
A NOTE ON STRICT C-CONVEXITY

DAVID MARTÍNEZ TORRES

Abstract. We establish a relation between strict C-convexity of a real hy-

persurface of Cn and the behavior of its complex Gauss map. In that way
we recover -with an improvement on the regularity- the known results about

the topology of these hypersurfaces by using elementary differential geomet-

ric arguments. Our approach can be though of as being a complex analog of
the description of strictly convex hypersurfaces in Euclidean space via Morse

functions associated to pencils of hyperplanes.

1. Introduction

Let Ω ⊂ RN be a bounded connected open subset. Convexity of Ω is an affine
notion and two approaches are possible: a global or synthetic one in which the
intersection of Ω with any affine line is asked to be either empty of connected, and
an infinitesimal or analytical one which assumes ∂Ω to be a C2-hypersurface, and
requires its Euclidean shape operator to be definite positive at every point.

Convexity can be generalized to the complex setting in two different ways, ac-
cording to whether we want it to be a complex analytic or a complex affine property.
In the first case the appropriate notion is that of (Levi) pseudoconvexity. We say
that Ω ⊂ CN an open bounded domain with C2-boundary is pseudoconvex if at
each point of ∂Ω the Levi form is definite positive. Recent work of Krantz [4] shows
that a semilocal approach to pseudoconvexity is possible: if all holomorphic closed
disks of small enough diameter whose boundary lie in ∂Ω lie entirely in Ω, then the
domain is pseudoconvex.

A bounded connected open subset Ω ⊂ CN is C-convex if the intersection of
Ω with any complex affine line is either empty or 1-connected. C-convexity is
a complex affine notion. It also admits an infinitesimal reformulation: for each
x ∈ ∂Ω let

Dx := Tx∂Ω ∩ JTx∂Ω,

where J : CN → CN denotes complex multiplication. We use the sign convention
which identifies the Euclidean shape operator for ∂Ω, with the differential of the
Gauss map ∂Ω→ S2N−1 which sends a point x ∈ ∂Ω to the outward pointing unit
vector normal to Tx∂Ω; in that way the Euclidean shape operator for the sphere is
strictly positive definite.

Definition 1. A bounded connected domain Ω ⊂ CN with boundary of class Ch,
h ≥ 2, is (strictly) C-convex if for any point x ∈ ∂Ω the restriction of the Euclidean
shape operator to Dx is (strictly) positive definite.

Convexity implies C-convexity, and C-convexity implies pseudoconvexity. In
particular strictly C-convex domains have contact boundary.
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Topologically, C-convex domains are quite elementary since they are known to
be homeomorphic to balls (theorem 2.4.2 in [1] or theorem 4.6.12 in [2]). This is
proved using the global or synthetic approach to C-convexity, and with very non-
trivial tools such as a parametric version of the Riemann mapping theorem. For
a strict C-convex hypersurface of class C∞, very deep work of Lempert [5] gives a
diffeomorphism from ∂Ω to the sphere (via the Lempert uniformization maps). In
this note we want to exploit the infinitesimal point of view to prove

Theorem 1. A strict C-convex hypersurface of class Ch, h ≥ 2, is Ch−1-diffeomorphic
to the sphere.

The relevance of theorem 1 is not quite the outcome -the improvement of regularity-
but rather the new approach used. We will show that basic constructions for strictly
convex hypersurfaces in Euclidean space admit a complex analog for strictly C-
convex hypersurfaces. Namely, for a strictly convex hypersurface ∂Ω a pencil L of
(real) hyperplanes whose base does not intersect Ω, determines a Morse function
φL : ∂Ω→ R of the simplest kind: it has just two critical points, a global minimum
and a global maximum, and hence Morse theory already implies that ∂Ω is home-
omorphic to the sphere (theorem 4.1. in [8]). Any hypersurface of CN carries a
canonical CR structure. If ∂Ω is strictly C-convex, a pencil of complex hyperplanes
whose base B does not intersect Ω determines a function φL : ∂Ω → C, which can
be naturally understood as a Morse function in the CR setting. Moreover, it will be
seen to be of the simplest kind -in the sense that the critical set and critical values
are as elementary as possible- and basic tools from Morse theory and homotopy
theory will allow us to prove that ∂Ω is homeomorphic to a sphere, and ultimately
Ch−1-diffeomorphic to it.

