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Throughout these years I have been lucky enough to learn mathematics
from many different people. First of all form my professors, whom I owe a
debt of gratitude. Very special thanks go to Carlos Andradas, who helped
me to understand things that go far beyond mathematics. I am also indebted
to Robion Kirby for his help in complicated circumstances.

Much of what I have learnt is the result of countless conversations with
Daniel Markiewicz and Henrique Bursztyn. I thank them not only for that
but also for their friendship, specially Henrique, who being so far away is
always so close.

I cannot forget to mention David, Charly, Raquel, Berto, Javier y Urbano
who after all these years keep on putting up with me; the same goes to
Barrete, Salchi and all the handball team group.

I would like to thank “La Caixa”, the Ministry of Education Culture
and Sports and the graduate program of mathematical engineering of the
mathematics department of the Carlos III de Madrid university for their
financial support.

Last and above all, I thank my brother and my mother for their love and
support.



Introduction

According to de F. Klein’s Erlangen program [34], we know that a geo-
metry G in a smooth manifold is determined by the choice of a subgroup
Mor(G) of the group of diffeomorphisms of the manifold. Its study is that
of those magnitudes, or more generally of those properties –the so called
invariants of G– that are preserved under the action of Mor(G).

It is necessary to ask ourselves what is the reason to select a geometry as
the object of our study. In this sense the most important reason is the physi-
cal origin of some of them, being the paradigm symplectic geometry, or more
generally Poisson geometry. In this case, our manifold is the phase space
of a system and the geometry S is determined by the so called canonical
transformations. Of course, further study shows that Mor(S) can be char-
acterized as the group of diffeomorphisms preserving certain (2, 0) tensor,
the symplectic form. One also observes that all the mechanisms and con-
structions depend on properties of this tensor that can be expressed in the
language of differential geometry. To be more precise these are skew sym-
metry, non-degeneracy and closedness. From them one defines the notion of
a symplectic structure in any smooth manifold.

More generally, Poisson geometry P is the right frame for the the-
ory hamiltonian systems. The smooth manifold M (in our case finite-
dimensional) is the space of states of the corresponding system; the ob-
servables correspond to a subalgebra O of the algebra of functions C∞(M),
which we assume to coincide with the whole algebra (o more generally it
is a subsheaf of the sheaf of smooth functions on M). The evolution of
the system is dictated by a one parameter family of diffeomorphisms, or in-
finitesimally by a vector field. Finally, there is a map E : C∞(M)→ X(M),
f 7→ Xf , such that f is preserved by Xf (Xf (f) = 0), and E is a Lie al-
gebra morphism for the bracket {f, g} := Xg(f) (and the usual Lie bracket
in vector fields). Again, it can be checked that the corresponding Pois-
son structure is described by a skew symmetric (0, 2) tensor (a bi-vector)
subject to a closedness condition, and the geometry is determined by the
diffeomeophisms that preserve that tensor.

Another important example is that of semi-riemannian geometry R.
Here the origin is the study of immersions of curves and surfaces in R3.
In other words, the manifold is R3, the group is O(3) and the invariant un-
der study are the equivalence classes of immersions of curves and surfaces.
The first result that shows the importance of the study of surfaces with
metric is the celebrated Egregium theorem of Gauss; once the theory was
generalized by Riemann, its important role is shown by its connection with
the Theory of Relativity.

1



2 INTRODUCTION

These two examples, symplectic and Poisson geometry on the one hand,
and semi-riemannian geometry on the other, have quite a different charac-
ter. Indeed, the corresponding tensors must satisfy pointwise properties,
skew symmetry/symmetry and non-degeneracy (the latter in the symplectic
and riemannian case), and in the symplectic and Poisson case the fulfil-
ment of a partial differential equation. This last closedness condition, in
contrast with the semi-riemannian case, imposes strong restrictions for the
existence of this kind of structures. Maybe the fundamental difference is
reflected in the “different size” of the corresponding group of transforma-
tions of the structures, which is finite-dimensional for R (a Lie group), and
infinite dimensional for S y P. This implies the existence of comparatively
“less” invariants for S y P. Actually there are no local invariants for S
(resp. certain local structure theorems for P), something which in the semi-
riemannian situation cannot happen due to the presence of curvature. As a
consequence, the invariants for S must have global nature. Thus, it is not
strange that the study of this global phenomenon inherent to symplectic
geometry is called symplectic topology. Something similar happens in Pois-
son geometry, where we can speak of a “Poisson topology” studying global
aspects of the Poisson structure.

Therefore, and for a geometry G that can be defined as the previous by a
smooth object (normally a section of a fiber bundle) with certain properties,
so that the study of G reflects global aspects of the manifold, the previous
paragraph raises the following natural questions.

(i) Given M a smooth manifold, which are the obstructions to the
existence of such a geometry in M? Conversely, it is natural trying
to show whether certain global properties of M obstruct or not the
existence of the corresponding structure.

For symplectic structures, there is a first homotopic obstruction which
refers to the existence of a (2, 0) tensor with the required pointwise proper-
ties. Regarding the closedness condition, in the case of a compact manifold
one can only conclude the non-vanishing of the cohomology class defined by
the symplectic structure. For open manifolds of dimension greater of equal
than 6, it is a consequence of the h-principle proved by M. Gromov [27] that
the only obstruction is the homotopic one.

It was R. Gompf who achieved striking results adopting the opposite
point of view. In his paper [24] he exploited in full generality the so
called normal connected sum for symplectic manifolds to construct sym-
plectic manifolds with prescribed topological properties. Among others, the
most important result of his work was the proof of the existence of compact
symplectic manifolds (of any dimension ≥ 4) whose fundamental group is
any finitely presented group.

For Poisson structures, and due to its generality, one cannot expect to
obtain results similar to those of Gromov and Gompf for any Poisson struc-
ture. In any case, it is reasonable to study the corresponding problems for
the class of regular Poisson structures, which are those for which the Poisson
tensor has constant rank. For existence of regular Poisson structures with a
prescribed foliation there is already a homotopic obstruction. It turns out
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that if the manifold is open in the sense of foliated manifolds [6], it is a
consequence of the h-principle for foliated manifolds proven by M. Bertelson
that indeed this is the only obstruction (see [6]).

We will devote the second chapter of this thesis to extending the results
of R. Gompf for symplectic manifolds to regular Poisson manifolds. We
will define the normal connected sum for Poisson manifolds and will show
that for any dimension, rank (both ≥ 4) and group G finitely presented, the
existence of closed regular Poisson manifolds whose fundamental group is G,
showing thus that the fundamental group does not obstruct the existence of
such structures.

The second natural question that arises in the context of the study of
one of these geometries G is the following:

(ii) Given a manifold M and once the existence of structures G have
been shown to be unobstructed, it is reasonable to give a classifi-
cation of them, where two such structures G1 and G2 are said to
be equivalent if Mor(G1) can be conjugated to Mor(G2) by a diffeo-
morphism (we can for example ask also the diffeomorphism to be
isotopic to the identity).

To illustrate this question we will mention three examples, which are
related among themselves both for the geometries that they refer to, and for
the way the proofs are obtained. Firstly, we have the case of volume forms
V (in compact manifolds). The obstruction to the existence of volume forms
is the orientability of the manifold M . It is a classic result of J. Moser [45]
that the volume form is totally determined by its volume, which in principle
can be computed. That is, the geometry V is fully described by the choice
of a multiple of an invariant of the homotopy type of M .

Secondly, we have the case of the symplectic structures (M closed). For
the equivalence relation given by conjugation by diffeomorphisms isotopic
to the identity, again after a result of J. Moser [45], we conclude that two
symplectic 2-forms are in the same class if they can be joined by a path of
symplectic structures with constant cohomology class.

The third structure we wanted to speak about regarding the classifica-
tion problem, is that of stable Poisson structures Pst (or generic) in closed
oriented surfaces. In a recent work [51], and for the equivalence relation de-
fined by conjugation by diffeomeorphisms isotopic to the identity, O. Radko
gave a description of the corresponding moduli space. The novelty of this
example is that the number of connected component was in one to one cor-
respondence with certain isotopy classes of hypersurface arrangements in
the surface; for each arrangement, the correspondent connected component
turned out to be diffeomorphic to a vector space with dimension the number
of hypersurfaces in the arrangement plus one. What is more, the identifica-
tion was given through a cohomology group associated to the structure.

There is a fourth geometry N which is a generalization of both P and
V. It is the so called Nambu geometry.

Nambu mechanics is a generalization of hamiltonian mechanics. In con-
trast with the latter, the dynamics are governed by a system of O.D.E’s
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associated not to a unique hamiltonian, but to r of them (r ≥ 1); the num-
ber of hamiltonians plus one is called the order. From the differential point
of view that means that the Nambu structure is defined by a (smooth) sec-
tion of Xr+1 with certain closedness properties, which in this case turn out to
be and algebraic equation and a P.D.E. (see [53] for the precise definition).

The analog to stable Poisson structures in oriented closed surfaces are
stable Nambu structures of maximal order. That is, for any closed oriented
n-manifold, the sections of Xn which cut the zero section transversely.

In the third chapter of this thesis we will make an study of these struc-
tures analog to that of O. Radko for stable Poisson structures. The main
result will be a classification theorem for oriented isotopy classes. We will
show that the connected components of the moduli space will coincide with
the isotopy classes of certain hypersurface arrangements. Also, each con-
nected component will be isomorphic to a vector space of dimension the
number of hypersurfaces in the arrangement plus one. Again, the isomor-
phism will be given through the identification with certain cohomology group
associated to the Nambu structure.

We will see that such classification is the result that observing that
Radko’s work [51], though stated in the language of Poisson geometry, re-
lies mainly in differential topology results, together with the classification
of area forms in surfaces, with can be generalized to arbitrary dimensions.

The final question we want to answer regarding geometries with topo-
logical character –and from our point of view that for which we will obtain
the most interesting results– is the following:

(iii) Up to which point the geometry G is rich? That is, we raise the
question of the existence of differential topological constructions
compatible G.

Observe that by definition we are considering geometries without local
invariants. That means that the problems we aim to solve will be have local
solutions, and the difficulty will be finding ways to obtain global solutions.

To clarify this third point we consider again the example of symplectic
geometry S. A natural problem in this setting is that of the existence of
topologically non-trivial symplectic submanifolds. That is, solutions to the
topological problem of the existence of submanifolds which are compatible
with S. Amazingly enough, such a natural and easy to state question has
only been solved by S. Donaldson [12] in 1996, via the introduction of ab-
solutely new techniques (approximately holomorphic techniques) which have
been a mayor breakthrough in the research in this field.

Analogous problems to the existence of symplectic submanifolds are the
existence of submersions with symplectic fibers, o more generally, stratifica-
tions with symplectic strata with are “close” to be fibrations.

The underlying philosophy is trying to reduce the understanding of sym-
plectic structures in a manifold M to that of symplectic structures of lower
dimensions (the fibers) together with a piece of topological information.
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In the first chapter of this thesis we will make the same kind of analysis,
but for a new geometry C2,1 that we will call 2-calibrated. We can understand
this geometry as an analog of symplectic geometry in odd dimensions.

