition 5.2. Let τk be a section of (Ek,∇k). The pseudo-holomorphic r-jet

jrDτk is a section of the bundle J rDEk = (
∑j=0
r (D∗1,0)�j) ⊗ Ek defined out of the

(r − 1)-jet by the formula jrDτk := (jr−1
D τk, ∂

r
symτk).

Remark 5.1. The previous definition incorporates the fact that the degree r and
(r − 1) homogeneous components of the r-jet are symmetrization of the pseudo-
holomorphic 1-jet of ∂r−1

symτk; then we have to add the homogeneous components
of lower degree. Actually, we could have equally defined jrDτk by taking the sym-

metrization of the pseudo-holomorphic 1-jet of jr−1
D τk (because this gives the ho-

mogeneous components of degree 1, . . . , r) and then adding τk, the degree zero
homogeneous component.

Remark 5.2. The pseudo-holomorphic r-jets are useless for our purposes for low
values of k. We are interested in having a notion of r-jet of an A.H. sequence which
in approximately holomorphic coordinates and for suitable local trivializations of
Ek, is as close as possible to the local coupled holomorphic r-jet defined in Cn ×R
using J0 and the flat metric (introduced in subsection 5.1). As k grows large and
due to the proximity between gk, J and J0, g0, in B(0, ρ) ⊂ Cn×R we will see that
the norm of the difference at any order between the two notions of r-jet is bounded
by O(k−1/2).
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For a symplectic manifold (P,Ω) with a J-complex distribution G the bundle of
pseudo-holomorphic r-jets along G will be defined to be

J rGEk := (

r∑
j=0

(G∗1,0)
�j

)⊗ Ek.

We have a canonical projection pG : J rEk → J rGEk. We also use the splitting
TP = G⊕G⊥ to see J rGEk as a subbundle of J rEk; hence every section of J rGEk
can be seen as a section of J rEk. To define the pseudo-holomorphic r-jet along
G we use the same induction procedure as in the definition of pseudo-holomorphic
r-jets along D, but either before or after symmetrizing we project T ∗1,0P → G∗1,0

(or even before taking the (1,0)-component we project T ∗PC → G∗C); the result of
either choice is the same.

Once approximately holomorphic coordinates have been fixed we have a canoni-
cal pointwise (J0 − J)-complex linear identification

TCn → D

∂

∂xik
7→ ∂

∂xik
+ ai

∂

∂sk

∂

∂yik
7→ J

(
∂

∂xik
+ ai

∂

∂sk

)
. (29)

The inverse of its dual is a (J0 − J)-complex bundle map

$k,x : T ∗1,0Cn → D∗1,0. (30)

It should be stressed that this identification is only important in the ball of some
gk radius ρ > 0, the region where our computations have to be more accurate (in
order to obtain local estimated transversality). There, for some constant γ > 0

|$k,x|g0 ≤ γ, |$−1
k,x|g0 ≤ γ and |dj$k,x|g0 ≤ O(k−1/2), ∀j ≥ 1. (31)

The Gaussian decay of the reference sections will take care of what happens out of
these balls. We also notice that by writing dzik we will mean $k,x(dzik).

Let us assume that we have also fixed a family of reference sections of τ ref
k,x ∈

Γ(L⊗k). Using any local unitary basis of E (with bounds uniform on x) together
with the reference sections, we have a family of trivializations τ ref

k,x,j , j = 1, . . . ,m, of

Ek in the balls Bgk(x, ρ) for all x and for all k large enough. The A.H. coordinates
and the associated bundle maps $k,x provide a local basis dz1

k, . . . , dz
n
k of D∗1,0.

We obtain a family of trivializations of J rDEk about any point as follows: for
I = (i0, i1, . . . , in), with 1 ≤ i0 ≤ m, 0 ≤ i1 + · · ·+ in ≤ r, we set

µk,x,I := dz1
k
�i1 � · · · � dznk

�in ⊗ τ ref
k,x,i0 . (32)

Definition 5.3. A family of sequences τk,x,I : M → Ek, is called a family of holo-
nomic frames if:

(1) They are A.H. sections with Gaussian decay w.r.t to x.
(2) There exist ρ, γ > 0 such that in the balls Bgk(x, ρ) and for all point and all

k large enough the sequences jrDτk,x,I : M → J rDEk define a frame which
is γ-comparable to µk,x,I in the following sense: if we write jrDτk,x,I in the
basis µk,x,I , for the corresponding matrix Mk,x we have

|Mk,x|g0 ≤ γ, |M−1
k,x|g0 ≤ γ.

One checks that the notion of holonomic reference frame does not depend either
on the fixed approximately holomorphic coordinates, or in the chosen reference
sections of Ek to define µk,x,I . Only the constants involved in the definition change.
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In this situation there is still a weak point. The main goal is to construct sections
whose pseudo-holomorphic r-jets are transverse to certain stratifications. For that
we need the pseudo-holomorphic r-jets to be A.H. sections of the bundles J rDEk
(resp. J rEk for symplectic manifolds with J-complex distribution G), so that we
can apply the transversality results from approximately holomorphic theory (to
be proved in section 7). We intend to use holonomic reference frames defined as
follows: if I is one of the (n+ 1)-tuples introduced before we set

νk,x,I := jrDτ
ref
k,x,I , where τ ref

k,x,I := (z1
k)
i1 · · · (znk )

inτ ref
k,x,i0 ∈ Γ(Ek). (33)

In the Kähler case and due to the presence of curvature (see [5]), the coupled
jets are not anymore holomorphic sections of J rn,m with respect to the complex
structure induced by the connection. Similarly, the frames νk,x,I fail to be families
of holonomic frames because the sections are not approximately holomorphic if
r ≥ 1. This difficulty is overcome by introducing a new almost complex structure
(a new connection) in J rDEk (resp. J rEk). This is the content of the following
proposition whose proof is given in Appendix A.

Proposition 5.1. The sequence J rDEk → (M,D, J, gk) -which is very ample for
the connections ∇k,r previously described- admits new connections ∇k,Hr

such that:

(1) ∇k,r − ∇k,Hr
∈ D∗0,1 ⊗ End(J rDEk). Hence, if in order to compute the

pseudo-holomorphic jets (definition 5.2) we use the connections ∇k,Hr
in-

stead of ∇k,r, then the result is the same.
(2) Let us denote the curvatures of ∇k,Hr and ∇k,r by Fk,Hr and Fk,r respec-

tively. Then Fk,Hr u Fk,r and hence (J rDEk,∇k,Hr ) is a very ample se-
quence.

(3) If τk : M → Ek is a Cr+h-A.H. sequence of sections, then jrDτk : M →
J rDEk is a Ch-A.H. sequence of sections for the connections ∇k,Hr .

In the integrable model (E,∇)→ (Cn × R, Dh, J0, g0), with E = L1 ⊕ · · · ⊕ Lm,
we can introduce new connections ∇Hr (here there is no dependence in k, since
distribution, (almost) complex structure, and metric are the standard ones). If the
curvature Fi of each line bundle Li, i = 1, . . . ,m, restricted to the leaves is of type
(1,1) and has constant components with respect to the coordinates z1, . . . , zn, then
the restrictions to each leaf of the curvatures FHr

and Fr (item (2) above) coincide.
As a consequence the new almost CR structure in the total space of J rDh,n,m

induced

by ∇Hr is also integrable (the foliation does not vary, just the leafwise complex
structure). Also if τ is a CR section (Cm-valued function), then the coupled CR jet
is a CR section of (J rDh,n,m

,∇Hr
).

In the case of (P,Ω) symplectic with a J-complex distribution G, analogous re-
sults hold for J rEk and for the integrable model.

As we said we postpone the proof until Appendix A, but we introduce the formula
for the connection.

Let σk = (σk,0, σk,1) be a section (maybe local) of J 1
DEk. We define

∇H1(σk,0, σk,1) = (∇σk,0,∇σk,1) + (0,−F 1,1
D σk,0),

where F 1,1
D σk,0 ∈ D∗0,1 ⊗D∗1,0 ⊗ Ek (see [5]).

Remark 5.3. The approximate equality FH1,k u Fk has useful consequences.
Assume for simplicity Ek = L⊗k. Fix approximately holomorphic coordinates
and trivialize the line bundle so that the connection form is A (equation (3)).
Then in the local frame (1, 0) ⊗ τk, (0, dz1

k) ⊗ τk, . . . , (0, dznk ) ⊗ τk J 1
DLk and over

B(0, ρ) ⊂ Cn×R, the connection matrix of ∇k,H1
is, up to summands bounded (at

any order) by O(k−1/2)



32 D. MARTÍNEZ TORRES

∣∣∣∣∣∣∣∣∣
A − 1

2dz̄
1
k · · · − 1

2dz̄
n
k

0 A · · · 0
. . .

0 0 · · · A

∣∣∣∣∣∣∣∣∣
In particular we have a uniform control on the new metric of the total space of
the bundles J 1

DLk (resp. J 1Lk). In a similar manner this uniform control also
holds for the bundles J rDEk (resp. J rEk). A useful outcome is that if we have
a sequence of stratifications S such that for a choice of approximate holomorphic
coordinates and reference frames, in the associated local basis µk,x,I of equation
(32) the strata Sak are given by equations (functions) that do not depend neither
on k nor on x, then the different bounds associated to the strata (basically those
of the local functions defining them) will not depend on k and x (because we can
compute them for the corresponding model with the Euclidean metric elements).

6. The linearized Thom-Boardman stratification

For the very ample sequences Ek there is an easy sufficient condition for a se-
quence of stratifications to be finite, Whitney (A), and approximately holomorphic.

Let us denote by T the group of translations of Cn ×R (resp. Cp in the relative
case).

Lemma 6.1. Let (Sak)a∈A be a sequence of stratifications of Ek → (M,D,ω) such
that, for a choice of approximately holomorphic coordinates and approximately holo-
morphic trivialization, it is sent to (Sa)a∈A, a fixed CR finite, Whitney (A) strati-
fication of Cm → Cn ×R transverse to the fibers. Then the sequence (Sak)a∈A is as
in definition 4.6.

Conversely, from a Whitney (A) CR stratification of Cm → Cn × R transverse
to the fibers and invariant under the action of T × Gl(m,C) (or T × C∗), using
the local identifications of Ek with Cm furnished by A.H. coordinates and A.H.
trivializations, it is possible to induce an approximately holomorphic sequence of
finite, Whitney (A) stratifications of Ek.

Proof. Recall that we are interested in constructing A.H. sequences of sections
transverse to (Sak)a∈A; in particular this sections will be uniformly bounded. There-
fore, for each k, x we can work in the subsetB(0, ρ)×B(0, R) ⊂ (Cn×R)×Cm = Cm,
for some R > 0. Let f be a function defining locally a stratum Sa, which by hy-
pothesis can be chosen to be CR. Condition (1) in definition 4.6 holds trivially for
the model S and therefore for (Sak)a∈A, because when we compare the Euclidean
metric and ĝk we get the same inequalities as in condition (1) in definition 3.1.

Since the model stratification is Whitney (A) and we work in a compact region,
Whitney’s condition (A) implies the estimated Whitney’s condition (A) for the
Euclidean metric and hence for ĝk.

Let Ĵ0 be the leafwise holomorphic structure associated to the canonical CR
structure of Cm = (Cn × R) × Cm and let D̂h denote the foliation by complex
hyperplanes. Since the local function f defining Sa is CR, in particular it is fiberwise
holomorphic, and this proves condition (2) in definition 4.6.

Let (D̂, Ĵ , ĝk) be the almost CR structure on B(0, ρ) × B(0, R) induced by the
one on Ek. In order to prove condition (3) it suffices to check that f is A.H.
with respect to the this almost CR structure. We are going to slightly modify the
induced almost CR structure: instead of D̂, we select D̂h. By using the Euclidean
orthogonal projection, we can push Ĵ : D̂ → D̂ into an almost complex structure
J ′ : D̂h → D̂h.
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Since |dj(D̂ − D̂h)|g0 ≤ O(k−1/2), for all j ≥ 0, then f is A.H. with respect to

(D̂, Ĵ , ĝk) if and only if it is A.H. with respect to (D̂h, J
′, g0) (this appears in the

proof of lemma 3.3).
In Cm = (Cn×R)×Cm we have canonical coordinates z1

k, . . . , z
n
k , sk, u

1
k, . . . , u

m
k .

These are CR coordinates w.r.t (D̂h, Ĵ0). By hypothesis

∂f

∂z̄1
k

= · · · ∂f
∂z̄nk

=
∂f

∂ū1
k

= · · · ∂f
∂ūmk

= 0.

If we show that z1
k, . . . , z

n
k , sk, u

1
k, . . . , u

m
k are A.H. coordinates for (D̂h, J

′, g0) then
we are done (this is again lemma 3.3 in the absence of connection form). But this
follows from the fact that the trivialization of Cm is given by an A.H. frame and
therefore the induced distribution (by the connection form) H on D̂h is such that

|dj(H− Ĵ0H)|g0 ≤ O(k−1/2), for all j ≥ 0.
To prove the result in the other direction we fix A.H. coordinates and A.H.

frames for Ek. The T × Gl(m,C)-invariance of (Sa)a∈A ⊂ Cm means that the
local identifications define a sequence of global stratifications, and that these do
not depend either on the A.H. coordinates or on the A.H. trivializations. It is an
approximately holomorphic sequence of finite, Whitney (A) stratifications by the
first part of the proof. �

In contrast to what happens for 0-jets, it is not easy to find non-trivial approxi-
mately holomorphic stratifications for higher order jets. The difficulty comes from
the fact that the modification of the connection of proposition 5.1 that makes the
r-jets of A.H. sequences of sections of Ek into A.H. sequences of sections of J rDEk,
makes it very complicated to guarantee that the strata are given by functions whose
composition with an A.H. section is an A.H. function.

Example 6.1. Let L⊗kΩ be the sequence of powers of the pre-quantum line bundle
of a symplectic manifold of dimension 2p. Let us consider the following sequence
of strata in J 1L⊗kΩ :

Σk,p = {(σ0, σ1)|σ1 = 0}.
The second subindex in our notation indicates the complex dimension of the kernel
of the degree one homogeneous component of the 1-jet (see equation (54)). Using
the local sections µk,x,I of equation (32), where I = 1, . . . , p, and taking reference
sections in Darboux charts, we get coordinates z1

k, . . . , z
p
k, v

0
k, v

1
k, . . . , v

p
k for the total

space. Σk,p is then defined by the zeros of the function f = (v1
k, . . . , v

p
k) : C2p+1 →

Cp, which is not holomorphic (or A.H.) with respect to the modified almost complex
structure of the total space. Otherwise, the composition f ◦ j1(z1

kτ
ref
k,x) would be

A.H., but that composition is (1 + z1
kz̄

1
k, z

1
kz̄

2
k, . . . , z

1
kz̄
p
k).