Strictly C-convex domains are very important from the point of view of hyper-
bolic geometry: the aforementioned work of Lempert shows that in the smooth case
each point and direction determines a unique extremal holomorphic disk, which can
be extended to the boundary. This disk gives the Kobayashi distance between any
two of its points; dually, each extremal disk is a holomorphic retract (determines
a holomorphic projection) which gives the Caratheodory distance between any two
of its points [6]. When Ω is a ball, a maximal disk is exactly the intersection of
Ω with a complex line; the dual projection is the map associated to a pencil of
hyperplanes; if the ball is centered at the origin, then for a disk through the origin
the projection is the Hermitian orthogonal one, and thus the pencil has base a
codimension 2 complex subspace contained in the hyperplane at infinity. When Ω
is not a ball, extremal disks and their dual retractions are not linear anymore. Our
work shows that the linear dual projections -which are not Caratheodory extremal-
are still very efficient in keeping track of the differential geometry of the boundary
of the domain.

The structure of this note is as follows: In section 2 we notice a connection be-
tween strict C-convexity of ∂Ω and its complex dual map. In section 3 we introduce
a natural analog of Morse functions in the CR setting, and show how certain pen-
cils of hyperplanes provide such functions when restricted to hypersurfaces whose
complex dual map is an immersion. The proof of theorem 1 is completed in section
4 by showing that strict C-hypersurfaces admit the most elementary CR Morse
functions. The techniques are a combination of standard facts in dual geometry,
homotopy theory, differential topology and topology of the plane.

The notion of C-convexity -and thus also the one of strict C-convexity- is relevant
from the point of view of analytic function theory (see [7] where it was introduced
under the name of strong linear convexity, and also [1, 2]). Perhaps this new ap-
proach to strictly C-convex domains may reveal interesting features of their analytic
function theory.
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2. Strictly C-convex hypersurfaces and dual geometry

All our manifolds and maps among them will be of class Ch, h ≥ 2.
Let M be a hypersurface inside CPN . In this section we want to make precise

the relation between the shape operator along the canonical CR distribution Dx,
x ∈M , and the way these complex hyperplanes vary in dual projective space. This
relation -which is the content of lemma 1- is known to experts, but we have not
found it explicitly stated in the literature.

The complex dual map is

ν : M −→ CPN∗ (1)

x 7−→ DxM,

where DxM is the complex projective hyperplane through x tangent to Dx. The
image of M by the complex dual map is M∗, the set of complex hyperplanes which
are not transverse to M .

Let Z0, . . . , ZN be homogeneous coordinates in CPN . Let CN be the domain of
the affine chart with affine coordinates z1, . . . , zN , zj = Zj/Z0, zj = xj + iyj . For
any x ∈ M , we can find a projective transformation sending (i) x to the origin of
the affine chart z0, (ii) Dx to the complex hyperplane D0 with equation zN = 0,
and (iii) TxM to the real hyperplane with equation yN = 0.

The parametrization

ψ : U ⊂ CN−1 × R −→ M ∩ CN (2)

(w1, . . . , wN−1, t) 7−→ (w1, . . . , wN−1, t+ iϕ(w, t))

is obtained by inverting the orthogonal projection π : M ∩ CN → TxM .
Since Dx is TxM ∩ JTxM , about z0 we have

Dψ(w,t)M ≡
N−1∑
j=1

(
∂ϕ

∂vj
+ i

∂ϕ

∂uj

)
zj +

(
−1 + i

∂ϕ

∂t

)
zN = 0, (3)

where wj = uj + ivj . Equivalently,

Dψ(w,t)M ≡
N−1∑
j=1

2i
∂ϕ

∂wj
zj +

(
−1 + i

∂ϕ

∂t

)
zN = 0.

