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Abstract

A new technique to construct Poisson manifolds inspired both in surgery ideas
used to define Poisson structures on 3-manifolds and in Gompf’s surgery construc-
tion for symplectic manifolds, is presented. As an application of these ideas it is
proved that for all n ≥ d ≥ 4, d even, any finitely presentable group is the fun-
damental group of a n-dimensional orientable closed Poisson manifold of constant
rank d. The unimodularity of some of the Poisson structures constructed is studied.
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1. Introduction

The use of almost complex methods in symplectic geometry together with new
surgery techniques have increased notably our understanding of the topology of
symplectic manifolds (see for instance the foundational papers [5, 2, 4]). These
results constitute an extraordinary mixture of “soft” and “hard” mathematical
ideas in the sense of Gromov [6]. In spite of all this success very little is known for
nontrivial families of symplectic manifolds. Families of symplectic manifolds lead
naturally to the notion of Poisson manifolds.

A Poisson structure on a manifold M is a Poisson algebra structure on its sheaf
of functions. That is to say, given two local functions f, g on M we define on
its common domain of definition a bilinear bracket {f, g} verifying the following
properties:

(1) Skewsymmetry, {f, g} = −{g, f} .
(2) Leibnitz’ rule, {f, gh} = g{f, h}+ {f, g}h.
(3) Jacobi identity, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Alternatively, a Poisson structure on a manifold M is given by a bivector Λ such
that [Λ,Λ] = 0, where [·, ·] denotes the Schouten bracket (see for instance [10] and
references therein). The Poisson bracket {f, g} of two functions is given in terms of
Λ by Λ(df, dg). Moreover, the Poisson tensor Λ defines a natural bundle morphism
#: T ∗M → TM whose range defines an involutive distribution SΛ whose integral
leaves are equipped with a canonical symplectic structure. Conversely, any foliation
S by symplectic manifolds of a manifold M such that for any smooth function the
hamiltonians of the restriction of the function to each leaf glue into a smooth vector
field, induces a unique Poisson structure whose symplectic foliation is precisely S
[10]. In this sense we make precise the idea above that Poisson structures on
manifolds provide the geometrical setting to describe smooth families of symplectic
structures.

Looking at the known examples of Poisson manifolds, we see that in most occa-
sions the starting point for them is an algebraic structure (a Lie algebra, a cocycle,
etc.) and then we construct the manifold whose Poisson structure is related with
the initial algebraic one. However it would be most interesting to explore the con-
verse viewpoint. Given a manifold M determine the nontrivial Poisson structures
that it supports. This is of course an extremely difficult task because of the intrinsic
nonlinearity of Poisson structures. Some work in this direction has been already
done by M. Bertelson who has studied in [1] the problem of characterizing regular
foliations which arise from Poisson structures. In order to accomplish part of this
task, another step which is worth taking is checking the possibility of extending
the smooth topological constructions to the Poisson category. Some of them have
already been carried to the symplectic setting; D. McDuff [8] has defined the blow-
ing up of a symplectic submanifold. R. Gompf [4] has used the normal connected
sum to construct symplectic manifolds with arbitrary fundamental group. In this
sense symplectic geometry is “flexible” in sharp contrast with Kähler geometry. Of
course, trivial families of symplectic manifolds can be constructed just by taking
the product of a symplectic manifold M with an arbitrary compact manifold Q.
Such trivial product Poisson structures will have the same fundamental group as
M provided that π1(Q) = 0. Hence unless we are looking for one-parameter fam-
ilies of symplectic manifolds, the existence of families with arbitrary fundamental
group is trivial (not at all its classification). Thus the problem of constructing
Poisson manifolds with arbitrary fundamental group is reduced to the particular
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situation of codimension 1 symplectic foliations, and more concretely to the search
of 5-dimensional compact Poisson manifolds of constant rank 4 with arbitrary fun-
damental group. In the process of constructing them, we will introduce a surgery
operation for Poisson manifolds that naturally extends Gompf’s construction. We
will study in addition some properties of some of the Poisson manifolds obtained
in this way which are characteristic of the Poisson category, like the behavior of its
modular class [12]. We will also provide various examples exhibiting some of these
properties. We will start by recalling in section 2 how one can endow any compact
orientable 3-manifold with a rank 2 regular Poisson structure. This construction,
which relies on the well-known results on foliations of orientable 3-manifolds, will
be adapted to define a surgery technique that extends Gompf’s to the Poisson cat-
egory in sections 3 and 4. Section 5 is devoted to study the modular class of some
Poisson manifolds constructed by surgery and in section 6 we will prove that any
finitely presentable group can be realized as the fundamental group of a compact
regular Poisson manifold of dimension n and even rank d with n ≥ d ≥ 4.

2. Poisson structures on 3-dimensional manifolds

A regular Poisson structure on a 3-manifold M3 is just a foliation by surfaces
with a leafwise smooth area form. In particular, if M3 is orientable, finding such
a structure turns out to be an easy problem of differential topology, whose non
trivial part is to endow the manifold with the foliation. The problem of finding
a codimension one foliation on an oriented 3-manifold is a classical one which is
already solved. We now give an outline of a solution (in which we do not ask much
to the foliation), because it essentially contains the ideas that give rise to a surgery
construction for Poisson manifolds.

Recall that every orientable compact 3-manifold M can be obtained from S3

by surgery on a link with components kj . Moreover, the framings are of the form
(mj±1lj), where mj , lj are the meridian and longitude of the boundary tori. Notice
that the components of the link can be chosen to be very close to the unknot and
hence transversal to the Reeb foliation R of S3, i.e., the knots are submanifolds
transversal to the leaves inheriting the trivial Poisson structure. Once open tubular
neighborhoods of kj have been removed, in the solid tori Tj = D2 × S1 to be
glued, the boundary of the leaves of R will be non separating curves on ∂Tj (and
cutting once the meridian). This curves are non-trivial in the homology of Tj , so
we cannot hope to add a punctured surface to get closed leaves, but if we remove a
small tubular neighborhood Nj of the longitude αj = {0} × S1 we can find a map
φj : Tj − Nj → S1 × I × S1 such that the image of the curve mj on Tj goes to
S1 × {0} × {e}, the meridian of S1 × I × S1 ⊂ D2 × S1. Hence, pulling back the
Reeb foliation of S1 × I × S1 we get a foliation except inside a solid torus, where
we again put a Reeb component. We have thus proved the following well known
proposition.

Proposition 1. Every oriented compact 3-manifold admits a regular rank 2 Pois-
son structure.

Using the ideas above we see that any fibered knot of a 3-manifold gives a
foliation with a Reeb component and a “modified” Reeb component, where instead
of having disks approaching to the torus we have punctured oriented surfaces (the
Seifert surfaces of the knot).

It is for dimensions bigger than 3 where surgery constructions are a powerful tool
to construct manifolds with prescribed topology (for example arbitrary finitely pre-
sented fundamental group). Hence having one such construction compatible with
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Poisson structures would allow us to conclude the existence of Poisson manifolds
with a wide range of different topological properties.