Actually, we cannot find A.H. functions f defining Σk,p: let us work in Darboux
coordinates with the canonical complex structure J0 in the base. Assume that µk,x,I
is built out of the reference section e−|zk|

2/4ξ, where ξ is a unitary trivialization
of LΩ whose connection form is A in equation (3). Then J 1L⊗kΩ becomes locally

Cp+1 with diagonal connection matrix AIp+1×p+1. Proposition 5.1 for complex

manifolds implies that the modified almost complex structure on Cp+1 is integrable.
The submanifold z2

k = · · · = zpk = v2
k = · · · = vpk = 0 is complex with respect to

the modified almost complex structure. Therefore, we can restrict our attention to

the case p = 1. The sections j1
hole
−|zk|2/4ξ, j1

holzke−|zk|
2/4ξ are by proposition 5.1

holomorphic. If we use them to trivialize J 1L⊗kΩ in a neighborhood of the origin,

then we obtain a new identification with C3 with its canonical complex structure.
Let zk,tk,sk be the new complex coordinates. A short computation shows that
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v0
k = tk + zksk,

v1
k = −z̄k/2tk + (1− zkz̄k/2)sk.

Hence away from the origin Σk,p admits the parametrization

(zk, sk) 7→ (zk, sk, sk(2/z̄k − zk)).

Therefore, Σk,p is not holomorphic with respect to the modified almost complex
structure, and it follows that we cannot find f A.H. defining Σk,p locally.

6.1. Quasi-stratifications. For the applications we have in mind the notion of
stratification has to be weakened. We start doing it for the local model (endowed
with the trivial connection).

Let σ ∈ S, S a submanifold of J r+1
Dh,n,m

. We say that α ∈ Γ(J rDh,n,m
) is a local

representation for σ if (i) α(0) = πr+1
r σ, and (ii) σ = j1

Dh
α(0) ∈ J r+1

Dh,n,m
, where

πr+1
r : J r+1

Dh,n,m
→ J rDh,n,m

is the natural projection, and j1
Dh
α denotes the CR

1-jet of α. The equality in (ii) should be understood in the following sense: the
degree 1 component of the 1-jet should give an element of J r+1

Dh,n,m
(with vanishing

degree 0 homogeneous component) and whose homogeneous components of degree
1, . . . , r + 1 coincide with those of σ.

Definition 6.1. (see [5]) Let S be a submanifold of J rDh,n,m
(resp. J rCg,p,m). We

define ΘS to be the set of points σ ∈ S for which there exists an (r + 1)-jet σ̃
(resp. (r + 1)-jet along G) such that πr+1

r σ̃ = σ and with a local representation α
intersecting S at σ transversely along Dh (resp. along Cg). We refer to ΘS as the
holonomic transverse subset of S.

It can be checked that if S is invariant under the action of T × (Gl(n,C) ×
Gl(m,C)) -the second factor Gl(n,C) × Gl(m,C) acting fiberwise- (resp. T ×
(Gl(g,C)×Gl(m,C))), then ΘS has the same invariance property.

When an (r + 1)-jet σ is represented by a local section of J rDh,n,m
, in order

to check whether πr+1
r σ ∈ S belongs to ΘS the local representation is essentially

unique: regarding transversality, it is enough to consider the degree 1 part of the
Taylor expansion in the coordinates z1

k, z̄
1
k, . . . , z

n
k , z̄

n
k (we turn the section into a

function using the basis µI). The degree 0 part is determined by the r-jet, the
hypothesis implies that the antiholomorphic part is vanishing and the holomorphic
part is determined by the (r+ 1)-jet. That means in particular that we can restrict
our attention to CR representations if necessary.

The importance of ΘS is two-fold: on the one hand it will be used to define the
stratifications we are interested in. On the other hand it is a very relevant subset
when we study transversality to the strata: indeed, if τ is a CR section of Cm
and α := jrDh

τ is such that α(0) = σ and σ /∈ ΘS , then α cannot be transverse

along Dh to S at σ (notice that σ̃ := (τ(0),dDh
α(0)) = jr+1

Dh
τ(0) ∈ J r+1

Dh,n,m
, and

therefore α is a local representation of σ̃). The consequence is that if S\ΘS ⊂ ∂S′,
transversality of τ to S implies that τ misses a neighborhood of S\ΘS in S′.

Definition 6.1 extends to strata Sk ⊂ J rDEk (resp. J rGEk): we have a notion
of pseudo-holomorphic 1-jet of a section of J rDEk (resp. pseudo-holomorphic 1-
jet along G of a section of J rGEk) -because we have a connection ∇H,D (resp. a
connection on J rGEk defined out of ∇H and the projection pG : J rEk → J rGEk)-
and hence the notion of local representation. Then ΘSk

are those points σ with
lifts σ̃ having a local representation transverse along D (resp. G) to Sk at σ.
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Recall that once a family of A.H. charts has been fixed we have identifications
$k,x : T ∗1,0Cn → D∗1,0. If we also fix a family of A.H. trivializations of Ek over
the charts there is an induced identification

Πk,x : J rDEk → J rDh,n,m
. (34)

Lemma 6.2. Let Sk be a sequence of strata of J rDEk, where either r = 0 and
Ek = E ⊗ L⊗k, or Ek = Cm and r ∈ N.

(1) If Ek = Cm assume that for a choice of A.H. charts Πk,x(Sk) = S, where
S ⊂ J rDh,n,m

is invariant under the action T×Gl(n,C). Then Πk,x(ΘSk
) =

ΘS.
(2) The same result holds for E ⊗ L⊗k and r = 0; we need to fix A.H. triviali-

zations of Ek (so Πk,x is defined) and require invariance of S ⊂ Cm under
the action of T×Gl(m,C).

For jets along G we have analogous results, but we need A.H. charts adapted to
G and we ask for T×Gl(g,C)-invariance of S instead of T×Gl(n,C)-invariance.

Proof. Since S is Gl(n,C)-invariant, so is ΘS . We have the local identifications
Πk,x : J rDEk → J rDh,n,m

. Let y ∈ M belong to B(0, ρ) in the domain of the charts
centred at x1 and x2, for some k. Then there is a fiber bundle isomorphism

Φk,x1,x2
: J rDh,n,m

→ J rDh,n,m
(35)

defined as follows: for each point y in the intersection of the domains of the charts,
the restriction of the differential to D is a complex J-linear map Ly. Consider

the linear map $k,x2
◦ L∗y ◦$−1

k,x2
: T ∗1,0Cn → T ∗1,0Cn, which belongs to Gl(n,C).

Φk,x1,x2
in the fiber over y (or over the origin in both charts due to the T-invariance)

is the vector space isomorphism induced by $k,x2 ◦ L∗y ◦ $−1
k,x2

(and the identity

acting on the Cm factor of the tensor product). Since S is invariant under the
T×Gl(n,C)-action, Φk,x1,x2

(ΘS , S) = (ΘS , S). In particular the pair (ΘS , S) does
not depend on the chosen family of A.H. charts. We construct an appropriate
family of A.H. charts (there is no Darboux condition involved here) by the usual
rescaling procedure, but starting from normal coordinates composed with a linear
transformation so that (D,J) = (Dh, J0) at the origin. Recall that since Ek = Cm,
the connection ∇k,r on J rDEk is just induced by the Levi-Civita connection (in
the Cm factor we use the trivial connection d). Hence the pushforward of ∇k,r
by Πk,x to J rDh,n,m

has vanishing connection form at the origin. Since we also

have (D ⊕D⊥, J) = (Dh ⊕Dv, J0) at the origin, for any section α of J rDh,n,m
we

have j1
Dα(0) = j1

Dh
α(0). Therefore, the local representations at the origin for the

canonical CR structure and the induced one coincide. From that and D = Dh at
the origin, we conclude Πk,x(ΘSk

) = ΘS .
Item (2) is proven in the same fashion. The Gl(m,C)-invariance implies that

we can choose any arbitrary family of A.H. trivializations. What we do is selecting
trivializations such that the connection form over the origin is vanishing (here we
deal with the connection ∇k on Ek).

Notice that we cannot state item (2) for higher order jets because the action
of Gl(n,C) × Gl(m,C) does not allow us to kill at the origin of each chart the
connection form of the modified connection ∇k,Hr .

For the relative results we start by modifying a bit the vector bundle isomorphism
$k,x : T ∗1,0Cp → T ∗1,0P ; the original (J0, J)-complex map TCp → TP can be
easily arranged to be compatible with the splittings TCg ⊕ TCp−g and G ⊕ G⊥.
Due to the T× (Gl(g,C))-invariance we are free to pick any family of A.H. charts
adapted to G. The ones we need come from rescaling normal coordinates composed
with a linear transformation sending (G⊕G⊥, J) to (Cg⊕Cp−g, J0) at the origin. In
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these coordinates the connection form on T ∗1,0Cg is vanishing, because we project
the Levi-Civita connection which is already vanishing at the origin. Hence the 1-jets
along G and Cg at the origin coincide (also because (G⊕G⊥, J) = (Cg ⊕Cp−g, J0)
at the origin), and this proves the result. �

The only relevant strata Sk ⊂ J rDEk for which we have to consider the subsets
ΘSk

are the zero sections Zk. In that case (see [3]) the subsets ΘZk
are those r-jets

whose degree 1 component is onto.

Definition 6.2. An approximately holomorphic quasi-stratification of J rDEk is an
approximately holomorphic stratification in which the partial order condition is
relaxed in the following way: Zk are strata of the quasi-stratification, and for any
other strata Sk 6= Zk when we approach Zk, it accumulates into points of Zk\ΘZk

(so in particular Zk is not in the closure of Sk).

6.2. The Thom-Boardman-Auroux stratification for maps to projective
spaces. Let Ek = Cm+1 ⊗ L⊗k. Let Z0, . . . , Zm be the complex coordinates asso-
ciated to the trivialization of Cm+1 (at any fiber) and let π : Cm+1\{0} → CPm be
the canonical projection. Consider the canonical affine coordinates

ϕ−1
i : Ui −→ Cm

[Z0 : · · · : Zm] 7−→
(
Z0

Zi
, . . . ,

Zi−1

Zi
,
Zi+1

Zi
, . . . ,

Zm

Zi

)
.

For each chart ϕi we consider the bundle

J rD(M,Cm)i := (

r∑
j=0

(D∗1,0)
�j

)⊗ Cm. (36)

We now bring back the discussion at the beginning of section 5. Assume for the
moment that M is a Levi-flat CR manifold and fix a family of CR charts. Over
each of the balls Bgk(x, ρ) we have the bundles J rDh,n,m

of CR r-jets. Notice that

if we use the frames µk,x,I of equation (32) they are vector bundles.
The local bundles J rDh,n,m

glue into the non-linear bundle J rCR(M,Cm)i: let
y ∈M be a point belonging to two different charts centred at x0 and x1 respectively.
If we send y in both charts to the origin via a translation, then the change of
coordinates restricts to the leaf through the origin to a holomorphic map fixing
the origin. The fibers over y are related by the action of the holomorphic r-jet of
the bi-holomorphism. If we only take the linear part of the action -which is the
vector bundle map Φk,x1,x2

of equation (35)- we are equally defining a bundle, for
the cocycle condition still holds. Moreover, it is a vector bundle. Besides, since we
only use the linear part we do not need either D or J to be integrable. This bundle
is J rD(M,Cm)i as defined in equation (36) (what we defined there, it is rather a
sequence in which the metric in the D∗1,0 factors is induced from gk). Thus for
Levi-flat manifolds the vector bundles J rD(M,Cm)i are “linear approximations” of
the non-linear bundles J rCR(M,Cm)i.

Proposition 6.1.

(1) The vector bundles J rD(M,Cm)i can be glued to define the almost complex
fiber bundles J rD(M,CPm) of pseudo-holomorphic r-jets of maps from M
to CPm, so that their fibers inherit a canonical holomorphic structure.

(2) Given φk : M → CPm there is a notion of pseudo-holomorphic r-jet ex-
tension jrDφk : M → J rD(M,CPm), which is compatible with the notion of

pseudo-holomorphic r-jet for the sections ϕ−1
i ◦ φk : M → Cm of definition

5.2. If φk : M → CPm is an A.H. sequence then jrDφk : M → J rD(M,CPm)
is also A.H.
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Analogous results hold in the relative setting for the bundles J r(P,CPm) and
J rG(P,CPm). Also there is an approximately holomorphic sequence of canonical
submersions pG : J r(P,CPm)→ J rG(P,CPm). These submersions are left inverses
of the natural inclusions lG : J rG(P,CPm) ↪→ J r(P,CPm) so that for φk : P → CPm
an A.H. sequence, jrGφk : P → J rG(P,CPm) ↪→ J r(P,CPm) is A.H.

Proof. Let us denote the change of coordinates ϕ−1
j ◦ ϕi by Ψji. For any y ∈ M

the points in {y} × (Ui ∩ Uj) ⊂ J rD(M,Cm)i are identified with points in {y} ×
(Ui ∩ Uj) ⊂ J rD(M,Cm)j using the same transformation jrΨji in J rn,m induced by
the fiberwise holomorphic change of coordinates Ψji. In other words, if we take
an approximately holomorphic chart centred at x say and containing y, we get
as in equation (34) a vector bundle isomorphism Πk,x,i : J rD(M,Cm)i → J rDh,n,m

.

Thus for σ ∈ J rD(M,Cm)i there exists F : Cn → Cm a CR function such that
Πk,x,i(σ) = jrDh

F (x).
The bundle map we define is:

jrΨji : J rD(M,Cm)i −→ J rD(M,Cm)j

σ 7−→ Π−1
k,x,j(j

r
Dh

(Ψji ◦ F )(x)). (37)

This map does not depend either on the charts: if we have a point y in two different
charts centred at x1 and x2, then we saw in the proof of lemma 6.2 that the vector
space isomorphism Φk,x1,x2 : J rDh,n,m

→ J rDh,n,m
was induced by T ∈ Gl(n,C).

The bundle map of equation (37) is equivariant with respect to this action, because
in the CR setting it is equivariant with respect to the action in the base of CR
transformations. Hence, the result follows by considering the affine CR transfor-
mation sending y in the first chart to its image in the second and whose linear part
is T ∗ × I : Cn × R→ Cn × R.

Equivalently, the r-jet of Ψji ◦ F admits a coordinate free expression only in
terms of the r-jet of F .

Therefore the identifications jrΨji give rise to a well defined locally trivial fiber
bundle J rD(M,CPm).

Remark 6.1. If our manifold is CR and we have x belonging to two different CR
charts, then there is a natural induced identification J rDh,n,m

→ J rDh,n,m
over the

points belonging to both charts. This identification is just the action of the CR
r-jet of the change of coordinates. We observe that this is not the action of Φk,x1,x2

,
which is just the action induced by the 1-jet of the change of coordinates (the only
one available for all almost CR structures!).