An example of a 2-calibrated manifold is an exact contact manifold
(M2n+1, α), α ∈ ∧1(M) (recall that α ∧ (dα)n is required to be a volume
form). Its characteristic distribution kerα has codimension 1, and the closed
2-form dα induces a symplectic vector space structure on each hyperplane of
the distribution (it dominates or calibrates the distribution in a sense that
we will make precise).

A 2-calibrated structure is the generalization of the previous situation: a
codimension 1 distribution (that explains the subindex 1 in C2,1) and a closed
2-forma which makes the distribution symplectic. Notice that this structure
can be understood as a one parameter family of infinitesimal symplectic
structures (that is we consider not only foliations but distributions) for which
there is a closedness condition analog to that of symplectic structures. For
the sake of brevity, we will speak from now on about calibrated structures
instead of 2-calibrated structures.

Its is interesting to observe the difference between C2,1 and the regu-
lar Poisson structures with codimension 1 leaves. For the latter, if we try
to state the closedness condition in covariant terms, this turns out to be
a condition for a foliated 2-form (the 2-forms have to be non degenerate
and closed on each leaf). It is not true in general that every such Poisson
structure admits a lift to a calibrated structure, i.e., there does not exist
in general a closed 2-form restricting on each leaf to the leafwise 2-form;
we will see that the absence of such a lift will prevent the existence of the
constructions that will be shown to exist for calibrated structures.

We will develop an approximate holomorphic geometry for compact cali-
brated structures, solving thus problem like the existence of calibrated sub-
manifolds, calibrated stratifications and extending other constructions from
approximately holomorphic geometry in compact symplectic manifolds.

We will devote one chapter of this thesis to answer each of the three
questions that we have just raised. Each chapter will include a description
of the most relevant results obtained and of the underlying ideas.





CHAPTER I

The geometry of calibrated manifolds

1. Introduction and results

1.1. Motivation.

Definition 1.1. A (2-)calibrated manifold is a triple (M,D,ω), where M
is a smooth manifold, D is a codimension 1 distribution, and ω is a closed
2-form which is non-degenerate over D. We say that ω is positive over D
or that is dominated the distribution or that it calibrates it.

The calibrated manifold is said to be of integer type if ω is in the image
of H2(M ;Z) in H2(M ;R).

The dimension of M is therefore odd. Notice that the concept of cal-
ibrated manifold is an odd dimensional analog of the notion of symplectic
manifold.

Remark 1.2: The concept of calibrated foliation is by no means new. A
calibrated foliation is a foliation of arbitrary codimension for which a closed
p-form dominating the foliation exists, where p is the dimension of the leaves
[29]; they are also called geometrically tight or homologically tight foliations.
This is of course a weaker condition that the one we are imposing, because
a (2-)calibrated foliation of dimension 2n in our sense is of codimension 1,
and the calibrating 2n-form has to be of the form ω2n, dω = 0. As far as
the author knows, and for dimensions different from 3, there is no existing
literature specific for the class of foliations we will deal with in this chapter.

All the structures we will work with will be of class C∞ (smooth).

As we just mentioned an important example of calibrated varieties is
that of closed 3-manifolds with 2-dimensional smooth calibrated (or taut)
foliations.

Definition 1.3. Let (M3,F) be an oriented manifold foliated by orientable
surfaces (and hence co-orientable). We say that F is a calibrated (or taut)
foliation if M 6= S2×S1 and a closed 2-form ω restricting to a leafwise area
form of F exists.

We recall that any closed oriented 3-manifold admits foliations F by
oriented surfaces [36], but not every foliation is interesting enough to give
us information about the topology of the manifold. Those of our interest
are essentially the ones which do not have Reeb components.

7



8 I. THE GEOMETRY OF CALIBRATED MANIFOLDS

It is a classical theorem that if a foliation does not have generalized Reeb
components (see [52]), then the foliation is calibrated.

Calibrated foliations in 3-manifolds can be characterized by the existence
of transverse cycles through any point (this result is a corollary of the works
of Novikov and Sullivan [52]). We would like to start with this characteriza-
tion to motivate the introduction of approximately holomorphic techniques
in the study of calibrated structures.

Given Mn any smooth manifold, a natural way to construct submanifolds
is to define them as the zero set of (transverse) functions, or more generally,
of sections of certain vector bundles. If M is compact and orientable, and
we have constructed a submanifold W in such a way, where W turns out to
be orientable and of codimension 2, then the theory of characteristic classes
allows us to reconstruct the bundle L from the homogical information that
W provides: indeed, it will be the line bundle whose Chern class is the
Poincaré dual of [W ] ∈ Hn−2(M ;Z). Any other subvariety W1 constructed
as the zero set of a section of L will be cohomologous to W ; actually, results
from differential topology [33] guarantee the existence of a smooth cobor-
dism inside M connecting both (or in other words, a Seifert hypersurface
for W1 q −W ). Thus, once the homological information that determines
the line bundle has been analyzed, the problem of defining submanifolds
cohomologous to W is a differential topology one: finding a section τ of L
transverse to the 0 section so that W1 = τ−1(0).

In our situation there is an extra difficulty because the subvariety W1

we look for, in principle of M3, has to be transverse to F . Locally, there is
no obstruction to the existence of such sections, but there is a global one.
The classic example is the Reeb foliation of S3. If a cycle W transverse to
the separating torus of the Reeb components existed, since H2(S3;Z) = 0 it
would be given as the zero set of a function f : S3 → C. Since a cycle W with
that property does not exist, we can deduce the existence of complex valued
functions in S3 which are not globally transverse to 0 along the directions
of F , even though they might be transverse to 0 in the usual sense. In
other words, the submanifold W that they defined will be tangent to F in
a non-empty set.

Even for calibrated foliations, the existence of a theorem of foliated
transversality is not true. There are already counter examples at semi-local
level.

In R3 with coordinates x, y, s foliated by horizontal planes s = c, c ∈ R,
consider the function f(x, y, s) = x2 + is. It is clear that arbitrarily small
perturbations of f cannot define a cycle transverse to the foliation. If we
had f̃ such a perturbation, since transversality to F is an open property,
small enough perturbations h would still have that property. Obviously the
zero set Wh will not be transverse to the foliation, because the restriction to
Wh of the projection onto the third coordinate will have a global maximum.
At that point the rank of the leafwise differential of h is one. So a way to
avoid such a situation is to work with a class of functions whose differential
either vanishes or s surjective, i.e., the obvious choice is to work with leafwise
holomorphic functions. We recall that we can always introduce a leafwise
almost complex structure which necessarily is integrable. The difficulty that
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we might encounter is the lack of leafwise holomorphic function for a certain
choice (or even for any) of almost complex structure. A first observation is
that since the class of functions we are interested in has to be open (leafwise
transversality is clearly an open condition), it is not exactly the leafwise
holomorphic functions the class of our interest, but also those functions
close enough to the latter in a sense that we will make precise.

Notice that the mentioned point of view has already been adopted for the
study of compact symplectic manifolds of any dimension. It is the so called
approximately holomorphic theory introduced by S. Donaldson in [12]. Not
being very precise, this theory proves –for almost complex structures com-
patible with the symplectic structure ω– the existence of a strong transver-
sality result for approximately holomorphic sections of the line bundles L⊗k,
where L is the complex line bundle dual to [ω] and k is a large enough integer
(we assume ω to be of integer type).

Therefore, we have a first hint indicating that it is reasonable to study
the corresponding approximately holomorphic theory, at least for calibrated
foliations in 3-manifolds (because we do have transverse cycles through any
point).

Contact geometry provides a second motivation. Recall that an ex-
act contact structure in a compact manifold M2n+1 is given by a non-
degenerate 1-form α verifying that α∧ (dα)n is a volume form. In particular
(M, kerα, dα) is a calibrated structure. A rich approximately holomorphic
theory has already been proven to exist for the sections of the bundles L⊗k,
where L is again the dual of dα (and hence trivial). In this case the almost
complex structure J is defined along ker dα, that has to be understood as
the distribution of “holomorphic” directions. What is more, results of dif-
ferent scope has been achieved using on the one hand an intrinsic theory
[32],[50], and on the other hand a relative theory applied to the symplecti-
zation (M×R, d(tα)) [43, 23]. Thus, it is reasonable trying to check that all
the mechanisms that make both theories (intrinsic and relative) work in the
contact case, do not use any property which is not shared by all calibrated
structures.

As we already mentioned, the definition of calibrated structure is new
but it contains a number of existing geometries. The most interesting ex-
amples are on the one hand contact structures, the distribution D being
maximally non integrable, and on the other hand (2−)calibrated foliations;
we should at this point distinguish between 3-dimensional foliations and cali-
brated foliations in higher dimensions. For the former there exist a wealth of
results in the literature which are characterized by the use of 3-dimensional
topology techniques ([19, 20, 17]). For the latter the author does not know
any research concerning codimension 1 (2−)calibrated foliations; anyhow
there are important works dealing with codimension 1 foliations in p + 1
dimensional manifolds calibrated by p-forms (see for example [29, 49]).

It is worth recalling that every calibrated structure (of integer type)
in which D is integrable endows the manifold M with a regular Poisson
structure (M,Λ) with codimension 1 symplectic leaves, which turns out to
be integrable in the sense of Lie algebroids (see R. L. Fernandes and M.
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Crainic papers [10, 11]). Hence, we also have the corresponding results
coming from Poisson geometry for integrable Poisson structures.

Inside the calibrated structures which are Poisson (D integrable) it is
worth mentioning the class of cosymplectic structures. Recall that a cosym-
plectic structure in a manifold M is given by a pair (α, ω), where α is a
non-degenerate closed 1-form and ω is the closed 2-form dominating kerα.
Observe that a cosymplectic structure is a kind of Poisson structure in which
the symplectic foliation is quite special because it is defined by a closed 1-
form. Indeed, from the topological point of view if we assume M to be
closed and connected, the cosymplectic structure can be perturbed so that
its description becomes really elementary; by compactness, it is possible to
select a closed 1-form with integral periods arbitrarily close to the original
one so that ω also dominates the foliation it defines. By an elementary
result of Tischler, there exists a submersion to S1 whose fibers are a finite
number of leaves of the foliation (in the homotopy class of classifying maps
associated to [α′]). Since M is assumed to be connected, it is possible to
compose it with a self map of the circle isotopic to the appropriate root
and so that the resulting map to S1 is a submersion with connected fiber
P . Therefore, M admits a description as the mapping torus associated to
a diffeomorphism of P . Finally, ω endows P with a symplectic structure
so that the diffeomorphism is indeed a symplectomorphism of P with the
induced symplectic structure.