3. Fibered Poisson structures

We have seen in the previous section that to perform surgery in an oriented
Poisson 3-manifold we do not need to worry about the Poisson tensor itself but
only about extending the symplectic foliation we had. It is not difficult to pro-
pose a surgery technique for Poisson manifolds which is indeed an extension of the
normal connected sum for symplectic manifolds. Roughly speaking, we will use a
transversal submanifold that intersects symplectically with the leaves of the sym-
plectic foliation. This will allow us to perform the normal connected sum along
the symplectic submanifolds and we will show that the resulting manifold admits a
Poisson structure determined (up to sum extent) by the ones we had initially. We
will see that with the appropriate setting the proofs will be natural generalizations
of those of Gompf [4].

3.1. Poisson structures compatible with fiber bundle structures. Let π : P →
Q be a fiber bundle. We call a Poisson structure ΛP on P compatible with the fiber
bundle structure if the symplectic leaves of ΛP are the fibers of π (hence the fibers
are connected). We will also call the triple (P, π,ΛP ) a fibered Poisson manifold.
If P is compact this is equivalent to saying that the space of leaves is a smooth
manifold Q such that the projection π : P → Q is a submersion.

We begin by noticing that whenever one has a foliation, one can do the usual
exterior calculus in the bundles associated to the distribution. In our case we will
have a locally trivial fibration π : P → Q and the bundle we are interested in is
the one of vertical vectors, i.e., the kernel of π. We will speak of vertical vector
fields and k-forms, Lie derivatives in the direction of vertical vector fields and
exterior derivative of vertical k-forms. We shall denote the set of vertical k-forms
by Ωkfib(P → Q), and by dπ the exterior vertical derivative (or just d if there is
no risk of confusion). Recall that one can pullback vertical forms by fiber bundle
morphisms and that any known relation involving Lie derivatives also holds for
vertical vector fields and forms (it holds fiberwise and defines a smooth section of
the corresponding bundle).

Let us denote the cohomology groups of the complex (Ω∗fib(P → Q), dπ) by
Hk

fib(P → Q). We have the corresponding forgetful maps f : Ωk(P )→ Ωkfib(P → Q),
and f : Hk(P )→ Hk

fib(P → Q).

It is straightforward to check that a Poisson structure ΛP on P compatible with
the fibration π : P → Q is determined by a closed non singular vertical 2–form
ωP ∈ Ω2

fib(P → Q) (and hence [ωP ] ∈ H2
fib(P → Q)). We will call ωP the Poisson

2-form (or just the Poisson form) of ΛP .

There are some results about the cohomology H∗fib(P → Q) that will be used
later. We start by recalling that for a closed manifold with a metric, Hodge theory
allows one to obtain for any k-form α a unique decomposition:

(1) α = dβ ⊕ δη ⊕ ρ
where β is coexact, η exact and ρ harmonic, and all three are images of α by smooth
operators. Moreover we also have relative Hodge theory for a pair (N,K), where
N is a compact manifold and K a closed set (i.e, for forms with support contained
in N−K). This implies that we also have the above results for a compact manifold
N with non empty boundary and forms with support in the interior on N (to show
it just double the manifold and apply relative Hodge theory).
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When π : P → Q is a locally trivial fibration and P closed, we can also apply
Hodge theory to get the same decomposition of eq. (1) above for vertical k-forms.
We observe that any metric on P restricts to a metric on each fiber and there we
can apply the usual Hodge theory. After gluing what we construct in this way
fiberwise, we get again smooth projection operators because in a trivialization we
are just working in a fiber with a smooth family of forms and metrics. If P is
compact and ∂P 6= ∅, the relative Hodge theory (P, ∂P ) (where we use forms
whose support do not intersect ∂P ) also holds because on each trivialization (that
we use to see that the construction is smooth) the boundaries are setwise identified.
As a consequence, we see that for π : P → Q locally trivial and P closed (resp.
compact with ∂P 6= ∅), a vertical closed form (resp. a closed form whose support
does not intersect ∂P and hence vanishing in a neighborhood of the boundary) is
exact if and only if it is fiberwise exact (resp. exact with potential form vanishing
in a neighborhood of the boundary). The result also implies that for a smooth
(compact) family of exact vertical k-forms one can find a smooth family of vertical
(k − 1)-forms whose exterior derivative is the initial family (we would be working
with vertical forms on the direct sum of our initial bundle and the trivial bundle
with rank the number of parameters of the family). If all the k-forms of the family
vanished in a neighborhood of the boundary, the k − 1 forms will also vanish in
that neighborhood.

3.2. Transversal Poisson fibered submanifolds. A smooth Poisson subman-
ifold [11] of a Poisson manifold (M,ΛM ) is defined as a triple (P,ΛP , j) where
j : (P,ΛP )→ (M,ΛM ) is a Poisson morphism embedding P into M . Besides these,
there are submanifols of a Poisson manifold which inherit a Poisson structure (the
foliation induces a foliation by symplectic submanifolds which fits into a Poisson
structure) and where the natural inclusion map is not a Poisson morphism. We
will consider submanifolds of Poisson manifolds from this more general perspective.
Thus, a Poisson submanifold of a given Poisson manifold (M,ΛM ) will be a sub-
manifold intersecting the leaves in symplectic submanifolds and inheriting a Poisson
structure (necessarily unique) from ΛM (these are the natural generalization of the
symplectic submanifolds of a symplectic manifold). In particular we will be dealing
with a special class of Poisson submanifolds compatible with a given fibration.

Definition 1. Let (M,ΛM ) be an n-dimensional Poisson manifold of rank d,
(P,ΛP ) a Poisson manifold where P is compact and fibers over the (n−d)-dimensional
manifold Q, and ΛP is compatible with the fibration. An embedding j : P →
(M,ΛM ) is said to embed (P,ΛP ) as a transversal Poisson fibered submanifold of
(M,ΛM ) if:

i. j(P ) is contained in the regular set of (M,ΛM ).

ii. j(P ) cuts transversally the symplectic leaves of (M,ΛM ).

iii. j(P ) inherits a Poisson structure from (M,ΛM ) that coincides with ΛP .

The existence of such a submanifold implies that the symplectic leaves of (M,ΛM )
are nicely arranged in a neighborhood of the submanifold. To be more precise:

Lemma 1. If j : P → (M,ΛM ) embeds the fibered Poisson manifold (P,ΛP )→ Q
in M as a codimension r transversal Poisson fibered submanifold of (M,ΛM ), then
its normal bundle, with the induced Poisson structure, is also a fibered Poisson
manifold over Q.

