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Abstract. In this note we extend to the Fréchet setting the following well

known fact about finite dimensional symplectic geometry: if a Lie group G
acts on a symplectic manifold in a Hamiltonian fashion with momentum map

µ, given x ∈ M the isotropy group Gx acts linearly on the tangent space

in a Hamiltonian fashion, with momentum map the Taylor expansion of µ
up to degree 2. We use this result to give a conceptual explanation for a

formula of S. Donaldson in [6], which describes the momentum map of the

Hamiltonian infinitesimal action of the Lie algebra of the group of Hamiltonian
diffeomorphisms of a closed integral symplectic manifold, on sections of its

prequantum line bundle.

1. Introduction

Among the reasons to do geometry in infinite dimensions, a prominent one is that
one may relate difficult problems for some geometry in finite dimensions -typically
the solving of some hard P.D.E.- to elementary constructions in the infinite dimen-
sional setting. It is often the case that this approach gives conceptual explanations
for the appearance of certain equations, thus providing new insights to solve them.
A salient example of this philosophy is the program initiated by S. Donaldson [5]
to attack fundamental problems in Kähler geometry by linking them with cons-
tructions in Riemannian and symplectic geometry in infinite dimensional spaces.
Namely, the space of Kähler metrics in a given Kähler class on a compact com-
plex manifold, is endowed with an symmetric space structure with respect to the
group of symplectomorphisms of a fixed Kähler representative. Existence of regular
enough geodesics -an elementary problem in finite dimension- is intimately linked
to the very deep problem of existence and uniqueness of constant scalar curvature
Kähler metrics. Similarly, special metrics -which include constant scalar curvature
metrics- are the zero level of certain momentum map for the action of the group of
symplectomorphisms in the space of compatible complex structures.

Another capital example of how symplectic and Riemannian geometry in infinite
dimensions is behind some P.D.E.s, is Arnold’s description of Euler’s equations for
a homogeneous incompressible fluid as a geodesic spray in the group of volume pre-
serving transformations [2] (see also [7]). More generally, some important P.D.E.s
in fluid dynamics can be formulated via Lie-Poisson reduction [14, 8], and can be
seen to admit a dual pair structure [15, 12, 9].

Symplectic geometry in infinite dimensions also appears in a natural way when
trying to endow certain spaces of equivalence classes with symplectic structures.
Perhaps the famous example is Atiyah and Bott’s construction of a symplectic
structure on the space of equivalence classes of flat connections on appropriate
bundles over Riemann surfaces [1]. A more recent application in this direction is
the construction of symplectic structures on canonical integrations of integrable
Poisson structures [4].
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Infinite dimensional symplectic structures also arise when studying non-linear
Grassmannians of distinguished submanifolds of a symplectic manifold, such as
(weighted) Lagrangian [19], (weighted) coisotropic [3] and symplectic [11].

In light of the previous discussion, it becomes very relevant to extend results from
finite dimensional symplectic geometry to infinite dimensional symplectic manifolds,
and to find natural appearances of such constructions. In this respect it should be
noted that infinite dimensional constructions are not always possible, and in trying
to carry them over an important step is making the right choice among the possible
settings such as formal, Banach, Sobolev, Fréchet and convenient spaces.

In this note we start by describing a rather elementary result for Hamiltonian
actions in finite dimensional symplectic manifolds which extends to the Fréchet
setting. We use this observation to give a conceptual explanation for a formula in
[6], which describes the momentum map of the Hamiltonian infinitesimal action of
the Lie algebra of the group of Hamiltonian diffeomorphisms of a closed integral
symplectic manifold, on the sections of its prequantum line bundle.

More precisely, let (M,ω) be a (finite dimensional) symplectic manifold endowed
with a Hamiltonian action of a Lie group G with (equivariant) momentum map
µ : M → g∗. Given x ∈ M , it is well known that the isotropy group Gx acts
linearly on (TxM,ωx) in a Hamiltonian fashion, with momentum map the Taylor
expansion of µ at 0 ∈ TxM up to degree 2.

Our main observation is this paper is that the same fact holds in the Fréchet
setting (see section 3 for the precise definitions):

Theorem 1. Let (M,Ω) be a Fréchet manifold endowed with a weakly symplectic
structure. Let G be a regular Fréchet-Lie group acting on (M,Ω) in a Hamiltonian
fashion with momentum map

µξ : M→ R, ξ ∈ Lie(G).

Let x be a point in M and let Gx be its isotropy group. Then the linear action of

Gx on (TxM,Ωx) is Hamiltonian with momentum map µ
(2)
ξ , the terms up to degree

2 of the expansion of µξ at 0 ∈ TxM. Moreover, the homogeneous degree 1 part of
the expansion vanishes so one can write

µ
(2)
ξ (z) = µξ(0) + lim

t→0

µξ(tz)− µξ(0)

t2
. (1)

In [11] it is shown that for any given closed symplectic manifold (M,ω), the non-
linear Grassmannian of 2m-dimensional symplectic manifolds is a weakly symplectic
Fréchet manifold, on which Ham(M,ω) -the group of Hamiltonian diffeomorphisms
of (M,ω)- acts in a Hamiltonian fashion.