Definition 2. Let ψ : U ⊂ CN−1 × R→ M ∩ CN be a local parametrization of M
constructed as in (2). The complex Gauss map G : U → CPN−1∗ is defined to be
the map sending a point x to the linear hyperplane in CN parallel to Dx. Using our
fixed coordinates in U and zN = 1, its components are

G(w, t)j =

(
−1− i∂ϕ∂t

)
1 +

(
∂ϕ
∂t

)2

(
∂ϕ

∂vj
+ i

∂ϕ

∂uj

)
=

2
(
∂ϕ
∂t

)
− 2i

1 +
(
∂ϕ
∂t

)2

∂ϕ

∂wj
, j = 1, . . . , N − 1.

By construction the complex dual map ν : U → CN ⊂ CPN∗ is the complex
Gauss map together with the component

νN (w, t) =

N−1∑
j=1

(
−2∂ϕ∂t + 2i

)
1 +

(
∂ϕ
∂t

)2

∂ϕ

∂wj
wj − (t+ iϕ).

One checks dνN (0) = ∂
∂tνN (0) = −1. Hence injectivity of the differential of ν is

equivalent to dG(0) being an isomorphism when restricted to the hyperplane t = 0.
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Definition 3. A hypersurface in CPN is said to have immersed dual set if the
(complex) dual map (equation (1)) is a local embedding.

Lemma 1. If ∂Ω ⊂ CN is a strictly C-convex hypersurface then the dual map is a
local embedding.

Proof. Using the parametrizations introduced above and the description of the
dual map and complex Gauss map, the non-degeneracy of the differential of the
dual map is equivalent to the non-degeneracy of the of the Hessian of ϕ(u, v, 0)
at 0 in the coordinates u, v. By the construction of the charts, the correspond-
ing matrix is the matrix of the Euclidean shape operator along D0 in the basis
∂/∂x1, ∂/∂y1, . . . , ∂/∂xN−1, ∂/∂yN−1. Note that the Euclidean metric we use is
the one furnished by the chosen affine coordinates. The signature of the Euclidean
shape operator of a hypersurface at any point is an affine invariant, meaning that
it does not change if we compute the shape operator with respect to any metric
in the orbit of the Euclidean metric by the affine group, and thus the lemma is
proved. �

Remark 1. In this note we insist on not using properties of the global or synthetic
definition of strict C-convex hypersurfaces, and just working with the infinitesimal
definition. A consequence of strict C-convexity is that a tangent hyperplane only
intersects ∂Ω at a tangency point (i.e. the dual map is an embedding). At this
point we note for further use that this is seen to hold semilocally from the coordinate
description above (see also corollary 2).

3. CR Morse functions

In this section we introduce the notion of CR-Morse function. We show that for
projective hypersurfaces with immersed dual set, the Morse condition for CR func-
tions coming from pencils of hyperplanes is equivalent to the obvious transversality
condition in the dual projective space.

A real function is Morse if its differential is transverse to the zero section of the
cotangent bundle. The generalization to the CR setting is as follows: let (M,D, J)
be a CR manifold of hypersurface type and f : M → C a complex valued C2-map.
We can write the restriction to D of the differential uniquely as a sum of a complex
linear and and complex anti-linear part

dDf = ∂Df + ∂̄Df.

The function is CR if and only if ∂̄Df = 0, so its differential restricted to D is a
section of

T ∗1,0D := {h ∈ HomC(Dx,C), |x ∈M}.
Let q : T ∗1,0D → M be the projection onto the base and let 0 denote the zero

section.

Definition 4. A section s ∈ Γ(T ∗1,0D) is transverse to 0 along D if for all x with
s(x) ∈ 0 we have

(dq)−1
s(x)(Dx) = (Ts(x)0 ∩ (dq)−1

s(x)(Dx)) + ds(Dx).