Proof. For each x ∈ P let SM (j(x)) be the symplectic leaf of ΛM passing through
the point j(x), thus ΛM |S(j(x)) is the inverse of a symplectic form ωM (x) on

Tj(x)S(j(x)) and Tj(x)(j(P )∩S(j(x)))⊥ωM , the symplectic orthogonal of Tj(x)(j(P )∩
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S(j(x))), is a symplectic r-plane transversal to Tj(x)j(P ), so we can take it as model
for the normal bundle ν(P ) of the embedding. Moreover, for each leaf SP ⊂ P ,
the restriction of this model of normal bundle is the corresponding model for the
embedding of that leaf SP ⊂ SM . In fact, one can choose any compatible al-
most complex structure for the regular set of (M,ΛM ) and consider the leafwise
associated metric. Tj(x)(j(P )∩ S(j(x)))⊥ωM is then the orthogonal complement of
Tj(x)(j(P ) ∩ S(j(x))) with respect to this metric. We can use this leafwise metric
to identify the normal bundle with a small enough tubular neighborhood of j(P ).
This open set inherits a Poisson structure which can be pulled back to the normal
bundle (hence the Poisson structure depends on the almost complex structure, but
different choices give isomorphic structures). The local triviality of the fiber bundle
π̃ : ν(P )→ Q follows from that of the associated sphere bundle, which is a compact
manifold (and the projection a surjective submersion). �

4. The main construction: Poisson surgery

Let (M,ΛM ) be an n-dimensional Poisson manifold of rank d and let (P,ΛP ) be
a fibered compact (n−2)-dimensional Poisson manifold over the (n−d)-dimensional
manifold Q (ΛP is compatible with the fiber bundle structure π : P → Q). Suppose
we have two disjoint embeddings ja : P → M , a = 1, 2, that both embed (P,ΛP )
as a transversal Poisson fibered submanifold of (M,ΛM ). Assume that the normal
bundles νa (using the model provided by Lemma 1 and considering the orientation
induced by the Poisson bracket) have opposite Euler class. After identifying νa
with a tubular neighborhood Va of ja(P ), any orientation reversing identification
ψ : ν1 → ν2 allows us to get a diffeomorphism ϕ : V1 − j1(P ) → V2 − j2(P ) pre-
serving the orientation of the fibers (the disks) as the composition of ψ with the
diffeomorphism h(x) = x/‖x‖2 that turns each punctured normal fiber inside out.

Definition 2. Let #ψM denote the smooth, foliated manifold, obtained from M −
(j1(P )∪ j2(P )) by identifying V1− j1(P ) with V2− j2(P ) via the composition h◦ψ.
If M is a disjoint union M1

∐
M2 and ja maps P into Ma, the manifold will be

called the normal connected sum of M1 and M2 along P (via h◦ψ) and will be also
denoted by M1#ψM2.

It is easy to check that the diffeomorphism type (as a foliated manifold) it is
determined by (j1, j2) and the orientation reversing identification ψ : ν1 → ν2 (up
to fiber preserving isotopy). Once one of these identifications has been chosen, the
remaining possibilities are [P, S1] ∼= H1(P ;Z).

4.1. Topological remarks. If we are given an orientation µM on (M,ΛM ), it
determines in a neighborhood of ja(P ), together with the Poisson structure, an
orientation on P , and this one together with the restricted Poisson form ωP , an
orientation on Q. It is clear that if the orientations on Q obtained in this way from
each neighborhood Va are the same, then µM induces an orientation on #ψM .

There are some very well know results about the topology of M1#ψM2 (see the
remarks by Gompf [4]). First of all, #ψM is (oriented) cobordant to M . This is
seen after identifying in the cobordism M× [0, 1] neighborhoods of j1(P ) and j2(P )
in the level {1}, and then rounding corners to get the cobordism manifold X.

Hence, the Pontrjagin numbers (#ψM oriented) behave additively, and in the
even dimensional case the formuli for the Euler characteristic and signature are,
respectively,

(2) χ(M1#ψM2) = χ(M1) + χ(M2)− 2χ(P ).
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(3) σ(M1#ψM2) = σ(M1) + σ(M2), (#ψM oriented)

As it is the case for symplectic manifolds, if #ψM is oriented the surgery con-
struction is compatible (choosing an appropriate framing) with spin structures, and
we can conclude:

Lemma 2. If M admits a spin structure and H2(P ;Z) has no Z2–torsion, then
there is a choice of ψ such that #ψM admits a spin structure extending the one on
M .

Proof. See [4], proposition 1.2. �

4.2. Remarks regarding the foliation of #ψM . If we start from a regular
transversally orientable manifold M , then #ψM is also regular transversally ori-
entable (orientability in regular Poisson manifolds is equivalent to transversal ori-
entability), and its Godbillon-Vey class GV (#ψM,Λ) can be computed in terms of
the one of M . In particular:

Lemma 3. Let M be transversally orientable. Then GV (M,ΛM ) = 0 if and only
if GV (#ψM,Λ) = 0.

Proof. We know that be can remove disjoint fibered neighborhoods (closed) Wa of
ja(P ) such that we have an inclusion i : M − (W1 ∪W2)→ #ψM and both ends of
M−(W1∪W2) fiber over P (with fiber an annulus). The condition GV (M,ΛM ) = 0
implies, by naturallity, the vanishing of the Godbillon-Vey class of M − (W1 ∪W2).
Since its ends are fibered, one can choose a representant β of the class vanishing
on these ends and conclude the existence of a form γ vanishing on the ends and
whose exterior derivative is β. Finally, extending β and γ to forms β̃ and γ̃ defined
on M we obtain dγ̃ = β̃, where [β̃] = GV (M,ΛM ). The other direction is proven
similarly. �

4.3. Constructing the Poisson form on #ψM . Our final aim is to put a Poisson
structure on #ψM . To do that, we have to modify slightly the previous construc-
tion. Since we have to construct a symplectic structure on each resulting leaf, it
is more convenient to use instead of the normal bundles (whose fibers have infinite
area), the bundles ν0

a of disks of radius π−1/2. We will compose ψ (that can be
assumed to preserve the area of each fiber) with the map

(4) i(x) =

(
1

π‖x‖2
− 1

)1/2

x ,

which turns each punctured disk inside out.

We notice that V1, V2 and Y , the image of (V1∪V2)× [0, 1] in X (the cobordism
between M and #ψM), are locally trivial fiber bundles over Q. Any closed form

ω ∈ Ωkfib(V1 ∪ V2 → Q) satisfying j∗1ω = j∗2ω induces a form ΩṼ ∈ Ωkfib(Ṽ → Q), up

to a choice of a compactly supported exact k-form dα, α ∈ Ωk−1
fib (Ṽ → Q), where

Ṽ ⊂ #ψM is the image of V1 ∪ V2 in #ψM . The way to get a representant ΩṼ
of this family is by retracting disjoint neighborhoods of ja(P ) (containing V 0

a , the
image of ν0

a) onto ja(P ) and extending this map to a smooth retraction ρ : M →M
isotopic to the identity, which coincides with the identity out of a compact set
of V1 ∪ V2, preserves the fibers of Va and commutes with ̂2 ◦ ψ ◦ ̂−1

1 on V1 and

V2). This k-form is the restriction to Ṽ of the one induced on Y by ρ∗ω. Two
different choices of the retraction will give raise to two k-forms whose difference
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will be a compactly supported element of Ωkfib(Ṽ → Q). To see that this compactly
supported closed form is exact, it is enough to check it fiberwise. The procedure
is the one described by Gompf. We recall that when we round corners to get
the cobordism manifold Y , we can think of having added some new levels (i.e.,

we now have a map p2 : Y → [0, 1 + ε]) so that the level set 1 + ε is Ṽ , where
the circunferences of radius π−1/2 are identified. As we go from 1 + ε to 1 we
identify circunferences of smaller and smaller radius until we reach the level set 1
where j1(P ) and j2(P ) are identified. The level sets corresponding to the values
smaller than 1 are diffeomorphic to V1∪V2. Given another retraction ρ′, to evaluate
the difference of the k-forms ρ∗ω|Ṽ − ρ′