Besides contact and Poisson structures, and according to the behavior of
the distribution D, it is worth mentioning the existence of literature concern-
ing another kind of calibrated structures. In the monograph of W. Thurston
and Y. Eliashberg [17], the authors define a confoliation as a codimension
1-distribution for which a defining 1-form α verifying α ∧ (dα)n ≥ 0 exists
(the sign is not important, the point is that it does not change). Moreover,
if M is 3-dimensional they say that the confoliation is taut if a dominating
2-form exists and a homotopic condition is fulfilled. That is, a confoliation
is a calibrated structure for which the integrability of D varies between the
contact and the integrability condition. The main result of in [17] implies
that for any calibrated foliation in M3 (different from S2×S1) it is possible
to find a contact structure arbitrarily close so that we can interpolate be-
tween both structures using confoliations. Actually, the interpolation occurs
at the level of 1-forms and it is given by a smooth path αt. It is important
to mention the motivation for this result: as we already said, not every fo-
liation in an oriented closed 3-manifold gives topological information about
the manifold. Similarly, contact structures are also divided into overtwisted
and tight ones, which are the analog of foliations with generalized Reeb
components and calibrated foliations respectively; all the information given
by the latter is contained in its homotopy class as plane distributions. This
analogy, together with other results, indicated a strong relation between
tight contact structures and taut foliation, finally elucidated in the men-
tioned interpolation result (recall that a contact structure close enough to a
calibrated confoliation was already known to be tight).

Finally, it should be mentioned that the most natural way to find cali-
brated structures is starting form the pair (M,D) and then trying to find
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closed 2-forms calibrating D, i.e., we think of calibrated structures as even
dimensional codimension 1 distributions with a very special additional prop-
erty, and from which –as we shall see– one can derive plenty of geometrical
consequences. The problem of finding such a dominating 2-form is quite a
complicated one. One can use a dual formulation in terms of the existence
of certain structural cycles [52]. In dimension 3 it is possible to take advan-
tage of this equivalence to derive existence results (and in higher dimensions
there exist similar results for the existence of calibrating 2n-forms, 2n being
the dimension of D [29]). It is interesting to observe that in this dual formu-
lation one already has to assume the existence of almost complex structures
J in D to look for 2-forms positive in the complex lines defined by J in D
[52].

But it is also possible to adopt the converse point of view. That is,
we can start from a non-degenerate closed 2-form w in M2n+1, and then
select a codimension 1 distribution transverse to kerω as an auxiliary tool
to try to deduce topological information of M (see [38]). We just observe
that in dimensions bigger or equal than 5, once we assume the existence
of a reduction of the structural group of TM to U(n), it is a consequence
of the h-principle that we can find closed non-degenerate 2-forms in any
cohomology class [27].

The first new result that we want to mention is the extension to cali-
brated structures in closed manifolds of the existence of transverse cycles
through any point for calibrated foliations in closed orientable 3-manifolds.
Our “transverse cycles” will also inherit a structure of calibrated subvariety.

Definition 1.4. Let (M,D,ω) be a calibrated structure. A calibrated sub-
manifold of M is a submanifold W such that TW ∩ D is a codimension 1
distribution of TW and ω|TW∩D is non-degenerate.

In other words, W is transverse to D and TW ∩D is a symplectic sub-
bundle of (D,ω|D).

Notice that when (M,D,ω) is compact, we can select a calibrating 2-form
of integer type ω̃ as close as we want to ω.

Theorem 1.5. Let (M2n+1, D, ω) be a closed calibrated manifold of integer
type. For k large enough and for any x ∈M it is possible to find calibrated
submanifolds Wk of M of codimension 2m through x which verify:

• The Poincaré dual of [Wk] is [kω].
• The inclusion i : Wk ↪→ M induces maps i∗ : πj(Wk) → πj(M)

(resp. i∗ : Hj(Wk;Z) → Hj(M ;Z)) which are isomorphisms for
j = 0, ..., n−m− 1 and epimorphisms for j = n−m.

We must point out that this theorem can be also obtained as a simple
corollary of the work of J. P. Mohsen[43] (see also [23]).

All the theory that we are to develop is based in a careful analysis of
local situations, together with a globalization result whose origin is in the
foundational paper of S. Donaldson [12].
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First of all, let us see that theorem 1.5 is more or less obvious at local
level.

Let us assume for simplicity that our calibrated manifold (M,D,ω) is
Poisson, i.e., D is an integrable distribution giving rise to a foliation F by
codimension 1 symplectic leaves. For each point x ∈ M we take charts
adapted to the foliation. The result is a local identification of (M,F) with
R2n×R. If our aim was to construct in principle a transverse cycle through
x, a reasonable strategy would be trying to prolong the vertical {0} × R
transversely to F , so that the resulting path C hits back the leaf Fx con-
taining the point x.

In dimension 3 one checks that if had not such return, we could take
a tubular neighborhood made transverse paths parallel to C that could be
prolonged indefinitely. That would imply that the temporal evolution of
the area of each disc (slice of the tubular neighborhood) would tend to
zero very fast, because the neighborhood should have finite volume (that
is exactly want happens inside a Reeb component). Thus, a way to avoid
such a situation would be to take a globally defined vertical coordinate (the
last in R2n × R) such that the evolution of the area associated to a certain
leafwise 2-form does not tend to zero. This is equivalent (recall that we
are in dimension 3) to the existence of a closed global 2-form calibrating
D. The vertical coordinate globally defined is given by kerω, because any
vector field spanning this line field verifies LXω = 0.

From the previous discussion we deduce that the choice of local chart
for (M,D,ω) has to be any adapted to the foliation whose vertical direction
coincides with kerω. As we shall see it will be possible to find Darboux charts
with coordinates x1, y1, ..., xn, yn, s in which ω matches ω0 =

∑n
i=1 dx

i∧dyi.
That means that calibrated foliations are a very special kind of foliations.

In general it is possible to characterize foliated manifolds M2n+1 (with leaves
of codimension 1) as those whose associated pseudogroup admits a reduction
from Diff(R2n+1) to Diff(R2n×R)×Diff(R). The calibrated structure induces
another reduction to Diff(R2n) × Diff(R) (global vertical coordinate) and
further to Symp(R2n, ω0)×Diff(R).

If the distribution of our calibrated structure is not integrable, then
we cannot speak of absence of local invariants, but the local “picture” is
anyhow very similar to that of calibrated foliations, because if we work
in tiny open sets the distribution D will be very close to the one given
in appropriate charts by “horizontal hyperplanes”. In other words, it is
possible to find coordinates x1, y1, ..., xn, yn, s so that the pullback of ω is
w0, and D coincides in the origin with Dh, the foliation defined by the level
hypersurfaces of s.

One can think of a construction of calibrated submanifolds in arbitrary
dimensions analogous to that of transverse cycles in dimension 3. Lo-
cally, the submanifold would correspond to a symplectic submanifold V
of (R2n, ω0) multiplied by the vertical coordinate. Even more, since we
have Darboux charts we might think of V as a symplectic vector space of
(R2n, ω0). Of course, the situation is far more complicated than for cycles in
dimension 3. Firstly, and for each leaf Fx, it is necessary to make sure that



1. INTRODUCTION AND RESULTS 13

all the local symplectic subspaces (or more generally symplectic submani-
folds of (R2n, ω0) “glue” into a symplectic submanifold of the leaf; this is
exactly the kind of problem that the approximately holomorphic techniques
solve in compact symplectic manifolds, the construction of symplectic sub-
manifolds gluing local solutions. It has to be pointed out that even though
the leaves will not be closed in general, the manifold it is indeed closed.

Secondly, once we have a symplectic subvariety in a certain leaf, it is
necessary that it propagates along a transverse direction into symplectic
submanifolds of the corresponding leaves, and it must return to the starting
leaf; besides, from that return one has to be able to “close” the subvari-
ety. Again, the is something to be expected to be unobstructed, because
if the leaf is closed, the approximately holomorphic theory for symplectic
manifolds gives us an isotopy through symplectic submanifolds joining both
subvarieties.

Hence, one should expect an analog of approximately holomorphic theory
in symplectic manifolds to work in closed calibrated manifolds.

We will now recall the main ideas underlying the approximately holo-
morphic theory for compact symplectic manifolds (M,ω), to be generalized
to calibrated varieties.

1.2. Some ideas underlying the approximately holomorphic geo-
metry in compact symplectic manifolds. One first element of this the-
ory is the observation, at linear level, that a way to choose linear symplectic
subspaces V is by introducing an almost complex structure J compatible
with ω; automatically, every J-complex subspace becomes symplectic. Since
being symplectic is an open condition, if a subspace V is “close enough” to
JV , it will also be symplectic. Thus, for any almost complex manifold
(N, J̄), the existence of an “approximately” (J, J̄)-complex map f : M → N
transverse to a J1-complex subvariety N1 ⊂ N , will give rise to a symplectic
subvariety of M of the same codimension as that of N1 in N (the subvariety
is just f−1(N1)).

Therefore, the first problem would be to be able to find almost complex
manifolds (N, J̄) which might the target space of “enough” maps f : M → N
“close” to be J−J1-complex (“close” in a sense that we will make precise and
“enough” in the sense that given one of this maps it is possible to perturb it
within the class so that it becomes transverse to certain J1-complex subman-
ifolds of (N, J̄)). Instead of working with general almost complex manifolds
as target space, the reasonable thing to do is to start by the complex vector
spaces (Cm, J0), where we are also allowed to add maps (something that will
make easier to define the sought for perturbations). More generally, we will
look for sections of complex vector bundles over M .

The hint indicating which ones are the appropriate vector bundles we
should work with comes form the integrable situation. In that setting, since
the Cauchy-Riemann equations are not over determined we can look for
usual holomorphic sections. Results from complex geometry imply that
a class of bundles, in principle line bundles, admitting a lot holomorphic
sections, is that of very ample line bundles. Besides, there is a clear sufficient
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criteria to find such line bundles. It is enough to have a hermitian line
bundle L with compatible connection ∇, so that its curvature F∇ is positive
(ample line bundle). Then, large enough tensor powers of L do have a
lot of holomorphic sections (very ample line bundles); indeed “many” of
these holomorphic sections turn out to be transverse to the 0 section of L⊗k
(Bertini’s theorem), which is a complex submanifold of the total space of
the line bundle, which is itself a complex manifold.

In the previous situation (ample bundle), iF∇ defines a closed 2-form
which endows M with a symplectic structure (a Kahler structure, because
J is clearly compatible with the 2-form). Obviously, iF is an integer class,
so what we have in M is a Hodge structure. When we start with a Hodge
structure (M,J, ω), the previous process can be reversed to construct an
ample line bundle (L,∇), whose curvature is exactly −iω.

If we start from a pair (M,ω), with M compact and ω of integer type,
and fix J-compatible almost complex structure, the construction of the her-
mitian line bundle (L,∇) with curvature −iω is still possible. Being J in
general not integrable, the question is whether there will be enough sections
of the powers L⊗k (“very ample”) close enough to be holomorphic. Locally,
the existence of Darboux charts and the fact that the curvature of the line
bundle coincides with ω0, allow us to find also a model for the connection
form of the line bundle, using a suitable trivialization. Assuming that in
Darboux charts J coincides with J0 (we can always find Darboux charts
centered at any point and so at the origin J = J0), it is possible to write
down explicit solutions to the Cauchy Riemann equations which have very
special properties. These (local) sections have gaussian decay and play the
role of partition functions (sections) of the theory, because using them the
global transversality problem can be localized and turned from a transver-
sally problem for sections into a transversality problem for functions.