Transversality along D is stronger than usual transversality. If (M,D, J) is Levi-
Flat, then transversality along D is simply foliated transversality. Definition 4 is
the natural extension of the latter notion to the non-integrable setting.

Definition 5. A CR function f : M → C is Morse if ∂Df is transverse to 0 along
D.

Very much as critical points of (real) Morse functions are isolated, elementary
transversality theory gives the following:
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Lemma 2. Let f : M → C be a Morse CR function. Then the set of singular points

ΣDf := ∂Df
−1(0)

is a 1-dimensional submanifold transverse to D.

Remark 2. More generally the Morse condition is defined for CR functions taking
values on Riemann surfaces, so that when composed with any holomorphic chart it
yields a CR Morse function as in definition 5.

If M is a real hypersurface of a complex manifold, then the restriction of any
holomorphic function to M is a CR function w.r.t. the canonical induced CR
structure (of hypersurface type). Now let M be a real hypersurface of CPN .

Let L ⊂ CPN∗ be a pencil of hyperplanes, L ≡ λH0 +µH1, λ, µ ∈ C, H0, H1 ∈ L,
and consider

φL : M\B −→ CP1 (4)

x 7−→ [H0(x) : H1(x)]

its associated CR map, where B = M ∩H0 ∩H1 are the base points.
Let M have immersed dual set M∗. We say that a pencil of hyperplanes

L ⊂ CPN∗ intersects M∗ transversely if for any x∗ ∈ L ∩M∗, L has transverse
intersection with all the branches of M∗ through x∗.

Definition 6. A pencil L ⊂ CPN∗ is a Lefschetz pencil for M if M∗ is immersed
and L intersects M∗ transversely.

It is an elementary duality result that H0 ∩H1 is transverse to M if and only if
L is transverse to M∗, so in particular for a Lefschetz pencil B is either empty or
a real codimension four CR submanifold of M . As the following result, Lefschetz
pencils should be an important tool for the study of real hypersurfaces of CPN with
immersed dual set.

Proposition 1. Let M ⊂ CPN be a real hypersurface with immersed dual set. Let
L be a pencil of hyperplanes. Then the associated map φL : M\B → C of equation
(4) is CR Morse.

Proof. Let L ≡ λH0 + µH1 be a pencil for M . We want to check the assertion
about ∂DφL being transverse to 0 along D. We assume w.l.o.g. by composing with
an affine chart of CP1 that φL takes values in C. Consider the composition

g := φL ◦ ψ : U ⊂ Cn × R −→ C

(w, t) 7−→ t+ iϕ(w, t)

H1(ψ(w, t))
.

In CN−1 × R we have the standard CR structure Dh given by the hyperplanes
CN−1 × {·}; the (1,0) part of the complexified cotangent bundle is

D∗1,0h := CN−1∗ × (CN−1 × R).

The inverse of the parametrization ψ is defined by the projection

π : CN = CN−1 × R× R→ CN−1 × R.

The complex projection

πC : CN = CN−1 × C→ CN−1
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induces a bundle map πC∗ : D → Dh which sends the complex hyperplane over z to
its projection by πC over π(z). It is a map of complex vector bundles and so is its
dual map

π∗ : D∗1,0h → D∗1,0.

As a result we have the following commutative diagram:

D∗1,0h
π∗

−−−−→ D∗1,0y y
U ⊂ CN−1 × R ψ−−−−→ M

(5)

Usual transversality of a submanifold to the zero section of a vector bundle is
preserved by an isomorphism of vector bundles. It is also true that transversality
along D at z0 = ψ(0) is equivalent to transversality along Dh at 0, because those
subspaces are preserved by the map π = ψ−1 between the base spaces of the bundles.
Therefore, ∂DφL ∈ Γ(D∗1,0) is transverse along D to 0 if and only if

π∗∂DφL := (π∗)−1 ◦ ∂DφL ◦ ψ

is transverse along Dh to the zero section of D∗1,0h .
Taking into account equation (3),

π−1
∗

(
∂

∂uj

)
=

∂

∂xj
+
− ∂ϕ
∂uj

∂ϕ
∂t + ∂ϕ

∂vj

1 +
(
∂ϕ
∂t

)2

∂

∂xN
+

∂ϕ
∂vj

∂ϕ
∂t + ∂ϕ

∂uj

1 +
(
∂ϕ
∂t

)2

∂

∂yN
. (6)

The pencil L induces a map Φ: CPN\H0 ∩ H1 → C which in our charts has the
formula

(z1, . . . , zN ) 7→ zN
H1(z1, . . . , zN )

.