∗
ω|Ṽ , we homotope (“pushing down”) the

corresponding smooth oriented k-manifold Mk ⊂ p−1
2 (1+ε] (possibly singular) such

that it lies in p−1
2 ([0, 1]) and in the level 1 is contained in j1(P )× {1}, cut open Y

and project (V1 ∪ V2) × [0, 1] → V1 ∪ V2 × {0}, and in the zero level set integrate
ρ∗ω − ρ′

∗
ω over the correspondent manifold with boundary M ′k. But since the

retractions were homotopic to the identity, both ρ∗ω and ρ′
∗
ω represent the same

homology class as ω. This, together with the fact that j∗1ω = j∗2ω, implies that∫
M ′

k
ρ∗ω − ω = 0 =

∫
M ′

k
ρ′
∗
ω − ω . Hence their difference integrates to 0.

Now we will see that this construction works in the Poisson category.

Theorem 1. Let (M,ΛM ) be an n-dimensional Poisson manifold of rank d ≥
2 and let (P,ΛP ) be a compact (n − 2)-dimensional Poisson manifold such that
ΛP is compatible with the fiber bundle structure π : P → Q, where Q is a (n −
d)-dimensional manifold. Let ja : (P,ΛP ) → (M,ΛM ), a = 1, 2, be two disjoint
embeddings of (P,ΛP ) as a transversal Poisson fibered submanifold of (M,ΛM ).
Suppose that there is an orientation reversing isomorphism of the normal bundles
ψ : ν1 → ν2. Then #ψM , the normal connected sum along the normal bundles of
ja(P ), can be given a canonical Poisson structure Λ, characterized as follows:

Given disjoint identifications ̂a : νa → Va of normal bundles with tubular neigh-
borhoods Va of ja(P ) that send fibers into leaves, if we denote by Ṽ the image of

V1 ∪ V2 in #ψM , Ṽ is a locally trivial fiber bundle with base space Q. Then, there

exists a unique fiber isotopy class of Poisson forms on Ṽ containing elements ω
satisfying the following characterization:

(1) Let ΩṼ be any of the 2-forms induced in Ṽ by ωM (as shown in the previous

paragraph). Then ω − ΩṼ ∈ Ω2
fib(Ṽ → Q) (which is closed) has compact

support and is exact (it does not depend on the representative).
(2) The identification ̂1 : ν1 → V1 ⊂ M can be chosen in such a way (i.e.,

isotopic (rel j1(P )) by an isotopy with compact support) that the Poisson
2-form ωM is SO(2)-invariant on V 0

1 = ̂1(ν0
1), with ν0

1 the open disk bundle
of radius π−1/2, and on the closure of each fiber of V 0

1 it is symplectic with
area t0 independent of the fiber (we can isotope the initial embedding into
the second one fixing the complement of each disk of radius r > π−1/2).
The forms (1− s)ωM + sπ∗ωP , 0 ≤ s < 1, are all Poisson on the closure of
V 0

1 .
(3) There is a closed vertical 2-form ζ with compact support in V 0

2 = ̂2(ν0
2),

with ν0
2 the open disk bundle of radius π−1/2, such that for all t ∈ [0, t0] the

form ωM + tζ is Poisson on both V1 ∪ V2 and j2(P ).
(4) There is a map χ : ν2 → ν2 (preserving the disks) isotopic to the identity

by an isotopy with support in ν0
2 , such that outside of a compact subset K

of V 0
1 , the map ϕ = ̂1 ◦ψ ◦ i ◦χ ◦ ̂2 : V 0

1 − j1(P )→ V 0
2 − j2(P ) (where ̂1 is

as in point 2) is Poisson with respect to the Poisson form ω̃M = ωM + t0ζ
on M (i.e, we modify the embedding ̂2 to χ ◦ ̂2). The manifold #ψM is
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obtained from (M − (K ∪ j2(P )), ω̃M ) by gluing via ϕ (it follows that ω
equals ωM on the image on #ψM of the complement of V 0

1 ∪ V 0
2 ).

Moreover, different choices of embeddings of the normal bundles are connected
by an isotopy that preserves the isotopy class described above.

Finally, the form ω depends smoothly on ωM , ωP (and hence on j1, j2) and it
can be constructed with each Va, a = 1, 2 lying inside any preassigned neighborhood
of ja(P ).

Now we will devote the next paragraphs to prove Theorem 1.

4.4. The contraction operator. We recall that ν(P ) is an SO(2)-bundle. Let
τs : ν(P ) → ν(P ), 0 ≤ s ≤ 1 denote the multiplication by s on each disk and
let Xs denote the corresponding vector field. Since Xs is a vertical vector field
with respect to the fiber bundle structure ν(P ) → Q, we can define the operator

I : Ωkfib(ν(P )→ Q)→ Ωk−1
fib (ν(P )→ Q) by

(5) I(ρ) =

∫ 1

0

τ∗s (iXs
ρ)ds

As usual, if ρ is closed and j∗ρ = 0, then dI(ρ) = ρ. It is also true that I
commutes with any action preserving the SO(2)-bundle structure.

Corollary 1. Let ω1, ω2 be two Poisson forms on ν(P ) compatible with the fiber
bundle structure ν(P ) → Q verifying j∗ω1 = j∗ω2 and inducing the same orienta-
tion on ν(P ). There exist U1, U2 neighborhoods of P in ν(P ) and an isomorphism
φ : ν(P ) → ν(P ) isotopic (rel P ) to the identity, by an isotopy with compact sup-
port, such that φ : U1 → U2 verifies φ∗ω2 = ω1. If both forms already coincide
over a compact subset C of P , we may assume the isotopy to have support on a
preassigned neighborhood of the closure of P − C.

The isomorphism φ can be chosen to depend smoothly on ω1 and ω2. In fact, if
we are given smooth families ω1,r, ω2,r, b ≤ r ≤ c, coinciding on a fixed neighbor-
hood of a given compact set C, and construct isomorphisms (as in the proof that
follows) φb, φc verifying φ∗bω2,b = ω1,b and φ∗cω2,c = ω1,c, then there exists a smooth
family φr that verifies φ∗rω2,r = ω1,r on a fixed neighborhood of P and equals the
identity in the chosen neighborhood of the closure of P − C.