The fibers of J rD(M,CPm) admit a canonical holomorphic structure because
using the local identifications Πk,x,i the fiber is some CN and the change of coordi-
nates is a fiberwise holomorphic map (because it is the holomorphic r-jet of Ψji),
and this proves item (1).

Let φ : (M,J,D)→ CPm. Its pseudo-holomorphic r-jet jrDφ is defined as follows:

the affine charts of projective space induce maps φi := ϕ−1
i ◦ φ : M → Cm. Using

the trivial connection d in this trivial vector bundle and the induced connection on
D∗1,0, we can define the corresponding pseudo-holomorphic r-jet jrDφi (definition
5.2). We must check that

jrDφj = jrΨji(j
r
Dφi). (38)

More generally let H : Cm1 → Cm2 be any holomorphic map. Then use the
local identifications Πk,x,s : J rD(M,Cms) → J rDh,n,ms

, s = 1, 2, to induce the map

jrH : J rD(M,Cm1) → J rD(M,Cm2). We claim that for any function φ : M → Cm1

we have

jrD(H ◦ φ) = jrH(jrDφ). (39)
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Equation (38) follows from the claim by taking H = Ψji.
The proof of the claim take the next two and a half pages, and it is by induction

on r. Firstly we notice that from the proof of the claim for m2 = 1, the proof for any
m2 follows immediately. Therefore we assume m2 = 1. Secondly we observe that
it is enough to check the equality in (39) for the degree r homogeneous component
of the r-jet.

We shall denote the degree r homogeneous component of jrH by drH; recall
that drH(jrDφ(x)) depends on the components of every order of jrDφ(x). Let F =
(F 1, . . . , Fm1) : Cn × R→ Cm1 be a CR function such that

jrDφ(x) = jrDh
F (x).

Also the degree r homogeneous component of jrDh
F is denoted by ∂r0F . By definition

∂jsymφ(x) = ∂j0F (x), j = 0, . . . , r. (40)

We start the proof of the claim for 1-jets. Once we use the identification ∂φ(x) =
∂0F (x), we have

dH(∂φ(x)) := dH(∂0F (x)) =

m1∑
a=1

∂0H

∂0za
∂0F

a(x), (41)

and using the identification of equation (40) back we get the following formula for
the right hand side of equation (39) for 1-jets:

dH(∂φ(x)) = dH(∂0F (x)) =

m1∑
a=1

∂0H

∂0za
∂φa(x), (42)

where the partial derivatives of H are evaluated on φ(x) = F (x), but we omit it in
the notation.

Regarding the left hand side of equation (39), the computation of ∂(H ◦ φ)(x)
is done by firstly taking in ∇(H ◦ φ)(x) its projection over D∗ (or restricting the
differential to D). Since

∇(H ◦ φ)(x) =

m1∑
a=1

∂0H

∂0za
∇φa(x) (43)

is the sum of partial derivatives of H multiplied by the components ∇φa(x) of
∇φ(x), taking ∇D(H ◦ φ)(x) amounts to substituting in equation (43) the factors
∇φa(x) by ∇Dφa(x).

Next the holomorphic component is singled out; since H is holomorphic ∂(H ◦
φ)(x) is computed by taking the component ∂φa(x) of ∇Dφa(x) in equation (43).
Thus we obtain the same result as in equation (42), and this proves the claim for
1-jets.

We need to prove the claim for 2-jets before going to the induction step. The
reason is that for 1-jets the symmetrization step is not present, unlike the case of
higher order jets.

By definition

d2H(j2
Dh
F (x)) =

m1∑
b,a=1

∂2
0H

∂0za∂0zb
∂0F

a(x)⊗ ∂0F
b(x) +

m1∑
c=1

∂0H

∂0zc
∂2

0F
c(x), (44)

so using equation (40) we get for the right hand side of equation (39)

d2H(j2
Dφ(x)) =

m1∑
b,a=1

∂2
0H

∂0za∂0zb
∂φa(x)⊗ ∂φb(x) +

m1∑
c=1

∂0H

∂0zc
∂2

symφ
c(x). (45)
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To compute ∂2
sym(H ◦ φ)(x) we first differentiate ∂(H ◦ φ) at x:

∇∂(H ◦ φ)(x) =

m1∑
b,a=1

∂2
0H

∂0za∂0zb
∇φa(x)⊗ ∂φb(x) +

m1∑
c=1

∂0H

∂0zc
∇∂φc(x). (46)

Taking the component along D and then the holomorphic part amounts to substi-
tuting in equation (46) ∇φa(x) by ∂φa(x), and ∇∂φc(x) by ∂2φc(x):

∂2(H ◦ φ)(x) =

m1∑
b,a=1

∂2
0H

∂0za∂0zb
∂φa(x)⊗ ∂φb(x) +

m1∑
c=1

∂0H

∂0zc
∂2φc(x). (47)

We need to show that symmetrizing equation (47) amounts to writing ∂2
symφ

c(x)

instead of ∂2φc(x).
In equation (47) we have terms of “type” 2 -those containing a second derivative

of φ- and terms of “type” (1,1) which contain the tensor product of two derivatives
of φ. Terms of “type” (1,1) are already symmetric (just exchange the indices a, b);
the symmetrization -being a linear projection- does not alter them. Now one checks
that the symmetrization of each summand ∂0H

∂0zc
∂2φc(x) is exactly ∂0H

∂0zc
∂2

symφ
c(x),

this proving the claim for 2-jets.
We now move onto the induction step. We assume drH(jrDφ(x)) = ∂rsym(H◦φ)(x)

and we want to prove the claim for (r + 1)-jets. By a partition of r of degree s we
understand any (ordered) s-tuple (r1, . . . , rs), 1 ≤ s ≤ r, 1 ≤ rj ≤ r, r1+· · ·+rs = r.
In the computation of drH(jrDφ(x)) := ∂r0(H ◦F )(x) we get an algebraic expression
whose summands are of the form

∂r1+···+rs
0 H

∂r10 z
i1 . . . ∂rs0 z

is
∂r10 F

i1(x)⊗ · · · ⊗ ∂r0F is(x), (48)

each belonging to a partition (r1, . . . , rs). Notice that to some partitions correspond
summands that are originated from different partitions of r − 1. For example, in
degree 3 we have (1,2)-terms coming from the derivation of the terms of “type” 2 and
others obtained from the derivation of the (1,1)-terms. We do not add summands
of the same “type”, but keep them distinguished. By induction we assume that
∂rsym(H ◦ φ)(x) is computed by the same algebraic expression as drH(jrDh

F (x)),

but writing in the summands in equation (48) ∂
rj
symφij in place of ∂

rj
0 F

ij (x), and
then evaluating at x.

To compute ∂r+1
sym (H ◦ φ)(x) we have to firstly differentiate the algebraic ex-

pression that computes ∂rsym(H ◦ φ)(x). From the previous assumption a one
to one correspondence compatible with the partitions between the summands of
dr+1H(jr+1

Dh
F (x)) and of ∇∂rsym(H ◦ φ)(x) can be established. It is clear that re-

stricting to D and taking the (1,0)-component does not affect the identification.
In each summand of ∂∂rsym(H ◦ φ)(x) all the factors but possibly one in the

tensor product are of the form ∂
rj
symφij and hence already symmetric; the different

one is of the form ∂∂
r′j
symφ

i′j . Observe that the symmetrization of each summand

in ∂∂rsym(H ◦ φ)(x) amounts to putting instead of ∂∂
r′j
symφ

r′j , its symmetrization

∂
r′j+1
sym φr

′
j and then symmetrizing the resulting expression (this is an elementary

result concerning symmetric products which is proved by suitably regrouping the
permutations). Thus we have proven that

∂r+1
sym (H ◦ φ)(x) = symr+1(dr+1H(jr+1

D φ(x))),
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but dr+1H(jr+1
Dh

F (x)) is already symmetric. Therefore we conclude

∂r+1
sym (H ◦ φ)(x) = dr+1H(jr+1

D φ(x)),

where the equality also holds for each summand in the algebraic expression com-
puting both quantities.

Therefore we conclude that the pseudo-holomorphic r-jet of a map to CPm is
well defined.

To be able to say when a sequence of functions of J rD(M,CPm) is A.H. we need to
introduce an almost CR structure in the total space of the r-jets. This can be done
using a connection (for example out of the Levi-Civita connection associated to the
Fubini-Study metric in the projective space and of the connection on D∗). In our
case we choose to do something different but equivalent: we use the identifications
with J rD(M,Cm)i. Each of these trivial vector bundles with trivial connection has
a natural almost CR structure. Let Ki ⊂ Ui be compact sets whose interiors cover
CPm. We have the corresponding subsets J rD(M,ϕ−1

i (Ki)) ⊂ J rD(M,Cm)i.
We say that σk : M → J rD(M,CPm) is A.H. if there exist constants (Cj)j≥0 such

that for all x ∈M , j ≥ 1, and k ∈ N

maxi∈{0,...,m}|∇j(jrϕ−1
i ◦ σk)(x)|gk ≤ Cj ,

maxi∈{0,...,m}|∇j−1∂̄(jrϕ−1
i ◦ σk)(x)|gk ≤ Cjk−1/2,

where for each x we only take into account those indices for which σk(x) belongs
to the interior of J rD(M,Ki).

Notice that in the local models the identifications jrΨji are holomorphic, there-
fore when restricted to subsets associated to compact regions of Cmi and Cmj the
sequence of maps jrΨji : J rD(M,Cm)i → J rD(M,Cm)j is A.H. In particular the
notion of a sequence σk : M → J rD(M,CPm) being A.H. does not depend on the
covering Ki. It is also clear that if a sequence of functions φk is A.H. then jrDφk is
also A.H. This proves item (2) of the proposition.

If (P,Ω) is symplectic the definition of J r(P,CPm) is the same (we just do
not need to project the full derivative into the subspace D∗). When we have a
J-complex distribution G there is an analogous definition of the bundle of pseudo-
holomorphic r-jets along G. Using the previous affine coordinates of projective
space we consider the sub-bundles

J rG(P,Cm)i := (

r∑
j=0

(G∗1,0)
�j

)⊗ Cm,

where J rG(P,Cm)i ⊂ J r(P,Cm)i via the splitting G⊕G⊥ = TP .
It is easily checked using the local identification between J rp,m and J (P,Cm)

coming from approximately holomorphic coordinates adapted to G, that the diffeo-
morphisms jrΨji : J r(P,Cm)i → J r(P,Cm)j preserve these sub-bundles.

The proof that shows that the jrφ is well defined is exactly the same we gave for
2-calibrated manifolds; a small modification shows that jrGφ is well defined (instead
of keeping the component ∇D of the odd dimensional case, we project over G∗).

Going to the models furnished by approximately holomorphic coordinates adap-
ted to G, the submersion pG : J rp,m → J rCg,p,m is just a projection on some of
the holomorphic coordinates, and therefore it is an approximately holomorphic se-
quence of maps.

Using approximately holomorphic coordinates adapted to G it is straightforward
to check that if φk : P → CPm is A.H., then both jrGφk and jrφk are A.H. sequences
of J r(P,CPm). �



THE GEOMETRY OF 2-CALIBRATED MANIFOLDS 41

We recall that Zk denotes the sequence of strata of J rDEk (resp. J rEk, J rGEk)
of r-jets whose degree 0-component vanishes. We define J rDE∗k := J rDEk\Zk (resp.
J rE∗k := J rEk\Zk, J rGE∗k := J rGEk\Zk).

Proposition 6.2.

(1) There exists a bundle map jrπ : J rDE∗k → J rD(M,CPm) which is a fiberwise
holomorphic submersion.

(2) Let τk be a section of Ek, and let φk = π ◦ τk : M\Z(τk) → CPm be its
projectivization defined away from the zero subset of τk. Then the following
equation holds:

jrπ(jrDτk) = jrDφk. (49)

In the almost complex case we have an analogous map jrπ, and for τk : P → Ek
and its projectivization φk the equality

jrπ(jrτk) = jrφk (50)

holds where defined.
Given G a J-complex distribution we have the following commutative square of

submersions:

J rE∗k
pG−−−−→ J rGE∗kyjrπ yjrπ

J r(P,CPm)
pG−−−−→ J rG(P,CPm)

(51)

If jrGτk is a section of J rGE∗k the equality

jrπ(jrGτk) = jrGφk (52)

holds where defined.

Proof. We define jrπ to have the same expression as in the integrable case. That
means that we fix approximately holomorphic coordinates and a section trivializing
L⊗k and a local frame of E = Cm+1, so that the r-jet σ in question is identified
with the usual CR r-jet at a point x of a CR function F . Then jrπ(σ) is defined
to be the CR r-jet of π ◦F . Notice that for an appropriate chart ϕ−1

i of projective
space,

jrπ(σ) := Π−1
k,x,i(j

r
Dh

(ϕ−1
i ◦ π ◦ F )(x)) ∈ J rD(M,Cm)i. (53)

The arguments in proposition 6.1 that showed that the bundles J rD(M,CPm) are
well defined, also prove that jrπ(σ) is well defined independently of the approxi-
mately holomorphic coordinates and of the chart of CPm we used; it is as well
independent of the local frame of Ek, because the map is equivariant with respect
to the action of Gl(m+ 1,C) on the fibers of Ek and on CPm.

It is clear that jrπ is a submersion, and it is fiberwise holomorphic because in
each fiber we have a map from some Cm1 to some Cm2 (after composing with a
chart ϕi), whose formula is that of the integrable case which is holomorphic, so
item (1) holds.

We now prove the equality jrD(π ◦ τk) = jrπ(jrDτk): let ϕ−1
i be any chart whose

domain contains π ◦ τk(x). Then by the definition given in proposition 6.1

jrD(π ◦ τk)(x) := jrD(ϕ−1
i ◦ π ◦ τk)(x).

We just defined in equation (53)

jrπ(jrDτk(x)) := Π−1
k,x,i(j

r
Dh

(ϕ−1
i ◦ π ◦ F )(x)).
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By proposition 6.1 the right hand side of the two previous equalities coincides, i.e.

Π−1
k,x,i(j

r
Dh

(ϕ−1
i ◦ π ◦ F )(x)) = jrD(ϕ−1

i ◦ π ◦ τk)(x).

Here the holomorphic function ϕ−1
i ◦ π : Cm+1\{0} → Cm plays the role of H in

proposition 6.1. Also observe that the proposition is in principle only valid when
Cm+1 has the trivial connection. In the current situation Cm+1 is endowed with
a diagonal connection coming from the one in L⊗k. The key point is that the
composition ϕ−1

i ◦ π ◦ φk is a section of Cm ⊗ L⊗k ⊗ L−⊗k and hence a Cm-valued
function independently of the trivialization of L⊗k. Therefore the flat connection
d on Cm is induced from d⊗ I + I⊗∇k in Cm+1⊗L⊗k, where ∇k is any Hermitian
connection on L⊗k. In other words, the equations of proposition 6.1 involving the

connection ∇g ⊗ I + I⊗ d on (T ∗1,0Cn�r)⊗ Cm+1 are also valid in this setting for
the connection ∇g ⊗ I + I⊗ (d⊗ I + I⊗∇k), and this finishes the proof of item (2).