Its differential is

dzN
H1(z)

− zNdH1(z)

H2
1 (z)

.

Thus, up to terms of order 2, and only along the hyperplane t = 0, equation (6)
implies

π∗∂DφL(u1, v1, . . . , uN−1, vN−1) =

N−1∑
j=1

(
N−1∑
p=1

∂2ϕ

∂vj∂up
up +

∂2ϕ

∂vj∂vp
vp

)
duj(7)

+i

(
N−1∑
p=1

∂2ϕ

∂uj∂up
up +

∂2ϕ

∂uj∂vp
vp

)
duj .(8)

Transversality of the above section to the zero section at 0, is equivalent to the
linear independence over the reals of the following 2n vectors in CN = R2N :

∂

∂u1
π∗∂Dφ(0),

∂

∂v1
π∗∂Dφ(0), . . . ,

∂

∂uN−1
π∗∂Dφ(0),

∂

∂vN−1
π∗∂Dφ(0). (9)

According to equation (9) the corresponding matrix is
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∂2ϕ
∂v1∂u1

∂2ϕ
∂u1∂u1

∂2ϕ
∂v2∂u1

∂2ϕ
∂u2∂u1

. . . ∂2ϕ
∂vN−1∂u1

∂2ϕ
∂uN−1∂u1

∂2ϕ
∂v1∂v1

∂2ϕ
∂u1∂v1

∂2ϕ
∂v2∂v1

∂2ϕ
∂u2∂v1

. . . ∂2ϕ
∂vN−1∂v1

∂2ϕ
∂uN−1∂v1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂2ϕ

∂v1∂uN−1

∂2ϕ
∂u1∂uN−1

∂2ϕ
∂v2∂uN−1

∂2ϕ
∂u2∂uN−1

. . . ∂2ϕ
∂vN−1∂uN−1

∂2ϕ
∂uN−1∂uN−1

∂2ϕ
∂v1∂vN−1

∂2ϕ
∂u1∂vN−1

∂2ϕ
∂v2∂vN−1

∂2ϕ
∂u2∂vN−1

. . . ∂2ϕ
∂vN−1∂vN−1

∂2ϕ
∂uN−1∂vN−1


It coincides up to permutation of columns with the Hessian of ϕ(w, 0) at 0. There-
fore ∂DφL is transverse along D to 0 at z0 if and only if the dual map is an
immersion at z0. �

Remark 3. We observe as well that φL(ΣDφL) is an immersed curve. The Morse
CR function φL is the restriction of a holomorphic submersion Φ: CPn\H0∩H1 →
CP1. A point x ∈ ΣDφL is by definition a point where dΦx vanishes along Dx. By
lemma 2 the tangent space of ΣDφL at x is transverse to Dx. If φL fails to immerse
ΣDφL at x, then the kernel of dΦx would contain the real hyperplane TxM . But
since dΦx is complex linear, we would have dΦx = 0, this contradicting that Φ is a
submersion.

Corollary 1. If ∂Ω ⊂ CN is a strictly C-convex hypersurface, then for any pencil
of hyperplanes L which contains a hyperplane which does not intersect ∂Ω (for
example those with the base contained in the CPN−1 at infinity), φL : ∂Ω→ C is a
CR Morse function.

