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1. Introduction

In 1996 S. Donaldson proved the following remarkable result:

Theorem 1. [5] Let (M,ω) be a compact symplectic manifold. Then it contains
symplectic submanifolds of real codimension 2.

Remark 1. Notice that by iterating theorem 1 one can construct symplectic sub-
manifolds of any dimension.

Let us expand on the two notions alluded to in the theorem, submanifolds and
symplectic geometry.

2. Submanifolds

In this section we recall some basic results in differential topology pertaining the
(global) description of submanifolds of a manifold, and their construction. A good
general reference for this section is [9]. We note that all our submanifolds, vector
bundles, and sections are smooth.

Let N ⊂ M be a submanifold. We will assume M,N to be compact, though
N closed would be enough. We want to describe N using function theory. As for
any closed subset of a manifold we know that there exists F : M → [0, 1] (smooth),
such that N = f−1(0). Of course, that does not make any distinction between
a submanifold and any other closed subset of N . The distinctive feature of a
submanifold is the existence of adapted coordinates about any point. That is,
coordinates

x1, . . . , xm−d, xm−d+1, . . . , xm : (U, x)→ (Rm, 0),

so that
N ∩ U = {xm−d+1, . . . , xm = 0}.

In other words, there exists F : U ∩N → Rd so that 0 is a regular value and

N ∩ U = F−1(0).

An equivalent way of presenting the previous result -which makes it clear how to
go to the global result- is tranforming F into a section of a trivial bundle

s : U −→ U × Rd

x 7−→ (x, F (x)),

and therefore conclude the existence of a section s t 0 so that N ∩ U = s−1(0).
With a bit of work one can globalize to obtain the following result:

Proposition 1. Let N ⊂ M be a submanifold of codimension d. Then there exist
a rank d vector bundle E → M together with a section s transverse to the zero
section 0 , and so that N = s−1(0).
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Proof. Let ν(N)→ N be the normal bundle and Φ: (ν(N), N)→ (U , N) a tubular
neighborhood of N . Use the projection ν(N) → N to pullback ν(N) to its total
space. The result is E′ → ν(N) a vector bundle with a tautological section s′

which is obviously transverse to the zero section, and has zero set N . Using the
diffeomorphism furnished by the tubular neighborhood we have solved the problem
over U , and we need to extend E′|∂U and s′|∂U to a vector bundle over M\intν(M)
with no-where vanishing section. This problem can always be solved: the section
determines a trivialized rank 1 bundle R over ∂U , and therefore and splitting

E′|∂U = R⊕ F ′.

Thus our problem reduces to extend F ′. This is always possible. Recall that a
bundle is given by a homotopy class of maps to Gl(d,∞). To extend it simply take
any section of the universal bundle and compose with it; we get a map to E(d,∞),
which is contractible. Therefore any map to it can be extended. Compose the
extension with the bundle map projection to obtain the desired extension of the
map to Gl(d,∞). �

Conversely, if we are given any rank d vector bundle E →M , any section s t 0
determines a codimension d submanifold defined as

N := s−1(0).

That we can always find sections transverse to the zero section is a classical
result by Thom.

Theorem 2. Let M,P be manifolds, and Q a submanifold of P . For simplicity
we assume that all are compact. Then the subset Ct(Q;M,P ) of maps transverse
to Q is dense and open in C∞(M,P ), where the latter set carries the Whitney
Cr-topology, r ≥ 1.

Proof. Check for example the transversality chapter in [9]. �

3. Measuring transversality

We want to apply theorem 2 to M,P = E and Q the zero section of E (actually
a slight variation, since we want to produce not just a map M → E, but a section
of the vector bundle). We find very useful for the purposes of these notes to go
through the proof of (the variation of) Thom’s theorem in this particular case.

The strategy is as follows: given a section s, r ∈ N, and δ > 0, we are going to
construct a perturbation χ so that

|χ|Cr ≤ δ, (1)
s+ χ t 0. (2)

Even though the strong/weak Cr-topology is defined without any resort to met-
rics, we will introduce metrics among other things to make sense of the inequality
1.

3.1. Cr-norms on Γ(E). We assume from now on that we fixed have a triple
(∇, h, g), where ∇ is a linear connection on E, h is a bundle metric on E, and g is
a metric on M . This defines in the usual fashion a metric ĝ in E: at each y ∈ E
we write

TyE = Eπ(y) ⊕Hy, (3)
where Hy is the horizontal space of the connection ∇. We declare the sum in 3
orthogonal, use hx in the second factor and gπ(x) in the first one.

Notice as well that we can take covariant derivatives using ∇. For any section s
we have

∇s ∈ Γ(TM∗ ⊗ E).
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Using the Levi-Civita connection associated to g we induce a connection on TM∗⊗
E, and we use it to take the second covariant derivative. By similar process we can
define the r-th covariant derivative. The Cr-norm referred to in 1 is the sum on
j ∈ {0, . . . , r} of the sup norm of

∇jχ ∈ Γ(TM∗ ⊗
(j)
· · ·TM∗ ⊗ E),

for the obvious induced bundle metric.
Next we want to understand how our measurements change when we change the

metric. Let V be a vector space, and g, g′ two inner products. We know that they
define the same topology (standard one), and even better they are comparable in
the following sense: we can find C1, C2 > 0 so that for all u 6= 0

g(u, u) ≤ C1g
′(u, u, ), g′(u, u) ≤ C2g(u, u), (4)

and we call C1, C2 comparability constants. If neeeded, one can take the least
constant with the above property. Notice that this is actually a property that can
be studied for any two norms in a vector space.

Moving to the non-linear setting we say that two metrics g, g′ in M are compa-
rable if we have constants C1, C2 > 0 so that 4 holds in all tangent spaces.

Remark 2. On a compact manifold any two metrics are comparable. For example
on each vector space one selects the smallest comparability constant, and this defines
strictly positive constinuous functions. On non-compact manifolds one can easily
construct non-comparable metrics.

Lemma 1. Let (∇, h, g), (∇′, h′, g′) two different triples and fix r ∈ N. Then there
exist C1, C2 > 0 such that for any section s ∈ Γ(E) one has

|s|Cr(ĝ) ≤ C1|s|Cr(ĝ′),

|s|Cr(ĝ′) ≤ C2|s|Cr(ĝ).

Otherwise said, we have on the infinite dimensional vector space Γ(E) two norms
| · |(∇,h,g), | · |(∇′,h′,g′), which are comparable; equivalently

(Γ(E), | · |(∇,h,g))
Id−→ (Γ(E), | · |(∇′,h′,g′))

is a (linear) homeomorphism.

Proof. We may start by looking at the effect of putting another fibre metric h′.
Comparability between h, h′ gives clearly the desired result.

If we now use another connection ∇′ we have

∇−∇′ = A ∈ Ω1(M ;E).

So ∇′s = ∇s+As, and the result follows for C1-norms. For higher norms then the
covariant derivatives of A enter into consideration, but they are bounded since we
are in a compact manifold.

The third type of change affects to the metric in the base. Comparability when
using both metrics in T ∗M is obvious. But also the covariant derivatives on T ∗M
are different. In any case this is not problematic since the difference depends on
the difference of Christoffel symbols (measured with either metric), and of covariant
derivatives (w.r.t. either metric), and we are in a compact manifold. �
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3.2. Measuring transversality.

Definition 1. [5] Let (E,∇, h)→ (M, g) be a vector bundle with connection and
fiber metric over a Riemannian manifold. We say that a section s is η-transverse
to 0 at x if either

(i) |s(x)| ≥ η (i.e. τ(x) does not belong to the η-neighborhood of the zero
section) or,

(ii) |s(x)| < η and ∇s(x) : TxM → Ex is surjective and has a right inverse of
norm bigger than 1/η.

We say that s is η-transverse to 0 in K if it is η-transverse to 0 at every x ∈ K.

Remark 3. One can state the existence of a right inverse of norm bigger than 1/η
in the following equivalent manner: the (real) vector spaces TxM,Ex have inner
products. We ask for the image of the unit ball in (TxM, gx) to contain the ball of
radius η in (Ex, hx).