The previous ideas work word by word to show that for symplectic manifolds
jrπ : J rE∗k → J r(P,CPm) is a well defined submersion and that equation (50)
holds.

If we have a distribution G, once we use the local identification coming from
approximately holomorphic coordinates adapted to G, the commutativity of the
diagram (51) follows from the commutativity in the holomorphic case. It is also clear
that jrπ : J rGE∗k → J rG(P,CPm) is a submersion and that equation (52) holds. �

In order to describe the linearized Thom-Boardman stratification we need to
define -at least for certain kinds of strata PSak of J rD(M,CPm)- the corresponding
subsets of transverse holonomy ΘPSa

k
.

Definition 6.3. Let PSk be a sequence of strata of J rD(M,CPm) so that in canoni-
cal affine charts of CPm and approximately holomorphic coordinates it is identified
with a stratum PS of J rDh,n,m

invariant under the action of T × Gl(n,C). We let

PSk,i := PSk ∩ J rD(M,Cm)i and then we define

ΘPSk
:=

⋃
i∈{0,...,m}

ΘPSk,i
.

For Sk := jrπ−1(PSk), with jrπ : J rDE∗k → J rD(M,CPm) the submersion of propo-

sition 6.2, we define Θ̌Sk
:= jrπ−1(ΘPSk

).
In the relative theory we assume that for a choice of approximately holomorphic

coordinates adapted to G and canonical affine charts of projective space, the se-
quence PSk,i ⊂ J rG(P,Cmi ) is identified with a stratum PS of J rCg,p,m = J rg,m×Cp−g
invariant under the action of T×Gl(g,C). Then we define

ΘPSk
:=

⋃
i∈{0,...,m}

ΘPSk,i
.

For Sk := jrπ−1(PSk) ⊂ J rGE∗k , SGk := pG
−1(Sk) ⊂ J rE∗k , we define the subset

Θ̌SG
k
⊂ SGk by pulling back ΘPSk

to J rE∗k using either of the sides of the commu-

tative diagram (51).

Notice that by item (1) of lemma 6.2 the subsets ΘPSk,i
are well defined, so

definition 6.3 makes sense. It is also satisfactory because of the following result:

Lemma 6.3. We have

ΘPSk
∩ J rD(M,Cmi ) = ΘPSk,i

.

ΘPSk
∩ J rG(P,Cmi ) = ΘPSk,i

.
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Proof. Fix approximately holomorphic coordinates and canonical affine charts of
CPm, so that Πk,x,i(PSk,i) = PS, for all k, x, i. We need to show is that

jrΨji(ΘPS) = ΘPS

in the domain of definition of jrΨji, where Ψji is a change of canonical affine
coordinates.

Let ψ be an r-jet in ΘPS . Then we have a lift ψ̃ to J r+1
Dh,n,m

and a local repre-
sentation α of the lift cutting PS transversally along Dh at ψ. As we mentioned
regarding transversality the local representation is essentially unique. That means
in particular that any other representation α′ will also share the transversality pro-
perty. By definition ψ̃ is the (r+1)-jet of a local CR function F . Then jrDh

F (0) = ψ

and (F (0),dDh
jrDh

F (0)) = (F (0), ∂0j
r
Dh
F (0)) = jr+1

Dh
F (0) = ψ̃. Thus, jrDh

F is a

local representation of ψ̃ which is transverse to PS along Dh at ψ.
Since jr+1Ψji(j

r+1
Dh

F ) = jr+1
Dh

(Ψij ◦ F ), we deduce that jr+1Ψji(ψ̃) is a lift of

jrΨji(ψ) with local representation jrDh
(Ψij ◦F ), which is obviously transverse along

Dh to jrΨji(PS) = PS because jrΨji is a diffeomorphism that preserves the pull-
back of Dh to J rDh,n,m

. We just checked one inclusion, but that suffices because
Ψji is a diffeomorphism, thus the result for jets along D follows.

An analogous proof shows the desired result for jets along G. �

The linearized Thom-Boardman stratification is the pullback to J rDE∗k by jrπ of
the analog of the Thom-Boardman stratification of J rD(M,CPm) (see for example
[7]), together with the strata Zk. The definition is the natural extension of the one
given for symplectic manifolds by D. Auroux in [4].

A first rough definition of the stratification of J rD(M,CPm) is the following: we
fix approximately holomorphic coordinates and canonical affine charts of projective
space, so we have charts Π−1

k,x,i : J rDh,n,m
→ J rD(M,Cm)i. In each J rDh,n,m

there is

a CR Thom-Boardman stratification which is T×(Hrn×Hrm)-invariant, where Hrl is
the group of r-jets of germs of bi-holomorphic transformations from Cl to Cl; in par-
ticular it is T×Gl(n,C)-invariant, so it defines a stratification on each J rD(M,Cm)i.
The Hrm-invariance implies that the identifications that define J rD(M,CPm) are
compatible with the aforementioned stratifications on J rD(M,Cm)i.

Once we pullback the stratification to J rDE∗k the behavior of the strata when
they approach Zk needs to be clarified. To do that we redefine the stratification as
follows (see [4]):

Given σ ∈ J rDE∗k let us denote its image in J rD(M,CPm) by φ = (φ0, . . . , φr).
Let us define

Σk,i = {σ ∈ J rDE∗k | dimC kerφ1 = i}. (54)

If max(0, n−m) < i ≤ n, the strata Σk,i are smooth submanifolds whose boundary
is the union

⋃
j>i Σk,j together with a subset of Zk\ΘZk

.

Each Σk,i is the pullback of a stratum PΣk,i ⊂ J rD(M,CPm), and the given
description of their closure is easy to check.

For r ≥ 2, define Θ̌Σk,i
as the subset of r-jets σ = (σ0, . . . , σr) ∈ Σk,i so that

Ξk,i;σ = {u ∈ D | (iuφ, 0) ∈ TφPΣk,i} (55)

has the expected (complex) codimension in D, which is the (complex) codimension
of Σk,i in J rDEk, which equals the codimension of PΣk,i in J rD(M,CPm).

The subset Θ̌Σk,i
is also the one coming from definition 6.3: observe that ΘPΣk,i

are exactly those points of PΣk,i which have a lift with a transverse local represen-
tation. Since the term that we add to the r-jet to define the lift is of order r+1 > 2,
the transversality of the local representation does not depend on the lift, that can
be chosen to have vanishing component of order r + 1.
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Fix as in the proof of lemma 6.2 A.H. coordinates so that at the origin (D ⊕
D⊥, J) = (Dh⊕Dv, J0) and the induced connection form (on J rDh,n,m

) is vanishing;
fix also the canonical affine charts of CPm. Then the strata PΣk,i are sent to the
Thom-Boardmman stratum PΣi of J rDh,n,m

. The local representation of (φ, 0) can
be taken to be a CR section α of J rDh,n,m

. The stratum PΣi is CR, therefore

TDh
j1
Dh
α(0) ∩ (TPΣi ∩ D̂h)

is a complex subspace of TCn. Undoing the identifications the previous sub-
space goes to the subspace in equation (55). By definition of transversality along
D, ΘPΣk,i

are exactly those φ for which Ξk,i;σ has the codimension of PΣk,i in
J rD(M,CPm). By construction (equation (55))

Θ̌Σk,i
= jrπ−1(ΘPΣk,i

).

Hence Θ̌Σk,i
is the same subset introduced in definition 6.3.

If p+ 1 ≤ r, we define inductively

Σk,i1,...,ip,ip+1
= {σ ∈ ΘΣk,i1,...,ip

| dimC(kerφ1 ∩ Ξk,i1,...,ip;σ) = ip+1},

with

Ξk,I;σ = {u ∈ D | (iuφ, 0) ∈ TφPΣk,I}.
As in the previous case we define Θ̌Σk,I

either as the points such that the complex
codimension of Ξk,I;σ in D is the same as the codimension of Σk,I in J rDEk, or as
the pullback of ΘPΣk,I

.
If i1 ≥ · · · ≥ ip+1 ≥ 1, Σk,i1,...,ip+1

is -in the local model- a smooth CR subma-
nifold whose closure in Σk,i1,...,ip is the union of the Σk,i1,...,ip,j , j > ip+1, and a

subset of Σk,i1,...,ip\Θ̌Σk,i1,...,ip
[7]. The problem is that for large values of r, n,m,

the closure of the strata in J rDh,n,m
is hard to understand, and what we have defined

-once Zk has been added- might very well not be a Whitney (A) quasi-stratification.
More precisely, let Σm+1;q := Σ

m+1,1,(q)... ,1
⊂ J rDh,n,m

be a so called Morin stratum.

Then in [40] it is shown that

Σm+1;q ∩ Σm+2,0 6= ∅,

but for q large enough dimΣm+1;q < dimΣm+2,0, thus Whitney’s condition (A)
can never hold. It is known that J rDh,n,m

admits a Whitney (A) stratification
containing the Morin strata. If the dimensions satisfy n < 4 or 2n > 3m−4, then a
generic function will avoid Σm+2,0 and Σm+1,2 and therefore will only intersect the
Morin strata, so the aforementioned previous stratification suffices (also because
the strata Σk,I do not accumulate in points of ΘZk

). In general one must refine the
Thom-Boardman stratification.

Recall that using the local identifications the stratification we have defined (mi-
nus Zk) is the union running over the affine charts of the pullback by jr(ϕ−1

i ◦
π) : J rDh,n,m+1\Z → J rDh,n,m

of the CR Thom-Boardman stratification PΣ of

J rDh,n,m
. The latter is CR and T× (Gl(n,C)×Hrm)-invariant.

On the domain of each chart J rDh,n,m
we can use the results of Mather [28] to

refine PΣ into a CR finite, Whitney (A) stratification transverse to the fibers and
invariant under the action of T× (Gl(n,C)×Hrm), and such that the submanifolds
PΣI are unions of strata of the refinement. Due to the required invariance proper-
ties for the refinements, they can be glued to give a refinement of the stratification
PΣk ⊂ J rD(M,CPm), which is independent of the choice of approximately holomor-
phic coordinates. Thus, its pullback is a finite, Whitney (A) stratification of J rDE∗k
and such that the Σk,I are union of strata. It is by construction invariant by the
action of Gl(m+ 1,C) on the fiber.
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It is important to notice that since all the strata are contained in the closure
of Σk,max(0,n−m)+1, they accumulate near Zk in points of Zk\ΘZk

. Therefore, by
adding Zk we obtain a quasi-stratification of J rDEk.

If we have a distribution G we use exactly the same definitions but in the sub-
bundles J rGEk and J rG(P,CPm). That is, we have the strata

PΣk,i = {φ ∈ J rG(P,CPm) | dimC kerφ1 = i}

and for r ≥ 2, Θ̌PΣk,i
⊂ PΣk,i is the subset of r-jets along G, φ = (φ0, . . . , φr) so

that

Ξk,i;σ = {u ∈ G | (iuφ, 0) ∈ TφPΣk,i} (56)

has the expected (complex) codimension in G, which is the (complex) codimension
of PΣk,i in J rG(P,CPm).

The subsets PΣk,I are defined similarly. The result is a stratification PΣk of
J rG(P,CPm). In charts adapted to G as in the proof of lemma 6.2 and affine charts
-in which J rCg,p,m = J rg,m × Cp−g-, the induced stratification PΣ is seen to be the
leafwise Thom-Boardman stratification, i.e. the Thom-Boardman stratification of
J rg,m multiplied by Cp−g.

Using the lower part of the commutative diagram (51), we pull back PΣk to
PΣGk ⊂ J r(P,CPm). Let ΣGk be the pullback of PΣGk to J rE∗k . To refine it we
first locally refine PΣk as follows: we go the leafwise Thom-Boardman stratifica-
tion furnished by the previous A.H. coordinates and affine charts and construct a
holomorphic T×(Gl(g,C)×Hrm)-invariant refinement in one of the leaves of J rCg,p,m

(which is identified with J rg,m). Next we extend it independently of the remain-

ing p − g complex coordinates zg+1
k , . . . , zpk. The local refinements of the leafwise

Thom-Boardman stratification glue well and thus define a sequence of Whitney (A)
stratifications J rG(P,CPm), which does not depend either on the A.H. coordinates
adapted to G or in the chosen affine charts of CPm. Its pullback to J rE∗k refines
ΣGk to a sequence of Whitney (A) stratifications.

Definition 6.4. (see [4]).

(1) Given (M,D, J, gk) and Ek = Cm+1 ⊗ L⊗k, the Thom-Boardman-Auroux
stratification of J rD(M,CPm), denoted by PΣk, is the stratification (or
rather its refinement) built out of the pieces of the Thom-Boardman strat-
ifications of J rDh,n,m

. The Thom-Boardman-Auroux quasi-stratification
of J rDEk is the pullback of the Thom-Boardman-Auroux stratification of
J rD(M,CPm) together with the zero section. We denote it by Σk.

(2) Given (P, J,G, gk) and Ek = Cm+1 ⊗ L⊗k, the Thom-Boardman-Auroux
stratification of J r(M,CPm) along G, denoted by PΣGk , is the stratifi-
cation (or rather its refinement) built out of the pieces of the Thom-
Boardman stratifications of J rCg,p,m. The Thom-Boardman-Auroux quasi-

stratification of J rEk along G, that we denote by ΣGk , is the pullback of the
Thom-Boardman-Auroux stratification of J r(M,CPm) along G together
with Zk.

Lemma 6.4. The Thom-Boardman-Auroux quasi-stratification of J rDEk and the
Thom-Boardman-Auroux quasi-stratification of J rEk along G are finite, Whitney
(A), and approximately holomorphic.

Proof. We start with jets along D. The description of the closure of the strata
inside Zk implies that the quasi-stratification condition holds.

The delicate point is checking that the strata are approximately holomorphic
(for the modified connection).
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First we study the sequence Zk. Though for this sequence the approximate
holomorphicity is obvious, we will give a proof that works for other sequences of
strata. Indeed, by lemma 6.1 the sequence of zero sections Zk ⊂ Ek is as required.
If we prove that the natural projections

πr : J rDEk → Ek

are an A.H. sequence of maps which is also ε-transverse for some ε > 0, then the
composition of the local maps defining Zk ⊂ Ek with the projection πr are local
functions for (πr)

−1
(Zk) = Zk ⊂ J rDEk meeting the conditions of definition 4.6.