On the other hand given (X2m, σ) a closed integral symplectic manifold, S. Do-
naldson in [6] shows that the group Ham(X,σ) acts infinitesimally in a Hamiltonian
fashion on the vector space of sections of (L,∇, | · |), the k-th tensor power of the
Hermitian prequantum line bundle of (X,σ). The momentum map -which we re-
produce below in 2 changing slightly the constants appearing in both summands-
is

µf (s) =

∫
X

f

(
− i

2
∇s ∧∇s̄ ∧ σm−1

(m− 1)!
+

1

2
k(m+ 1)|s|2σ

m

m!

)
, (2)

where s ∈ Γ(L) and f is in the Lie algebra ham(X,σ).
A conceptual explanation for the formula in equation 2 can be given using the-

orem 1 together with the results of [11]: Briefly, given a Hermitian vector bundle
over (X2m, σ) one can use the symplectic coupling form construction ([16], sec-
tion 6.4) to introduce a suitable symplectic structure in the projectivization of the
bundle. The symplectic manifold (X,σ) appears as a point in the corresponding
non-linear symplectic Grassmannian (M,Ω). Theorem 1 provides a momentum
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map for the linearized action of the isotropy group of x ∈ M. If the Hermitian
bundle is a power the prequantum line bundle of (X,σ), we construct a map from
the Lie algebra of Ham(X,σ) into the Lie algebra of the isotropy group GX , that
when composed with the infinitesimal linear action becomes a Lie algebra homo-
morphism. By applying theorem 1 it follows that the infinitesimal linear action of
Ham(X,σ) in (TXM,ΩX) is Hamiltonian, and a formula for the momentum map
is obtained out of equation 1. Once the geometric data is plugged into the formula,
it becomes exactly 2. Summarizing, one has:

Theorem 2. Let (X2m, σ) be a closed integral symplectic manifold. Then the
Hamiltonian infinitesimal action of Ham(X,σ) on sections of the k-th power of its
prequantum line bundle described in [6], is built out of the linearization at a fixed
point of the Hamiltonian action in the non-linear Grassmannian as described in
[11]. In particular the formula 2 for the momentum map can be obtained via this
procedure.

The structure of the paper is the following: in section 2 we recall the necessary
results about the Hamiltonian linear action of the symplectic linear group Sp(2n)
in Cn with its standard symplectic structure, and the linearization about a fixed
point of Hamiltonian actions on (finite dimensional) manifolds. We explore the
generalization of the previous results to the Fréchet setting in section 3; in particular
theorem 1 is proved. In section 4 we specialize theorem 1 to the case of the non-
linear Grassmannian of symplectic submanifolds. The description of the isotropy
group is the content of subsection 4.1. Its linear action is described in subsection
4.2. The main result of this section -theorem 3- is the translation of the formula
for the momentum map entirely in terms of geometric data. Finally, in subsection
4.4 we give the proof of theorem 2.

2. Induced linear Hamiltonian actions about fixed points.

Let us consider Cn with its standard Hermitian inner product hst. By definition
ωst = −Imhst is the standard symplectic form.

Recall that the symplectic linear group Sp(2n) acts on (Cn, ωst) in a Hamiltonian
fashion: A ∈ sp(2n) is equivalent to JstA being symmetric, and thus one has the
quadratic momentum map

µ : Cn −→ sp(2n)∗

z 7−→ 〈µ(z), A〉 = −1

2
ztJstAz, (3)

If we restrict the action to the unitary group, we obtain the corresponding u(n)∗-
valued momentum map; using the Killing form (A,B) 7→ tr(A∗B) to identify u(n)
and its dual, 3 gives the u(n)-valued momentum map

µ : Cn −→ u(n)

z 7−→ i

2
zz∗. (4)

We state as a lemma the following well known result about induced linear Hamil-
tonian actions:

Lemma 1. Let (M,ω) be a symplectic manifold. Let G be a Lie group acting on
(M,ω) in a Hamiltonian fashion, with momentum map µ : M → g∗. Let x ∈ M
and let Gx denote the isotropy group of x. Then Gx acts linearly on (TxM,ωx) in
a Hamiltonian fashion with momentum map

µ(2) : TxM → g∗x, (5)



4 DAVID MARTÍNEZ TORRES

where µ(2) are the terms up to degree 2 of the expansion of µ at 0 ∈ TxM . Moreover,
the homogeneous degree 1 part of the expansion vanishes, so one can write

µ(2)(z) = µ(0) + lim
t→0

µ(tz)− µ(0)

t2
.