In the general case when J is not integrable we can still get Darboux
charts with J matching J0 at the origin. That will imply, provided the do-
main of the charts is small enough, that the previously mentioned solutions
will almost be solutions to the corresponding Cauchy-Riemann equations.
Of course, it is not enough to restrict the domain of the chart and keep
the restriction of the previous solution, because this would be almost flat
(constant) and hence would not have the appropriate decay; thus it would
not be useful to localize the transversality problem. A way to overcome this
difficulty is, instead of restricting to a smaller domain of the chart, contract-
ing the whole picture. In particular, the contraction factor used is k−1/2.
As a consequence, the model solution once assumed to belong to a “con-
tracted chart”, turns out to come from a section of L⊗k. In other words,
the symplectic form transforms into kω (and the metric is also multiplied
by k), so that the “contracted” chart is a Darboux chart for kω. Thus, by
increasing the curvature of the line bundle one has access to smaller and
smaller regions where the almost complex structure J necessarily looks like
an integrable one (as much as we want by increasing the value of k).

As we mentioned, the existence of the so called reference sections (global
sections constructed out of the model solutions) allows us to transform the
global transversality problem into a lot of local transversality problems for
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functions (this number increases with k). An important observation is that
if we want to add up local solutions (local perturbations), since the reference
sections have support in a domain much bigger than the one where they are
used to localize the transversality problem, there will be interference due
to the overlap between the supports corresponding to different reference
sections. The difficulty is that transversality does not behave well under
addition of sections.

It is necessary to use the concept of estimated transversality. The idea
behind it is quite simple: the sum of two sections transverse to the 0 sec-
tion may fail to remain transverse; for example, because both vanish in a
point with opposite differential (o more geometrically, because their graphs
intersect with opposite angle). Estimated transversality requires that the
graph of a section not only cuts the 0 section transversely, but also asks for
the same property with respect to the parallel copies of the 0 section in a
tubular neighborhood. Besides, the angle in all these points in the tubular
neighborhood must be bounded by below in a sense to be made precise later.

The advantage is that this strongest notion of transversality is C1-open
in the sense that if a section has enough estimated transversality to the 0
section, if we add to it another section whose C1-norm is small compared
with the “amount of transversality”, the result is a section which is still
transverse to 0), and whose amount of transversality can be estimated in
terms of the amount of transversality of the original section and the C1-size
of the added perturbation.

The most delicate element of the approximately holomorphic theory is
showing that, indeed, every function close enough to be holomorphic admits
arbitrarily small perturbations so that it becomes transverse to 0 (local
transversality lemma), and with an amount of transversality such that it
is possible to develop a process to solve each of the local transversality
problems, and when we add up all the perturbations the result is a section
which is transverse to 0 (globalization process).

The previous globalization process is valid, not only to achieve transver-
sality to the 0 section, but to other (sequences of) holomorphic submanifolds
of L⊗k, or of other appropriate bundles and, more generally, to certain strat-
ifications by holomorphic submanifolds of the total spaces of the bundles
(actually to submanifolds and stratifications “close enough” to be holomor-
phic). This should not come as a surprise because using the globalization
process the construction relies on purely local results, and locally it is possi-
ble to find holomorphic coordinates and sections so that the corresponding
holomorphic subvarieties of the total spaces are represented as the 0 section
of a local trivial holomorphic bundle (again, instead of being holomorphic
everything is actually close to be holomorphic in a certain sense).

Once the existence of (sequences of ) approximately holomorphic sections
with good transversality properties has been established, at least for some
of them (the sequence of functions to projective spaces arising from pro-
jectivizations) it is natural to study its degenerations spaces, or in other
words, to define the corresponding r-jet bundles and the subspaces or, more
generally, the stratification given by the degeneration loci. The final goal
is to proof a strong transversality theorem which would imply the existence



16 I. THE GEOMETRY OF CALIBRATED MANIFOLDS

of r-generic approximately holomorphic sections (i.e., sections whose r-jet
is transverse to the corresponding stratification). One checks that the men-
tioned strong transversality result holds, the reason being that the corre-
sponding bundles of r-jets and stratifications are suited to get transversality
to them (though the technical complications are by no means trivial).

Once the existence of r-generic sections has been proven, the final step
is trying to obtain normal forms for them. For example, analogs to complex
Morse functions or functions to CP2 with the canonical singularity types.
Those sections will give rise to a number of interesting structures in the
symplectic manifold (M,ω) by objects (submanifolds, fibers) close to be
J-complex and hence symplectic.

1.3. Description of the contents and results. In this dissertation
we aim to make a study for calibrated structures analog to the previously
described for symplectic manifolds. We will adopt a more general point
of view similar to that introduced by D. Auroux [4], and will develop the
whole theory for almost complex manifolds, whose definition is introduced
in section 2, together with an analysis of their linear algebra. Next, we
introduce the sequences of line bundles that are candidates to posses plenty
of approximately holomorphic sections (definition 2.2). Also, an elementary
symplectization procedure –which will be the key to obtain all the results
through a refinement of the existing approximately holomorphic relative
theory– is described.

The local model for almost complex manifolds (always of odd dimension
unless otherwise stated) is introduced in section 3 (definition 3.1), and it
turns out to be the one existing for even dimensional almost complex man-
ifolds multiplied by a distinguished vertical coordinate. Given (sequences
of sections), it will be necessary to make different estimates regarding its
size and the size of other sections associated to them (covariant derivatives,
certain projections of them, holomorphic and antiholomorphic components).
We want to use the models so that the measures taken using the geomet-
ric elements of the model (euclidean metric and its Levi-Civita connection
and distance, canonical almost complex structure J0,...) are the same, up
to a uniform constant , i.e., it must not depend neither in the point where
the chart is centered nor in the bundle of the sequence in question (that is,
there is no dependence in k either), as the measures computed using the
original global geometric elements. The reason is that those of the model
are much easier to handle. It is important that the final bounds that we
get for the global sections are given using uniform constants, because some
of them will be multiplied by a factor of the form k−1/2 (for example the
one governing the antiholomorphy of the sections) and thus by increasing k
will be as close as we want to zero implying the fulfilment of the required
properties. All this will summarized in the notion of approximate equality
and local approximate property or equality (definition 3.6).

Depending on the estimates we want to obtain we will use different kinds
of charts in the base manifold (the approximate holomorphic coordinates of
definition 3.34) and even r-comparable charts (definition 3.4) in the total
space of the bundles.
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In the local model –whose domain is Cn × R– the distribution is the
one given by the complex hyperplanes (we also refer to it as the horizontal
distribution and is denoted by Dh). We will need to have a notion of prox-
imity between distributions (possibly of different dimensions), for example
between the distribution Dh of the model and D. For that analysis it will be
necessary to recall the concepts of maximal and minimal angle (definitions
3.10, 3.11).

The possibility of finding coordinate charts with suitable properties will
imply that the situation for (odd dimensional) compact almost complex
manifolds with a very ample sequence of line bundles (Lk,∇k) is essentially
the same one has for (compact) calibrated manifolds (M,D,ω); the sequence
of closed 2-forms iF∇k dominating D behaves as the sequence kω would do,
and similarly for the pairs (iF∇k , J) (lemma 3.21).

We will define what a sequence of approximately holomorphic (A.H.) sec-
tions is (also called approximately holomorphic sequence), together with the
notion of gaussian decay with respect to a point of M (definition 3.25). The
existence of reference sections will be proven using some previous lemmas
which relate estimates using the elements of the integrable model (metric,
connection, distribution, almost-complex structure,...) and the global ones.

All the mentioned material introduced in section 2 will be necessary to
develop the intrinsic A.H. theory.

The content of the last subsection of section 2 is a discussion on the rela-
tion among the different intrinsic A.H. theories, where two notions of equiv-
alence are introduced. The existence of different intrinsic theories follows
from the fact that there is no natural retraction to the canonical projection
T ∗M → D∗, and each one defines a different intrinsic theory.

We end up section 3 comparing the constructions of the intrinsic the-
ory with those coming from the even dimensional theory, trivially available
through the symplectization procedure, and describing the correspondent
theories (intrinsic and relative) for very ample sequences of vector bundles
of arbitrary rank.

In section 4 and for an appropriate sequence of hermitian vector bundles
Ek over (M,D, J), the sequence of vector bundles of pseudo-holomorphic
r-jets J rDEk is introduced (definition 4.1). Similarly to what happens in
the even dimensional case, the definition is such that for the local model
what we consider is the bundle of foliated coupled holomorphic jets (there
is a connection form coming from a suitable trivialization of the bundle).
Observe that since the r-jets are defined recursively using the holomorphic
part of the corresponding covariant derivative, the connection of Ek plays a
very important role. The important consequence is that due to presence of
curvature, for the obvious connection in J rDEk, the r-jet of an A.H. sequence
of sections of Ek is not an A.H. sequence of sections of J rDEk anymore. We
fix this problem by introducing a new almost complex structure in J rDEk
(connection) for which this property is fulfilled. The fundamental result is
that we start from a sequence of vector bundles Ek for which the transver-
sality result for A.H. sequences holds, the same happens for the sequences
of r-jets of sections of Ek (proposition 4.6).
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The analogous constructions for the relative theory will be also intro-
duced. In this case, the starting point is a J-complex distribution G (a po-
larization) of an even dimensional almost-complex manifold (M,J, g); there
is a natural definition for the subbundle J rGEk ⊂ J rEk, the subbundle of
r-jets along G; similarly, given an A.H. sequence of sections of Ek, the se-
quence of r-jets along G is introduced. It is important to observe that we
do not pretend to develop an approximately holomorphic theory for the se-
quence J rGEk, but similarly to what happens in the theory of foliated jets,
we pretend to transfer transversality problems from J rGEk to J rEk using
the canonical submersion; of course, it will be necessary to study when this
is possible, and that the solution of the induced problem in J rEk is indeed
a solution of the original problem in the subbundle.

Our goal is not only to obtain transversality for sequences of A.H. sec-
tions of Ek (and J rEk) to the 0 section of the corresponding bundles, but
also to (sequences of) subvarieties and even stratifications of these sequences
of bundles. The first part of section 5 is devoted to the introduction of the
notion of (sequences of) approximately holomorphic stratifications (defini-
tion 5.2) –a natural extension of the corresponding concept in the case of
even dimensional manifolds– together with a local description of them.

Next, we recall the concept of uniform transversality to the 0 section
of a sequence of sections of the hermitian bundles Ek, an extend it in the
obvious way to approximately holomorphic stratifications. The technical
part that follows (subsection 5.2) takes advantage of the local description
to conclude that uniform local transversality to this kind of stratifications
is equivalent to estimated transversality of a function h : Cn×R→ Cm to 0
along Dh (the complex hyperplanes) (lemma 5.9). A more detailed analysis
of the concept of minimal angle and its variations is needed at this point.
It is quite interesting that the previous discussion, in principle oriented to
the intrinsic theory, works almost word by word in the relative case. This is
another example of how the guiding principles of both theories coincide (they
are just different foliated versions of the original theory for even dimensional
almost-complex manifolds).