More generally we prove that the natural projection πrr−h : J rDEk → J
r−h
D Ek

is approximately holomorphic: we fix A.H. coordinates and A.H. reference frames
jrDτ

ref
k,x,I of J rDEk (resp. jr−hD τ ref

k,x,I′ of J r−hD Ek) as in equation (33). Recall that
proposition 5.1 implies that the sequences are indeed A.H. Using these frames we
obtain A.H. coordinates z1

k, . . . , z
n
k , u

I
k, sk (resp. z1

k, . . . , z
n
k , v

I′

k , sk) for the total

space of J rDEk (resp. J r−hD Ek). From the equality

πrr−h(jrDτ
ref
k,x,I) = jr−hD τ ref

k,x,I (57)

we deduce πrr−h(jrDτ
ref
k,x,I) = WI(zk, v

I′

k ), where WI(zk, v
I′

k ) is A.H. with respect to
the canonical CR structures associated to the coordinates. This, together with the
fiberwise linearity of πrr−h imply that in these coordinates πrr−h is A.H., and hence
it is A.H. with respect to the almost CR structures of the total spaces. It is also
straightforward from equation (57) that the projections are ε-transverse (another
way is to use rather than holonomic frames, the frames µk,x,I of equation (32).
They are also frames for the modified metric because of for example remark 5.3,
therefore one can check estimated transvesality using them, something which is
straightforward).

We would like to do something similar with the strata Σk,I and the projection
jrπ : J rDE∗k → J rD(M,CPm) (away from a uniform tubular neighborhood of the
zero section, where the differential goes to infinity). The image of a trivialization
jrDτ

ref
k,x,I is jrD(π ◦ τ ref

k,x,I), also approximately holomorphic. The map is equally
fiberwise holomorphic, but the difference is the non-linearity of the restriction to
the fibers.

We adopt a different strategy that amounts to perturbing the almost CR struc-
tures into integrable ones and then checking that jrπ is CR with respect to them:
we take Darboux charts and trivialize L⊗k with a unitary section ξk whose asso-
ciated connection form in the domain of Darboux charts is A. Next we trivialize
J rDEk with the frames µk,x,I of equation (32), but using ξk tensored with a basis

of Cm+1 to trivialize Cm+1 ⊗ L⊗k. In this way J rDEk becomes the trivial bundle
J rDh,n,m+1 (with is canonical trivialization constructed out of dz1

k, . . . , dz
n
k ). Let

us use in the base the canonical CR structure (Dh, J0). Proposition 5.1 in the
integrable case (and for curvature of type (1,1) and with trivial derivative, as it
is the case in Darboux coordinates) implies that the modified connection defines a

new CR structure in the total space of J rDh,n,m
; let (D̂h, J̄0) be the corresponding

distribution and almost complex structure, and let (D̂, Ĵ) be the distribution and
almost complex structure induced by the almost CR structure of J rDEk. If in the
fiber of J rDh,n,m+1 we fix a ball B(σ,R), then in B(0, ρ) × B(σ,R) the Euclidean
metric is comparable with the metric carried by J rDEk. More important

|dj(D̂ − D̂h)|g0 ≤ O(k−1/2), j ≥ 0. (58)

If we use the orthogonal projection to push Ĵ into Ĵh : D̂h → D̂h we also have

|dj(Ĵh − J̄0)|g0 ≤ O(k−1/2), j ≥ 0. (59)
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We use the same Darboux charts for J rDh
(Cn × R,CPm), so locally and using

canonical affine charts we have identifications with J rDh,n,m
. This is a trivial vector

bundle (again using the basis induced by dz1
k, . . . , dz

n
k and the basis of Cm). We

fix the product CR structure and denote by (D̃h, J̃0) the distribution and almost

complex structure. Let (D̃, J̃) be the distribution and almost complex structure
induced by the almost CR structure of J rD(M,CPm). By construction

|dj(D̃ − D̃h)|g0 , |dj(J̃h − J̃0)|g0 ≤ O(k−1/2), j ≥ 0, (60)

where J̃h is the almost complex structure on D̃h defined out of J̃ and the orthogonal
projection.

Equations (58), (59), (60) imply that if jr(ϕ−1
i ◦ π) : J rDh,n,m+1 → J rDh,n,m

is

CR with respect to (D̂h, J̄0) and (D̃h, J̃0), then it is almost CR with respect to the
global almost CR structures.

The map jr(ϕ−1
i ◦ π) : J rDh,n,m+1 → J rDh,n,m

is exactly the same as in the holo-

morphic (or rather CR) models. It is CR with respect to the aforementioned CR
structures because it preserves the foliations, it is fiberwise holomorphic and sends
“enough” CR sections of J rDh,n,m+1 to CR sections of J rDh,n,m

. To be more pre-
cise, for any point σ ∈ J rDh,n,m+1 and any vector v in its tangent space along
the leaf and not tangent to the fiber, we can find a CR section F whose CR
r-jet in x is σ and such that the tangent space to its graph contains v. Since
jr(ϕ−1

i ◦ π)(jrDh
F ) = jrDh

(ϕ−1
i ◦ π ◦ F ) is also a CR section, we deduce that

jr(ϕ−1
i ◦ π)∗(J̄v) = J̃0(jr(ϕ−1

i ◦ π)∗(v)).
The strata PΣk (or rather of its refinement) -once we choose A.H. coordinates and

affine charts of projective space- are identified with the strata of (the refinement of)
the CR Thom-Boardman stratification of J rDh,n,m

, which are CR. The comparison

between the (D̂h, J̄0, g0) and the original almost CR structure implies that the
strata of PΣk are A.H., and hence Σk = jrπ−1(PΣk) is A.H. That the projections
are ε-transverse is also clear, therefore the desired result follows.

In the almost complex setting jrπ : J rE∗k → J r(P,CPm) is equally shown to be
approximately holomorphic away from a uniform neighborhood of the zero section.
In the relative case, and for a sequence of A.H. strata PSk fulfilling the conditions
of definition 6.3, the approximate holomorphicity of pG

−1jrπ−1Sk follows from the
commutativity of the diagram 51, and from the approximate holomorphicity of
jrπ : J rE∗k → J r(P,CPm) and of pG : J r(P,CPm) → J rG(P,CPm). Recall that
the strata PΣk come from holomorphic models (the refinement of the strata of the
leafwise Thom-Boardman stratification), so they are A.H. But ΣGk is not truly a
quasi-stratification of J rEk. To be more precise it is not true that the strata only
accumulate in points of Zk\ΘZk

⊂ Zk, but it is still true that the points of Zk in
which the other strata accumulate are never hit by a section transverse to Zk along
G. Thus, the Whitney type reasoning can be applied as long as we work with r-jets
along G (see the proof of theorem 7.2). �

Remark 6.2. Notice that we only conclude that the strata different form the zero
section are approximately holomorphic uniformly far from Zk. This is enough for
our purposes, for once we obtain transversality to Zk our r-jet will be uniformly far
from Zk\ΘZk

. All the remaining strata approach Zk accumulating only on points
of Zk\ΘZk

. Therefore, the r-jet will only hit them outside of a uniform tubular
neighborhood of Zk, where the approximate holomorphicity holds.

Definition 6.5.



48 D. MARTÍNEZ TORRES

(1) An A.H. sequence of sections of Ek → (M,D, J, gk) is said to be r-generic if
its pseudo-holomorphic r-jet is uniformly transverse along D to the Thom-
Boardman-Auroux quasi-stratification of J rDEk.

(2) An A.H. sequence of sections of Ek → (P, J,G, gk) is said to be r-G-generic
over M if its pseudo-holomorphic r-jet is uniformly transverse over M to
ΣGk ⊂ J rEk.

(3) Let φk : M\Bk → CPm be sequence of functions which is A.H. outside of
a uniform tubular neighborhood of gk-radius η > 0 of Bk. It is said to
be r-generic if for k large enough Bk is a codimension 2(m+ 1) calibrated
submanifold and jrDφk : M\Bk → J rD(M\Bk,CPm) is uniformly transverse
along D to the Thom-Boardman-Auroux stratification. Moreover, it is
required to intersect the strata of strictly positive codimension out of a
tubular neighborhood of Bk of gk-radius η.

Lemma 6.5. Let τk be an A.H. sequence of sections of Ek → (M,D, J, gk). Then
if τk is r-generic its projectivization φk : M\τ−1

k (Zk)→ CPm is also r-generic.

Proof. It is elementary from the construction of the Thom-Boardman-Auroux (quasi)-
stratifications of J rDEk and J rD(M,CPm), proposition 6.2 relating jrDτk, and jrDφk
and lemma 6.4.

Uniform transversality of τk to Zk implies by remark 6.2 that φk intersects the
remaining strata uniformly away from the zero set. Estimated transversality along
D is also preserved when composed with jrπ uniformly away from Z; the key
point is selecting appropriate local A.H. defining functions for the strata: in A.H.
coordinates and affine charts PΣk,I corresponds to a CR stratum PΣI . Let f be a

local CR function defining it. Then f ◦Πk,x,i◦jr(ϕ−1
i ◦π) are local defining functions

for Σk,I . Now lemma 4.5 implies that local uniform estimated transversality along
D of jrDτk to Σk,I is equivalent to uniform transversality along D to 0 of f ◦
jr(ϕ−1

i ◦π)◦jrDτk = f ◦jrD(ϕ−1
i ◦φk). Again by the same lemma this is equivalent to

uniform transversality along D of jrDφk to PΣk,I . The case of the points close to the

boundary of the strata is just a problem in a vector space; it follows from jr(ϕ−1
i ◦

π) : J rDh,n,m+1\Z → J rDh,n,m
being a submersion which amounts to suppressing

coordinates of the fiber of J rDh,n,m+1 (and because the metrics in these coordinates

are comparable with the ambient metric, so the projection is ε-transverse). �

Let (P,Ω) be a symplectic manifold with (M,D,ω := Ω|M ) 2-calibrated and G a
local J-complex distribution extending D. Let τk be an A.H. sequence of sections
of Ek and denote by φk its projectivization away from its zero set.

Proposition 6.3. Using the above notation, if jrτk : P → J rEk is uniformly
transverse over M to ΣGk ⊂ J rGEk then φk|M is r-generic.

Proof. We will make extensive use of diagram (51)

J rE∗k
pG−−−−→ J rGE∗kyjrπ yjrπ

J r(P,CPm)
pG−−−−→ J rG(P,CPm)

Step 1: Study the compatibility of the Thom-Boardman-Auroux stratifications
with the identification of J rD(M,CPm) with J rG(P,CPm)|M .

At the points of M there is a canonical J-complex identification between D and
G, inducing isometries

Λk,i : J rD(M,CPm)→ J rG(P,CPm)|M .
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Let z1
k, . . . , z

p
k be A.H coordinates adapted to (M,G). We can rewrite them

as z1
k, . . . , z

n
k , x

2n+1
k , x2n+2

k , zn+2
k , . . . , zpk, where z1

k, . . . , z
n
k , x

2n+1
k are by lemma 3.6

A.H. coordinates for M . Using also the canonical affine charts of projective space
we have

ΠD
k,x,i : J rD(M,Cm)i → J rDh,n,m

= J rn,m × R,

ΠG
k,x,i : J rG(P,Cm)i → J rCn,p,m = J rn,m × Cp−n,

and a canonical identification in Cn × R ⊂ Cp

Λ: J rDh,n,m
→ J rCn,p,m|Cn×R.

The construction of ΠD
k,x,i,Π

G
k,x,i (see equation (29) and the last paragraph in the

proof of lemma 6.2) implies the commutativity of

J rD(M,CPm)
Λk−−−−→ J rG(P,CPm)|MyΠD

k,x,i

yΠG
k,x,i

J rDh,n,m
Λ−−−−→ J rCn,p,m|Cn×R

(61)

The restriction of J rCn,p,m to Cn × R ≈M coincides with J rn,m × R = J rDh,n,m
.

The identification Λ obviously preserves the Thom-Boardman-Auroux stratifica-
tions (and even the refinements), and hence so Λk does.

Step 2: Check that Λ−1
k ◦ (jrGφk)|M u jrD(φk|M ).

Since Λk are J-complex isometries preserving the Thom-Boardman-Auroux strat-
ifications we omit them from now on.

By using the charts ΠD
k,x,i,Π

G
k,x,i it is easy to see that for any j ∈ {1, . . . , r},

the degree j homogeneous component of jrD(φk|M ) approximately coincides with

∇jD(φk|M ). Similarly, the degree j homogeneous component of jrGφk approximately

coincides with ∇jGφk. The result follows because we also have

(∇jGφk)|M u ∇jD(φk|M ).

Step 3: Analyze the behavior of jrD(φk|M ) near the set of base points Bk.
Since Zk ⊂ J rEk is an A.H. sequence of submanifolds and jrτk an A.H. sequence

of sections, by corollary 4.2 uniform transversality over M is equivalent to uniform
transversality along G at the points of M . In A.H. coordinates adapted to G, we
are saying that the matrix of partial derivatives of τk with respect to z1

k, . . . , z
g
k has

maximum rank and norm greater than some η > 0. But this is equivalent to saying
that is uniformly transverse to ZGk , the pullback of the zero section of J rGEk.

By construction ΣGk \Zk = p−1
G jrπ−1(PΣk) = p−1

G (Σk\Zk), and the strata of

ΣGk \Zk when approaching the zero section accumulate into p−1
G (ΘZk

), where here
ΘZk

⊂ J rGEk. Therefore jrτk intersects the strata of ΣGk \Zk away from a tubular
neighborhood in P (and hence in M) of radius η′ of Bk, the zero set of jrτk.
Thus (jrφk)|M = (jrπ(jrτk))|M intersects the strata of PΣGk away from a tubular

neighborhood in M of radius η′ of Bk.
In general pG(jrφk) 6= jrGφk but using A.H. coordinates it is easy to check that

pG(jrφk) u jrGφk. Hence, jrGφk intersects the strata of PΣk ⊂ J rG(P,CPm) away
from a tubular neighborhood in M of radius η′ of Bk, for all k � 1.

By steps 1 and 2 we deduce that jrD(φk|M ) intersects the strata of PΣk ⊂
J rD(P,CPm) away from a tubular neighborhood in M of radius η′ of Bk, for all
k � 1.
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Step 4: Relate uniform transversality over M of jrτk to ΣGk \Zk with uniform
transversality along D of jrD(φk|M ) to PΣk ⊂ J rD(M,CPm).

The same ideas used in the proof of lemma 6.5 combined with pG(jrφk) u jrGφk,
show that uniform transversality over M of jrτk to ΣGk \Zk is equivalent to uniform
transversality over M of jrGφk to PΣk ⊂ J rG(P,CPm).

Uniform transversality over M of jrGφk to PΣk ⊂ J rG(P,CPm) is comparable to
uniform transversality of (jrGφk)|M to PΣk|M ⊂ J rG(P,CPm)|M (it can be easily

proven in the charts ΠD
k,x,i,Π

G
k,x,i).