Remark 1. The proof follows by a simple argument on Taylor expansions: one
ends up with a symplectic linear action on a symplectic vector space, which as
recalled at the beginning of this section is Hamiltonian with quadratic momentum
map. Note that because the homomorphism Θ: Gx → Sp(2n) is not necessarily
onto, the induced momentum map may have non vanishing constant term (Sp(2n)
is simple and thus the momentum map in 3 is unique); in any case one could always
remove the constant term and still obtain a momentum map.

3. Fréchet manifolds and linear Hamiltonian actions.

Let V be an Fréchet (vector) space. A 2-form Ω on V is called weakly symplectic
if for any u ∈ V non-zero, there exists v ∈ V such that Ω(u, v) 6= 0. The pair (V,Ω)
is called a weakly symplectic Fréchet space.

It is not clear how to extend the theory of symplectic vector spaces and Hamil-
tonian linear actions to Fréchet spaces. Firstly, because in an infinite dimensional
Fréchet space weakly symplectic linear forms are not in principle equivalent, so
there might be different symplectic linear groups. Secondly, even considering a
Hermitian Fréchet space (V, h) and its associated weakly symplectic Fréchet space
(V,−Imh), unitary representations are Hamiltonian (with quadratic momentum
map as in equation 4) under the hypothesis of the Fréchet Hermitian space being
Hilbert ([13], section 49.11). Anyhow, we will see that an analog of lemma 1 exists.

Let (M,Ω) be a weakly symplectic Fréchet manifold. That is to say a Fréchet
manifoldM with a weakly symplectic closed two form (recall that Cartan calculus
goes through to Fréchet manifolds by using Koszul formula as the definition of
exterior derivative; see for example [13], section 33).

Let G be a regular Fréchet-Lie group. Regularity roughly means that each smooth
path in the Lie algebra integrates into a path in the Lie group, with an appropriate
smooth dependence ([13], definition 38.4). In particular there is an exponential
map. A consequence which we will be using is that given a smooth action

G ×M→M,

each vector ξ ∈ Lie(G) gives rise to a fundamental vector field Xξ ∈ Γ(TM) char-
acterized by the usual equation

Xξ(x) =
d

dt
etξ · x|t=0.

All the interesting Fréchet-Lie groups (diffeomorphisms of manifolds, gauge groups)
are regular. As a matter of fact no example of non-regular Fréchet-Lie group is
known [13]. We assume from now on that Fréchet-Lie groups are regular unless
otherwise stated.

Let (M,Ω) be a weakly symplectic manifold acted upon by a Fréchet-Lie group
G. The action is symplectic if as usual for all g ∈ G one has

g∗Ω = Ω.

The action is Hamiltonian if for each ξ ∈ Lie(G) one has a function µξ such that

dµξ = iXξΩ, (6)

and the following two conditions hold:

(1) (Linearity) The assignment ξ 7→ µξ is linear.
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(2) (Equivariance) For all g ∈ G, all ξ ∈ Lie(G) and all x ∈M
µξ(g · x) = µAdg−1 ·ξ(x). (7)

Now we have all the ingredients to extend lemma 1 to the Fréchet setting:

Proof of theorem 1. We start by remarking that we do not make any consideration
about Gx being a regular Fréchet-Lie group (we do have fundamental vector fields
for the action of Gx, so we can make sense of the momentum map condition). In
any case in our application in theorem 3 the isotropy groups will be seen to be
regular Fréchet-Lie groups.

We work locally in a neighborhood U of 0 in TxM = V. Equation 6 becomes an
equality of functions defined in U ×V, and linear in the second factor. The equality
still holds if we take the derivative at point u ∈ U in the direction of a vector v ∈ V,
and we need to analyze what we obtain on each side. The right hand side is the
composition of the weakly symplectic form Ω: U × V × V with the fundamental
vector field Xξ : U → U ×V. By applying the chain rule and the derivation law for
functions which are linear in some variables (theorem 3.3.4 and 3.4.4. in [10]), one
obtains the bilinear form

DiXξΩ(0, u)(v) = Ω(0)(X(1)(v), u),

where X(1)(v) is the linearization of X at 0 evaluated at v, which is the second
component of the derivative DX(0)(v).