It is possible to weaken the notion of an A.H. stratification to the more
general one of A.H. quasi-stratification (definition 5.23), so that transver-
sality to the latter can be obtained using the same mechanisms as for the
former. This new concept is introduced to work with the Thom-Boardman-
Auroux quasi-stratification (subsection 5.3). In Kähler geometry the vector
spaces of sections of L⊗k (complete linear systems) are used to define maps
to the projective spaces. The analog to linear systems of rank m in the
A.H. setting are the A.H. sequences τk of the bundles Cm+1⊗Lk, Lk a very
ample sequence. Out of the points that go to the 0 section (base points
Ak), there is an induced A.H. sequence of maps φk : M − Ak → CPm. It is
natural trying to perturb them to make them r-generic. A necessary step
is to define JD(M,CPm), the non-linear bundles of pseudo-holomorphic r-
jets of maps to CPm, and in the total spaces the stratifications analogous
to the Thom-Boardmann ones. Actually, the strategy is to use the sub-
mersion Cm+1 − {0} → CPm to define a quasi-stratification in J rDEk, the
Thom-Boardman-Auroux quasi-stratification, so that transversality to if of
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the r-jets of the sections τk will imply estimated transversality to the Thom-
Boardmann stratification of the r-jets of the projectivizations φk. The def-
inition of the bundles JD(M,CPm), the Thom-Boardmann-Auroux quasi-
stratifications and the properties that allow to conclude the approximate
holomorphicity of the strata, and the corresponding analysis in the relative
case, are quite delicate (propositions 5.24 and 5.25 and lemma 5.27). The
main difficulty is that since J rDEk carries a modified almost-complex struc-
ture, it is quite hard to check that the strata are suited to obtain transver-
sality to them (essentially that they are locally defined by A.H. functions
w.r.t. the modified almost-complex structure of the total space), and ad hod
constructions have to be used.

The content of section 6 is the proof of the strong transversality theorem
to sequences of quasi-stratifications of the bundles J rDEk, and the relative
version for polarized even dimensional almost-complex manifolds (theorem
6.1, corollary 6.3). We notice that we perturb the sections of Ek so that
the r-jets become transverse (strong transversality). All the results from
the previous sections, together with an appropriate globalization procedure,
reduce the proof to an estimated transversality problem for A.H. functions
F : Cn × R→ Cm. The required solution to this problem is a refinement of
the one given in [32] or [50] for contact manifolds, extending S. Donaldson’s
result [12] (and D. Auroux’ refinement [2]).

We would like to make a comment about the local transversality the-
orem. This result is based in the fact that the corresponding estimated
transversality theorem for A.H. functions h : Cn → Cm holds also for one
parameter families. Actually, it works because the parameter is real. It
is not valid anymore for a complex parameter, because similarly to what
happens in the real case, foliated transversality does not behave well with
respect to the foliation itself. This is the reason to work with codimension
1 foliations and not dealing with higher codimension ones.

There is a second complication due to the non-integrability of D. To
obtain a strong transversality theorem to quasi-stratifications of J rDEk, r ≥
1, it will be necessary to consider A.H. sections of Ek all whose derivatives
are controlled (C≥r+h-A.H. sections).

The fundamental local result for relative constructions is J.-P. Mohsen’s
local relative transversality theorem Mohsen [43] for A.H. functions h : Cn →
Cm respect to a fixed submanifold Q, that after a suitable choice of charts
reduces to the local transversality theorem for A.H. sequences of functions
h̄k : Cn → Cm.

We will see how the different “quality” of the perturbations obtained
form the local theorems (better in the relative theory than in the intrinsic),
makes it possible to work in the relative setting with A.H. sequences of
sections only requiring control on a finite number of derivatives.

In section 7 we will state a number of results obtained from the main
theorems proved in section 6.

The applications for closed calibrated manifolds derived from transver-
sality to 0-jets are, first of all, the already mentioned theorem 1.5, which
follows from transversality to the 0 section of certain vector bundles Ek, and
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secondly the following result about the existence of determinantal subvari-
eties:

Proposition 1.6. Let (M,D,ω) be a closed calibrated manifold of integer
type and L⊗k the sequence of powers of the pre-quantum line bundle. Let
E, F hermitian vector bundles with connection and consider the sequence
of bundles Ik = E∗ ⊗ F ⊗ Lk. Then for k large enough there exist τk A.H.
sequences of sections of Ik for which the determinantal loci Σi

k(τk) = {x ∈
M | rk(τk) = i} are calibrated submanifolds (of integer type) stratifying M .

The fundamental result of the approximately holomorphic theory for
(closed) calibrated manifolds is a consequence of transversality to the Thom-
Boardman-Auroux quasi-stratification.

Theorem 1.7. Let (M,D,ω) be a closed calibrated manifold of integer type.
fix J a compatible almost complex structure. Then it is possible to find A.H.
sequences of r-generic maps to any CPm.

As a corollary, we obtain an analog to the embedding theorem in projec-
tive spaces for symplectic manifolds (already proven for contact manifolds
in [47]).

Corollary 1.8. Let (M2n+1, D, ω) a compact calibrated manifold of integer
type. Let J be a compatible almost complex structure. Then it is possible
to find sequences of maps φk : M → CP2n+2 so that for k large enough one
has:

• φk is an A.H. immersion along the directions of D.
• [φ∗kωFS ] = [kω], where ωFS is the Fubini-Study 2-form of CP2n+2.

Observe that these result, without making any reference to the almost-
complex structure, is easily obtained applying the theory of characteristic
classes together with the density of embeddings when the target space has
large enough dimension. Thee interesting point is that if for example we
have a (singular) holomorphic foliation of CP2n+1, it is possible to find em-
beddings transverse to the foliation along D, and thus inducing (singular)
foliations in M with calibrated leaves.

Section 8 is devoted to the study of normal forms for A.H. maps to CP1,
and the corresponding geometric corollaries for closed calibrated manifolds.

Observe that even in the even dimensional case, an r-generic A.H. map
does not necessarily has the same behavior as a holomorphic one. If we go to
odd dimensions, the behavior of a foliated holomorphic map is not that easy
to describe due to the presence of a direction that we do not have control
over. Anyhow, when the target space has (complex) dimension 1, we will see
that it is possible to give a reasonable description of the map (and we only
need to work with 1-jets to obtain genericity). Now going back to the more
general setting of odd dimensional almost-complex manifolds, a 1-generic
A.H. sequence of maps φk : M − Zk → CP1 can be perturbed so that it
conforms the required local models, where the perturbation takes place in
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a tubular neighborhood of the base locus and the degeneration locus of the
1-jet. Near this degeneration locus, which is a 1-dimensional manifold (a
link), the small size of the antiholomorphic part of the derivative does not
give much information, since the holomorphic part itself is equally very small
around the vanishing locus. The sough for perturbation will be one making
the antiholomorphic part of the derivative vanish in a small neighborhood
of the degeneration locus. That will imply the existence of charts in which
the map matches the required models, which are essentially a 1-parameter
version of the holomorphic ones

An application of the existence of normal forms for appropriate A.H.
maps to CP1 is the existence of Lefschetz pencil structures for closed cali-
brated manifolds.

Definition 1.9. Let (M,D,ω) be a closed calibrated manifold. A Lefschetz
pencil structure in M is given by a triple (A, f,B) so that:

(1) A is a closed calibrated subvariety of M real codimension 4.
(2) f : M −A→ S2 is a smooth map.
(3) B, defined as the set of points where f fails to be a submersion

along the directions of D, is a smooth calibrated subvariety of di-
mension 1. The image (by f) of each connected component of B is
immersed and the intersections are transverse double points (i.e.,
f|B is generic).

Besides f verifies the following properties:

• For any point a ∈ A there exists coordinates z1, ..., zn, s centered at
a and compatible with ω and a holomorphic chart of CP1, so that
in a euclidean ball in the domain of the chart A is defined by the
equations z1 = z2 = 0, and out of A, f(z, s) = z2

z1 .
• For any point b ∈ B there exists coordinates z1, ..., zn, s centered at
b and compatible with ω and a holomorphic chart of CP1, so that
f(z, s) = g(s) + (z1)2 + · · · (zn)2, where g(0) = f(b) y g′(0) 6= 0.

Out of the singular values f(B), the inverse image of each regular point
c defines an open calibrated submanifold of M −A. Using the local model in
the points of A, it is straightforward that the closure of f−1(c) is the closed
calibrated submanifold f−1(c) ∪ A. We refer to this compactification as a
fiber of f .

Without entering into any detail about what the compatible charts with
ω of the previous definition are (see definition 8.4), we state the following
result.

Theorem 1.10. Every closed calibrated manifold admits a Lefschetz pencil
structure.

In the last section we will consider the special case of calibrated foliations
and the particular features of the theory in that particular case.

Finally, we will go back to the 3-dimensional calibrated foliations that
served as motivation, and reinterpret some of the obtained results.
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2. Almost-complex manifolds: linear algebra, very ample
sequences of line bundles and symplectizations

Definition 2.1. Let (M,D) be a manifold with a smooth distribution. An
almost-complex structure adapted to D is a 4-tuple (M,D, J, g), where g is
a riemannian metric , J an almost-complex structure on D and J is g|D-
antisymmetric. Therefore, the dimension of D has to be even.

From now on and whenever there is no risk of confusion we will omit
any reference to D as given data, and we will call the quartet (M,D, J, g)
an almost-complex manifold.

The g-antisymmetry of J is used to define a hermitian metric on D by
the formula h( ·, ·) = g( ·, ·) + ig( ·, J).

In general D is allowed to have any (even) dimension, but for us, and
from now on, D will either have codimension 1 or will be the whole tangent
bundle (and in this last case we will mention it explicitly). The definitions
to be given extend the existing ones [4] for almost-complex manifolds in
which D = TM (or almost-complex manifolds of even dimension, from now
on).

For us, if M is odd dimensional it will be assumed to be compact (some-
times closed). Also, and unless otherwise stated, an almost-complex mani-
fold of odd dimension (in which D has codimension 1) will be referred simply
as an almost-complex manifold.
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2.1. Linear algebra of almost-complex vector spaces.
Let V be a vector space and D a codimension 1 vector subspace endowed

with an almost-complex structure J . We are mainly interested in studying
the spaces of r-forms in V which are non-trivial when restricted to D.

Let us denote by p : V ∗ → D∗ to the canonical projection. The kernel
of p, Ann(D), is a line inside V ∗. Let us consider V ∗D 6=0 defined as the
union of the complementary of Ann(D) inside V ∗ and the zero vector (V ∗ =
Ann(D) ∪ V ∗D 6=0, Ann(D) ∩ V ∗D 6=0 = {0}).