By steps 1 and 2 jrD(φk|M ) is uniformly transverse to PΣk ⊂ J rD(M,CPm).
If the hypothesis on the amount of transversality over M of corollary 4.2 are met,

then jrD(φk|M ) is uniformly transverse along D to PΣk ⊂ J rD(M,CPm). Observe
that this requirement is not a problem, since the induction construction to obtain
uniform transversality over M for jrτk to ΣGk \Zk can guarantee that. �

The vector bundles J rGEk are endowed with hermitian metrics ĝk and connections
∇k,H (or just ∇H), which are induced by the metrics and connections on J rEk via
the projection pG. We do not know whether J rGEk is an almost CR submanifold
of J rEk, but in any case we are not interested in doing almost complex geometry
on J rGEk.

Let σk be a sequence of sections of J rGEk with |∇jσk|gk ≤ O(1), ∀j ≥ 0. Using
the metric ĝk we have a well defined notion of uniform transversality of σk to the
Thom-Boardman-Auroux stratification Σk ⊂ J rGEk (definition 4.5); notice that we
have no notion of approximate holomorphicity neither for the sequence of sections
nor for the strata.

Remark 6.3. If τk : P → Ek is A.H. then |∇jjrGτk|gk ≤ O(1), ∀j ≥ 0. Having
into account remark 4.3, it can also be shown that if jrτk : P → J rEk is uniformly
transverse over M to ΣGk , then jrGτk : P → J rGEk is uniformly transverse over M
to Σk.

We finish this section by proving the following

Lemma 6.6.

(1) Let S = (Sak)a∈Ak
be an approximately holomorphic finite invariant stratifi-

cation of Ek such that in approximately holomorphic coordinates and A.H.
frames each sequence of strata has a CR model transverse to the fibers. Let
τk : M → Ek be an A.H. sequence uniformly transverse along D to S. Then
τ−1
k (S) is a stratification of (M,D,ω) by 2-calibrated submanifolds for all
k � 1.

(2) Let τk : M → Ek be an A.H. uniformly transverse to Zk and whose pro-
jectivization φk is r-generic. Then Bk ∪ φ−1

k (PΣk) is a stratification by
2-calibrated submanifolds of (M,D,ω) for all k � 1.

Proof. Let Sak ⊂ Ek. Corollary 4.1 implies that τ−1
k (Sak) is uniformly transverse to

D. Hence, if we check that for each x ∈ τ−1
k (Sak) the sequence of linear subspaces

TDτ
−1
k (Sak) ⊂ D is A.H., i.e.

∠M (TDτ
−1
k (Sak), JTDτ

−1
k (Sak)) ≤ O(k−1/2)

(uniformly on the point), we are done.

Let Ĵ denote the induced the almost complex structure on Ek. In approximately
holomorphic coordinates and A.H. frames, the strata Sk ⊂ Ek have a CR model
S ⊂ Cm with respect to the canonical product CR structure. Recall that any almost
CR structure defined out of J0 in the base and the fiber, and a connection form with
vanishing (0,1)-component, coincides with the product CR structure (this appears
also in the proof of lemma 6.1). Hence the linear subspaces TDS = TDSk verify
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∠M (TDS, ĴTDS) ≤ O(k−1/2), the bounds being uniform on the points of Cm, and
hence uniform on the points of Ek.

The approximate holomorphicity of τk implies ∠M (TDτk, ĴTDτk) ≤ O(k−1/2).
Since ∠m(TDτk, TDSk) ≥ η, by proposition 3.7 in [31] for all k � 1 the intersection
TDτk∩TDSk is an A.H. sequence and thus also its projection to M , and this proves
item (1).

Regarding item (2), Bk := τk
−1(Zk). Therefore item (1) applies.

The strata Σk,I are intersected uniformly away from Bk. Therefore it is equiva-
lent to work with the projectivizations φk and the Thom-Boardman-Auroux stra-
tification of J rD(M,CPm), because jrDτ

−1
k (Σk,I) = jrDφ

−1
k (PΣk,I). Since for each

canonical chart of projective space the strata have CR models in J rD(M,Cm)i,
everything reduces to item (1). �

We would like the pullback of any regular value of φk to be a 2-calibrated subma-
nifold, which forces us to study the behavior of an r-generic function near its base
locus and near the pullback of the Thom-Boardman-Auroux strata. In our applica-
tions we would only need this analysis for the Lefschetz pencils φk : M\Bk → CP1:
the same ideas used in [35] show that indeed near the base locus |∂φk| > |∂̄φk| and
thus the regular “fibers” are 2-calibrated submanifolds. On the other hand, near
the strata of the Thom-Boardman-Auroux stratification there is no such inequality
between the holomorphic and antiholomorphic component of the derivative, and ad
hoc modifications are needed to obtain 2-calibrated regular fibers.

In [25] the approximately holomorphic theory is appropriately modified to cons-
truct generic CR sections for a Levi-flat CR manifold. The complication near the
base locus and degeneration loci of the leafwise differential does not occur (over
each complex leaf the CR-Thom-Boardmann stratification is holomorphic and the
restriction of the CR-r-jet holomorphic as well, therefore the former is pulled back
to the leaf to a stratification by holomorphic strata).

7. The main theorem

It is possible to perturb A.H. sections of Ek = E ⊗ L⊗k → (M,D,ω) so that
their r-jets are transverse to an A.H. quasi-stratification of J rDEk.

Theorem 7.1. Let Ek → (M,D,ω), Ek = E ⊗ L⊗k, and S = (Sak)a∈Ak
an

A.H. sequence of finite, Whitney (A) quasi-stratifications of J rDEk transverse to
the fibers. Let us fix h ∈ N. Let δ be a strictly positive constant. Then a constant
η > 0 exists such that for any A.H. sequence τk of Ek, it is possible to find an A.H.
sequence σk of Ek so that for every k bigger than some k0,

(1) |∇jD(τk − σk)|gk < δ, j = 0, . . . , r + h.
(2) jrDσk is η-transverse along D to S.

Theorem 7.2 -to be introduced- suffices for our applications; the proof of theorem
7.1 -which is left to the interested reader- is a suitable modification of the proof of
theorem 1.1. in [4], being the main difference the use of a result on local estimated
transversality along Dh to 0 for A.H. functions fk : Cn × R→ Cm.

Observe in theorem 7.1 that while for any h ∈ N we can bound |∇jD(τk −
σk)|gk , j = 0, . . . , r + h, by any arbitrarily small δ, we cannot do the same for the
full derivative. For the latter it can be proven that |∇j(τk − σk)|gk ≤ Cj , ∀j ∈ N,
where Cj are constants independent of k whose value we cannot control. Moreover
the non-integrability of D also forces us to work with sequences of A.H. functions all
whose derivatives are controlled (even if we want to control the size of the pertur-
bation along D up to a finite order h); basically the derivatives along the directions
of D (up to some finite order h) will be arbitrarily small only if we have control for
the full derivative of all the orders, and k is chosen to be very large.
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We can prove a strong transversality result for symplectic manifolds with distri-
bution G along compact 2-calibrated subvarieties.

Theorem 7.2. Let Ek → (P,Ω) and let (M,D) be a compact 2-calibrated submani-
fold of the symplectic manifold (P,Ω) and G a J-complex distribution extending D.
Let us consider SG a Ch-A.H. sequence of finite, Whitney (A) quasi-stratifications
of J rEk (h ≥ 2). Let δ be a positive constant. Then a constant η > 0 and a natural
number k0 exist such that for any Cr+h-A.H.(C) sequence τk of Ek, it is possible
to find a Cr+h-A.H. sequence σk of Ek so that for any k bigger than k0,

(1) |∇j(τk − σk)|gk < δ, j = 0, . . . , r + h (τk − σk is Cr+h-A.H.(δ)).
(2) jrσk is η-transverse over M to SG.

Proof. We will closely follow the pattern of the proof of theorem 1.1 in [4], but
introducing the appropriate modifications.

The very basic strategy of the proof is to add a perturbation for each sequence

of strata SG
b
k, so that a sequence of strata is dealt with only if all the preceding

ones have been already dealt with. The solution σk will be the result of adding all
the perturbations. To achieve our goal in this way we must make sure that at a

stage corresponding to the strata SG
b
k, the perturbation added is such that:

(i) Uniform transversality to preceding strata is not destroyed.

(ii) Uniform transversality to SG
b
k is attained.

To make sure that item (i) above holds, we start by adapting the definition of
local open condition of [3] to out setting:

Definition 7.1. Let η, η̄ > 0. A family of properties P(η, η̄, x)x∈M of sections of
bundles over P is local and Cq-open, if given a section τ that verifies P(η, η̄, x) and
a section σ so that |τ −σ|Cq(P,g) ≤ ε, then there exist L > 0 only depending on the
Cq-norm of τ so that τ − σ verifies P(η − Lε, η̄ − Lε, x).

The advantage of a local open property is that we have an estimate on how much
it varies according to the size of the perturbation.

In our specific problem we say that a Cr+2-A.H. sequence of sections τk of Ek
verifies Pk(η, η̄, x), x ∈M , if jrτk is (η, η̄)-transverse over M to SG

b
k at x. We want

to show that this is a local Cr+2-open condition, because if that is the case we know
that if at a given stage we add a perturbation with small enough Cr+2-norm, we

will still have a sequence of sections uniformly transverse over M to SG
b
k.

This is proven in theorem 1.1 [4] for full transversality. For estimated trans-
versality over M the theorem is equally true because a perturbation χk with
Cr+2-size bounded by C gives rise to an r-jet such that (i) |jrχk|gk ≤ L′C, (ii)
|∇TM jrχk|gk ≤ L′C, and (iii)|∇∇TM jrχk|gk ≤ L′C, for some L′ > 0. Therefore
small perturbations of a given section give rise to an r-jet that remains within con-
trolled distance of the one for the initial section and whose derivative along TM
varies in a controlled way. Similarly for a given r-jet we can control in a ball of
uniform radius its variation up to order 2, and hence the variation of its derivative
along TM in the ball.

Next we have to make sure that the perturbation added at each stage fulfills

condition (ii). We will split the problem of achieving transversality over M to SG
b
k

into doing it for points close to the boundary and far from the boundary. Actually,
the former problem turns out to be already solved. To show it we must check that
(ηa, η̄a)-transversality over M of jrτk to SG

a
k, for all a < b, implies the existence of

η̄b > 0 such that jrτk is η̄b-transverse over M to SG
b
k at the points η̄b-close to its

boundary.
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In theorem 1.1 [4] it is shown that the quasi-stratification condition together with
full uniform transversality can be used to show that jrτk stays uniformly away from
SG

a
k\ΘSGa

k
, say at distance greater than some η′ > 0; since uniform transversality

over M is stronger than uniform transversality we deduce the same result.
We now make use of the estimated Whitney’s condition (A) as in corollary 4.2.

We have the inequality

∠m(TM j
rτk, T

||
MS

Ga

k) ≤ ∠M(T
||
MS

Ga

k, TMS
Gb

k) + ∠m(TM j
rτk, TMS

Gb

k). (62)

For η′′ > 0 small enough the induction hypothesis implies that for points η′′-close

to ∂̄SG
b
k there is some index a ∈ Ak such that

∠m(TM j
rτk, T

||
MS

Ga

k) ≥ ηa.

Let M̂ denote the pullback of TM to J rEk. In order to make

∠M(T
||
MS

Ga

k, TMS
Gb

k) < ηa/2

we use the estimated Whitney’s condition (A) that gives ∠m(M̂, TSG
b
k) > γ > 0

and ∠M(T ||SG
a
k, TS

Gb
k) < C(γ)−1ηa/2 (see the proof of corollary 4.2), for η′′ small

enough. Then the desired result holds for

η̄b := min(η′, η′′,mina<b(ηa/2)).

Therefore our task is reduced to constructing arbitrarily small perturbations
which solve the uniform transversality problem in points η̄b-far from the boundary.
We will construct such a perturbation following Donaldson’s globalization method.
The key point is the following

Proposition 7.1. Let Pk(η, η̄, x)x∈M,η,η̄>0 be a family of Cq-open properties of
sections of Ek → (P, gk). Assume that there exist (uniform) constants ρ, c′, c′′, p
such that given any δ > 0 small enough, any x ∈ M , and any sequence τk with
uniform Cq-bound C, there exist -for all k � 1- Cq-bounded sections χk,x with the
following properties:

(1) |∇jχk,x|gk < c′′δ, j = 0, . . . , q.
(2) The sections 1

δχk,x have Gaussian decay away from x in Cq-norm.
(3) τk+χk,x satisfy the property Pk(η, η̄−c′δ, y) for all y ∈ Bgk(x, ρ)∩M , with

η = c′δ(log(δ−1))−p.

Then given any α > 0 and Cq-bounded sections τk of Ek, there exist -for k � 1-
Cq-bounded sections σk of Ek such that

(i) |∇j(τk − σk)|gk < α, j = 0, . . . , q.
(ii) The sections σk satisfy Pk(ε, η̄ − Lδ, x), for some uniform ε, L > 0, at any

x ∈M .

We do not give the proof of this proposition, since it is a repetition step by step
of Donaldson’s globalization procedure [11].

Hence we must check that the hypothesis of proposition 7.1 hold. We will use
the following local transversality result, which is a reformulation of lemma 5.2 and
theorem 5.4 in [30].

Proposition 7.2. Let F be a function with values in Cl defined over the ball
of radius 11/10 in Cl. Let V be a vector subspace of Cl. Let δ be a constant
0 < δ < 1/2. Let η = δ(P (log(δ−1))−1, where P is a real monomial depending on
n, l, V . If in the ball of radius 11/10 we have

|F |g0 ≤ 1, |∂̄F |g0 ≤ η, |d∂̄F |g0 ≤ η,
then there exists u ∈ Cp such that F −u is η-transverse over V to 0 in the interior
of B(0, 1) ∩ V .
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We assume that τk is already η̄b-transverse over M at the points η̄b-close to
the boundary. Let 0 < ε < η̄b/4 small enough. If x ∈ M such that jrτk(x) /∈
NSGb

k
(ε/2, η̄b) then χk,x is chosen to be the zero perturbation. If jrτk(x) = p ∈

NSGb
k
(ε/2, η̄b) then there exists ρ1 such that jrτk(Bgk(x, ρ1)) ⊂ Bĝk(p, ρε) ⊂ NSGb

k
(ε, 3η̄b/4).