Proof. As in the Darboux-Weinstein theorem proof, we consider the vertical closed
2-form η = ω1 − ω0 and the family ωt = ω0 + tη (also vertical closed 2-forms). We
can find a small neighborhood of P in which the ωt are non-degenerate (because on
P both forms induce the same orientation on the normal disk and because of the
compactness of P ). There, we know that η = dα, with α = I(η), and we can find a
family of vertical vector fields Yt characterized by the equation iYtωt = −α. After
using a suitable bump function, this 1-parameter family defines a global flow Ψt

on ν(P ), leaving P stationary. Computing d
dt (Ψ

∗
tωt) we conclude that Ψ∗tωt does

not depend on t near P . If the forms coincided in a neighborhood of C, η vanishes
on that neighborhood. Regarding families, we see that in the procedure we made
a choice of a bump function, and we can smoothly join two such choices. �

Corollary 2. Let (M,ΛM ) be an n-dimensional Poisson manifold of rank d. Let
(P,ΛP ) be a regular compact Poisson manifold of dimension n−2 which fibers over
the (n − d)-dimensional manifold Q and such that ΛP is compatible with the fiber
bundle structure. Assume that ja : (P,ΛP ) → (M,ΛM ), a = 1, 2, embeds (P,ΛP )
as a transversal Poisson fibered submanifold of (M,ΛM ). Suppose that both normal
bundles are trivial and let ψ : ν1(P ) → ν2(P ) be a bundle isomorphism identifying
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them and preserving the orientation of the fibers. Then #ψM can be given a Poisson
structure Λ.

Proof. We can identify each normal bundle with P × R2 in such a way that each
disk {z}×D2 has area form dx∧dy. We also have isomorphisms ̂a : P ×D2

ε → Va,

a = 1, 2, and ψ̃ : P × D2
ε → P × D2

ε . The main point is that since the normal
bundles are trivial, j∗aωa + dx ∧ dy are Poisson structures that restrict to j∗aωa on
P . Hence, we can find a real number δ > 0, and diffeomorphisms ̃a : P ×D2

δ → Ua
with ̃∗1ω1 = j∗1ω1 + dx ∧ dy, ψ̃∗ ̃∗2ω2 = j∗1ω1 + dx ∧ dy, Ua ⊂ Va neighborhoods

of ja(P ). Composing ψ̃ with the area preserving map (r, θ) 7→ (
√
δ2 − r2,−θ)

preserves the Poisson structure and hence allows us to define a Poisson structure
on #ψM . We notice that we could have equally asked our initial fiber bundle
morhism ψ to reverse the orientation of the fibers, because by composing with the
leafwise reflection (r, θ) 7→ (r,−θ) one can always reverse the orientation of a trivial
bundle . �

In the above construction, the Poisson structure coincides with ΛM on M −
(j1(P ) ∪ j2(P )). But we have to allow perturbations in a neighborhood of one of
the embeddings to have uniqueness up to isotopy.

The main obstruction to finally solve the problem posed in Thm. 1 in general
is that one cannot put a global Poisson structure on νa induced by j∗aωa and the
symplectic structure on the symplectic orthogonals, unless the normal bundle is
trivial. We can overcome this difficulty in the following way. We consider ν0

a,
the bundles of open disks of radius π−1/2, and identify the punctured disks by
composing i with ψ to get B, an S2-bundle with structural group SO(2) whose
fibers have an SO(2)-invariant area form ωS2 that integrates into 1 on each of
them. We have two embeddings i0 : P → B, i∞ : P → B with ̂1i0 = j1, ̂2i∞ = j2.
Let us denote E0 = B −P∞ (resp. E∞ = B −P0). Using Thurston’s ideas (see [9],
Thm. 6.3) we can construct a vertical 2-form η restricting to the above defined area
form on each fiber: we consider a form β on q : B → P representing the Poincare
dual of P0 so that it integrates to 1 on each fiber (sphere transverse to P0). It
can be chosen to have support in a small neighborhood of P0, so that it vanishes
on P∞. We take trivializations hk : q−1(Uk) → Uk × S2 of B and a partition
of the unity ρk subordinated to {Uk}. Since h∗kπ

∗
S2ωS2 − β = dαk on q−1(Uk),

η = f(β+ d
∑
k(ρk ◦ q)αk), where f is the forgetful map f : Ω2(B)→ Ω2

fib(B → Q),
satisfies the requirements. The result of averaging η − q∗i∗0η (both q, i0 are maps
lifting id: Q → Q) under the SO(2)-action is a vertical SO(2)-invariant 2-form,
that we will still call η, such that it restricts to the canonical volume form on each
sphere and i∗0η = 0. We can even choose η so that η|E0 extends over ν1 to a closed
vertical form that is symplectic on the planes (fibers). We only need to pick β with
support away of P∞, so that on the intersection of that neighborhood with q−1(Ui)
(Ui contractible) αk can be chosen to be h∗kπ

∗
S2α′, for any α′ with dα′ = ωS2 on

that neighborhood. In particular, the restriction of the 1-form α = 1/2(r2− 1
π )dθ ∈

Ω1(R2 − {0}) (given in polar coordinates) to the disk of radius π−1/2 admits an
extension to a form α′ on S2 − {0} with dα′ = ωS2 .

The forms ωt = q∗j∗1ω1 + tη are non-degenerate for 0 < t ≤ t1 because, as
Thurston observed, q∗j∗1ω1 is non-degenerate on the orthogonal to the tangent
space of the spheres (which does not depend on t because it is determined by η).
For a choice of η extending to ν1 as described above, the forms ωt will be symplectic
near the closure of E0 ∼= ν0

i in ν1 for t1 ≤ t small enough.
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4.5. Comparing the Poisson structures on B, E0 and E∞. Now that we have
a family of closed non-degenerate 2-forms on B, we would like to compare one of
them with the ones defined on E0 ∼= ν0

1 and E∞ ∼= ν0
2 that come from ω1 and

ω2. Following Cor. 1, for each t we could find neighborhoods (Wt
0, ωt) of P0 and

(Wt
∞, ωt) of P∞ which are Poisson equivalent to some neighborhoods (depending

on t) of (j1(P ), ω1) and (j2(P ), ω2). But nothing guarantees that B = Wt
0 ∪Wt

∞,
for some t.

Instead, we use Gompf’s construction again. On E0, let ϕ = I(η) and define
the vertical vector fields Yt, 0 < t ≤ t1 by the condition iYt

ωt = −ϕ (also defined
in a neighborhood of the closure of E0, if η was chosen to extend to ν1). The
key property is that these vector fields are SO(2)-invariant. For a fixed t0, the
flow Ψt, required to be the identity for t = t0, is SO(2)-invariant and of course
verifies Ψ∗tωt = ωt0 . In principle, we know that for any SO(2)-invariant compact
set K ∈ E0 there exists an interval J of t0 in (0, t1] where the flow Ψ: K×J → E0

is defined. But in can be shown that Ψ is defined on E0× [t0, t1]. Given any point x
on E0, it determines an SO(2)-orbit on its fiber and hence a disk D(x). We define:

A(x) =

∫
D(x)

η

and,

At(x) =

∫
D(x)

ωt ,

where the forms are pulled back to the disk. The map A : E0 → [0, 1) is a smooth
SO(2)-invariant proper surjection and it is clear that At(x) = tA(x). Given x ∈
E0, t0 ∈ (0, t1] and K = D(x) we obtain a flow as above on D(x). Let D(Ψt(x)) be
the disk whose boundary is the SO(2)-orbit of Ψt(x) (it is also Ψt(∂D(x))). Then
we have:

tA(Ψt(x)) = At((Ψt(x))) =

∫
D(Ψt(x))

ωt

=

∫
Ψt(D(x))

ωt =

∫
D(x)

Ψ∗tωt =

∫
D(x)

Ψ∗t0ωt0 = t0A(x),

So we can conclude that A(Ψt(x)) = t0
t A(x). Since A, which is proper, decreases

with the flow lines (with t increasing), these flow lines cannot abandon E0 and hence
Ψ is defined in E0× [t0, t1]. The inequality A(Ψt1(x)) < t0

t1
implies that choosing t0

small enough, Ψt1 sends E0 into any initially fixed tubular neighborhood of P0. In
particular, we choose t0 so that Ψt1(E0) ⊂ Wt1

0 . Hence ̂1Ψt1 sends (E0, ωt0) into
(̂1Ψt1(E0), ω1). Actually, the Poisson morphism Ψt1 extends to a neighborhood of
the closure of E0, for suitably chosen η and thus it can further be extended to a
diffeomorphism Ψt1 : ν1 → ν1 isotopic to the identity by an isotopy with compact
support (but only Poisson in a neighborhood of the closure of E0 ∼= ν0

1) .