Proof. The dual statement to the base locus not intersecting ∂Ω is that L ⊂ CPN∗
does not intersect ∂Ω∗. Thus, L is a (Lefschetz) pencil for ∂Ω with empty base
locus; because a hyperplane in the pencil misses ∂Ω, the associated function takes
values in C. By proposition 1 it is CR Morse. �

4. Proof of theorem 1

We let ∂Ω be our strict C-convex hypersurface. We fix a pencil L which contains
a hyperplane which does not intersect ∂Ω. By corollary 1 we have an everywhere
defined associated function

φL : ∂Ω→ C
which is CR Morse. We let ∆ := ΣDφL be the singular subset and K = φL(∆) be
the singular values. According to lemma 2, ∆ is a collection of embedded circles
transverse to D. Because ∂Ω is oriented, D is co-oriented and thus ∆ inherits an
orientation. By remark 3, K is a collection of immersed (closed) curves. We orient
them so that φL : ∆→ K is orientation preserving.

Our strategy is to prove that K is just one embedded curve. That will allow us
to immediately construct a (real) Morse function f : ∂Ω→ R with just two critical
points, a maximum and a minimum, and hence to deduce that ∂Ω is homeomorphic
to S2N−1. Turning our attention back to the complex Gauss map, we will interpret
it as endowing ∂Ω with a principal S1-bundle structure, and the computation of its
Euler class will produce a diffeomorphism between ∂Ω and S2N−1 of the required
regularity.

The proof that K is just one embedded curve will be broken in several steps.
Our fundamental technical result will be showing that (i) any two regular fibers are
cobordant by a sequence of elementary cobordisms which amount to adding either
a 0-handle or a 2N-2 handle. That will imply that (ii) a regular fiber is a collection
of spheres of dimension 2N-3. Using connectivity of ∂Ω we will deduce that (iii) the
regular fiber amounts to just a copy of S2N−3. This last condition will be important



8 DAVID MARTÍNEZ TORRES

to show that (iv) K is a collection of embedded circles bounding the set of regular
values, and furthermore that (v) K has just one connected component.

Let us define V = φL(∂Ω\∆). This is an open connected subset since it is the
image by a submersion of an open connected manifold. Let a, b ∈ V \K be two
regular values. Because φL is everywhere defined and ∂Ω is compact, the fibers
Wa,Wb are compact, and we want to compare them. Because V is connected
we can join a, b by a smooth path γ ⊂ V . Because K is immersed, by general
position we can assume that γ is transverse to K (at a self intersection point we
ask for transversality to all branches). To prove that Wa and Wb are cobordant
by a cobordism which amounts to adding a 2N-2 handle or a 0-handle we follow
the approach introduced in [9]. The submanifold γ is seen to be transverse to φL,
and thus φ−1

L (γ) provides a cobordism between the fibers. At a critical point x we
use the coordinates of proposition 1. The origin 0 in C is a critical value and K
at 0 is tangent to the real axis. We can assume w.l.o.g. that γ is a piece of the
imaginary axis. Then it is easy to check that ImφL restricts to φ−1

L (γ) to a Morse
function with just a critical point at x. The Hessian matrix at it is nothing but the
Hessian of ϕ(·, 0) at the origin in CN−1. This means that if we move from a value
with negative imaginary coordinate to one with positive imaginary coordinate the
cobordism amounts to adding a 0 handle, so in the fiber over the latter point an
S2N−3 appears. More invariantly, and recalling that K is oriented, if we orient γ so
that at the intersection point with K the tangent vectors to K and γ are a negative
oriented basis of the plane, then the cobordism as we move along γ through the
critical value amounts to adding a 0-handle creating thus a new S2N−3 in the fiber.
Going in the opposite direction, the cobordism caps off a sphere of the fiber, and
this proves item (i). We can take c ∈ C\V̄ and apply the above reasoning for the
pair a, c, where a is any regular value in V . Then Morse theory implies that Wa is
a disjoint union of manifolds diffeomorphic to S2N−3, and therefore item (ii) holds.
Note as well that a singular fiber is a collection of spheres of dimension 2N-3 and
points, the latter corresponding to the intersection with ∆.