Regarding the l.h.s. of equation 6, recall that since Xξ(0) = 0 we deduce that
Dµξ(0)(v) = 0. The result of taking derivative of the l.h.s. of 6 at u in the direction
of v is

D2µξ(0)(v, u),

which is symmetric on u, v. Let ∆: V → V × V be the diagonal map and consider

1

2
D2µξ(0)(z, z) :=

1

2
D2µξ(0) ◦∆(z)

the quadratic form associated to D2µξ(0). Because it is the composition of a linear
and a bilinear map, linear algebra easily implies

d

(
1

2
D2µξ(0)

)
(u)(v) := D

(
1

2
D2µξ(0)

)
(u)(v) = D2µξ(0)(u, v),

and thus

µξ(0) +
1

2
D2µξ(0)(z, z), z ∈ V

is a momentum map for the linear action of etξ.
As for a more precise formula for the momentum map, by theorem 3.5.6. in [10]

due to the vanishing of the derivative at zero we have

µξ(tz) =

∫ 1

0

(1− s)D2µξ(stz)(tz, tz)ds,

this giving by bilinearity of the second derivative

µξ(tz)

t2
=

∫ 1

0

(1− s)D2µξ(stz)(tz, tz)ds. (8)

If we take limits in 8, by continuity of the second derivative the limit in the r.h.s.
commutes with the integral ([10], theorem 2.1.5.) and we have

limt→0
µξ(tz)

t2
= D2µξ(0)(z, z)

∫ 1

0

(1− s)ds =
1

2
D2µξ(0)(z, z),

so

D2µξ(0)(z, z) = lim
t→0

µξ(tz)− µξ(0)

t2
,
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and therefore equation 1 holds.
Because the assignment ξ 7→ µξ is linear, it easily follows that the assignment

ξ 7→ µ
(2)
ξ

is also linear.
As for equivariance, for any g ∈ G equation 7 holds by hypothesis. We just need

to analyze what appears when we keep the terms up to degree 2 on both sides. The
r.h.s. is

µ
(2)
Adg−1 ·ξ(z).

The l.h.s. is

µ
(2)
ξ (g · z) = µ

(2)
ξ (0) +

1

2
D2µ

(2)
ξ (g · z),

and we need to prove

D2µ
(2)
ξ (g · z) = D2µ

(2)
ξ (Dg(0) · z).

But this is a straightforward computation using theorem 3.5.5. in [10] together
with the vanishing of Dµξ(0), and this proves the theorem. �

Remark 2. Observe that we may as well take as momentum map the quadratic
homogeneous part of the original momentum map (see remark 1).

4. The non-linear symplectic Grassmannian and prequantum line
bundles.

We want to apply theorem 1 to the non-linear symplectic Grassmannians, a fam-
ily of Fréchet Hamiltonian manifolds associated to any closed symplectic manifold
described in [11]. We recall their construction.

Let (M2n, ω) be a closed symplectic manifold. Fix any m ∈ {1, . . . , n − 1} and
considerM the Fréchet manifold of symplectic submanifolds of (M,ω) of dimension
2m (and open subset of the Fréchet manifold of submanifolds of dimension 2m).
This is a weakly symplectic Fréchet manifold: for any S ∈ M a vector in TSM
corresponds to a section s of the normal bundle ν(S), which we identify with the
symplectic orthogonal in TM|S to TS. The 2-form

ΩS(s1, s2) :=

∫
S

ω(s1, s2)
ωm

m!

defines a weakly symplectic structure [11].
The regular Fréchet-Lie group of Hamiltonian diffeomorphisms Ham(M,ω) acts

on M in an obvious way. The action is Hamiltonian with momentum map

µf (S) =

∫
S

f
ωm

m!
, (9)

where f ∈ ham(M,ω), i.e.
∫
M
fωn = 0 (see also [5]).

Therefore by theorem 1 we have a Hamiltonian linear action

Θ: Ham(M,ω)S → Sp(TSM,ΩS)

We would like to identify the isotropy subgroup Ham(M,ω)S , its linearized action
and its infinitesimal counterpart, and finally the momentum map formula in 1 in
terms of geometric data.
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4.1. The isotropy group Ham(M,ω)S. Let Diff(M)S be the group of diffeomor-
phisms of M preserving S setwise. Then the isotropy group at S of the action of
Ham(M,ω) in M is

Ham(M,ω)S = Ham(M,ω) ∩Diff(M)S .

Its main properties are the content of the following lemma.

Lemma 2. The group Ham(M,ω)S of Hamiltonian diffeomorphisms of (M,ω)
preserving a symplectic submanifold S of (M,ω) setwise, is a Fréchet-Lie subgroup
of Ham(M,ω). Its Lie algebra can be identified with the closed Fréchet subspace
of ham(M,ω) of functions which vanish linearly along ν(S), or equivalently with
Hamiltonian vector fields tangent to S. Moreover, it is a regular Fréchet-Lie group.

Proof. That Diff(M)S is a Fréchet-Lie subgroup of Diff(M) is a result of Ebin and
Marsden [7]. Also Ham(M,ω) is a regular Fréchet-Lie group [13]. We need to
modify the proof of the latter result to prove our relative statement.

Recall that for the group of diffeomorphisms ([13], section 43) the construction
of Fréchet charts requires a local addition

α : U ⊂ TM →M ×M,

which is a local diffeomorphism defined in a neighborhood of the zero section, which
identifies the latter with the diagonal in M ×M . For the relative construction we
fix a local addition such that it restricts to a local addition

αS : U ∩ TS → S × S.