We consider the composition f ◦ jrτk pulled back to the domain of an A.H. chart
adapted to (M,G) and centred at x. In this way we obtain a functionHk : B(0, ρ2) ⊂
Cp → Cl. If we apply proposition 7.2 directly to Hk, with V = TM , and for
δ � η̄b/6, we will obtain δ(P (log(δ−1)))−1-transversality over M to 0 for Hk − uk
in Bgk(x, ρ3). The problem is how to associate uk to a perturbation of τk (the dif-
ficulty coming from the non-linearity of the strata). Instead, we consider for each
index I the Cl-valued function such that for each y ∈ Bgk(x, ρ4)

ΘI(y) = (df1(jrτk(y))jrτ ref
k,x,I , . . . , dfl(j

rτk(y))jrτ ref
k,x,I),

with τ ref
k,x,I as defined in equation (33). There is a choice of l indices I1, . . . , Il

such that the corresponding A.H. sections jrτ ref
k,x,Ij

are a frame for a distribution

complementary to Kerdf (and with minimal angle bounded from below). Then
ΘI1 , . . . ,ΘIl is a frame (depending on y) of Cl comparable to the canonical one.
We can write

Hk = h1
kΘI1 + · · ·+ hlkΘIl .

We apply proposition 7.2 (after suitable rescalings) to the Cl-valued function hk =
(h1
k, . . . , h

l
k), with V = TM , for some δ small enough, so we get uk ∈ Cl such that

hk − uk is c1δ(P (log(δ−1)))−1-transverse over M to 0 in Bgk(x, ρ5). If we multiply
by the functions ΘI1 , . . . ,ΘIl we obtain c2δ(P (log(δ−1)))−1-transversality over M
to 0 for Hk − u1

kΘI1 − · · · − ulkΘIl . Our perturbation is the section

χk,x := −u1
kτ

ref
k,x,I1 − · · · − u

l
kτ

ref
k,x,Il

.

The key point is that having into account the norm of uk and the bounds on the
second derivatives of f , the C1-norm of

Hk − u1
kΘI1 − · · · − ulkΘIl − f ◦ jr(τk + sk,x)

is bounded by O(δ2). Since the C1-norm majorates the C1-norm along TM we
conclude that for δ small enough f ◦ jr(τk + sk,x) is c3δ(P (log(δ−1)))−1-transverse
over M to 0. By lemma 4.5 we get Pk(c4δ(P (log(δ−1)))−1, η̄b − Lδ, y), for all
y ∈ Bgk(x, ρ5). Since Pk(η, η̄, x) is Cr+2-open, if δ is small enough compared to
η̄b and ηa, η̄a, we still get uniform transversality to the previous strata and 5η̄b/6-

transversality over M at the points 3η̄b/4-close to the boundary of SGk
b
.

So we can apply proposition 7.1 to obtain Pk(ηb, 3η̄b/4, x) (with respect to SGk
b
)

in all the points of M .
Hence we deduce the existence of a Cr+2-A.H. sequence σk such that:

(1) |∇j(τk − σk)|gk < δ, j = 0, . . . , r + h (σk is Cr+2-A.H.(δ)).
(2) jrσk is η-transverse over M to SG.

�

8. Applications

We begin by proving proposition 1.1, which can be also obtained as a simple
corollary of the work of J.-P. Mohsen [30] together with some extra local work
borrowed from [27].

Proof of proposition 1.1. We consider a more general situation than that of the
statement of proposition 1.1. Let E be any rank m Hermitian vector bundle over
(M2n+1, D, ω), and let Ek = E ⊗ L⊗kΩ (LΩ the pre-quantum line bundle of the
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symplectization and E is meant to be the pullback of the initial E to the sym-
plectization). We want to apply theorem 7.2 to the sequence of zero sections Zk,
but with some changes. Basically, we want to start with an A.H. sequence which
vanishes at y and is uniformly transverse on Bgk(ρ, y), and then add perturbations
not destroying these properties. We fix A.H. coordinates adapted to (M,G) and re-
ference sections τ ref

k,x,j centred at the points of M ⊂M× [−ε, ε]. In A.H. coordinates

adapted to (M,G) we take the sections zjkτ
ref
k,y,j , j = 1, . . . ,m ≤ n+ 1, and consider

their direct sum, a section of Ek. This sequence of sections τk,y vanishes at y and
is η-transverse over M to Zk in Bgk(y, ρ). The key point is to keep on adding local
perturbations -as described in the proof of theorem 7.2- which vanish at y and with
C1-norm small enough compared to η. For that we need new reference sections
vanishing at y. Notice that if dk(x, y) ≥ O(k1/6) then τ ref

k,x,j is already vanishing at

y, so we do not need to change the reference section. Assuming dk(x, y) ≤ O(k1/6)
once we go to A.H. coordinates adapted to (M,G) and centred at x, the point y
belongs to B(0, ρ′k1/6) ⊂ Cn+1. Consider the polynomial P (z1

k, . . . , z
n+1
k ) = 1−z1

k.
Let Lk,y,x ∈ Gl(n+1,C) be the composition of homothety and then a rotation send-
ing y to (1, 0, . . . , 0). We define Pk,y,x = P ◦ Lk,y,x and ξref

k,x,j := Pk,y,xτ
ref
k,x,j . For

any γ > 0, if we suppose dk(x, y) ≥ γ then ξref
k,x,j becomes an A.H. sequence (with

bounds independent of x) that vanishes at y and so that ξref
k,x,j , j = 1, . . . ,m, fits

into a local frame of Ek over Bgk(x, ρ(γ)) (we chose the linear map to arrange that
the vanishing (affine) hyperplane of Pk,y,x is at distance of the origin bounded from
below). Since τk,y is η-transverse over M to Zk in Bgk(y, ρ), we only need to add
perturbations centred at points away from Bgk(y, ρ/2), and thus the globalization
procedure can be applied with reference sections vanishing at y.

Thus it is possible to find sequences of A.H. sections τk of Ek uniformly transverse
over M to Zk and vanishing at y. Hence τk|M are uniformly transverse to Zk and

vanishing at y. Let Wk = τk
−1
|M (Zk). For all k � 1 by corollary 4.1 they are

uniformly transverse to D, and by lemma 6.6 approximately almost complex and
therefore 2-calibrated.

The study of its topology is done very much as in the symplectic and contact
cases (see the proofs in [11, 2, 24]). �

The next result we want to prove is the existence of determinantal submanifolds
(proposition 1.2), which is still a transversality result for 0-jets (vector bundles Ek),
but not anymore to the 0 section but to a sequence of non-linear approximately
holomorphic stratifications.

Proof of proposition 1.2. Let E,F →M be Hermitian bundles with connection and
let us define the sequence of very ample vector bundles Ik := E∗ ⊗ F ⊗ L⊗k. In
the total space of Ik we consider the sequence of stratifications Sk whose strata are
Sk,i = {A ∈ Ik| rank(A) = i}, where A ∈ Hom(E,F ⊗ L⊗k).

Let E,F still denote the pullback of E,F to the symplectization (M× [−ε, ε],Ω).

Let Ik,Ω → M × [−ε, ε] be E∗ ⊗ F ⊗ L⊗kΩ = Hom(E,F ⊗ L⊗kΩ ). Let G be as usual
a J-complex distribution defined on M × [−ε, ε] that extends D, and let

SGk,i = {A ∈ Ik,Ω| rank(A) = i}, A ∈ Hom(E,F ⊗ L⊗kΩ ).

By lemma 6.1 (applied to almost complex manifolds) SGk,i is an approximately

holomorphic sequence of finite, Whitney (A) stratifications. Therefore we can apply
theorem 7.2 to construct an A.H. sequence of sections τk of Ik,Ω uniformly transverse
over M to SGk , and thus along D.
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Hence for all k large enough M is stratified by the submanifolds Si(τk) = {x ∈
M | rank(τk(x)) = i}, which are uniformly transverse to D and 2-calibrated by
lemma 6.6. �

Corollary 1.1 follows from the fact that in the contact case the 2-form is exact
and hence the cohomological computations are those of the bundle E∗ ⊗ F .

Theorem 8.1. Let (M,D,ω) be a closed integral 2-calibrated manifold, set Ek =
Cm+1 ⊗ L⊗k, and let r be any natural number. Any A.H. sequence of sections of
Cm+1 ⊗ L⊗kΩ → (M × [−ε, ε],Ω, G) admits an arbitrarily small Cr+h-perturbation
such that φk|M : M\Bk → CPm -the restriction to M of its projectivization- is an
r-generic A.H. sequence.

Proof. The proof is just theorem 7.2 applied to the Thom-Boardman-Auroux quasi-
stratification along G of J rEk → (M × [−ε, ε], J,G, gk), combined with proposition
6.3. �

It must be pointed out that the behavior of A.H. functions at the points close
to the degeneration loci is more complicated than that of the leafwise holomorphic
model: firstly, and similarly to what happens for even dimensional almost complex
manifolds, to obtain normal forms it is necessary to add perturbations so that
the function becomes holomorphic (at least in certain directions); otherwise the
approximate holomorphicity is not significative due to the vanishing (degeneracy)
of the holomorphic part. Secondly, we have an extra non-holomorphic direction
that we do not control. At most, we can apply the usual genericity results to that
direction (the perturbations at most of size O(k−1/2) so as not to destroy the other
properties).

One instance of the preceding theorem is when the target space has large dimen-
sion, so that the generic map is an immersion along the directions of D.

Proof of corollary 1.2. Set Ek = Cm+1 ⊗ L⊗k, where m ≥ 2n. Theorem 7.2 is
applied to the Thom-Boardman-Auroux quasi-stratification along G of J 1Ek →
(M × [−ε, ε], J,G, gk)), to obtain 1-generic A.H. maps φk : M → CPm. From the
choice of m it follows that the set of base points and of points where ∂φk is not
injective is empty. It is clear that by construction that φ∗k[ωFS ] = [ωk]. �

This is a non-trivial result because the property of being an immersion along D
is not generic (for smooth maps to CP2n). Notice that if for example D is integrable
the property is generic for each leaf (locally), but not for the 1-parameter family.

As mentioned in the introduction, the previous corollary can be improved in two
different ways.

Proof of corollary 1.3. Let us assume that any 2-form in the path ρk,t = (1−t)ωk+
tφ∗kωFS is non-degenerate over D, where ωFS is be the Fubini-Study 2-form. Then
Moser’s trick can be applied leafwise: if α is a 1-form such that dα = −(φ∗kωFS−ωk),
the vector fields tangent to D defined by the condition −iXtρk,t = −α generate a
1-parameter family of diffeomorphisms preserving each leaf and sending ρk,t to ωk.

The non-degeneracy over D of ρt follows from the estimated transversality of φk
together with the approximate holomorphicity. For any v ∈ Dx of gk-norm 1,

ρk,t(v, Jv) = (1− t)ωk(v, Jv) + tωFS(φk∗v, φk∗Jv) ≥ (1− t) + tη > 0.

�

In general a closed Poisson manifold with codimension one leaves does not admit
a lift to a 2-calibrated structure (for example any non-taut smooth foliation in M3).
The previous corollary can be used to state the following result:
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Corollary 8.1. Let (M2n+1,D, ωD) be a closed Poisson manifold with co-oriented
codimension one leaves. Then the Poisson structure admits a lift to a (rational)
2-calibrated structure, if and only if a multiple of ωD is induced by a leafwise im-
mersion in CP2n (by pulling back ωFS).

It is worth mentioning that it is possible to obtain uniform transversality to a
finite number of quasi-stratifications of the same sequences of bundles. For example,
and this leads to the second improvement of corollary 1.2, we can obtain the 1-
genericity result that gives rise to embeddings in CPm transverse to a finite number
of complex submanifolds of CPm.

We just need to consider for each submanifold the sequence of stratifications
PS of J 1

G(M,CPm), whose unique stratum (for each k) is defined to be the 1-
jets along G whose degree 0 component is a point of the submanifold; next we
pull it back to a stratification S of J 1

GE
∗
k and finally to a stratification SG of

J 1E∗k (the structure near Zk is not relevant because transversality to the Thom-
Boardman-Auroux quasi-stratification along G implies that the sections stay away
from Zk). Therefore, we have defined a stratification of J 1Ek which is trivially
approximately holomorphic because it is the pullback by A.H. maps of an initial
approximately holomorphic stratification of J 0

G(M,CPm). Any 1-generic sequence
of A.H. sections of Ek uniformly transverse to SG, when restricted to M gives rise
to maps φk : M ↪→ CPm uniformly transverse along D to the submanifold.

Proof of Theorem 1.1. We first apply theorem 8.1 to obtain φk|M : M\Bk → CP1

1-generic.
Near the base points and the points where ∇Dφk|M vanishes, we apply the

perturbations defined in [35] to obtain the required local models. �

Another possible application is, as proposed by D. Auroux for symplectic ma-
nifolds [3, 4], to obtain r-generic applications to CPm whose composition with
certain projections CPm → CPm−h are still r-generic (the corresponding stratifica-
tions are approximately holomorphic because they are pullback of approximately
holomorphic stratifications by A.H. maps; the structure near Zk is also seen to be
appropriate).

It is also possible to develop an analogous construction but for A.H. maps to
Grassmannians Gr(r,m), starting from sections of Cr ⊗ Ek, Ek of rank m (see
[31, 5]).

Our techniques can be applied to any closed 2-calibrated manifold to give a finer
topological description of the 2-calibrated structure. It is possible to apply the
same idea to manifolds for which the 2-calibrated structure enters as an auxiliary
tool. This point of view has already been adopted in [27].

We recall the following result.

Theorem 8.2. (Gromov) Let M2n+1 be a closed manifold whose structural group
reduces to U(n), and let a ∈ H2(M ;Z). Then there exists ω a closed maximally
non-degenerate 2-form such that [ω] = a.

Proof. The structural group of the open manifold M × R reduces to U(n + 1).
Then by [18] it carries a symplectic form representing any given cohomology class,
in particular the pullback of a to M × R. Its restriction to M × {0} is ω. �

So by selecting any codimension one distribution transverse to the kernel of ω,
we have:

Corollary 8.2. Let M2n+1 be a closed manifold whose structural group reduces to
U(n), and let a ∈ H2(M ;Z). Then M admits 2-calibrated structures (D,ω) for
which [ω] = a.
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Notice that if we apply any of the previous constructions to (M,D,w), we obtain
submanifolds and more generally stratifications of M by 2-calibrated submanifolds.
Regarding the initial structure, which was just a reduction of the structural group
to U(n), we can conclude that the corresponding strata also admit such a reduction.

Appendix A. Proof of proposition 5.1

We write down the proof for the bundle J rEk because it is a necessary ingredient
in the proof of theorem 7.2. The case of J rDEk bears no further complications and
it is left to the interested reader.

We omit the subindices k and r for the connections whenever there is no risk of
confusion.

Recall that in coordinates the curvature can be computed as follows: in a chart
where T ∗P is trivialized using the derivatives of the coordinates, we have the co-
rresponding flat connection d on T ∗P . We have the operator

∇1 : T ∗P ⊗ Ek −→ T ∗P ⊗ T ∗P ⊗ Ek
∇1 := d⊗ I− I⊗∇

and the antisymmetrization map

asym2 : T ∗P ⊗ T ∗P −→ ∧2T ∗P

α⊗ β 7−→ α ∧ β,
α ∧ β(u, v) := α(u)β(v)− α(v)β(u).