The restriction of each ωt to P∞ induces also a Poisson structure, but in gen-
eral i∗∞ωt 6= j∗2ω2. But we can modify ω2 in a neighborhood of j2(P ) (ω2 has
not been involved in all the previous work) so that the above equality holds: we
choose µ : B → B an SO(2)-equivariant map lifting id : P → P such that µ fixes a
neighborhood of P∞ and collapses a neighborhood of P0 to P0. The composition
of the restriction of ̂−1

2 to V 0
2 with µ can be extended to a map λ from a closed

neighborhood U2 of V 0
2 in V2 (a neighborhood of ∂U2 is sent to P0). We can then

modify the Poisson structure of (U2, ω2) ⊂ (V2, ω2) (without modifying the sym-
plectic foliation), by adding to ω2 a closed vertical 2-form ζ such that ω2 + ζ is non
degenerate (and hence Poisson) and ζ vanishes in a neighborhood of ∂U2 in U2. If
we call ζ = λ∗η, then there exists t2 > 0 (by the compactness of P ) such that for



12 A. IBORT, D. MARTÍNEZ TORRES

all 0 ≤ t ≤ t2, ω̃M = ω2 + tζ is non degenerate. To solve the problem we just need
to pick our previous t0 smaller than t2 (and use of course ω̃M = ωM + t0ζ). So

we can glue to define a Poisson form ω on Ṽ that satisfies all the requirements of
theorem 1. To be more precise, we can find a map χ : E∞ → E∞ isotopic to the
identity by an isotopy (rel P∞) with support in ν0

2 and Poisson, with respect to the
forms ωt0 and ωM + t0ζ, in a neighborhood U∞ of P∞ (the map can actually be
extended to a diffeomorphism of ν2 isotopic to the identity). We glue using the map
̂2 ◦χ◦ i◦ψ ◦Ψ−1

t1 ◦ ̂−1
1 : V 0

1 → V 0
2 , where Ψt1 and χ are thought as diffeomorphisms

of the normal bundles (instead of having domain in the sphere bundle B). The
embeddings we finally use are ̂1 ◦Ψt1 and we modify ̂2 by composing on the right
with χ : ν2 → ν2. The only condition that needs to be checked is that the difference
[ω −ΩṼ ] (which by construction has compact support) is exact. As we saw ,it can
be checked fiberwise. Thus, it is enough to show that

(6) 〈ω − ΩṼ , F 〉 = 0, ∀F ∈ H2(Ñ ,Z),

for all the fibers Ñ of Ṽ → Q. This time we will not write the proof of equation 6
because it is, word by word, what Gompf showed ([4] pag. 547-548).

Concerning uniqueness, for any smooth family of Poisson forms ωt ∈ H2
fib(Ṽ →

Q), t ∈ [0, 1], such that the forms ωt −ΩṼ are exact and compactly supported, the
forms ωt − ω0 are exact in compactly supported cohomology (we can find common

compact set W of Ṽ containing all the supports). Hence we can find a family of
compactly supported 1-forms αt with d

dtωt = d
dt (ωt − ω0) = dαt and apply Moser’s

theorem to show that there is an isotopy with support in W ⊂ Ṽ pulling back
all the forms of the family to ω0. The isotopy class of the form constructed using
the described procedure is fixed. A different choice of t ≤ t0 can be absorbed
using the parametrized version of Corollary 1. Equally, for any other choice η̂ the
family ηs = sη + (1− s)η̂ is valid for the construction and we can again apply the
same corollary to the family Ψs,t. Any other choices can be connected by smooth
families, and the same happens when we change the embeddings of the normal
bundles (preserving the foliations) and the choice of ψ (preserving the fiber bundle
structure) by isotopic identifications.

Any Poisson 2-form ω verifying the four conditions of theorem 1 is isotopic to
one constructed using the described procedure. We use ψ to recover the sphere
bundle B and the modified embeddings to put in B a SO(2)-invariant Poisson form
ωt0 that agrees with ωM on V 0

1 and with ω̃M near j2(P ), and that is also the result
of applying the construction of the theorem with η = 1

t0
(ωt0 − q∗ωP ) and t1 = t0.

SO(2)-invariance implies that the fibers are ωt0-orthogonal to P∞, so η is actually
non-degenerate on the fibers at P∞. Non degeneracy of ωt at P∞ , (t ≤ t0) follows
from condition 3, applied first to TP∞. We can extend η to ν1 after shrinking the
embedding ̂1 : ν1 →M (rel E0)(non-degeneracy is an open condition). If we apply
the construction to the embedding of condition 2 (shrinked (rel E0), if necessary),
when t = t0 we get the same embedding (Ψt0 = id) because it was already Poisson.
The same happens for the second embedding (the correction χ equals the identity),
provided we chose the given ζ defining ω̃M , rather than setting ζ = λ∗η. Hence,
the gluing map equals ϕ−1 near j2(P ). The only price to pay is that ζ may not be
λ∗η, for λ extending the restriction of ̂−1

2 to V 0
2 (but we have that j∗2ζ = i∞η, and

ζ can be assumed to vanish outside ̂2(B−P0) = V 0
2 ). We will show that ω and ω′,

constructed using ζ ′ = λ∗η, are isotopic (by an isotopy fixing the complementary

of a compact set in Ṽ ). It will be enough to show that the the Poisson forms
constructed using ζs = sζ ′ + (1 − s)ζ, satisfy the condition 1 of the theorem. But
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that can be proven using the ideas that proved 〈ΩṼ − ω, F 〉 = 0 ∀F ∈ H2(Ñ ;Z)
(see [4] pag. 549). �

5. The modular class of #ψM

Let (M,ΛM ) a Poisson manifold that we assume for simplicity to be orientable.
An important invariant of the Poisson structure is the modular class [12]. Roughly
speaking, it measures up to which extent the Poisson manifold admits a measure
transverse to the leaves invariant by all the hamiltonian vector fields. The modular
class belongs to the first group of Poisson cohomology of (M,ΛM ) (see [10]). For
each volume form µ, a vector field (derivation) representing the modular class is
defined by the formula

(7) φµ : f 7→ divµXf ,

where Xf is the Hamiltonian vector field associated to f and divµ the divergence
with respect to µ.