This is always possible using tubular neighborhood theorems for S or using a metric
for which N is totally geodesic. A computation shows that for ϕ ∈ Diff(M)S the
chart constructed using the relative addition sends Diff(M)S to the closed Fréchet
subspace

Γ(TM)S = {X ∈ Γ(TM) |X|S ∈ Γ(TS)}.
Therefore Diff(M)S is a Fréchet submanifold of Diff(M), and thus a Fréchet-Lie
subgroup since the smooth structural maps for Diff(M) restrict to smooth structural
maps for Diff(M)S [7].

We want to include into the picture the symplectic structure. Recall that to find
charts for the groups of Hamiltonian and symplectic diffeomorphisms, one further
fixes a bundle isomorphism

β : T ∗M → TM

and corrects with a diffeomorphism

γ : V ⊂ T ∗M →W ⊂ T ∗M

which is the identity in the zero section and such that

(α ◦ β ◦ γ)∗(ω ⊕−ω) = dλ,

where λ is the canonical 1-form. The universal covering space of Ham(M,ω) is
defined as a subgroup of the universal covering of Diff(M,ω), the group of sym-
plectic diffeomorphisms, by identifying it with the kernel of the flux homomorphism

defined in the latter. The Fréchet spaces parameterizing points in ˜Diff(M,ω) and

˜Ham(M,ω) near the identity correspond to closed and exact 1-forms respectively,
the latter identified with zero symplectic mean functions ([13], 43.12 and 43.13).
We claim that such chart can be understood as a local chart near the identity for
Diff(M,ω) and Ham(M,ω), and we will use it in this sense. The claim holds be-
cause the flux conjecture it is true [17]. That means that is the open subset is small
enough, we will only have Hamiltonians given by exact 1-forms.
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If we use the relative local addition described above, it follows that Hamiltonian
diffeomorphisms preserving S setwise correspond to exact 1-forms whose image by
(β ◦γ)−1 is tangent to S. The slight complication is that the latter condition is not
linear on exact 1-forms and does not define a closed Fréchet subspace to be taken
as the modeling one for our Fréchet submanifold. To correct that, we first assume
that β is given by the sharp diffeomorphism associated to the symplectic form ω.
Let E be the subbundle of T ∗M|S of 1-forms vanishing in the symplectic orthogonal
ν(S). The sharp diffeomorphism sends vector fields tangent to S to 1-forms whose
restriction to S belongs to E. As remarked above, this is a closed Fréchet subspace
of Ω1(M), but when composed with γ is not linear anymore, since γ(E) is not nec-
essarily a vector bundle over S. In any case, near the zero section E is a symplectic
submanifold of (T ∗M,dλ) which contains S as a Lagrangian submanifold. More-
over, γ(E) is tangent to E along S. Both γ(E) and E are symplectic submanifolds
of (T ∗M,dλ) whose symplectic forms coincide along S. Due to the transitivity of
the action of Hamiltonian diffeomorphisms on connected components of non-linear
symplectic Grassmannians, it is not hard to find δ : (T ∗M,dλ) → (T ∗M,dλ) a
Hamiltonian diffeomorphism which fixes the zero section and sends E to γ(E).

For the relative construction we use the chart centered at the identity

α ◦ β ◦ γ ◦ δ : Y ⊂ T ∗M →M ×M,

and the induced induced ones for any ϕ ∈ Ham(M,ω)S . By construction, they send
Hamiltonian diffeomorphism preserving S setwise to exact 1-forms whose restriction
to S lies in E. Thus they are submanifold charts and define a Fréchet-Lie subgroup
of Ham(M,ω).

As for the description of the Lie algebra of Ham(M,ω)S , one uses that the
evolution operator for the group of diffeomorphisms

Evol : C∞(R,Γ(TM))→ C∞(R,Diff(M))

is explicitly given by solving the O.D.E.

d

dt
ϕt = Xt(ϕt).

Thus, paths in the Fréchet-Lie subgroup Ham(M,ω)S are identified with Hamilton-
ian vector fields tangent to S, which we canonically identify with zero symplectic
mean functions with linear vanishing along ν(S).

Thus we have

ham(M,ω)S = {f ∈ C∗(M) |
∫
M

fωn = 0, df|ν(S) = 0}.

Similarly, because the restriction of the evolution operator

Evol : C∞(R,Γ(TM))→ C∞(R,Diff(M))

to ham(M,ω)S takes values in Ham(M,ω)S , it is smooth and hence Ham(M,ω)S
is a regular Fréchet-Lie group. �

4.2. The linear action. As for the linear action

Θ: Ham(M,ω)S → (TSM,ΩS),

given ϕ ∈ Ham(M,ω)S , we let ϕ(1) be the induced bundle isomorphism on ν(S).
Then one has

Θ(ϕ) · s = ϕ(1) ◦ s ◦ ϕ−1.