To show that the regular fiber is just one S2N−3, we consider the restriction map

φL : ∂Ω\∆→ V. (10)

This is a submersion, and by the description of the singular fibers it is a proper
map. Therefore, it is a locally trivial fibration. Since ∂Ω\∆ is connected, so is
the fiber of (10) and in particular the regular fibers of φL must be connected, this
proving item (iii).

We want to use the above information about the cobordisms while crossing K
to show that K = ∂V̄ , and furthermore that ∆ has just one connected component
mapped by φL diffeomorphically to ∂V̄ . If that where the case, then we are justified
to say that we found a CR Morse function of the simplest kind. For in the real case
such a Morse function has image D̄1 ⊂ R with critical values identified with ∂D̄1.
In the CR case we complexify the previous situation so that the image is D̄2 ⊂ C
and the critical values are identified with ∂D̄2.

Because ∂Ω is compact, it is clear that ∂V̄ ⊂ K. To prove that K ∩ V is empty
we argue by contradiction. If r is a critical value in V , we take a path γ joining
regular values a, b and intersecting K at r transversely. The inverse image of γ by
the restriction map in (10) defines a trivial cobordism W . By assumption there
is at least a critical point over r, and item (i) implies that for each such critical
point there is an S2N−3 either in the fiber over a or in the fiber over b and not
in ∂W . This is a contradiction. Next we look at the behavior of the restriction
map φL : ∆ → K = ∂V̄ . If we have a critical value r ∈ K = ∂V̄ , we consider all
branches of K containing r (here we count branches with multiplicity, that is, all
images of small arcs in ∆ containing a point in φ−1

L (r)). For a small disk about r,
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each branch splits it in a positive side and a negative side, where the definition is
such that crossing from positive to negative amounts to adding a 0-handle in the
cobordism associated to that branch. A point c close to r in the complement of V̄
belongs to all positive sides. It is easy to find an arc γ starting at c, cutting all
branches transversely just at r, and ending in a value a ∈ V in all negative sectors.
Thus the fiber over a is the union of as many spheres of dimension 2N-3 as branches
of K through r. Because we also know that the fiber over a is just one sphere, we
conclude that r is contained in just one branch of K. Therefore, the restriction
map φL : ∆ → K = ∂V̄ is a bijection. Because by lemma 2 this restriction is a
local embedding, item (iv) holds.

By the smooth Schoenflies theorem, we conclude that V̄ is diffeomorphic to D̄2
Λ

a closed disk D̄2 with Λ small disks removed, where Λ + 1 = #π0(∆).
We will prove theorem 1 under the assumption that Λ = 0. Again, this is done

in two steps, the first one providing a homeomorphism ∂Ω→ S2n−1.
We take the pencil as above whose image is assumed to be the unit disk. We let

π2 : R2 → R be the second projection and define

f = π2 ◦ φL : ∂Ω→ [−1, 1].

We claim that this is a Morse function with just 2 critical points: indeed, because
φL : ∂Ω\∆ → C and π2 are submersions, the critical points are contained in the
circle ∆. Because φL : ∆→ ∂D2 is an embedding, the critical points are identified
with the critical points of π2 : ∂D2 → [−1, 1], which are obviously the points (−1, 0)
and (1, 0). Thus by theorem 4.1. in [8] ∂Ω is homeomorphic to the sphere.

Now we want to get a similar result but without losing all regularity. To that
end we turn our attention back to the complex Gauss map,

G : ∂Ω→ CPN−1∗,

which in our case is everywhere defined because ∂Ω lies in an affine chart. By lemma
1 it is a Ch−1 submersion. By compactness of ∂Ω and connectedness of CPN−1∗

the map must be surjective, so it is a fiber bundle over CPN−1∗ with fiber F a
collection of circles. We consider now the following part of the long exact sequence
of homotopy groups:

0→ Z e→ Z→ 0→ 0→ π0(F )→ 0, (11)

where the generators we choose use the complex orientation of CP1∗ ⊂ CPN−1∗ and
the orientation of the fiber induced by the complex orientation of CPN−1∗ and the
orientation of ∂Ω, and we also use the 2-connectedness of ∂Ω.