Remark 4. There is yet a more geometric way of restating what condition (ii) in
the definition of estimated transversality means, which firstly appeared in [19]. In
(Ts(x)E, ĝs(x)) we have two distinguished subspaces: the tangent space to the graph
of the section Ts(x) and the horizontal subspace w.r.t. the distribution Hs(x). One
defines their minimal angle as the minimum of angles of two non-zero vectors each
on one subspace. One can define η-transversality by requiring the minimum angle
to be bounded from below by η. This definition is not exactly the one we gave,
but it is comparable to it in the sense that there exist (smooth) strictly monotone
functions C,D : (0, ε] → [0,∞) such that η-transversality implies minimum angle
bounded from below by C(η), and conversely minimum angle bounded from below by
η implies D(η)-transversality.

Lemma 2. Let (∇, h, g), (∇′, h′, g′) two different triples and K a compact subset of
M . Then there exist T1, T2 > 0 such that for any section s ∈ Γ(E) and any η ≤ 1
we have

(1) s is η-transverse to 0 in K w.r.t (∇, h, g) implies that s is T1η-transverse
to 0 in K w.r.t (∇′, h′, g′).

(2) s is η-transverse to 0 in K w.r.t (∇′, h′, g′) implies that s is T2η-transverse
to 0 in K w.r.t (∇, h, g).

Here T1, T2 depend on the comparability constants between the metrics and the norm
of the difference of the connections.

One of the advantages of measuring transversality is that we can see very neatly
the effect of adding perturbations with small enough norm.

Lemma 3. Let s ∈ Γ(E) be η-transverse to 0 in K, and let χ ∈ Γ(E) so that
|χ|C1(K) ≤ δ. Then s+ χ is η − δ-tranverse to 0 in K.

Proof. If |s+ χ(x)| ≤ η − δ, then must look at the image of the unit ball under

∇s(x) +∇χ(x) : TxM → Ex.

The first summand already contains the ball of radius η. The second affects by
decreasing the norm by at most δ, so the result follows. �

We will assume for simplicity that E is a line bundle. Let us prove Thom’s trans-
versality theorem as follows: we will be given Bg(x1, ρ), . . . , Bg(xl, ρ) a covering of
M with the following properties:

(1) The bundle E triviallizes via a (perhaps local) section τj and so that

|τj |Bg(xj ,ρ)
| ≥ κ > 0, |τ |C2 ≤ A. (5)
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(2) We have charts ϕj : B(0, 3) ⊂ Rm → Bg(xj , ρ) so that |ϕj |C2 ≤ B. We
also have B(0, 3) ⊂ ϕ−1

j (Bg(xj , ρ)); there both metrics are comparable
because of the bound on |ϕj |C2 , and because we work with finitely many
charts (ultimately because M is compact) the bound is common and so the
comparability constant is.

(3) Define Kj := ϕj(B̄(0, 1)). Then we have
l⋃

j=1

Kj = M.

Next we want to transfer the estimated transversality problem for sections over
Kj to a similar one for functions: To do that we note that in Bg(xj , ρ) we can write

s = fjτj .

We pullback everything to B(0, 3) using our chart. There we use a triple different
from (∇, h, g). In the base we use the Euclidean metric gstd; the bundle metric hstd

is such that τj has norm 1; finally the connection d is the one for which τj is flat.

Lemma 4. A local section s = fjτj is η-transverse to 0 over B̄(0, 3) w.r.t. (d, hstd, gstd)
iff either the Euclidean norm of fj is greater than η, or else its derivative has (Eu-
clidean) norm greater or equal than η.

We now apply Sard’s theorem in the following way:

Proposition 2. Given a function f : B(0, 11/10) → R, and given γ > 0, there
exists |w| ≤ γ such that f +w is transverse to 0 in B̄(0, 1). By compactness of the
latter subset, f + w is α(f + w)-transverse to 0.

Remark 5. In principle we do not have an estimated version of Sard’s theorem,
so that α is a function of γ and the Cr-bounds on f .

To prove Thom’s transversality we start with our section s, and give ourselves
δ > 0 the bound for the size of the perturbation. In the first step we proceed as
follows:

• Over Bg(x1, ρ), we write s = f1τ1.
• We apply proposition 2 to f1 with γ = δ/2C2, where C2 is the constant

granted by lemma 1. Whe fix once and for all β a bump function supported
in B(0, 3), with β|B(0,1) = 1, and |β|C2 ≤ 1. We define our first perturbation
as

χ1 = w1βτ1,

Then it follows that by lemma 1 its norm is bounded by δ/2 and makes
s+ χ1 and by lemma 2 s+ χ1 is T2α1-t-to 0 over K1.

In the second step we repeat a similar construction over Bg(x2, ρ), though this
time we have two types of constraints: firstly the perturbation χ2 should not exceed
say δ/4, so by induction the final perturbation χ is bounded by δ. Secondly we
do not want to destroy the transversality T2α1 achieved over K1. By lemma 3 we
keep half of it if we force |χ2|C1 ≤ T2α1/2. Therefore we solve the local problem
with a perturbation bounded by min(T2α1/2C2, δ/4C2). More generally, in the j-
th step we solve the local transversality problem with a perturbation bounded by
min(T2αj−1/2C2, δ/2jC2).

We would like to optimize the number of steps. Observe that on each induction
step we can work with several open subset at a time as long as they do not intersect,
because then what we do in either of them does not interfere with what we do in
the others. So we can reagroup our l subsets into N different groups of disjoint
subsets, each labelled by a colour for example. Then we make induction on colours.



6 D. MARTÍNEZ TORRES

We said that we do not have in general an estimated version of Sard’s theorem,
but we do have it for a very particular class of (complex valued) functions.

Theorem 3. [22, 5, 3] Let f : B2n(0, 11/10)→ C. Let δ be a constant 0 < δ < 1/2.
Let η(δ) = δ(P (log(δ−1))−1, where P is a real monomial depending on n. If in the
ball of radius 11/10 we have

|f |gstd ≤ 1, |∂̄f |gstd ≤ η, |d∂̄f |gstd ≤ η,
then there exists w ∈ C, |w| ≤ δ, such that f + w is η-transverse to 0 in B̄(0, 1).

Assume that E is a complex line bundle, and we are given data above so that
when we write s+ χ1 + · · ·+ χj−1 = fjτj , fj satisfies the hypothesis in theorem 3
(for example if it is holomorphic and satisfies the first bound). Then if we have N
colours we deduce that the final amount of transversality is at least

ηN (δ′) (6)

with δ′ = δ/2C2, and the monomial P suitably rescaled.
We sumarize the ingredients we need to have certain control of the amount of

transversality:
• Charts ϕj giving uniform control on the induced metrics and the standard

one, and so that Kj := ϕj(B̄(0, 1)) cover M .
• Bump sections which triviallize the section over each open subset of the

cover, with control on their norm, and so that when writting locally a
section s as a function, the latter is in the hypothesis of theorem 3 (that
also is a condition on the charts).

• Theorem 3 granting a fixed amount of transversality in terms of (part of)
the C2-size of the function and the size of the perturbation.

4. Symplectic geometry

4.1. Linear symplectic geometry.

Definition 2. Let V be a finite dimensional vector space over the reals. A sym-
plectic form is a 2-form ω ∈

∧2
V ∗ which is non-degenerate. The pair (V, ω) is

called a symplectic vector space.

A 2-form is a bilinear form ω : V × V → R which is antisymmetric. The kernel
of a 2-form is defined to be

kerω = {u ∈ V |ω(u, v) = 0, ∀v ∈ V }.
A 2-form ω is non-degenerate if kerω = 0.

In a less invariant fashion, if v1, . . . , vm is a basis of V , then {v∗i ∧ v∗j }i<j is a
basis of the vector space of antisymmetric bilinear forms

∧2
V ∗, whose dimension

is m(m−1)
2 , m = dimV . Here our convention is that for α, β ∈ V ∗,

α ∧ β(u, v) = α(u)β(v)− α(v)β(u).

Then a 2-form can be written

ω =
∑
i<j

wijv
∗
i ∧ v∗j .

If understood as a linear map, then in the fixed basis and its dual ω# is given
by an antisymmetric matrix W ,

Wij = ωij , i < j,Wij = −ωij , i > j,Wii = 0.

Notice as well that
Wij = ω(vi, vj).
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Antisymmetry and non-degeneracy of the bilinear form associated to a given matrix
W are equivalent to

W t = −W, detW 6= 0.

4.2. Dimension.

Lemma 5. Let (V, ω) be a symplectic vector space. Then V has even dimension.