If X ∈ Γ(TM) by [11] the induced vector field X ∈ Γ(TM) is

X (N) = X|ν(N).
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If the vector field is tangent to S, in a chart given by sections of ν(S) for any
s ∈ Γ(ν(S)) one can take as common model of the normal bundle ν(S), and write

X (s) = X|ν(S)(s(S)),

where the restriction to ν(S) at s(S) uses in the splitting given by the tangent space
to the graph of the section and ν(S).

Its linearization is

X (1)(s) =
d

dt
X|ν(N)(ts(S))|t=0.

This implies that if we have two vector fields tangent to S whose difference is
at least quadratic at any point in S (for example for any connection in ν(S) the
difference has quadratic vertical and horizontal components), then they have the
same linearization. In particular all functions f ∈ ham(M,ω)S vanishing at order
at least three belong to the kernel of the Lie algebra homomorphism associated to
the infinitesimal linear action

θ : ham(M,ω)S → sp(TSM,ΩS).

4.3. The momentum map formula. To write the formula for the momentum
map in 1 in terms of geometric data we will use a suitable normal form for the
symplectic form near S. We identify a neighborhood of S with a neighborhood of
the zero section in π : ν(S)→ S. The latter is a symplectic bundle. We can reduce
its structural group to the unitary one fixing a Hermitian metric h, and we also
pick a Hermitian connection ∇. According to [18], the total space of ν(S) carries
a closed 2-form ωc -the coupling form- which restricts to the fibers to the standard
symplectic form associated to the fiberwise Hermitian metric −Imh, and whose
kernel is the horizontal distribution of ∇. If we let ωS denote the restriction of ω to
S, then π∗ωS +ωc is a closed to form which is symplectic near the zero section, and
agrees with ω in the tangent space to points in the zero section. By the symplectic
tubular neighborhood theorems, we can assume than ω matches π∗ωS + ωc near
the zero section. Since the computation of the Taylor expansion of the momentum
map about S ∈ M only depends in arbitrarily small neighborhoods of S, we may
assume without loss of generality that our symplectic manifold is (ν(S), π∗ωS+ωc).

We need a final piece of notation. Given f ∈ ham(M,ω)S we will look at its
quadratic expansion along directions normal to S, and write it as a sum of two
homogeneous terms

f (2) = fS +Hνf,

the restriction to S and the Hessian along normal directions.

Theorem 3. Let (M,ω) be a symplectic a closed symplectic manifold, (M,Ω)
the Grassmannian of 2m-dimensional symplectic submanifolds, and S a point in
M. Let us identify a neighborhood of S in (M,ω) with a neighborhood of the zero
section in (ν(S), π∗ωS +ωc). Then the momentum map formula in 1 for the linear
Hamiltonian action of Ham(M,ω)S in (TSM,ΩS) can be written

µ
(2)
f (s) =

∫
S

f (2)ω
m

m!
− i

2
f

(
(∇s ∧∇s̄− tr(F∇ss

∗) ∧ ωm−1

(m− 1)!

)
, (10)

where f ∈ ham(M,ω)S, the complex conjugation and adjoint operators are defined
after identifying the fibers of ν(S) with Cm via the Hermitian metric h, and F∇ is
the curvature of the connection induced by ∇ in the corresponding principal unitary
bundle,
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Proof. Let us fix f ∈ ham(M,ω)S . For any s ∈ Γ(ν(S)) the first summand of the
momentum map in 3 is always

µf (S) =

∫
S

f
ωm

m!
=

∫
S

fS
ωm

m!
. (11)

Given s ∈ Γ(ν(S)), we let φs : S → s(S) denote the diffeomorphism given by the
section itself. We can express the second summand in 3 as

lim
t→0

1

t2

(∫
ts(M)

f
ωm

m!
−
∫
S

f
ωm

m!

)
= lim
t→0

1

t2

(∫
S

φ∗ts(f
ωm

m!
)− f ω

m

m!

)
. (12)

In the Taylor expansion in t of the terms inside in the integral of the r.h.s. of 12,
we can neglect terms of order bigger or equal than three. Therefore, the r.h.s. of
12 equals

lim
t→0

1

t2

(∫
S

(fS +Hνf(ts))φ∗ts
ωm

m!
− fS

ωm

m!

)
. (13)

Pulling the time parameters out of the Hessian and taking limits we get

lim
t→0

1

t2

(∫
S

φ∗ts(f
ωm

m!
)− fS

ωm

m!

)
=

∫
S

Hνf(s)
ωm

m!
+

(∫
S

fS lim
t→0

φ∗tsω
m − ωm

m!t2

)
.