Similarly, we can consider the subspace V ∗C,D 6=0 inside the complexifi-
cation VC, which contains the subsets V ∗1,0D 6=0, V

∗0,1
D 6=0 corresponding to 1-forms

whose restriction to D is complex linear (resp. anticomplex linear), together
with the zero vector. In other words, these subsets are the intersection of
V ∗C,D 6=0 with the inverse images of D∗1,0 and D∗0,1 respectively.

We adopt the notation V ∗⊗r := V ∗ ⊗ (r)· · · ⊗ V ∗, V ∗�r := V ∗ � (r)· · · � V ∗
for the symmetric product and ∧rV ∗ for the antisymmetric product. Again,
we are only interested in forms whose restriction to D is non vanishing.
That is, let us consider the obvious projection pr : V ∗⊗r → D⊗r, denote
its kernel by Annr(D) and by V ∗⊗rD 6=0 to the union of its complementary and
the zero vector (form). This last subset contains the subsets V ∗�rD 6=0 and
∧rV ∗D 6=0 of symmetric and anti-symmetric r-forms, defined as the inverse
image in V ∗⊗rD 6=0 of D∗�r and ∧rD∗. After complexifying, each subset V ∗⊗rC,D 6=0

(resp. ∧rV ∗C,D 6=0) contains other subsets (with pairwise intersection the zero
vector) according to the types determined by the almost-complex structure.

Back to calibrated manifolds (or more generally to almost-complex man-
ifolds), we will work with certain sections σ, for example of the bundles D∗C,
and we will be interested in defining and measure its covariant derivatives.
A natural way to define a connection is as follows: first, choose a lift of σ
to a section of TM∗, which will be necessarily contained in TM∗C,D 6=0, and
then we compute the derivative using the Levi-Civita connection associated
to the metric.

The reasonable way to define such lifts is by fixing a retraction i : D∗ →
V ∗ for p, which canonically induces retractions for pr. If V carries a metric
(inner product), it defines a retraction ī whose image we denote by D̄∗ (the
forms vanishing in the orthogonal to D, denoted by 〈 ∂∂s〉).

Let ĩ be any other retraction, and let us denote its image by D̃∗. We
have induced retractions īr, ĩr for pr.

If we decompose V ∗ = D̄∗⊕Ann(D), D̃∗ can be represented as the graph
of a linear map l : D̄∗ → Ann(D), (D̃∗ = (I + l)(D̄∗)), and a bound for the
norm of l will follow from a bound by below for the angle ∠(D̃∗,Ann(D)).
There is also an induced map lr : D̄∗⊗r → Annr(D) so that (I+ lr)(D̄∗⊗r) =
D̃∗⊗r.

Inside the vector subspaces D̄∗⊗r y D̃∗⊗r and their complexifications we
have the subspaces of symmetric and anti-symmetric forms defined as the
intersection of V ∗�rD 6=0 and ∧rV ∗D 6=0 with the usual subspaces of symmetric and
anti-symmetric forms respectively; equivalently, they can be defined as the
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forms inside the cited subspaces whose restriction to D is symmetric (resp.
anti-symmetric). We can proceed similarly in the complexifications to define
the subspaces associated to the types defined by the complex structure in
D. It is worth mentioning that the restriction of pr to D̄∗⊗r and D̃∗⊗r (and
its complexifications), the inclusions īr, ĩr and the map I+ lr : D̄∗⊗r → D̃∗⊗r
preserve all this subspaces.

We stress again that the components with respect the two decomposi-
tions (for any value of r) are related by the linear map I + lr. For example
if α ∈ V ∗, denote its projection on D∗ by α|D (evaluation in D), its compo-
nent in D̄ by αD, and its component in D̃ by αD̃. To compute αD̃ explicitly
from αD, we consider a 1-form ds vanishing in D and taking the value 1
over a vector ∂

∂s orthogonal to D. Next, we take a vector vk ∈ D so that
D̃ = Ann( ∂∂s + vk). It is easy to check that αD̃ = αD − α(vk)ds (resp.
α1,0

D̃
= α1,0

D − α1,0
D (vk)ds, α

0,1

D̃
= α0,1

D − α0,1
D (vk)ds).

Thus, a bound for the norm of l implies the existence of a positive con-
stant κ such that:

• |αD| ≤ |αD̃|, |α∗1,0D | ≤ |α1,0

D̃
|, |α∗0,1D | ≤ |α0,1

D̃
|.

• |αD̃| ≤ κ|αD|, |α1,0

D̃
| ≤ κ|α∗1,0D |, |α0,1

D̃
| ≤ κ|α∗0,1D |.

We also notice that for β ∈ V ∗⊗rC r > 1, we can generalize the previous
construction to compute explicitly βD̃ form βD.

2.2. Very ample bundles. In order to control the geometric proper-
ties of D, in principle locally, but as we shall see globally, we will ask for the
existence of a closed 2-form calibrating D2n (its n-th power). Being more
precise, the 2-form will arise from the curvature of a hermitian line bundle.
When D = TM , this is the already known concept of ample bundle that we
generalize to the odd dimensional setting in the natural way.

Definition 2.2. [4] Given c, δ positive real numbers, a hermitian line bundle
with compatible connection (L,∇)→ (M,D, J, g) is (c, δ)-D-ample (o simply
ample) if its curvature F verifies iF (v, Jv) ≥ cg(v, v),
∀v ∈ D (and hence it is non-degenerate and belongs to ∧2TM∗C,D 6=0), and
|F|D − F 1,1

|D |g ≤ δ, where we use the supremum norm.

A sequence of hermitian line bundles with compatible connection (Lk,∇k)
is asymptotically very ample (or just very ample) if fixed constants δ, (Cj)j≥0

and a sequence ck → ∞ exist, so that from some K ∈ N on the curvatures
Fk verify:

(1) iFk(v, Jv) ≥ ckg(v, v), ∀v ∈ D
(2) |Fk|D − Fk1,1

|D |g ≤ δc
1/2
k

(3) |∇jFk|g ≤ Cjck,

Remark 2.3: Since iFk ∈ ∧2TM∗C,D 6=0, this 2-form is almost completely de-
termined by its restriction to D. Being D a codimension 1 distribution, we
do have a line field kerFk transverse to D and for which if Rk ∈ kerFk,
Fk(Rk, ·) = 0.
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From now on ĩ will denote the retraction associated to kerFk, and we will
refer to it as the retraction associated to the curvatures or to ωk := iFk. The
image of D∗ by this retraction will be denoted by D̃∗ (we will not use the
subindex k, even though the retraction ĩ varies with k). Recall also that ī
denotes the retraction associated to the metric. It is clear that iFk = iFk,D̃.

Therefore, the condition |Fk |D − Fk1,1
|D |g ≤ δc

1/2
k is equivalent to having in

the decomposition iFk,D̃ = iF 2,0

k,D̃
+ iF 1,1

k,D̃
+ iF 0,2

k,D̃
the norms |iF 2,0

k,D̃
|g, |iF 0,2

k,D̃
|g

bounded by O(c1/2
k ). As we saw in the subsection 2.1, this is also equivalent

to having bounds of the same order for the components (0, 2) y (2, 0) of the
projection of the curvature on i(D∗C) parallel to de Ann(D), where i is any
retraction. In particular for the retraction associated to the metric.

If we fix a smooth family of charts the previous computations can be
performed using the euclidean metric in the domain of the charts; the result
is the same kind of bounds but with constants c′k = Cck, C > 0.

The meaning of the previous bounds is better understood once the metric
g is rescaled to define the sequence of metrics gk := ckg (or equivalently
contracting the charts by the factor c−1/2

k ). The new bounds are of the
form iFk(v, Jv) ≥ gk(v, v), ∀v ∈ D, |Fk|D − Fk1,1

|D |gk ≤ δc
−1/2
k , |∇jFk|gk ≤

Cjc
−1/2
k , where the constants transform into CjCc

′
k
−1/2 if in the rescaled

charts we use the euclidean metric instead of gk (actually the bounds in (3)
are better because ∇r(iFk) is an (r + 2)-form, but the exponent −1

2 will be
enough for our purposes).

In the applications of the theory the starting point is a calibrated mani-
fold of integer type with compatible almost-complex structure J . The closed
2-form ω calibrating D is used to define the pre-quantum line bundle (L,∇)
whose curvature is −ω. The bundle (L,∇) is (1, 0)-ample and its tensor
powers L⊗k define a very ample sequence of line bundles.

In a calibrated manifold, the metric is defined using the 2-from ω: a
compatible almost complex structure J is used to define g|D, and then one
extends it to a metric g for which the kernel of ω is orthogonal to D. In
this situation, both the metric and the curvatures retraction are the same.
Actually, one might choose any metric extending g|D and the theory would
work equally.

Even though our choice of retraction is the metric retraction, it is not as
good as the one associated to the curvatures to work out the local theory
(at least at first sight). The curvatures retraction should be viewed as an
auxiliary tool, because the notions it gives rise to are not as natural as the
corresponding ones for the metric retraction. We should point out again
that the notion of A.H. sequence will depend on the retraction. It might
very well happen the certain retractions give rise to rich A.H. theories (with
a lot of A.H. sections), whereas others do define A.H. theories for which
we cannot conclude the existence of interesting A.H. sections. Anyhow, we
will see that in the case of the metric and the curvatures retraction, the
corresponding A.H. theories are strongly equivalent (lemma 3.30).
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2.3. The relative theory. As well as an intrinsic theory for calibrated
manifolds (and more generally almost-complex manifolds), it is possible to
develop a similar theory using a relative construction for symplectic man-
ifolds (more generally, almost-complex manifolds of even dimension). It
will be necessary to generalize certain elements of the symplectic (even di-
mensional) theory that allows to give a special treatment to part of the
holomorphic directions, so that in the end everything will be reduced to the
local relative transversality result of J.-P. Mohsen [43]. Such generalization
will be part of the contents of the current section, as well as of sections 4, 5
and 6.

The geometric results for calibrated manifolds deduced from both theo-
ries are exactly the same, but the intrinsic one presents much more technical
complications. A second and more important advantage of the relative the-
ory –that we do not exploit in this thesis– is that it makes it possible to
derive relative constructions for example for pairs (M,N,ω), where (M,ω)
is a compact symplectic manifold (maybe closed) and N is either a symplec-
tic submanifold or a calibrated submanifold (calibrated by ω).

Definition 2.4. A polarization of an almost-complex manifold (M,D, J, g)
is a J-complex distribution G ⊂ D. In such a situation we speak of a
polarized almost-complex manifold.

Even though the relative theory to be developed works in more general
situations, we will also consider polarizations in even almost-complex man-
ifolds (D = TM). Thus, a polarized almost complex manifold will be given
by the data (M,J,G, g).