Proof. If we let W be the matrix representing ω in some basis, then we have W =
−W t. Therefore

detW = det(−W t) = (−1)dimV detW,

and the result follows by the non-degeneracy. �

4.3. Standard form.

Example 1. Take V 2n with basis e1, f1, . . . , en, fn, and define

ωstd(ei, ej) = ωstd(fi, fj) = 0, ωstd(ei, fj) = −ωstd(fj , ei) = δij .

Its matrix Wstd is diagonal with n 2× 2 blocks(
0 1
−1 0

)
4.4. Symplectic linear group and symplectic properties/magnitudes.

Definition 3. The (Lie) group of linear symplectic transformations of ω is

Symp(V, ω) = {A ∈ Gl(V ) |ω(A,A) = ω}

Linear symplectic geometry is the study of those properties/magnitudes of V
invariant under Symp(V, ω).

Remark 6. A symplectic form is the antisymmetric version of an inner product,
but antisymmetry makes things very different.

Definition 4. Let (V, ω) be a symplectic vector space, and let U ⊂ V be a vector
subspace. The symplectic annihilator/orthogonal of U is

Uω := {v ∈ V |ω(u, v) = 0, ∀u ∈ U}.

Equivalently:
Uω = (ω#(U))◦.

Lemma 6.

• dimU + dimUω = 2n.
• (Uω)ω = U .

Some vector subspaces are classified according to an interesting incidence relation
between U and Uω.

Definition 5. One says that U is

• symplectic if U ∩ Uω = {0} (equivalently, (U, ω|U ) is symplectic).
• isotropic if U ⊂ Uω (equivalently, ω|U ≡ 0).
• coisotropic if Uω ⊂ U .
• Lagrangian if U = Uω.

These are all properties stable under symplectic transformations.
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4.5. Symplectic/Darboux coordinates.

Lemma 7. Let (V, ω) be a symplectic vector space. There exist a basis e1, f1, . . . , en, fn
in which the matrix representing ω is Wstd. Such a basis is called symplectic/Darboux
basis.

Proof. It is by induction in dimV/2, and it is an analog of the Gram-Schmidt
algorithm.

�

Another way to interpret the existence of Darboux coordinates is as follows:

Corollary 1 (Stability). GL(V ) acts transitively on the (open) subset of
∧2

V ∗ of
symplectic forms (recall that openness of the orbit(s) of the action being the classical
notion of stability). Therefore

dimSymp(V, ω) = dimGL(V )− dim
2∧
V ∗.

4.6. More on Symp(2n). Compatible almost complex structures. In R2n

we have ωstd, Jstd, gstd and their corresponding groups of symmetries. We have:

Theorem 4.

Symp(2n) ∩GL(n,C) = Symp(2n) ∩ SO(2n) = GL(n,C) ∩ SO(2n) = U(n), (7)

and Symp(2n) deformation retracts onto U(n). The latter is a maximal compact
subgroup.

What we used to describe a maximal compact subgroup was the almost complex
structure Jstd. They key properties used give rise to

Definition 6. Let (V, ω) be a symplectic vector space. An almost complex structure
J : V → V , J2 = −Id (Spec(J) = {i,−i}), is compatible with ω if

(1) J ∈ Symp(V, ω).
(2) The symmetric bilinear form ω(·, J ·) is an inner product.

We denote the space of compatible almost complex structures by J (V, ω).

Lemma 8. If J ∈ J (V, ω) and g the associated metric. Then for any linear
subspace U

(JU)ω = U⊥g .

In particular
• Any J-complex subspace is symplectic.
• The symplectic orthogonal of a J-complex subspace is J-complex.

Given a metric g in (V, ω) and a symplectic subspace U we can measure how
symplectic U is by looking at the norm of the orthogonal projection Uω → U⊥.

Corollary 2. If J ∈ J (V, ω) and g is the associated inner product, then the “most
symplectic” vector spaces are the J-complex ones. Moreover, is an even dimensional
vector space U is close enough to be J-complex (i.e. the orthogonal projection
J(U)→ U⊥ has small enough norm), then it is symplectic.

Proof. If the alluded norm is small enough, then U and Uω are very close to be
orthogonal, and therefore transverse. In particular they have trivial intersection,
so U is symplectic. �

By lemma 7 any symplectic vector space is isomorphic to (R2n, ωstd). We know
any complex vector space is isomorphic to (R2n, Jstd).

Lemma 9. If J ∈ J (V, ω) then there exist an isomorphism sending (V, ω, J) to
(R2n, ωstd, Jstd).
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4.7. Symplectic manifolds.

Definition 7. A symplectic form ω ∈ Ω2(M) is a no-where degenerate 2-form
(i.e. we make each tangent space into a symplectic vector space) which is closed.

A submanifold N of M is symplectic, isotropic, coisotropic or Lagrangian, if
TxN ⊂ (TxM,ωx) is symplectic, isotropic, coisotropic or Lagrangian for all x ∈ N .

Remark 7. Closedness is the natural P.D.E. associated to forms. Riemannian
structures have O.D.E.’s associated to the variational problem seeking to minimize
the energy of a path joining to fixed points. This is not the case for non-degenerate
2-forms, and its study without the rigidity condition coming from closedness is very
complicated.

Example 2.
(1) Any linear symplectic structure on a vector space is a symplectic structure.
(2) Any area form on an (orientable) surface is a symplectic form. All curves

are Lagrangian submanifolds.
(3) For any manifold M , its cotangent bundle T ∗M carries the canonical sym-

plectic form dλ, where λ ∈ Ω1(M) is the Liouville 1-form. In coordinates
x1, . . . , xn of M , once we complete with dual coordinates ξ1, . . . , ξn, then

λ :=
n∑
i=1

ξidxi.

This local definition gives rise to a well defined 1-form. More invariantly
it is characterized by the universal property

α∗λ = α, α ∈ Ω1(M).

(4) For any Kahler manifold (X, J, g), the Kahler form ωg is a symplectic form
(one can also define a Kahler manifold as complex manifold (X, J) with
a symplectic structure ω so that J ∈ J (X,ω); the Kahler metric is g :=
ω(·, J ·)). Any complex submanifold of a Kahler manifold is Kahler (since
metrics restrict to metrics), and therefore symplectic.

(5) The product of symplectic manifolds is symplectic in the obvious way. More
generally we have some others ways to produce new symplectic structures
out of given ones (symplectic structures on certain fiber bundles, blow ups,
normal connected sum, reduction).

4.8. Moser’s stability. If a given manifold M admits symplectic structures we
would like to classify them. A natural equivalence relation is equality up to diffeo-
morphism, that is up to global change of coordinates. It is actually more convenient
to use just diffeomorphisms in the connected component of the identity, since those
can be controlled by vector fields when the manifold is compact. Notice that if
φ ∈ Diff0(M), then [ω] = [φ∗ω]. Moser’s technique gives necessary conditions for a
pair of cohomologous symplectic forms, to be equivalent up to isotopy.

Theorem 5. [18] Let M be a compact manifold and let ω0, ω1 symplectic forms in
the same cohomology class. If there exists ωt a family of symplectic forms joining
them so that d

dtωt = dαt (this is the infinitesimal statement corresponding to the
existence of a path of symplectic forms with constant cohomology class connecting
them; the equivalence uses that we are in a compact manifold), then there exist an
isotopy φt so that

φ∗tωt = ω0. (8)

Corollary 3. If ω0, ω1 are cohomologous symplectic forms on M compact, so that
the segment ωt := (1− t)ω0 + tω1, t ∈ [0, 1] is by symplectic forms, then φ∗tωt = ω0,
for a suitable isotopy.
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Proof.
d

dt
ωt = ω1 − ω0 = dα.

�

Corollary 4. Let (M2n, ω) be a symplectic manifold. Then for every point x there
exist Darboux coordinates, i.e. open neighborhoods Ux and U0 of x and 0 in M and
R2n respectively, and

ϕ : (Ux, ω)→ (U0, ωstd)

a symplectic diffeomorphism.

Proof. Fix any coordinates x1, . . . , x2n about x and push the symplectic form to ω
in Euclidean space. Associated to the coordinates we have the frame of Ω2(R2n)
with sections {dxi ∧ dxj}i<j , so that

ω = ωijdxi ∧ dxj .

Take the degree 0 part of the expansion of ω at the origin,

ω(0) = ω(0) = ωij(0)dxi ∧ dxj .