(14)
To compute the quadratic expansion in t of φ∗tsω

m − ωm we will need the three
results:

• Given X ∈ Γ(TS), if we let X̃ be its horizontal lift w.r.t. the connection
∇, then

Dφs(X) = X̃ +∇Xs (15)

is a decomposition into horizontal and vertical part.
• The vertical and horizontal distributions are symplectically orthogonal.
• Recall that the curvature of the induced connection in the principal uni-

tary bundle associated to ν(S) is a u(n)-valued 2-form, that we denote
by F∇. Any pair of vector fields X1, X2 defines a curvature vector field
F∇(X1, X2) ∈ Γ(Tν(S)). This is of course a vertical vector field, and it is
Hamiltonian (the fibers of ν(S) are identified with (Cm, hstd)) with Hamil-
tonian function

ωc(X̃1, X̃2) (16)

This Hamiltonian function vanishes on the zero section, so by 4 we have

ωc(s)(X̃1, X̃2) =
i

2
tr(F∇(X1, X2)ss∗). (17)

We use 15 to write

φ∗tsω
m − ωm(0)(X1, . . . , X2m) =ωm(ts)(X̃1 + t∇X1

s, . . . , X̃2 + t∇X2m
s)−

− ωm(0)(X1, . . . , X2m).
(18)

We want to understand the quadratic expansion in t of 18. Let Sh(2, (m). . . , 2) be
all possible ways of arranging m pairs of numbers in 1, . . . , 2m. By definition

ωm(ts)(X1, . . . , X2m) =
∑

α∈Sh(2,(m)... ,2)

m∏
j=1

ω(ts)(Xα(2j−1), Xα(2j)),

and we may write each summand
m∏
j=1

ω(ts)(X̃α(2j−1) + t∇Xα(2j−1)
s, X̃α(2j) + t∇Xα(2j)

s).
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Because the horizontal and vertical distributions are symplectically orthogonal,
on each factor no mixed terms appear. Since we are interested in the quadratic

expansion each α ∈ Sh(2, (m). . . , 2) just contributes with m+1 summands, which we
can regroup into m containing a pair of vertical vector fields

m∑
i=1

t2ω(ts)(∇Xα(2i−1)
s,∇Xα(2i)

s)
∏
j 6=i

ω(ts)(X̃α(2j−1), X̃α(2j)), (19)

and a final summand containing just horizontal vector fields

m∏
j=1

ω(ts)(X̃α(2j−1), X̃α(2j)). (20)

Because ω on vertical vector fields coincides with the coupling 2-form, we have

ω(ts)(∇Xα(2i−1)
s,∇Xα(2i)

s) = −Imh(∇Xα(2i−1)
s,∇Xα(2i)

s).

Since we can use the Hermitian metric to define a conjugate bundle and and induced
connection, we can express 20 as

− i
2
∇s ∧∇s̄(Xα(2j−1), Xα(2j)). (21)

In particular if we divide 19 by t2 and take the limit when t goes to zero we obtain
m∑
i=1

− i
2
∇s ∧∇s̄(Xα(2j−1)s,∇Xα(2j)

) ·
∏
j 6=i

ω(0)(X̃α(2j−1), X̃α(2j)),

and summing over all α ∈ Sh(2, (m). . . , 2) and dividing by m! we obtain

− i
2
∇s ∧∇s̄ ∧ ωm−1

(m− 1)!
(0). (22)

It remains to compute

lim
t→0

∑
α∈Sh(2,(m)... ,2)

∏m
j=1 ω(ts)(X̃α(2j−1), X̃α(2j))− ωm(0)(Xα(1), . . . , Xα(2m))

m!t2
.

(23)
We have

ω(ts)(X̃α(2j−1), X̃α(2j)) = ωc(ts)(X̃α(2j−1), X̃α(2j)) + π∗ωS(ts)(X̃α(2j−1), X̃α(2j)).

By equation 17

ωc(ts)(X̃α(2j−1), X̃α(2j)) =
i

2
tr(F∇(Xα(2j−1), Xα(2j))t

2ss∗) =

=
i

2
t2tr(F∇(Xα(2j−1), Xα(2j))ss

∗).

Because

π∗ωS(ts)(X̃α(2j−1), X̃α(2j)) = ω(ts)(Xα(2j−1), Xα(2j)),

when we take the limit in 23 we obtain

i

2
tr(F∇ss

∗) ∧ ωm−1

(m− 1)!
(0). (24)

So the formula for the momentum map -which is the result of adding equations
11, 22, the first summand in 14 and 24- is∫

S

f (2)ω
m

m!
− i

2
f((∇s ∧∇s̄− tr(F∇ss

∗) ∧ ωm−1

(m− 1)!
),

and this proves the theorem. �
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4.4. The proof of theorem 2. More generally, we start with π : (E,∇, h) →
(X,σ) a unitary vector bundle over a compact symplectic manifold. By the uni-
versal phase space construction we can find a coupling form σc(E) so that for small
ε > 0 the 2-form

π∗σ + εσc(E) (25)

is symplectic.
Because we want a compact ambient manifold, we may rather apply the sym-

plectic coupling construction to the projectivization P(E) as in [16], section 6.4,
and obtain ω = π∗σ + εσc(E) a symplectic structure which equals 25 near the zero
section.