Calibrated manifolds (M,D,ω, J) (in principle oriented and co-oriented)
can be symplectized (in a canonical way once a metric has been fixed). It
enough to choose β a 1-form defining D with norm 1 in each subspace. In
M × [−1, 1] we define the closed 2-form Ω = ω + d(tβ), where ω (resp. β)
is the pullback of the 2-form (resp. 1-form) in M , and t is the coordinate
in (−1, 1). It can be checked that Ω is non-degenerate in M × [−ε, ε]. We
extend J in M × {0} sending the unit vector orthogonal to D with positive
orientation to ∂

∂t and; next we extend it to M × [−1, 1] independently of the
coordinate. We also extend D independently of t. We finally extend g to
the product metric, and keep the same notations for the three extensions.
Actually, the metric g in M × [−1, 1] is only adapted to ω, J in M × {0},
but the inequality Ω(v, Jv) ≥ ag(v, v) holds, for certain positive constant a,
and that is enough for our purposes. The tangent space splits as direct sum
of the J-complex subbundles D and D⊥, where the orthogonality is with
respect to either the extended metric g or w.r.t. to the induced hermitian
metric h (the extension J is g antisymmetric).

More generally, if we start from a very ample sequence (Lk,∇k) →
(M,D, J, g), we can consider the above described extensions of J and g to
M×[−1, 1]. Then we can pullback the sequence Lk to M×[−1, 1] and define
the connections ∇̂k := ∇k+itβk, with βk := ckβ (being more precise one has
to take tensor product of the pullback of (Lk,∇k) with the trivial hermitian
line bundle with compatible connection form itβk). The result is not quite
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a very ample sequence of hermitian line bundles over (M × [−1, 1], J, g). Its
curvature has three summands: Fk, idt ∧ βk itdβk. One checks that the
unique condition of definition 2.2 which is not fulfilled is (2), and due to the
presence of the third summand above. Anyhow, the condition is indeed ful-
filled in the strips M × [−εk, εk], with εk = ckε, and as we shall see, we only
need to work for all k in a fixed strip of the form M × [−ε, ε] in the initial
construction of reference sections. The final observation is that in the con-
struction of reference sections condition 2 in definition 2.2 is only required
to hold in the point where the chart is centered, and we are only interested
in constructing reference sections centered at the points in M × {0} (where
the third summand vanishes).

Therefore, to any given very ample sequence of line bundles over (M,D, J, g)
we can canonically associate a “very ample” sequence of line bundles over
the polarized almost complex manifold (M × [−ε, ε], J,D, g) (which is in-
deed very ample over the sequence of polarized almost-complex manifolds
M × [−εk, εk], J, g,D)).

3. Local theory: Local models, adapted charts and reference
sections

3.1. The local model. In even dimensions (and without polarization),
the reference model is that of positive line bundles over Kähler manifolds.
The philosophy is that any deviation from the local Kähler model whose
size –once the charts have been rescaled using the factor c−1/2

k and using
the euclidean metric in the euclidean ball of radius O(1)– is smaller that
O(c−1/2

k ), still makes it possible the construction of “many” approximately
holomorphic sections. The first and most essential deviation is that of the
almost-complex structure.

Without being very precise for the moment a sequence of sections of a
certain bundle or, more generally, other objects like distributions, is said to
enjoy a property in the approximate sense, if for any k bigger than some
K the deviation from fulfilling the property (normally given in terms of
an equality) is, measured in the metric gk, at most of size O(c−1/2

k ). It is
equally possible to speak about local properties in the approximate sense. In
particular, for an appropriate choice of coordinate charts centered on each
point, we can choose for a generic chart “local models” to compare with.
One example is that of an arbitrary almost-complex structure J (thought
as a constant sequence of sections of the bundle D∗ ⊗D). If we fix charts
suitably and compare it with an integrable one J0, it will be at distance
smaller than O(c−1/2

k ) of the latter (measured appropriately), and thus we
will say that J is approximately integrable.

Another allowed deviation is considering connections whose curvature
is approximately of size (1, 1) (the even dimensional analog of condition 2
in definition 2.2, already present in [3]). Actually, since in the integrable
situation giving a unitary connection of type (1, 1) is equivalent to giving
an integrable almost complex structure in the total space of the bundle
(with the usual compatibility conditions), once approximate integrability in
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the base space has been allowed, it seems reasonable to weaken equally the
requirements in the total space.

In the odd dimensional setting the global model would be a manifold
with a codimension 1 foliation by holomorphic leaves. Locally, there should
be charts with domain Cn×R adapted to the foliation in which the leafwise
complex structure is of course integrable and independent of the “real” or
“vertical” coordinate. Regarding the line bundle, the curvature of the con-
nection has to be (already in the charts) leafwise positive and should define
(using an appropriate trivialization) an integrable almost-complex structure
in the total space independent of the vertical coordinate; in other words, the
curvature has to be of type (1, 1) (actually in certain situations vanishing of
the (0, 2) component will suffice) and independent of the vertical coordinate.

Similarly to what happens for even dimensional almost complex mani-
folds, we can allow almost-complex structures which locally (and for suitable
charts) are integrable and independent of the vertical coordinate in the ap-
proximate sense, and also connections with are approximately of type (1, 1).
But it turns out that any distribution D ⊂ TM (thought as a constant se-
quence) is approximately integrable, i.e., for an appropriate choice of charts
and appropriate model foliation Dh, the distance between D and Dh is of
order O(c−1/2

k ). Hence, it makes sense to consider distributions D instead
of only foliations. Actually, there is delicate point that is worth clarifying.
If our goal is to develop a foliated analog of the even dimensional theory (at
least the model should be a foliated version of the even dimensional model),
in the integrable local model it should suffice with asking the leafwise cur-
vature (the restriction of the curvature to each leaf) to be of type(1, 1) and
independent of the vertical coordinate s. The results of subsection 2.1 imply
that both conditions are equivalent to asking, for any retraction independent
of the vertical coordinate, the corresponding projection of the curvature to
be of type (1, 1) and independent of the vertical coordinate. In other words,
in the integrable model we do not need to ask the line field spanned by ∂

∂s
to coincide with the kernel of the curvature, i.e., it is not necessary that the
vertical component of the curvatures vanishes (those summands including
the factor ds). Anyhow, the vanishing of these vertical component turns out
to be very useful for some of the local constructions.

A final way of summarizing the previous ideas is that the local integrable
odd dimensional theory is a foliated theory for which there is no canonical
choice of line field transverse to D.

For polarized almost-complex manifolds (M,J,G, g), the corresponding
local model would be Cn decomposed as Cg × Cn−g, corresponding to the
distributions G and G⊥h , and so that the curvature and almost-complex
structure restricted to the leaves Cg×{·} are independent of the coordinates
zg+1, ..., zn.

Again, the theory is expected to work not only for J-complex foliations
G, but for any J-complex distribution G.

We should point out that the polarizations in the relative theory are used
to construct certain sequences of vector bundles. To be able to describe ap-
plications of the even dimensional A.H. theory to these associated sequences
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of vector bundles, it will be necessary to give certain local descriptions that
take into account the polarization.

Definition 3.1. The Kähler model, or flat, or integrable is the domain
Cn × R with coordinates {z1, ..., zn, s}, leafwise canonical complex struc-
ture J0 and euclidean metric g0. Regarding the line bundle, it has to ad-
mit a unitary trivialization so that the connection form has the expression
A0 = 1

4(
∑n

j=1 zjdz̄j − z̄jdzj). Hence, the curvature is ω0 = i
2

∑n
j=1 dzj ∧ dz̄j

(not its restriction to the leaves!) and its kernel coincides with the vertical
direction. The euclidean metric is leafwise determined by J0 and ω0 (and
the orthogonal to the leafs is kerω0). The foliation Dh with holomorphic
leaves Cn × {s} is called horizontal foliation.

The horizontal model in the even dimensional case is just a leaf of the
previous one. If we have a polarization, the corresponding model will be the
even dimensional one but with a further decomposition Cn = Cg × Cn−g.

For a sequence ck →∞ the rescaled is the same as the flat one, but with
metric gk = ckg0 and connection Ak = ckA0. It is straightforward that the
contraction with factor c−1/2

k sends the flat model into the rescaled one.

We notice that in the odd dimensional flat model we have asked for
a condition on the full 2-form ω. We might have weaken the definition
using the foliated 2-form, or even try to develop a theory for foliated non-
degenerate closed 2-forms. Locally, there is no trouble in doing that, but
the global obstruction comes from the fact that in general there is no pre-
quantum line bundle associated to such a foliated 2-form (actually, there is a
kind of Poisson structures for which such a pre-quantum line bundle exists,
but the difficulty is that is that the leafwise curvature does not match the
leafwise 2-from).

It would make sense to turn the condition on the curvature to a leafwise
condition if we were able to obtain any other property in exchange; for
example, being able to make the vertical direction with the orthogonal to
D. But we will not we able to get something like that whereas we will indeed
construct charts approximately matching the integrable model.

3.2. Adapted charts, r-comparable charts and approximate equal-
ities. One of the first steps to be taken is to show the existence of charts
and trivializations of a very ample sequence Lk that approximately coin-
cide with the local model. Also, a more precise definition of the notion of
approximate equality is in order.

Let us focus ourselves in the base space (M,D, g), with no reference
to a very ample sequence of line bundles. Our aim is to bound certain
sequences of sections and the sequences of their covariant derivatives; we
want to compute such bounds –up to a constant– working in appropriate
charts and using there the euclidean metric and distance, the flat covariant
derivative d (just partial derivatives) and the splitting in horizontal and
vertical coordinate.

Consider the sequence of riemannian manifolds (M,D, gk), with gk :=
ckg.
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Definition 3.2. Given (M,D, gk), a family of adapted charts is a set of
smooth maps ψk,x : (Cn × R, 0)→ (Uk,x, x), where (k, x) ∈ N×M , so that:

(1) ψ∗k,xDx = Dh(0)
(2) For every k bigger than some K, there exist constants γ, ρ0 >

0, with 1
γ g0 ≤ gk ≤ γg0, and such that |∇jψ−1

k,x|gk ≤ O(1) in

Bg(x, ρ0c
1/2
k ). In particular ∃ρ > 0 such that 1

ρdk(x, y) ≤ |zik(y)| ≤
ρdk(x, y), 1

ρdk(x, y) ≤ |sk(y)| ≤ ρdk(x, y) in the same ball, where
z1
k, ..., z

n
k , sk denote the coordinate functions for the charts ψk,x. It

follows that Bgk(x, rρ) ⊂ ψk,x(Bg0(0, r)) ⊂ Bgk(x, ρr), r ∈ (0, c1/2
k ).

The derivatives of ψ−1
k,x in condition 2 of definition 3.2 are computed using

the Levi-Civita connection associated to g, and dk is the distance for gk.
The required relation between the gk-distance and the norm (g0-distance)

implies that for a given section defined in a ball Bgk(x, 2ρ) a bound for its
pullback over the euclidean ball using the euclidean norm also bounds –up
to a constant C1 independent of k and x– the gk-norm of the original section
over Bgk(x, ρ).