This is a constant 2-form and it is symplectic. Just notice that if W is the matrix
representing ω#, then

det(W (0)) = detW (0) 6= 0.

Consider the convex combination

ωt = (1− t)ω(0) + tω.

In a small enough neighborhood of the origin all ωt are symplectic. Then

d

dt
ωt = ω − ω(0)

is closed and vanishing at the origin. By Poincaré lemma we can find 1-forms αt
so that

• dαt = d
dtωt.

• αt(0) = 0.
We can now apply theorem 5, and observe that the family of vector fields we obtain
vanish at the origin, so the associated (local) isotopy fixes the origin.

By the Darboux linear lemma we know that linear symplectic forms are linearly
equivalent. �

Corollary 5. The only local invariant of a symplectic manifold is its dimension.

Remark 8. Darboux’ theorem is very useful for a number of problems in symplectic
geometry, because any symplectic construction in a arbitrarily small neighborhood
of the origin in (Cn, ωstd) can be transported to any symplectic manifold. One may
try to use this idea to build symplectic submanifolds, but we see that it does not
produce anything: indeed, one may try to construct locallized symplectic submani-
folds. Actually it would be enough to get compact symplectic submanifolds, which
after rescaling can be as locallized as desired. It might seem natural to look for them
among complex submanifolds, since they would be Kahler and therefore symplectic.
But there are no interesting compact complex submanifolds in Cn, because by the
maximum principle any holomorphic function on them has to be constant on con-
nected components. Thus the restriction of any holomorphic function in Cn has to
be constant on connected components, and therefore connected components must be
just points.
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5. Holomorphic sections for Kahler manifolds.

A symplectic structure is not defined by a sheaf of (local) “symplectic func-
tions”. That implies that we do not have in principle functions/sections whose zero
subsets give rise to symplectic submanifolds. The exception is the particular case
of Kahler manifolds. There we do have the sheaf of holomorphic functions; sheaf
theoretic tehniques produce complex submanifolds, which inside a Kahler mani-
fold are also Kahler, and therefore symplectic. More generally given a symplectic
manifold (M,ω) and J ∈ J (M,ω), J-holomorphic functions/sections produce J-
holomorphic submanifolds which according to lemma 8 are also symplectic. In
general one cannot find J-holomorphic functions/sections when M has dimension
bigger than 2 [12]. But by corollary 2 functions whose zero subset is close enough
to be J-holomorphic produce symplectic submanifolds.

One is going to proceed by analogy with Kahler geometry. Let (X, J, ω) be a
Kahler manifold so that ω/2π is of integral type, i.e. [ω/2π] ∈ im(H2(X; Z)). Then
according to a theorem of Weil we can form its prequantum line bundle (L,∇, h).
This is a holomorphic hermitian line bundle with compatible connection and so
that

F∇ = −iw. (9)

As k grows large, the k-th tensor powers have many holomorphic sections. By
Riemann-Roch the space of holomorphic sections has dimension given by a polyno-
mial whose leading term is c1(L)

n! kn, n the complex dimension (so it is the volume of
the Liouville volume form associated to kω, or equialently the Riemannian volume
associated to kg).

One can give a “local explanation” for this situation. We follow the exposition
by Donaldson [5] based on earlier work on “peak sections” by Tian [21]: Recall that
about any x ∈ X we can use the complex structure and symplectic structure to
get either complex or Darboux coordinates. In general we do not have coordinates
which are both complex and symplectic, but let us assume for the moment that
this is the case. Then we have z1, . . . , zn : Bg(x, ρ)→ C so we can write

w =
i

2

n∑
j=1

dzj ∧ dz̄j . (10)

Over Bg(x, ρ) we are going to do something which will allow to see holomorphic
functions from a different perspective: rather than taking a holomorphic local triv-
ialization τ , so that any holomorpic section s = fτ with f holomorphic, we select τ
a unitary trivialization whose associated connection form in the fixed holomorphic
coordinates is the primitive of the curvature

A =
1
4

n∑
j=1

(zjdz̄j − z̄jdzj). (11)

Now if s is holomorphic, s = fτ , f will not be a holomorphic function. We will see
a very important example of such f .

The covariant derivative of any section

∇s ∈ T ∗X ⊗ L

is at each point a linear map between complex vector spaces, so we can split it into
its linear and antilinear components

∇s = ∂∇s+ ∂̄∇s,

∂∇s =
1
2

(∇s− i∇Js) ∈ T ∗1,0X ⊗ L, ∂̄∇s =
1
2

(∇s+ i∇Js) ∈ T ∗0,1X ⊗ L.
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After our choice of local trivialization we can write s = fτ and

∂̄∇s = (∂̄stdf +A0,1f)τ,

where Jstd is the standard (almost) complex structure, d = ∂std + ∂̄std, and A0,1 =
1
4

∑n
j=1 zjdz̄j .

Lemma 10. The function
u(z) = exp−zz̄/4

is a solution of the model Cauchy-Riemann equations, i.e.

∂̄stdu+A0,1u = 0. (12)

Because the trivialization we used is unitary, we have found a (local) holomorphic
section τ ′x = uτ whose norm behaves like a Gaussian, thus having a bump-function
like behaviour. Of course, we do need to extend it to a global holomorphic section,
and we would still like to have the same behavior on its norm. To do that the
standard way to proceed is as follows:

(1) Extend τ ′x to τx multiplying times a bump function β with suitable support.
(2) Use the projection p : L2(L)→ H(L) of L2-sections into holomorphic ones.

According to [4] (see [10]) we know that we have a constant CH so that

|s− p(s)|L2(X,g) ≤ CH|∂̄∇s|L2(X,g). (13)

Notice as well that in balls the Cr-norm is controlled by the L2-norm and
viceversa (it follows from the Cauchy integral formula for holomorphic fnc-
tions, and also for sections by choosing arbitrary local holomorphic triv-
ializations). Because these metrics are comparable a controlled variation
(over balls) of one is equivalent to a controlled variation of the other.

(3) One realizes that to keep the Gaussian decay in τx the bump function β
needs its slope to be very small. That can be achieved by thinking of
B(0, 1) ⊂ Cn has having much smaller radius in X. We zoom in by a
dilation

(L⊗k,∇k, hk)
ρ∗

k1/2−−−−→ (L,∇, h)y y
(B(0, 1), kgstd))

ρ
k1/2−−−−→ (B(0, 1), gstd)),

(14)

and we let zk,1, . . . , zk,n be the rescaled coordinates on the r.h.s. of diagram
14. If we think of u(zk, z̄k) solving equation 12 as giving a local section of
the r.h.s. of diagram 14, then its pullback to the l.h.s. with respect to the
k-th tensor power of the local trivialization is the function

uk(z) = exp−kzz̄/4,

which solves
∂̄stduk + kA0,1uk = 0. (15)

If one takes β : R → [0, 1] a bump function supported in the ball of radius
one and so that β[−1/2,1/2], then

τk,x = β(k1/3z)uk(z, z̄)τ⊗k = ρ∗k1/2(β(k−1/6zk)u(zk, z̄k)τ) (16)

is such that
|∂̄∇τk,x|Cr(X,kg) ≤ Bk−1/2. (17)

Then using equations 17, 13, and comparability (in gk-balls of radius ρ)
between the Cr and L2-metrics for holomorphic functions/sections, one
checks that p(τk,x) is a holomorphic section whose norm behaves like a
Gaussian function concentrated in Bgk

(x, ρ′), where ρ′ does not depend on
k, x.
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(4) Here we made an assumption about the existence of symplectic coordinates
which are holomorphic. This is in general not true, but it is up to first
order about x. That means that in those coordinates z1, . . . , zn we have

|∂̄Ju(z, z̄)|Cr(B(0,1),gstd) ≤ B1|z|.

But when we rescale we easily deduce

|∂̄Juk(zk, z̄k)|Cr(B(0,1),kgstd) ≤ B2|zk|k−1/2,

and thus we do have

|∂̄∇τk,x|Cr(M,kg) ≤ B3k
−1/3.

Therefore when projecting over the holomorphic functions and recalling the
comparability between Cr and L2 metrics, for all y ∈ X we have

|p(τk,x)− τk,x|Cr(Bkg(y,ρ′)) ≤ B4k
−1/3.