A Poisson manifold with vanishing modular class is called unimodular. It is clear
from what we said that a orientable Poisson manifold is unimodular if and only if
there exists a volume form invariant by all the hamiltonian vector fields. Since
(at least in the regular set) a volume form is the wedge product of the leafwise
Liouville volume form (which is invariant by the hamiltonian vector fields) and a
transverse volume form, the invariance of this transverse volume form is equivalent
to the invariance of the whole form (and that is why we spoke about measuring the
existence of an invariant transverse volume form).

Now let us assume that #ψM is oriented.

Proposition 2. If (#ψM,Λ) is unimodular then (M,ΛM ) is also unimodular, but
the converse is not true.

Proof. We first notice that if we have an oriented Poisson manifold (N,ΛN ) and an
open set U such that (U,ΛN |U ) is unimodular, then (N,ΛN ) will be unimodular if
any of the invariant volumes on (U,ΛN |U ) can be extended to an invariant volume
on (N,ΛN ). We will see that there are cases where (N,ΛN ) is unimodular but not
all the invariant volumes on a certain open set can be extended to be invariant on
(N,ΛN ). It is worth noticing that when (N,ΛN ) is a Poisson fibered manifold and
U cuts each leaf in an open connected set (non-empty), then any invariant volume
form in (U,ΛN |U ) extends to a unique invariant form on (N,ΛN ) [12]. It follows
easily that in a general Poisson manifold (N,ΛN ), if we take a closed set V contained
in an open one U , such that U (connected) is fibered and V intersects each fiber
in a non-empty set whose complement (in the fiber) is connected, then (N,ΛN )
is unimodular if and only if (N − V,ΛN |N−V ) is unimodular. As a consequence,
any perturbation of the Poisson bivector on V that preserves the foliation does
not affect the unimodularity (resp. non-unimodularity) of (N,ΛN ). Hence, the
unimodularity of (#ψM,Λ) implies the unimodularity of (M,ΛM ). If we start with
(M,ΛM ) unimodular, since Va fibers over Q, any invariant volume on (M,ΛM )
will determine a couple of volume forms on Q. It is clear that (#ψM,Λ) will be
unimodular if and only if we are able to find an invariant volume form such that
the induced volume forms on Q are the same. Though in general this not true (and
we will end up the proof of the proposition constructing counterexamples), we will
describe now some situations where this occurs.
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Definition 3. Let (M,ΛM ), (P,ΛP ) and j1 : (P,ΛP ) → (M,ΛM ) be as in Theo-
rem 1. Assume that j1(P ) has trivial normal bundle. Then once we have fixed
a trivialization ψ of the normal bundle, we can apply our construction to the
disjoint union of (M,ΛM ) with (M,ΛM ). We denote the resulting manifold by
(M#ψM,ΛM#ΛM )

Corollary 3. Let (M,ΛM ), (P,ΛP ) be as in the above definition . Then (M,ΛM )
is unimodular if and only if (M#ψM,ΛM#ΛM ) is unimodular.

To construct counterexamples we begin by proving the following lemma:

Lemma 4. There exist Poisson fibered manifolds (actually symplectic bundles) with
open sets having invariant volume forms which do not extend to invariant volume
forms on the whole manifold.

Proof. The idea is to start with our fibered open set, and then glue some of the
fibers into a single one (so we are putting restrictions on the volume form we pull
back from the base space). We consider the Poisson fibered manifold S2n−1×D2 →
S2n−1, whereD2 is the corresponding closed unit disk with its usual symplectic form
(have in mind the case n = 1). For each point of S2n−1 we consider its image by
the antipodal map and identify the boundaries of the corresponding fibers via a
reflection (say, on the y-axis) ry : S1 → S1. The resulting manifold is a symplectic
bundle over RP 2n−1 with fiber the sphere with the usual area form (it can also
be constructed by considering S2n−1 ⊂ R2n ⊂ R2n+1, taking a closed tubular
neighborhood of fixed radius of S2n−1 ⊂ R2n+1 and identifying its boundary using
the antipodal map and then rescaling the area form). If we remove all the equators
we obtain the initial open disk bundle. In this open set, the invariant volume forms
come from volume forms on S2n−1, but only the ones invariant under the action
of the antipodal map on S2n−1 extend to invariant volume forms on the whole
manifold.

There is a third way of constructing these manifolds, starting from the final
Poisson manifold, which gives much more examples. We choose (Q,G, (F, ω), ρ)
where Q is a compact manifold, G is a normal subgroup of π1(Q) of finite index
and ρ is a representation of K = π1(Q)/G in the group of symplectomorphisms
of (F, ω) such that there are points in F with trivial stabilizers. QG, the cover
of Q associated to the subgroup G is a principal K-bundle, so we can construct
the associated bundle to the chosen representation ρ by symplectomorphisms. Our
resulting manifold M is a symplectic bundle and hence a Poisson manifold, but as
a bundle, since it has discrete structural group, it has the unique lifting property.
Thus, if on the fiber over the base point x0 of Q, we pick a point z with trivial
stabilizer, the lifting to z of all the homotopy classes of paths based on x0 gives
us an embedding of QG in M (transverse to the fibers). On the fiber over x0, the
points close to z have trivial stabilizer which implies that the normal bundle to
QG is trivial. We can even take as a tubular neighborhood the result of pushing a
small disk around z using the unique lifting property, which gives us a symplectic
subbundle. It is clear that the invariant volumes on a small tubular neighborhood
of QG that extend to invariant volume forms on the whole manifold are those which
come from K-invariant volume forms on QG. �

Now we are ready to finish the proof of proposition 2:

To construct the counterexample we take two copies of any of the symplectic
fibrations (Q,G, (F, ω), ρ)→ Q of lemma 4 (with F a surface) and consider in both
the same embedding of QG. Now we fix a volume form µ on QG that descends to
Q. Then we pick a point z ∈ QG and consider a diffeomorphism f : QG → QG
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homotopic to the identity (rel z) which is the identity in a neighborhood of the
remainig points of the orbit of z and which does not preserve µ in z. We identify
both embeddings of QG in M via f and perform the fibered connected sum using
any framing ψ to obtain manifold which is non unimodular. If it was, an invariant
volume form would induce a volume form ehµ on QG both invariant by the action
of K and the action of K conjugated by f , but this cannot happen at the point z.
�

6. Poisson manifolds with arbitrary fundamental groups

Using the previous results we can prove the theorem that extends Gompf’s
existence result to regular Poisson manifolds.

Theorem 2. Let G be any finitely presentable group. Then for any integers n, d ≥
4, d even, there exist an oriented closed regular Poisson manifold of dimension
n and constant rank d (Mn,d,Λ) such that π1(Mn,d) ∼= G. These manifolds have
vanishing Godbillon-Vey class but the ones with a codimension 1 symplectic foliation
are non-unimodular. Moreover, they can be chosen to be spin.

Proof. As it was remarked in the introduction, we only need to prove the case
n = 5, d = 4 because Gompf already showed it for n even and d 6= n − 1 (mul-
tiplying one of its manifolds by an sphere of the appropriate dimension), and the
odd higher dimensional cases follow from the 5-dimensional one (by multiplying by
simply connected symplectic manifolds of the appropriate dimension in the case of
a codimension 1 symplectic foliation).