We deduce firstly that the fiber must be connected. Thus our space is a fiber
bundle with fiber S1. Because the Diff+(S1) retracts onto SO(2), our fiber bundle
admits a principal S1-bundle structure. Thus it is classified by its Euler class, which
is nothing but e(1) where e is the first transgression map in (11). Therefore the
Euler class is ±1, and the principal bundle structure is diffeomorphic to the Hopf
fibration (or the opposite one). Hence, ∂Ω is Cr−1-diffeomorphic to S2N−1.

We still need to rule out the possibility of V̄ being different from the disk. There
are two different cases. The simplest one is when N > 2. By dimension count the
inclusion

∂Ω\∆ ↪→ ∂Ω

induces an isomorphism in homotopy groups up to degree 2, and the restriction
map

φL : ∂Ω\∆→ D2
Λ

is a locally trivial fibration. Then comparison of its homotopy exact sequence up to
degree two with the one given by the complex Gauss map leads to a contradiction.
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If N = 2 the above argument cannot rule out the case Λ = 1, so one has to
discard the possibility of ∂Ω being diffeomorphic to S1 × S2 by different means.
The advantage is that in dimension 2 complex lines and complex hyperplanes are
the same. We pick x ∈ ∂Ω, and consider the pencil of complex lines having it as
its base point. This gives a map

∂Ω\x→ C.

More precisely, the fiber of each point is the intersection of the corresponding
complex line with ∂Ω\x. A point y ∈ ∂Ω\x fails to be regular if and only if
the complex line corresponding to its value is tangent to ∂Ω at y. By remark 1
such points are isolated on its fiber. Thus the fibers are a collection of points and
1-manifolds. At x there is just one tangent complex line. The other C-worth of
lines are transverse. Thus their fibers in ∂Ω\x contain one open interval which
compactifies into a circle by adding x. That C-worth of interval is an open subset
of Ω which is diffeomorphic to R3 (a locally trivial fiber bundle over R2 with fiber
R), and its 1-point compactification is a connected component of ∂Ω. Thus ∂Ω is
diffeomorphic to the 3-sphere, and this finishes the proof of theorem 1.

It is known that the dual map of a strictly C-convex hypersurface ∂Ω maps it
homeomorphically to ∂Ω∗, which is also strictly C-convex.

Corollary 2. Let ∂Ω ⊂ CN be a strictly C-convex hypersurface. Then the dual map
ν : ∂Ω→ ∂Ω∗ is an embedding of class Ch−1, and ∂Ω∗ is a Ch−1-strictly C-convex
hypersurface.

Proof. By lemma 1 the dual map is an immersion. Assume that it is not bijective
and let x∗ ∈ ∂Ω∗ be a point contained in several branches. Take L to be a Lefschetz
pencil containing x∗ and a hyperplane not intersecting ∂Ω; for example a suitable
small perturbation of the hyperplane at infinity. Using the notation of the proof of
theorem 1 we have

L ∩ ∂Ω∗ = K,

where x∗ ∈ K. Because L is Lefschetz K ⊂ C must have as many 1-dimensional
branches at x∗ as branches ∂Ω∗ has at x∗. Because L is a pencil in the hypothesis
of corollary 1, by item (v) in the proof theorem 1 K is a circle, and this contradicts
the existence of several branches.

The dual map for ∂Ω∗ is

ν−1 : ∂Ω∗ → ∂Ω,

in particular it is a local embedding and thus ∂Ω∗ ⊂ CN∗
has immersed dual map.

Thus its Euclidean shape operator along the CR distribution D∗ is non-degenerate.
One checks that at the point x∗ ∈ ∂Ω∗ ⊂ CN∗

in which the norm attains a (local)
maximum, the Euclidean shape operator is positive definite, and this proves the
corollary. �

Remark 4. It would be interesting to explore the implications of existence of CR
Morse functions for hypersurfaces with immersed dual subset.
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