Thus we construct concentrated holomorphic functions with Gausian decay
w.r.t. any x ∈ X, and for all k � 1.

Notice that compactness implies that all the constants above can be
arranged to be independent of x. Likewise, they do not depend on k. We
call such constants uniform.

Remark 9. From the existence of holomorphic peak sections one can deduce that
the order of holomorphic sections is the one given by R-R (O(kn)). Indeed, if one
fixes Bg(x, ρ), one can work via a chart in Euclidean space and pack inside kn

pairwise disjoints balls of gk-radius Cρ. For k-large each contains a peak section
concentrated at the ball. That implies linear independence of those sections.

6. Approximately holomorphic geometry

We are going to transfer as much as we can of the previuos constructions to
symplectic manifolds.

6.1. The line bundles, almost complex structure, and metric. Let (M,ω) be
a symplectic manifold with ω/2π an integral cohomology class. The pre-quantum
line bundle Lω := L is the unique -up to diffeomorphism- hermitian line bundle
with compatible connection (L,∇, h) so that

F∇ = −iw.

The powers L⊗k inherit connections and hermitian metrics (∇k, hk). We will omit
the subindex k for them when no confussion can arise.

Any symplectic vector space admmits c.a.c.s. Because the latter space is con-
tractible homotopy theory arguments show that J (M,ω) -the space of a.c. com-
patible with ω is non-empty. As a matter of fact the polar decomposition process
([15], chapter I.4) produces one such c.a.c.s starting with an arbitrary metric, an it
is smooth on the metric.

We fix and J ∈ J (M,ω) and g the associated metric. We denote gk := kg and
by dk the induced metric. Using the connection the total space of L gets Ĵ an
almost complex structure. The same happens for L⊗k, k ∈ N.

6.2. Approximately holomorphic sections. Given sk ∈ Γ(L⊗k) we can use the
almost complex structure J and the complex structure of the fibers to split

∇sk = ∂∇sk + ∂̄∇sk,

∂∇sk =
1
2

(∇sk−i∇Jsk) ∈ T ∗1,0M⊗L⊗k, ∂̄∇sk =
1
2

(∇sk+i∇Jsk) ∈ T ∗0,1M⊗L⊗k.
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Definition 8. [5] Let sk ∈ Γ(L⊗k), k ∈ N. We say that sk is a sequence of
approximately J-holomorphic sections (or just A.H. sections) if there exist A a
uniform constant so that for all k � 1 the following inequalities hold.

|∇jsk|gk
≤ A, j = 0, 1, 2, (18)

|∇j ∂̄sk|gk
≤ Ak−1/2, j = 0, 1. (19)

Definition 9. A sequence sk ∈ Γ(L⊗k) is uniformly η-transverse to 0 if for all
k � 1 the section sk : (M, gk)→ (L⊗k,∇k, hk) is η-transverse to 0.

Proposition 3. Let sk ∈ Γ(L⊗k) be an A.H. sequence uniformly η-transverse to
0. Then for all k � 1 the submanifold Wk := s−1

k (0) is symplectic.

Proof. We write
∇sk = ∂̄sk + ∂sk.

For all x ∈Wk we have

lim
k→∞

∂̄sk
∂sk

= 0,

the convergence being uniform on x. That implies that for any x ∈ Wk the kernel
of the linear map

∇sk : (TxM,J, gk)→ (L⊗kx , Jstd, hk)
is arbitrarily close to be J-complex. By corollary 2 we deduce that Wk is symplectic.

�

6.3. The approximately holomorphic charts and reference sections. In
approximately holomorphic geometry there is no operator projecting into holo-
morphic sections. Rather one has to work with A.H. sections and use differential
topology tools to construct new A.H. sections which are transverse enough. That
requires the use of A.H. sections playing the role of bump functions; they will have
enough norm in certan ball and then decay as a Gaussian. They are the analogs of
the holomorphic sections p(τk,x) constructed in the previous section.

Definition 10. [1] Let x ∈M be a point. A sequence sk ∈ Γ(L⊗k) has Gaussian
decay w.r.t. x if there exist a uniform constant λ > 0 and polynomials Pj, j =
0, 1, 2, such that for all k � 1 the following inequalities hold:

|∇jsk(y)|gk
≤ Pj(dk(x, y)) exp−λdk(x,y)2 , j = 0, 1, 2. (20)

The sections we look for are as in equation 16. They are written in coordinates
which are both holomorphic and Darboux. We need Darboux coordinates whose
defect from being holomorphic grows smaller with k.

Definition 11. Let ϕk,x : (Cn, 0) → (Uk,x, x), for all x ∈ M and all k � 1, be a
family of charts with coordinates zk,1, . . . , zk,n. We call them a family of approxi-
mately holomorphic coordinates if there exist uniform constants (independent of
k, x) so that the following estimates hold for all k � 1 at the points of B(0, 3k1/2),
ρ > 0:

(1) The Euclidean and the induced metric are comparable to order 2, i.e.

gk ≤ C1gstd, gstd ≤ C2gk and |∇jϕ−1
k,x|gk

≤ O(k−1/2), j = 1, 2,

where ∇ denotes the Levi-Civita connection with respect to g.
(2) Regarding the antiholomorphic components,

|∂̄ϕ−1
k,x(zk)|gk

≤ |(zk)|O(k−1/2),

|∇j ∂̄ϕ−1
k,x(zk)|gk

≤ O(k−1/2), j = 0, 1,

where ∂̄ϕ−1
k,x is the antiholomorphic component of ∇ϕ−1

k,x.
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We speak of Darboux coordinates when the additional condition ϕ∗k,xkω = ω0

holds.

Lemma 11. We can always find a family of A.H. Darboux coordinates.

Proof. Start with Darboux charts for (M, g) centred at a point x. By lemma 9 we
can compose on the left with a symplectic linear transformation so that the induced
almost complex structure at the origin is Jstd. In that way we have constructed a
chart

ϕ1,x : Bgstd(0, 3)→ Bg(x, ρ)
almost complex at x. The construction depends smoothly on x; beacause M is
compact we get a family ϕ1,x which satisfies all the equations for k = 1. To do it
for all k we simply compose with the appropriate dilation

ϕk,x := ϕ1,x ◦ ρk−1/2 .

�

Now we use the Darboux condition: over the Darboux coordinates for k = 1 we
choose a unitary trivialization of L so that the connection form is an is equation
11. Its k-th tensor power also triviallizes L⊗k.

Proposition 4. Let τ ref
k,x : (M,J, gk)→ L⊗k be the sections given locally over A.H.

coordinates with the above trivialization by

u(zk) = β(k−1/6zk) exp−zk z̄k/4 .

Then the following holds:
(1) The sections τ ref

k,x are A.H. (constant A is uniform on k, x).
(2) The sections τ ref

k,x have Gaussian decay w.r.t. x (constant λ and polynomials
Pj are uniform on k, x).

(3) There exists κ > 0 so that |τ ref
k,x| ≥ κ in ϕk,x(B̄(0, 11/10)).

6.4. Getting local uniform estimated transversality.

Proposition 5. Let sk ∈ Γ(L⊗k) be a sequence of A.H. sections with C2-uniform
constant A > 0. Fix δ > 0. Then there exist k0 ∈ N, T2, C1, C2 uniform on k, x,
such that for any x ∈M and every k ≥ k0 one can find χk,x an A.H. perturbation
with the following properties:

(1) |χk,x|C2(gk) ≤ δ.
(2) sk + χk,x is T1AC2

κ η( κδ
AC1C2

)-transverse to 0 in Kk,x := ϕk,x(B̄(0, 1)); by
rescaling the monomial defining η and setting δ′ = δκ

AC1C2
, we get η(δ′)-

transversality.

Proof. We fix A.H. Darboux coordinates, this giving rise to reference sections τ ref
k,x;

they have norm on ϕk,x(B̄(0, 11/10)) bounded from below by κ. Then lemma 1
gives uniform constants C1, C2. The constant being uniform is clear for the C0-
norm. For higher ones we must use that Christoffel symbols have norm bounded
by Bk−1/2, again B uniform.

We write on ϕk,x(B̄(0, 11/10))

sk = fk,xτ
ref
k,x

so we obtain for the functions fk,x : B(0, 11/10)→ C. Clearly

|fk,x|C1(B(0,11/10)),gstd) ≤
AC2

κ
. (21)

Consider the equation

∂̄∇stdsk = ∂̄stdfk,xτ
ref
k,x + fk,x∂̄∇stdτ

ref
k,x.
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Because we are using A.H. charts we have

|∂̄∇stdsk|C1(B(11/10),gstd) ≤ Bk−1/2.