We would like to find a map

τ : ham(X,σ)→ ham(P(E), ω)X

such that the composition

ρ := θ ◦ τ : ham(X,σ)→ sp(TXM,ΩX)

is a Lie algebra homomorphism. In that way -and leaving aside the equivariance
property- for the infinitesimal linear action ρ we would have the momentum map

µf (z) := µτ(f). (26)

The Hamiltonian bundle (P(E), ω) carries a fiberwise Hamiltonian function ζ.
Its restriction to the fiber of E is exactly 4 times ε. We will assume now that E is
L the k-th power of the prequantum line bundle. Then the fiberwise Hamiltonian
is real valued, and its associated Hamiltonian vector field is the fundamental vector
field of the S1-action

Xζ = R. (27)

For any f ∈ ham(X,σ) we define

τ(f) := π∗f(1 + kζ). (28)

By applying the Cavalieri’s principle to the fibers, it is clear that τ(f) ∈ ham(P(E), ω).
Because τ(f) has vanishing linear part along the normal directions at the zero sec-
tion, we conclude that τ ∈ ham(P(E), ω)X .

We let K denote the group of unitary bundle automorphisms of (L, h) which
preserve the Hermitian connection. It is well known that we have the following Lie
algebra monomorphism

ham(X,σ) −→ Lie(K)

f 7−→ Xf,K := X̃f + kπ∗fR,

and by taking the linearization about X we have a Lie algebra homomorphism

ham(X,σ) −→ sp(TXM,ΩX)

f 7−→ X (1)
f,K .

Thus if we prove that

ρ(f) = X (1)
f,K (29)

we can conclude that ρ is a Lie algebra homomorphism.
To check that 29 holds we need to show that Xf,K and Xτ(f) induce vector

fields in TXM with the same linearization. According to subsection 4.2 it suffices
to check that their difference vanishes at X linearly.

We have

dτ(f) = (1 + kζ)π∗df + kπ∗fdζ

Because ζ is constant along sphere bundles and the connection is Hermitian, dζ
vanishes on the horizontal distribution. Because π∗f is constant along the fibers
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π∗df vanishes along the vertical distribution. Since these two distributions are
symplectically orthogonal

Xτ(f) = (1 + kζ)Xπ∗fkπ
∗f +Xζ ,

where the Hamiltonian vector fields can also be computed for the restriction of the
symplectic form to vertical and horizontal distributions respectively. Using 27 we
obtain

Xτ(f) = (1 + ζ)Xπ∗f + kπ∗fR.

Because we can neglect quadratic terms it suffices to show

Xπ∗f = X̃f +O(2). (30)

The Hamiltonian vector field can be computed w.r.t. restriction of ω to the hor-
izontal distribution, which we identify with the tangent bundle of X. By 25 the
corresponding 2-form is

σ + εωc|H .

The coupling form vanishes along the zero section, and closedness implies that
this vanishing is necessarily linear, thus 30 holds and therefore ρ is a Lie algebra
homomorphism.

The momentum map formula is

µf (s) := µτ(f)(s) =

∫
S

τ(f)(2)σ
m

m!
− i

2
f(ε(∇s ∧∇s̄− tr(F∇ss

∗) ∧ σm−1

(m− 1)!
).

Using that f ∈ ham(X,σ), F∇ = −kiσ and

Hντ(f)(s) =
1

2
εfkss̄

we get

µf (s) = ε

∫
S

f

(
− i

2
∇s ∧∇s̄ ∧ σm−1

(m− 1)!
+

1

2
kss̄

σm

(m− 1)!
+

1

2
kss̄

σm

m!

)
.

This is a momentum map for the infinitesimal action on the symplectic vector
space (Γ(L),ΩX), where

ΩX(s1, s2) =

∫
X

εσ(s1, s2)
σm

m!
.

Dividing the symplectic form ΩX by ε we recover the formula in 2.
Regarding the equivariance issue, since ham(X,σ) injects in K, one has the

adjoint action of K in ham(X,σ). It is easy to verify that the momentum map in
2 is equivariant w.r.t. this action.

As mentioned at the beginning there is a slight discrepancy between formula 11
in [6] and ours. With our conventions, we believe formula 13 in [6]

∇Xf s ∧ wm−1 = −df ∧∇s ∧ σm−1

should rather be

∇Xf s ∧ wm−1 = −mdf ∧∇s ∧ σm−1. (31)

This would follow from

0 = iXf (∇s ∧ ωm) = ∇Xf s ∧ ωm +mdf ∧∇s ∧ ωm−1.

Using 31 instead of formula 13 in [6], then formula 11 in [6] becomes our formula 2.
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