The curvature is the composition asym2(∇1 ◦ ∇).
Let σk = (σk,0, σk,1) be a section (maybe local) of J 1Ek. The modified con-

nection is ∇H1
(σk,0, σk,1) = (∇σk,0,∇σk,1) + (0,−F 1,1σk,0), where −F 1,1σk,0 ∈

T ∗0,1P ⊗ T ∗1,0P ⊗ Ek (see [5]). For jets along D we add −F 1,1
D .

The previous formula defines a connection.

Lemma A.1. Let Cm → Cp be the trivial bundle endowed with a connection ∇
whose curvature is of type (1,1) with respect to the canonical complex structure J0;
the connection splits into ∂∇ + ∂̄∇. Let τ be a holomorphic section of Cm (with
respect to to the holomorphic structure induced by ∇). Then

∇H(τ, ∂∇τ) = ∇(τ, ∂∇τ)− (0, ∂̄∇∂∇τ) (63)

and ∂̄∇H
(τ, ∂∇τ) = 0.

Proof. By definition

Fτ = asym2(∇1∇τ).

Let us denote the trivialization of the bundle that identifies it with Cm by ξ1, . . . , ξm.
Since τ is holomorphic

Fτ = asym2((d⊗ I− I⊗∇)∂∇τ).

If we write ∂∇τ = dzihji ξj then

Fτ = asym2(−(I⊗∇)dzihji ξj).

But being the curvature of type (1,1) we can write

Fτ = asym2(−(I⊗ ∂̄∇)dzihji ξj). (64)
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Recall that Fτ has to be understood as an element of T ∗0,1Cp ⊗ T ∗1,0Cp ⊗Cm.
That amounts to switch the dz̄l’s with the dzl’s, which cancels the negative sign on
the right hand side of equation (64). Thus what we obtain is:

Fτ := (I⊗ ∂̄∇)dzihji ξj ∈ Γ(T ∗0,1Cp ⊗ T ∗1,0Cp ⊗ Cm). (65)

But equation (65) equals

(∂̄0 ⊗ I + I⊗ ∂̄∇)dzihji ξj

which by definition is
∂̄∇∂∇τ. (66)

By equation (66)

∂̄∇H
(τ, ∂∇τ) = (∂̄∇τ, ∂̄∇∂∇τ − ∂̄∇∂∇τ) = 0.

�

It is also clear that ∂∇ = ∂∇H
and therefore they define the same coupled

holomorphic jets.
Lemma A.1 has an obvious approximately holomorphic version: if we have a

very ample sequence of rank m vector bundles by definition the sequences of curva-
tures is approximately of type (1,1). Then we can fix approximately holomorphic
coordinates and the first part of lemma A.1 implies that for τk a sequence of A.H.
sections of Ek, one has

Fτk u ∂̄∂τk,

and by the second part

∂̄Hj
1τk u 0.

We now move into computing the curvature of the modified connection in the
integrable case. We will denote the coupled holomorphic r-jet in the integrable
model by jrholτ .

Lemma A.2. Let Cm → Cp be the trivial bundle as in lemma A.1. Assume also
that for the fixed trivialization ξ1, . . . , ξm the curvature is a matrix with constant
coefficients and that we have a frame given by holomorphic sections τ1, . . . , τm.
Then F∇ = F∇H

.

Proof. If the holomorphic sections τ1, . . . , τm generate the bundle, then the holo-
morphic 1-jets of zlτj , τj , 1 ≤ l ≤ p, 1 ≤ j ≤ m are a basis of J 1

p,m (at least on
B(0, ρ)). By lemma A.1, they are a holomorphic basis.

∇Hj1
holz

lτj = (∂∇(zlτj),∇∂∇(zlτj))− (0, F zlτj) = ∇j1
holz

lτj − (0, Fzlτj). (67)

Let us write again ∂∇τj = dzihsi,jξs, and F = atsdz̄
tdzs ∈ Γ(T ∗0,1Cp⊗T ∗1,0Cp).

If we apply to ∇j1
holz

lτj the operator asym2∇1
H , ∇1

H := d⊗ I− I⊗∇H , we get:

F∇j
1
holz

lτj + (0, asym2(dzlatsdz̄
tdzsτj + zldziatsdz̄

tdzshsi,jξs)). (68)

When we apply the same operator to (0, Fzlτj), if recall that the ats are constant
and that zlτj is a holomorphic section we get

asym2∇1
H(0, F zlτj) = (0, asym2(−atsdz̄tdzldzsτj − atsdz̄tzldzihsi,jξs)), (69)

and the right hand side of equation (69) equals

(0, asym2(dzlFτj + zldziFhsi,jξs)). (70)
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If we put together equations (67), (68), and (70) we obtain

F∇H
τj = F∇τj .

�

We want to use a recursive construction based on lemmas A.1 and A.2 to intro-
duce the desired connection on J rp,m.

Before doing that we recall that the coupled holomorphic jets are sections of
J rp,m.

We now prove how to modify the connection on J 2
p,m.

Step 1: We identify J 2
p,m with the subbundle of J 1J 1

p,m spanned by holonomic

sections, i.e. sections of the form j1
holj

1
holτ , where τ is any holomorphic section of

Cm. Pointwise, an element γ of the fiber of J 1J 1
p,m is of the form

(γ0,0, γ0,1, γ1,0, γ1,1) ∈ (C⊕ T ∗1,0Cp ⊕ T ∗1,0Cp ⊕ (T ∗1,0Cp ⊗ T ∗1,0Cp))⊗ Cm,

and belongs to J 2
p,m if and only if γ1,1 ∈ T ∗1,0Cp � T ∗1,0Cp ⊗Cm, and γ1,0 = γ0,1.

Using the metric induced by the Euclidean one on the base and fiber and the
connection, we have a orthogonal projection r : J 1J 1

p,m → J 2
p,m.

Step 2: We introduce a new connection on J 1J 1
p,m.

On J 1
p,m we use the modified connection ∇H1

. This, together with the flat

connection d on T ∗Cp defines a connection ∇H1,1
on J 1J 1

p,m. Notice that on

J 1J 1
p,m we also have a connection ∇2 coming from d and ∇1.

We consider the trivialization of J 1
p,m furnished by the sections ξj , dz

iξj , 1 ≤
j ≤ m, 1 ≤ i ≤ p, so we can identify the bundle with Cmp+m. This is a trivial
bundle with connection ∇H1

. By lemma A.2 F∇H1
= F∇1

. Recall also that in the

basis ξj , dz
iξj the curvature F∇1 is a matrix that decomposes into p + 1 blocks

corresponding to ξ1, . . . , ξm and to dziξ1, . . . , dz
iξm, 1 ≤ i ≤ p. For each such block

the corresponding matrix is the one for F∇ in the basis ξj . Therefore F∇H1
is still

of type (1,1) and has constant entries in the aforementioned basis.
Let ∇H2 be the result of modifying ∇H1,1 . Since ∇H1 is of type (1,1) by lemma

A.1 applied to (Cmp+m,∇H1
), if τ1 ∈ Γ(J 1

p,m) is holomorphic with respect to

∇H1 , then j1
holτ

1 is holomorphic with respect to ∇H2 . In particular j1
hol(j

1
holz

iτj),
j1
hol(z

lj1
holz

iτj) are a local holomorphic frame of (J 1J 1
p,m,∇H2) (recall that τj was

a local holomorphic frame of Cm).
Having into account that the curvature of (Cmp+m, ∇H1

) is of type (1,1) and with
constant entries, and that (Cmp+m, ∇H1

) has a local holomorphic basis, lemma A.2
gives F∇H2

= F∇H1,1
. From F∇H1

= F∇1 it follows that F∇H1,1
= F∇2 . Therefore

F∇H2
= F∇2 onJ 1J 1

p,m.

Step 3: Check that ∇H2
restricts to J 2

p,m ↪→ J 1J 1
p,m with the desired properties.

Let I = (i0, i1, . . . , ip) with 1 ≤ i0 ≤ m, 0 ≤ ij ≤ 2, i1 + · · · + ip ≤ 2, and

let τI := zi11 . . . z
ip
p τi0 . We consider the sections j1

holj
1
holτI , which are a local holo-

morphic frame J 2
p,m (using the identification described in step 1). We will see

that ∇H2
j1
holj

1
holτI ∈ Γ(T ∗1,0Cp ⊗ J 2

p,m), and therefore that the connection ∇H2

preserves J 2
p,m.

We just proved in step 2 that j1
holj

1
holτI is holomorphic with respect to ∇H2

and
that ∂∇H2

= ∂∇H1,1
= ∂∇2

. Let us write j1
holj

1
holτI = (τI , ∂∇τI , ∂∇τI , ∂

2
∇τI). Then

∇H2j
1
holj

1
holτI = ∂∇H2

j1
holj

1
holτI =

∂∇2
(τI , ∂∇τI , ∂∇τI , ∂

2
∇τI) = (∂∇τI , ∂∇∂∇τI , ∂∇∂∇τI , ∂∇∂

2
∇τI),
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which belongs to Γ(T ∗1,0Cp ⊗ J 2
p,m).

Therefore, the curvature of the restriction of ∇H2
to J 2

p,m is of course of type
(1, 1). The last observation is its expression in a suitable basis. The curvature of ∇2

on J 1J 1
p,m splits on blocks corresponding to the basis ξ1, . . . , ξm, dziξ1, . . . , dz

iξm,

dzlξ1, . . . , dz
lξm, dzr ⊗ dztξ1, . . . , dzr ⊗ dztξm, 1 ≤ i, l, r, t ≤ p. Each submatrix is

F∇. If we use the basis ξ1, . . . , ξm, dziξ1, . . . , dz
iξm, dzr � dztξ1, . . . , dzr � dztξm,

1 ≤ i, r, t ≤ p, the curvature equally splits into blocks each matching F∇.
The general case uses the following induction step: on J rp,m there exists a con-

nection ∇Hr with the following properties:

(1) ∂Hr = ∂r.
(2) F∇Hr

= F∇r
and therefore F∇Hr

is of type (1, 1).

(3) If ∂̄∇τ = 0 then ∂̄Hr
jrholτ = 0.

(4) In the basis ξI := (dz1
k)
�i1 · · · (dznk )

�inξi0 the curvature splits into blocks
each matching F∇.

To define ∇Hr+1
on J r+1

p,m we reproduce the previous 3 steps.

Firstly we consider the identification of J r+1
p,m with the subbundle of J 1J rp,m

spanned by sections of the form j1
holj

r
holτ , τ a holomorphic section of Cm.

Secondly we consider the connection ∇H1,r on J r+1
p,m constructed out of d and

∇Hr
and modify it to ∇Hr+1

. By the induction hypothesis using the basis ξI we

are in the situation of lemma A.2, for J rp,m identifies with CNr with a connection
whose curvature is of type (1,1) and with constant coefficients, and with a frame
of holomorphic sections. Therefore F∇Hr+1

= F∇H1,r
= F∇r+1

. Since we can also

apply lemma A.1, for any τ r ∈ Γ(J rp,m) the 1-jet j1
holτ

r is holomorphic with respect
to ∇Hr+1

.
The third step is to check that the modified connection restricts to J r+1

p,m ↪→
J 1J rp,m. Using that ∂∇Hr+1

= ∂∇r+1
, any frame of sections of the form j1

holj
r
holτI ,

τI holomorphic, is sent by the connection to sections of J r+1
p,m .

It is also routine to check that in the basis ξI the curvature matrix is made of
blocks of the form F∇.

The almost complex counterpart of the result we just proved is done exactly
in the same way. The only modification is that the connection on J 1J rEk does
not descend automatically to a connection on J r+1Ek ↪→ J 1J rEk. We have to
project via r : J 1J rEk → J r+1Ek, but this is seen to introduce an error which is
approximately vanishing. It might happen that the resulting connection amounts
to adding also a pseudo-holomorphic part. If that is the case we forget about this
contribution (which again would be approximately vanishing). Therefore, we obtain
a connection with all the desired properties.

Using similar considerations to the ones for 1-jets, it can be deduced that the
(r+1)-jet of a Cr+1+h-A.H. sequence of sections of Ek is a Ch-A.H. sequence of
sections of (J r+1Ek,∇Hr+1).

Appendix B. Chern classes and top Chern classes

Corollary 1.1 proves the existence of contact determinantal submanifolds, which
we expect to be more general than those coming from zeroes of vector bundles
constructed in [24]. To support this we recall that it is known that in the algebro
geometric setting that determinantal varieties are more general that zeroes of vector
bundles (see for example [20, 1]), and a similar result should be expected to hold
in the smooth category. A way to prove it would be exhibiting a manifold in which
there exist a cohomology class a which is the Chern class of a complex vector bundle
F but it is not the top Chern class of any complex vector bundle (i.e. showing Chern
classes are more general than top Chern classes), the reason being that if we choose
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as E the trivial complex vector bundle of the appropriate rank and the appropriate
determinantal locus, we have

∆E,F,i = a.

As far as the author knows such a question has not been addressed. A lot is
known about cohomology classes which can be Chern classes, mainly because for a
given finite CW complex of dimension n there is a rather clear picture of complex
vector bundles of rank ≥ [n/2] (the so called stable rank) [8]; much less is known
about lower ranks and that is what makes it difficult to discard a Chern class as
a top Chern class (besides, according to Thom [37], Theorem II.25, in a (compact,
oriented) manifold any a ∈ H2k(M ;Z) has a multiple which is a top Chern class).
In any case, finding manifolds with certain cohomological properties would prove
that Chern classes are more general than top Chern classes. For example, according
to [8] for a (compact, oriented) manifold X of dimension ≤ 7, any a ∈ H4(X;Z) is
the second Chern class of a rank 3 complex vector bundle. If it were the top Chern
class of some F , then corollary 2.2 in [8] applied to the direct sum of F with the
trivial line bundle would imply

c1(F )a+ Sq2a ≡ 0 in H6(X;Z2). (71)

Therefore, if H2(X;Z2) = 0 and there exist a class a with non-vanishing second
Steenrod square, equation (71) could not hold and hence a would not be a top
Chern class.
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Différentiables (Plans-sur-Bex 1975), Lecture Notes in Math. 535, Springer (1976), 128–

176.
[29] D. McDuff, D. Salamon, Introduction to symplectic topology. Clarendon Press, Oxford

(1995).

[30] J. P. Mohsen, Thesis. École Norm. Sup. Lyon (2001).

[31] V. Muñoz, F. Presas, I. Sols, Almost holomorphic embeddings in Grassmannians with

applications to singular symplectic submanifolds. J. Reine Angew. Math. 547 (2002),
149–189.
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