Because fk,x is C1-bounded and τ ref
k,x is A.H., the C1-norm of the second summand

of the r.h.s. is bounded by A′k−1/2. So the same conclusion holds for the first
summand. Because τ ref

k,x has norm bounded from below, we deduce

|∂̄stdfk,x|C1(B(0,11/10),gstd) ≤ B′k−1/2. (22)

By equations 21 and 22 for k bigger than some k0 the function κ
AC2

fk,x is in the
hypothesis of theorem 3. Therefore we can find wk,x ∈ C with norm bounded by
κδ

AC1C2
so that fk,x + AC2

κ wk,x is AC2
κ η( κδ

AC1C2
)-transverse to 0 on B̄(0, 1). The

consequence is that
(i) χk,x := AC2

κ wk,xτ
ref
k,x has C2-norm bounded by δ;

(ii) sk + χk,x is T1AC2
κ η( κδ

AC1C2
)-transverse to 0 over Kk,x.

�

6.5. From local to global transversality. Given sk ∈ Γ(L⊗k) an A.H. sequence
it is very far from being trivial how to obtain global transversality for some sk
by succesively applying proposition 5. If we fix A.H. Darboux coordinates, and
single out some k′ ∈ N so that the innequalities defining the A.H. property (and
eventually the Gaussian decay) already hold, if we try to apply induction to a
cover Kk′,xi

, i ∈ I, we run into trouble: indeed if we order the open subsets
Bgk′ (x1, ρ), . . . Bgk′ (x#I , ρ) and want to achieve transversality by adding a pertur-
bation of size at most δ, then in the j-th step we get sk′ +

∑j
i=1 χk′,i which is

ηj(δ′)-transverse to 0 over
j⋃
i=1

Kk′,i,

where δ = δ/2AC1C2.
To apply again proposition 5 we write over Kk′,xj+1

sk′ +
j∑
i=1

χk′,i = fj+1τ
ref
k,xj+1

,

and because the size of the perturbation has to be at most one half of the attained
transversality, we need to make sure that

|∂̄std(fj+1/AC2)|C1(B(0,11/10),gstd) ≤ ηj+1(δ′). (23)

From the A.H. condition we have

|∂̄std(fj+1/AC2)|C1(B(0,11/10),gstd) ≤ Bk
′−1/2,

so we must have

Bk
′−1/2 ≤ ηj+1(δ′), j ∈ {0, . . . ,#I − 1}. (24)

The complication is that #I depends on k′, and in principle if we are simple minded
is of order = O(k

′2n). Which such a large number equation 24 will not hold. Indeed,
for δ < 1 we have

η(δ)k
2n

< δ2nk < Bk−1/2

for k � 1.
We must reduce the number of induction steps by taking several open subsets

at a time. In Cn if we fix D a distance and take the rectangular lattice Λ(D)
associated to it. Then we may take all balls of radius 1 say centred at points of the
lattice, and label them with a color. By translating the lattice we can cover Cn with
N := O(D2n) colours, and the same holds for (M, g). For each k we can use the
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same lattice in the domain of ϕk,x, and end up with the same number of colours.
Two observations are in order: firstly as k grows the points in the lattice and in
the domain of the chart tend to be the whole lattice; secondly and more delicate
for a fixed colour, that is the balls centred at points of Λ(D) say, the corresponding
reference sections have support which extends beyond Bgk

(x, ρ); rather the support
vanishes only at dk-distance O(k1/6) of x. That eventually makes the support to
be contained in the domain of the chart.

Notice that N is independent of k, so we are free to increase the latter so that
proposition 5 can be applied on each induction step. The new difficulty is that on
each induction step -i.e. for a given colour- we have as many compactsKk,x as points
in Λ(D). Proposition 5 for a perturbation of size α provides η(α′)-transversality on
each Kk,x. But for each compact in the lattice one has the perturbations coming
from the other compacts, which in principle may destroy the ηj+1(δ′)-transversality.
To avoid that one must assure for any y ∈ Λ(D)

|
∑

x∈Λ(D), x 6=y

χk,x|C1(Bgk
(y,ρ)) ≤ ηj+1(δ′)/2, j ∈ {1, . . . , N}. (25)

For each x′ ∈ Bgk
(y, ρ) and x ∈ Λ(D)\{y} we use the Gaussian decay to obtain

|χk,x(x′)|C1(gk) = |wk,xτ ref
k,x(x′)|C1(gk) ≤ ηj(δ′)P (n(x)D/2) exp−λn(x)2D2/4, (26)

where n(x) > 0 is a natural number.
If D is large enough one can absorbe the polymonial by a negative exponential,

so we get

|χk,x(x′)|C1(gk) ≤ ηj(δ′) exp−λn(x)2D2/5, (27)
Again, because for D big enough we have for any r a fixed natural number and

for very n > 1 natural number

exp−n
2D2

< rn exp−D
2
/2n

it is easy to deduce

|
∑

x∈Λ(D), x 6=y

χk,x(x′)|C1(gk) ≤ ηj(δ′) exp−λD
2/6 = ηj(δ′) exp−λ

′D2
, (28)

with λ′ = λ/6.
Therefore, the inequality we need to check is

ηj(δ′) exp−λ
′D2
≤ ηj+1(δ′)/2, j ∈ {1, . . . , N}, (29)

which is equivalent to

2 exp−λ
′D2
≤ ηj+1

ηj
j ∈ {1, . . . , N}. (30)

Analisys of the function η implies the existence of a constant C only depending
on the initial δ so that

ηj+1

ηj
≥ C

((j + 1) log(j + 1))p
. (31)

Because j + 1 ≤ C ′D2n, we conclude

ηj+1

ηj
≥ C

D2np+1
. (32)

We choose D so that
exp−λ

′D2
≤ 2C
D2np+1

,

and by equations 29, 30, and 32 this concludes the proof.
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7. Topology of the symplectic divisors

Theorem 6. [5] Let sk ∈ Γ(L⊗k) be an A.H. sequence of sections uniformly trans-
verse to 0. Let Wk := s−1

k (0) and let i : Wk →M be the inclusion. Then for k � 1
we have:

(1) [Wk] = P.D.[kω] ∈ H2n−2(M ; Z).
(2) i∗ : Hj(Wk; Z) → Hj(M,Z) is an isomorphism for j ≤ n − 1 and an epi-

morphism for j = n. The same result holds for homotopy groups.

Proof. It is a standard result that Wk is Poincaré dual to c1(L⊗k) [16], which by
construction is kω.

In the Kahler case if s ∈ Γ(L) is a holomorphic section transverse to 0, then the
second result is the famous Lefschetz hyperplane theorem. The proof is based on
the fact that the function

f := ss̄ : X → [0, b]
-after perhaps a small perturbation so that it becomes Morse- presents X as the
results of adding some handles to W = f−1(0). Those handles are of index at least
n and therefore standard homology/homotopy theory arguments give the result.

The assertion about the index of the handles is seen as follows: rather than
building X starting with W , we think the other way around, that is we look at the
Morse function − log f : X\W → [a,∞)

By Poincare Duality we need to check that the index of critical points of −f
do not exceed n. But −f is strictly plurisubharmonic. Indeed, the Hessian is the
quadratic form whose associated (1, 1) form is

Hessf := 2i∂∂̄f = −2i∂
∂̄(ss̄)
ss̄

= −2i∂Ā = 2iF∇ = 4πω. (33)

In the symplectic case the situation is the same: the function f has critical points
with index no bigger than n. Indeed, due to estimated transversality critical points
can only occur for ss̄ ≥ δ, where δ > 0 is as usual uniform: if x is a critical point
then

0 = (∇s)s̄+ (∇s)s̄,
so (∇s)s̄ is real. But because s(x) 6= 0 it means that the image of∇s(x) is contained
in the line spanned by s(x). But if s(x) is smaller than η, then ∇s = ∂s + ∂s is
nearly almost complex, so in particular it is onto. This is a contradiction. Therefore
for k � 1 critical points of the norm of s are outside the tubular neighborhood of
radius η of 0.