We first recall Gompf’s proof: one starts with a closed symplectic manifold
T 2×Σg such that G can be obtained by collapsing some elements of its fundamental
group. The symplectic form is chosen so that these elements are the simple curves
of some trivially embedded symplectic tori. The key step is that the manifold which
is glued along each one of this tori is a rational elliptic surface (along one of its
regular fibers), and the resulting fundamental group, which does not depend on the
chosen framing, is the old one with the homotopy of these tori killed. It is worth
recalling the topology of this rational elliptic surfaces. They are diffeomorphic

to CP 2
9

# (−CP 2) and an example can be constructed by blowing up the nine
points of CP 2 where two generic cubics intersect. We get in this way a fibration

p : CP 2
9

# (−CP 2) → CP 1 whose fibers are the pencil of cubics generated by the
two given ones. The general fiber is a smooth cubic (topologically a torus) and we
also have 12 singular fibers which topologically are a sphere with a self intersection
point (the result of collapsing a non-separating regular curve of the generic fiber).
It is easy to check that the complement of a regular fiber is simply connected.
Roughly speaking, the complement fibers over a disk so we only have to care about
the fiber. Following [7] , we see that this complement can be constructed starting
from D2 × T 2, T 2 =< a > × < b >. Extending the fibration to a bigger disk
(in CP 1) containing a singular fiber, amounts to gluing a two handle (with some
framing) over either a or b (we have 12 singular fibers, and 6 of the disks go over a
and 6 over b). The last step is to glue a neighborhood of the regular fiber over ∞.
Hence, any curve contained in a fiber is trivial in p−1(CP 1 − {0,∞}).

To get our Poisson 5-manifold M with π1(M) ∼= G, we consider one of Gompf’s

manifolds (MG, ωMG
) with π1(MG) = G. We can also assume thatMG = NG#CP 2

9

#
(−CP 2) and that the fiber removed is p−1(∞). Let M1 = MG × S1 with the prod-
uct Poisson structure (the vertical 2-form p∗1ωMG

, that we rename as ωMG
). In MG,

the fiber p−1(0) = T is a trivially embedded symplectic torus with symplectic form
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ω0. Now let M2 = T × S3 with the product Poisson structure coming for ω0 and
a Poisson structure of S3 determined by the Reeb foliation and the usual volume
form, and let k ⊂ S3 be the unknot, which is a Poisson submanifold of S3 trans-
verse to the foliation. We consider the Poisson submanifolds P1 = T × S1 ⊂ M1,
P2 = T×k ⊂M2. It is clear that both are transversal Poisson fibered submanifolds.
Moreover, they are trivially embedded and any identification of k with the factor
S1 of P1 identifies P1 and P2 as Poisson manifolds. Any identification between nor-
mal bundles will allow us to construct the corresponding connected sum along the
normal directions. In this case, we have canonical framings; the one in P1 comes

from the projection p : CP 2
9

# (−CP 2) → CP 1 and the one in P2 from the zero-
framing of the unknot. Using this framing and < a, b, s > as base of H3(T ×S1;Z)
(the choice of s depends on the orientation we pick for M1), any other framing is
given by a triple (l1, l2, l3) ∈ Z3. We will denote the obtained Poisson manifold by
M1#(l1,l2,l3)M2. The computation of its fundamental group is mere routine, but
we will do it anyway because this is not quite the manifold we are looking for. As
usual, we apply Seifert-Van Kampen’s theorem:

Let D1 be the unit disk contained in CP 1 and W2 = k×D2 be a small tubular
neighborhood of k in S3. Let us call V1 = p−1(D1)× S1, V2 = T ×W2. M1 − V1 =
(MG − p−1(D1)) × S1 and π1(MG − p−1(D1) has the same generators as π1(MG)
and the same relations except from the one that assures that the loop α̂, a lift of
α = ∂D1, is vanishing. π1(M2 − V2) is the free group generated a, b and by the
loop β = ∂D̄2 generating the homotopy of S3 −W2. Now we see that the loop
s generating the homotopy of S1 in (MG − V1) × S1 goes to a curve isotopic to
k+ l3β. The curves a, b ⊂ T ×{x} ⊂M2−V2 are seen as the correspondent simple
curves generating the homology of a fiber over a point in ∂D1 plus some multiple
of α̂. Finally, the loops α̂ and β are the same.

We probably did not get the desired manifold because we cannot conclude that
α̂ is contractible, but we turned our initial problem of killing the generator of the
homotopy of S1 in MG × S1 into a problem that amounts to kill a curve in a
manifold whose topology we know quite well.

In MG, we consider T2, be the torus generated by the loops α̂+a, b. T2 is a sym-
plectic torus trivially embedded (the symplectic structure on p−1(0)×D2

1+ε can be
assumed to be the product symplectic structure). Applying Gompf’s construction
to MG and a rational elliptic surface along the normal directions of T2 and a regular
fiber we get a symplectic manifold M̃G . It is clear that π1(M̃G) = π1(MG), but in

M̃G we have a disk that bounds α̂ lying in M̃G− p−1(D1). Thus, if we do the fiber

connected sum of M̃G×S1 and T ×S3 along P1 and P2 (T = p−1(0) is of course in

M̃G), we get a Poisson manifold M̃1#(l1,l2,l3)M2 such that π1(M̃1#(l1,l2,l3)M2) ∼= G.

It is worth noticing that the diffeomorphism type of M̃1#(l1,l2,l3)M2 depends at
most on l3. To see that we observe that M2 − V2 is a tubular neighborhood of

T × β̂, where β̂ is a loop in the interior of M2−V2 isotopic to β and thus ∂(M2−V2)

has an S1-bundle structure (over T × β̂) . Hence the diffeomorphism type of the

connected sum is totally determined by the image in ∂(M̃1 − V1) of the S1-bundle

structure of ∂(M2 − V2) (because M̃1#(l1,l2,l3)M2 is the result of collapsing to a
point the fibers of the described fibration), and these fibrations are classified by the
value of l3 (the authors do not know whether different values of l3 yield different
diffeomorphism types).

As we already observed, if we use Kummer surfaces instead of rational elliptic
ones to construct M̃G, both M̃1 and M2 can be given spin structures. For any
such structures, since H2(Pi;Z) has no torsion, one can find integers l̄1, l̄2, l̄3 with

M̃1#(l̄1,l̄2,l̄3)M2 admitting a spin structure extending any given ones. �
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Remark: In the examples above (dimension 5) there are three kinds of symplectic

leaves. We have a family parametrized by S1 which are diffeomorphic to M̃G −
T1 and hence have G as fundamental group; we have another S1-family of leaves
diffeomorphic to R2 × T1 and both families fill open connected sets separated by a
compact leaf T1 × T , where T is the closed torus of the Reeb foliation of S3. Any
of the non-closed leaves has the closed one as set of accumulation points.
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(1994).

[11] A. Weinstein. The local structure of Poisson manifolds. J. Diff. Geom., 18, 523-57 (1983).
[12] A. Weinstein. The modular automorphism group of a Poisson manifold. J. Geom. Phys.,

23, 379-394 (1997).
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