If x is a critical point we can use in Bgk
(x, ρ) the complex structure Jstd. Then

s is A.H. and we have

Hessf = 2i∂̄∂f = 2i∂̄
(
∂s

s
+
∂̄s

s̄

)
.

Because s is A.H. and its norm is bounded from below we can write

Hessf = 2i∂̄
(
∂s

s
+
∂̄s

s

)
+O(k−1/2) = 2i∂̄

∇s
s

+O(k−1/2).

Because the curvature of L⊗k is of type (1, 1), and the (0, 1) part of ∇s/s is of size
at most O(k−1/2), we have ∣∣∣∣∂ (∇ss

)∣∣∣∣
gk

≤ O(k−1/2).

Thus the consequence is

Hessf = 2iF∇ +O(k−1/2) = 4πω +O(k−1/2). (34)

�
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8. Further results.

8.1. Higher rank bundles.

Theorem 7. [1] Let E be a hermitian vector bundle with connection of (complex)
rank d, and let sk ∈ Γ(E⊗L⊗k) be an A.H. sequence of sections uniformly transverse
to 0, which always exists. Let Wk := s−1

k (0) and let i : Wk → M be the inclusion.
Then for k � 1 we have:

(1) Wk and symplectic submanifolds of (real) codimension 2d.
(2) [Wk] = P.D.[cd(E)] ∈ H2n−2d(M ; Z).
(3) i∗ : Hj(Wk; Z) → Hj(M,Z) is an isomorphism for j ≤ n − d and an epi-

morphism for j = n− d+ 1. The same result holds for homotopy groups.

The definition of A.H. sequence is clear, once we endow the total space of E⊗L⊗k
with and almost complex structure and bundle metric using the tensor product of
the data.

Locally, rather than using reference sections we use reference frames that we
build by tensoring reference sections of L⊗k and local reference frames of E.

The local transversality result is an extension of theorem 3 [1, 6] for functions

f : B2n(0, 11/10)→ Cm.

The topological properties of the submanifolds Wk are non-difficult extension of
the line bundle case.

8.2. Higher jets: Lefschetz pencils and immersions. Transversality to the
zero section is the analog of the search of a regular point for a function. We can ask
for analogs of generic mappings in the sense of Thom, that is mappings whose jets of
certain orders have some genericity properties. The easiest example is that of Morse
functions. For f : M → R a function is Morse/1-generic if we have df t 0. This is
a transversality condition on the first jet. Similarly, for functions f : M → Rm if
m ≥ 2n then df t 0 is equivalent to df ∩ 0 = ∅. That is f is an immersion. In full
generality r-generic functions f : M → Rm are those such that

jrf t S,
where rf is the r-jet (extension) of f , and S ⊂ J rRm is the Thom-Boardman
stratification of the bundle of r-jets J rRm [2].

The subset of r-generic functions -M compact- is open and dense. The key result
is Thom’s strong transversality lemma that says that given a suitable stratification
of J rRm we can find arbitrarily small perturbations of f so that jrf is transverse
to the stratification (see for example [8]).

If we have s1, s2 : M → L, then away from the base locus B := s−1
1 (0) ∩ s−1

2 (0)
we have a projectivization

φ : M\B −→ C
z 7−→ [s1(z) : s2(z)]. (35)

If the sections are holomorphic, then we can ask φ to be Morse in the complex
case, that is we require

dφ = ∂φ t 0.
If x is a critical point, then by the complex Morse lemma we have complex coordi-
nates z1, . . . , zn about x so that

φ(z) = z1
2 + · · ·+ zn

2. (36)

Also if x ∈ B, there exist complex coordinates z1, . . . , zn so that near x

B = {z1 = z2 = 0}, φ(z) = z1/z2. (37)
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In the symplectic case we have the analogous result:
Given x ∈ (M,ω) we say that complex coordinates z1, . . . , zn centred at x are

compatible with ω if the complex and symplectic orientations agree.

Theorem 8. [6] Let (M,ω) be a compact symplectic manifold of integral type. Then
one can find pairs (φ,B) with the following properties:

(1) B is codimension 4 symplectic submanifold.
(2) f : M\B → C has the following properties:

• For any point x ∈ B one can find coordinates compatible with ω so
that

φ(z) = z1/z2.

• Critical points are isolated and around any such there exist coordinates
compatible with ω so that

φ(z) = z1
2 + · · ·+ zn

2.

• The closure of the fibers of φ amounts to adding B, and the result
is a symplectic codimension 2 submanifold (away form the isolated
singular points). Regular fibres have the properties of the submanifolds
in theorem 6.

Proof. One can find pairs of A.H sequences (s1
k, s

2
k) of L⊗k or rather an A.H. se-

quecne of sections of C2 ⊗ L⊗k with the following properties:
Firstly sk := (s1

k, s
2
k) is (uniformly) transverse to 0, which follows from theorem

7. We define the base locus Bk := s−1
k (0). It is not hard to see that near a point

of Bk if we write sik = f ikτ
ref
k,x, then f1

k , f
2
k can be extended to coordinates zk,1, zk,2

compatible with ω, and so that

φ(zk) = zk,1/zk,2.

Once this has been done we can define φk : M\Bk → C the projectivization. It
is possible to arrange the sections so that

∂φ t 0 ⊂ T ∗1,0M.

This is indeed the analog of Thom’s strong transversality theorem.
Because

dφk = ∂φk + ∂̄φk = ∂φk +O(k−1/2),
for k � 1 uniform transversality implies that critical points are isolated. Next
near one such critical point we may replace on Bgk

(x, ρ) the given J by Jstd. The
section is still A.H. w.r.t. the latter. In holomorphic coordinates zk,1, . . . , zk,n we
can perturb the section by just taking the quadratic part w.r.t. these coordinates
(or in a different way, we can project onto the holomorphic part), and the use a
suitable bump function to interpolate between the A.H. section and its holomorphic
quadratic part. �

Corollary 6. [1] Donaldson’s divisors in theorem 1 are for k � 1 symplectomor-
phic.

Proof. For a given J , we may take 2 sequences and perturb them using theorem 8 so
that they become a pencil. As a result we are comparing the fiber over 0,∞ ∈ CP1.
Note that because the modification is a small as desired, the initial fibers over these
two points are isotopic to the ones for the pencil, and therefore symplectomorphic
by Moser’s theorem. Now because we have 2 regular fibers and the submersion is
with symplectic fibers, we can use the symplectic orthogonal to the fibers to parallel
transport one fiber to another over a given path in CP1 joining these two values,
and only taking regular ones.
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It is also possible to prove independence of the chosen c.a.c.s., and not just for
divisors but for the submanifolds in theorem 7 �

Theorem 9. [19] For m ≥ 2n we can find symplectic embeddings

φ : (M,ω)→ (CPm, ωFS).

Proof. We take sk : M → Cm+1 ⊗ L⊗k with the following properties:
• The section is transverse to 0. By dimension count this implies that it

actually avoids the zero section, so we can projectivize

φk : M → CPm.
• We can arrange the section so that the projectivization is an immersion.

The cotangent bundle stratifies according to the rank of the differential,
and one can make sure (strong transversality) that dφk is transverse to
this Thom-Boardman stratification. Again dimension count implies that it
stays uniformly away from the non-open strata, hence it is (uniformly an
immersion).

By construction φ∗kωFS is cohomologous to kω. Even more, because the construc-
tion is nearly Kahler, φ∗kωFS is nearly (1, 1). More precisely the convex combination

(1− t)φ∗kωFS + tkω

is by symplectic forms, so we can apply Moser’s theorem and right compose φk
with it to achieve the symplectic immersion. �

8.3. Removing the integrality assumption. Theorem 1 is stated for compact
symplectic manifolds, but our proofs so far only work for compact symplectic ma-
nifolds of integral type. We can use an approximation argument to remove the
integrality assumption.

Given ω a symplectic form on M compact, we can find {ωn}, n ∈ N, a sequence
of rational 2-forms converging (just in C0-norm is enough) to ω. Because the
symplectic condition is open among closed 2-forms, the {ωn} can be assumed to be
symplectic.

Next fix J a c.a.c.s. for ω. Then use g = ω(·, J ·) as initial metric in the polar
decomposition construction of Jn a c.a.c.s. for ωn, n ∈ N. The result is that Jn → J
and gn → g.

Because ωn is rational taking appropriate powers we can apply all our theo-
rems. The submanifolds we get are approximately Jn-complex. Because of the
convergence gn → g, for all n, k we have

kg ≤ C1kgn, kgn ≤ C2kg.

Therefore we can use the metrics gk = kg in all statements. In particular the
submanifolds we construct with different n ∈ N and for k � 1 (depending on n)
are all approximatelly Jn-holomomorphic measuring with kg.

Because Jn → J , for n � 1, k � 1 (depending on n) the submanifolds we con-
struct are arbitrarily close to be J-holomorphic, and therefore they are symplectic
w.r.t. ω.

8.4. Relative transversality: applications to contat geometry and 2-calibrated
geometry. Let C be a compact manifold of dimension 2n + 1, and α a contact
form. That is, a 1-form which is maximally non-integrable, or equivalently

α ∧ dαn

is a volume form.
(C,α) can be symplectized to construct

(M,ω) = (C × R>, d(tα)).
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The symplectic form is exact, and hence the prequantum line bundle is trivial.
Actually, it can be taken to be

(L,∇) = (C,−iα, hstd).

The symplectization M is not compact but we can do A.H. geometry in the
compact region (C × [1/2, 3/2], ω). As a consequence we can construct sk A.H.
sections of

(C⊗k,−iα, hstd)→ (C × [1/2, 3/2], d(tα), J).

We will assume that sk has certain relative transversality property:

Definition 12. Let f : Rd → Rm be a linear map and D < Rd a linear subspace.
We say that f is transverse to 0 along D is the restriction f|D is surjective. If we
have metrics we can define estimated transversality along D by restricting the inner
product to D. If now D is a distribution of TM (perhaps defined in a submanifold)
for s : (M, g) → (E,∇, h) we can in a straightforward manner define estimated
transversality of s along D to 0.

A special case we will deal with is when D is the tangent bundle of a submanifold.
It is clear that estimated transversality along D is stronger that estimated trans-

versality.

Theorem 10. Let (M,ω) be a symplectic manifold, and let N be a (closed) subman-
ifold. Then one can find sk : M → E ⊗ L⊗k an A.H. sequence which is uniformly
transverse along N (TN) to 0.

We just mention that the proof of theorem 10 reduces to a relative local trans-
versality theorem:

Theorem 11. [17] Let f : B2n(0, 11/10) → C and let V be a linear subspace of
R2n. Let δ be a constant 0 < δ < 1/2. Let η(δ) = δ(P (log(δ−1))−1, where P is a
real monomial depending on n. If in the ball of radius 11/10 we have

|f |gstd ≤ 1, |∂̄f |gstd ≤ η, |d∂̄f |gstd ≤ η,

then there exists w ∈ C, |w| ≤ δ, such that f + w is η-transverse along V to 0 in
B̄(0, 1).

We want to apply theorem 10 to C = C × {1} ↪→ (C × [1/2, 3/2], ω), where we
have chosen J making the contact distribution ξ ⊂ TC into a complex subbundle.
In that way we obtain A.H. sections whose restriction

sk|C : C → L⊗k

is uniformly transverse to 0. We claim that sk|C is also uniformly transverse along ξ
to 0. We just prove the claim for transversality (not estimated); we further assume
that sk is actually J-holomorphic. Everything reduces to a linear checking. We do
have

∇sk|M : TxC → C
a linear map which is J-complex along the real codimension one subspace ξx. The
restriction to ξx must be onto. If not, the kernel of the linear map

∇sk|M : ξx → C

has real dimension at least 2n-1. Notice that the map cannot be zero, because its
extension to TxC is onto. Now because the restriction to ξx is complex linear, the
kernel is a complex subspace. Therefore, if it has real dimension at least 2n-1, it
must have real dimenson at least 2n, and that is a contradiction.

We now have the following information:
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• Estimated transversality for x ∈ C∩s−1
k (0) implies that the linear subspace

ker∇sk ⊂ (TxM,ω) is nearly J-complex and hence symplectic for k � 1.
• Estimated transversality along C for x ∈ C ∩ s−1

k (0) implies that nearly
J-complex linear subspace ker∇sk ⊂ (TxM,ω) is uniformly transverse to
TxC for k � 1.
• Even more, estimated transversality along C for x ∈ C ∩ s−1

k (0) implies
that the nearly J-complex linear subspace ker∇sk ⊂ (TxM,ω) is uniformly
transverse to ξx for k � 1.

The third point above implies that Uk := s−1
k (0)∩C is uniformly transverse to ξ.

It is easy to check that Uk is a contact submanifold of C iff TUk ∩ ξ is a symplectic
distribution of (ξ,dα).

For x ∈ Uk, we have TUk = TC ∩ ker∇sk and therefore

TUk ∩ ξ = ker∇sk ∩ ξ. (38)

The two subspaces in the r.h.s. of 38 are symplectic, and in principle its intersection
need not be symplectic. But the extra property that we have is that both are
nearly J-complex. We know that transverse J-complex subspaces intersect in a
J-complex subspaces. If the minimum angle between the subspaces is much bigger
that the defect from being J-complex, then the intersection is nearly J-complex, and
therefore symplectic. But this is the geometric translation of uniform transversality.

As a consequence we have proven the following result:

Theorem 12. [11] Let (C,α) be a compact contact manifold. Then it contains
contact submanifolds of real codimension 2.

And we have the analogs of the results for symplectic manifolds.

Theorem 13. Let (C,α) be an exact contact manifold and let E → C be a
hermitian vector bundle with connection of (complex) rank d. Then there exist
sk : C → E ⊗ L⊗k an A.H. sequence of sections uniformly transverse to 0. Let
Uk := s−1

k (0) and let i : Uk → C be the inclusion. Then for k � 1 we have:
(1) Uk are contact submanifolds of (real) codimension 2d.
(2) [Uk] = P.D.[cd(E)] ∈ H2n−2d(C; Z).
(3) i∗ : Hj(Uk; Z) → Hj(C,Z) is an isomorphism for j ≤ n − d − 1 and an

epimorphism for j = n− d. The same result holds for homotopy groups.

There is an analog result about the existence of Lefschetz pencils. In this case
rather than a finite number of critical points there is a finite number of curves
transverse to ξ of critical points. Their images -the critical values- are curves γi in
CP1 in general position. The complement has a finite number of connected compo-
nents. Two (regular) values in the same component correspond to contactomorphic
fibres. But each time that we cross a curve γi the 2n-1 contact fiber changes by the
attaching of an symplectic n-handle along a legendrian sphere [20].

We also have

Theorem 14. [14] Let (C,α) be a contact manifold of dimension 2n+1. Then
there exists isometric contact embeddings φ : (C,α)→ (S4n+3, ξstd).

The most spectacular application of A.H. geometry to contact geometry is the
construction of open book decompositions: in R2 we have Bstd the standard open
book decomposition. This is the stratification given by the origin -the binding- and
all half lines -the pages-. An open book decomposition on a manifold is given by a
map f : X → R2 so that f t Bstd. We can use the map to pullback the standard
open book decomposition to X, constructing the open book decomposition B. If
(C,α) is an exact contact manifold then B is said to support α if the binding K =
f−1(0) is a contact submanifold and all pages (F, dα) are Liouville manifolds, i.e.
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we have X ∈ X(F ) so that LXdα = dα. Roughly, if and open book decomposition
supports α the Reeb vector field Rα is transverse to the pages; for a fixed page its
flow defines a first return map which is a symplectomorphism. This map can be
isotoped to a compactly supported one ψ, so that up to contact isotopy (C,α) is
equivalent to (F, dα, ψ). Giroux and Mohsen [7] proved the existence of open book
decompositions supporting α.

One can develop (relative) A.H. geometry not just to contact structures, but to
slightly more general ones:

Definition 13. A 2-calibrated structure is a triple (N,D, ω), with N a (closed)
manifold of dimension 2n, D a codimension 1 distribution and ω a closed 2-form
such that (D,ω) is a symplectic distribution.

Exact contact structures (C,α) are an example of 2-calibrated structures (the
triple is (C, ξ, dα)). Here the distribution is maximally non-integrable. In the
opposite side i.e. when D integrates into a foliation we have 2-calibrated foliations,
which are a generalization of 3-dimensional taut foliations.

One has existence of 2-calibrated submanifolds, existence of Lefschetz pencil
structures, and some embedding theorems [13].
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