Something similar holds for the covariant derivatives. Bounds of the
covariant derivatives of ψ−1

k,x (which are given by bound in the derivative,
the Christoffel symbols and the derivatives of these in the chart) imply that
bounds in Cr-norm for the pullback of the section of orderO(c−1/2

k ) using the
flat connection and metric g0 are equivalent –up to a constant independent
of k, x– to the same Cr-bounds but using ∇g, the Levi-Civita connection
associated to g, and the metric gk. What is more, for polynomials Pr, Cr-
bounds of order Pr(dk(x, y))O(c−1/2

k ) in a ball fixed g-radius centered at x
measured with ∇g and gk are equivalent to bounds Qr(|(zk, sk)|)O(c−1/2

k ) ,
where Qr is another polynomial (not depending on k and x), for the pullback
of the section in a a euclidean ball of radius O(c1/2

k ) using d and g0 (that is,
all the metric elements associated to the flat model).

Adapted charts are always available. It is enough to make it for ψ1,x (we
artificially set c1 = 1 so that g1 = g), and that is something elementary:
One constructs charts depending smoothly on x and so that D equals Dh at
the origin. Finally, we rescale them obtaining coordinates zk = c

1/2
k z, sk =

c
1/2
k s.

It is worth noticing that to be able to compare the distances associated
to g and g0 it is not necessary that both metric match at the origin. We will
make this comment more explicit in the next subsection, where we introduce
class of charts with weaker properties than the adapted ones.

r-comparable charts. Adapted charts are a useful tool to estimate bounds
using the euclidean metric, distance and connection. Depending on the kind
of estimates we want to compute, we might be interested in working with a
weaker kind of charts.

Let A be an invertible endomorphism of Rn. Let us denote by A(Sn−1)
the ellipsoid image of the unit sphere. A norm for A is defined as the
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maximum of the norms of the vectors in A(Sn−1), that we denote by ||A||.
The norm of the inverse is 1/d(A(Sn−1), 0).

We will use the notation 1
γ ≤ ||A|| ≤ γ if the positive constant ρ bounds

both the norm of A and of its inverse. To get bounds by below and above
for the norm of A it is enough to obtain one of the bounds and the other
for the determinant det(A), because the determinant computes the volume
of the ellipsoid (it is possible to go from a bound for the determinant to a
bound for the norm and viceversa using functions that only depend on the
dimensions).

If we have a metric g (bilinear form) we can consider the corresponding
matrix Ag associated to an euclidean orthonormal basis {e1, ..., en} (Ag,ij =
g(ei, ej)).

Definition 3.3. We define ||g|| to be the norm of Ag in a euclidean basis.
One checks that it does not depend on the basis. We will use both the nota-
tions 1

γ ≤ ||g|| ≤ γ and 1
γ ≤ ||Ag|| ≤ γ (and also 1

γ g0 ≤ g ≤ γg0, as we did
in condition (1) in definition 3.2).

One can give a different notion of norm for g by considering the norm of
a transformation sending a g-orthogonal basis into an euclidean orthogonal
basis. Again, the definition is independent of the choice of basis.

Both norms for g are equivalent. Indeed, if Ag is the symmetric matrix
representing the bilinear form g in an euclidean orthonormal basis, and Q is
a transformation sending a g-orthogonal basis into an euclidean orthogonal
one, it follows that Ag = QQt. Hence, it is enough to relate one of the
bounds (either by below or by above), and then relate the other through the
determinant using the relation det(A) = det(Q)2.

If we look at metrics g from the point of view of bilinear forms, another
way to bound g by below and above is finding a constant γ > 0 so that
1
γ ≤ g(v, v) ≤ γ, where v has euclidean norm 1.

The three described ways of bounding a metric by below and above are
equivalent.

Definition 3.4. Let (gα)α∈Λ be a family of metrics defined in a neighborhood
Uα of the origin of Rn. The family (gα)α∈Λ is said to be comparable to the
euclidean metric if positive numbers γ, ρ0 exist so that Bg0(0, ρ0) ⊂ Uα and
1
γ g0 ≤ gα ≤ γg0 in every point of Bg0(0, ρ0) and for every α.

Given any r ∈ N+, we say that the family is comparable to the euclidean
to order r if it is comparable and the norm of the Christoffel symbols –
computed in the usual euclidean orthonormal parallel basis– and that of its
partial derivatives up to order r − 1 are bounded by γ in every point of
Bg0(0, ρ0) and for every α.

Remark 3.5: In general and for a given open manifold M , the existence of
charts centered at every point x ∈M so that the induced metrics give rise to
a family of metrics gx comparable to the euclidean is not straightforward. A
sufficient condition is the existence of global bound for the curvature tensor.
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The reason is that if for example we want to construct the charts using
normal coordinates, we need information on the curvature to understand
the behavior of the differential of the exponential map.

The kind of family that we have in mind is Λ = {x ∈ ∐k∈NMk}, where
(Mk, gk) is a family of riemannian manifolds. In particular, if (Mk, gk) =
(M, ckg), where M is compact, it is very easy to construct r-comparable
charts (in this situation the requirements should hold not for all (k, x) but
for all (k, x) with k bigger than some K).

The first property of our interest is that for a family of maps fα de-
fined in r-comparable charts, bounds (by above) of order O(1) for ∇r−1

gα f in
Bg0(0, ρ0) are equivalent to bounds of the same order for the partial deriva-
tives up to order r−1 of fα. Also, in comparable charts and as we anticipated
in the end of the previous subsection, we can use either g or g0 and the same
for the associated distances.

The second property is the following: in the domain of r-comparable
charts, r ≥ 1, if we have a linear subspace V ⊂ Bg0(0, ρ0) we can compare
tubular neighborhoods of V for gα and g0. And what is more, inside these
neighborhoods (in one of them) we can also compare the parallel transport
of V (thought as tangent space to V itself) using both metrics. Indeed,
that parallel transport is controlled by the Christoffel symbols; a bound for
them allows us to study how the transverse geodesics to V differ (for both
metrics), and how much V is modified when parallel translated by∇gα along
any curve whose first and second derivatives are controlled (in principle these
curves will be geodesics for gα normal to V ).

We go back to our almost complex manifold (M,D, J, g) and the adapted
charts.

Adapted charts are useful to characterize what an approximate equal-
ity/property is. They can be used as well to give a precise definition of an
approximate equality when we compare with local models. Observe that the
definition of approximate equality given at the beginning of subsection 3.1
works perfectly when we compare with global objects, but it is far from being
precise when we have to compare, say, a distribution in the whole manifold
with other integrable distributions only locally defined using charts.

Our objects will be sections of certain bundles. More precisely, they will
be sequences of sections of fiber bundles (either hermitian or orthogonal),
being the prototype the sequence E ⊗ (F ⊗ Lk), where (Lk,∇k) is a very
ample sequence of line bundles and (F,∇) is an arbitrary hermitian vector
bundle and E is a vector bundle associated to TM (built by complexification,
taking duals, direct sums, and symmetric and antisymmetric products of
the dual). We can use instead of E the vector bundle built through the
same operations but out of D instead of TM . Since we will be interested
in computing norms of the derivatives of sections of these sequence, we
need to see the latter as a subbundle of E; we will use the notation ED
(resp. ED̃) if we use the metric retraction (resp. the curvatures). The
subbundle ED (resp. ED̃) inherits a connection from the Levi-Civita one
and the corresponding retraction (recall that both subbundles have canonical
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complementaries inside E defined out of the corresponding complementaries
of D in TM and Ann(D) in T ∗M).

One first example is the tensor J ∈ Γ(D ⊗ D∗), where the sequence of
bundles is constant . Once extended by zeroes, it gives rise to the sequence
of tensors J̄k ∈ Γ(D ⊗ D̄∗) ⊂ TM ⊗ T ∗M (constant sequence k) and J̃k ∈
Γ(D ⊗ D̃∗) ⊂ TM ⊗ T ∗M (this sequence does vary with k). When taking
covariant derivatives, we have two choices in both cases. The first one is just
use repeatedly the connection on E; the second is using the derivatives in
either ED or ED̃) (using the corresponding complementaries to project). The
four options (i.e., extending by zeros using either of the splittings and then
using either the full derivative or the one in the subbundle) give tensors with
different norms, but under certain conditions –that our tensor will always
fulfil– the bounds we look after will be equivalent for the four of them.
Unless otherwise stated, in principle and for sections of the subbundles ED
and ED̃ we will use the derivative inn E (the full derivative).

As it is the case of J , we will work with other sequences of sections of
a fixed bundle E (resp. ED or ED̃) which will come from data from the
base (M,D, J, g), without making any reference to very ample sequences of
bundles.

The second kind of example is given by a sequence of sections τk of Lk.
After taking the covariant derivative, we obtain ∇τk ∈ Γ(T ∗M ⊗ Lk). Its
restriction to D will have an antiholomorphic component ∂̄τk that can be
seen as a section of D∗0,1 ⊗ Lk. To take further derivatives (and hence
being able to estimate the Cr-size of the antiholomorphic component), it is
convenient to use the metric or the curvatures restriction and see ∂̄τk as a
section of either D̄∗0,1 or D̃∗0,1.

Definition 3.6. Let Ek be a sequence of either hermitian or unitary vector
bundles with compatible connection ∇, and let Tk be a sequence of sections
of them.

Tk is said to vanish in the approximate sense (or that approximately
vanishes) to order r and it is denoted by Tk ur 0, if for all k bigger than
some K the following inequalities hold:

|∇jTk|gk ≤ O(c−1/2
k ), j = 0, ..., r,

where the higher order derivatives use the Levi-Civita connection on T ∗M .

When the previous property holds for all r we speak of an approximate
equality and denote it by Tk u 0.

Remark 3.7: We observe that if Ek is a constant sequence E (resp. ED or
ED̃) as the previously described, once a family of adapted charts has been
chosen, the previous statement is equivalent to

| ∂
|p|

∂xpk
(ψ∗k,xTk)|g0 ≤ O(c−1/2

k ), p = (p1, ..., p2n+1), |p| = p1+· · ·+p2n+1, |p| ≤ r,
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in the points of Bg0(0, O(1)) independently of k y x,where x1
k, ..., x

2n+1
k are

the coordinates. Moreover, if the tensors are sections Tk of the subbundle
ED (resp. ED̃), one can give an equivalent definition only using the covariant
derivative in ED (resp. in ED̃). As we mentioned before, we will see that
under certain conditions the both definitions are equivalent.

We will work with families of adapted charts having additional proper-
ties.

Definition 3.8. A family of charts is adapted to g (resp. ωk or the curva-
tures) if it is adapted and for k large enough the vector field ∂

∂sk
generates

the g-orthogonal to D (resp. the kernel of ωk).

It is clear that there is no difficulty in finding charts adapted to g, because
the metric splitting does not depend on k; one builds them for k = 1 and
then rescale.

To show the existence of charts adapted to ωk it is necessary to study
the relation between both splittings. Such relation is coded in the bounds
for ωk and its derivatives of definition 2.2 and its relation with g over D,
which control how the kernel of ωk behaves. Anyhow, we point out that for
calibrated manifolds both splittings coincide.

Let us call Rk to a gk-unitary vector in the kernel of ωk. Such vector
(up to sign) will be in principle local if the manifold is not cooriented. The
domain Cn × R of a chart ψk,x, say adapted to g, has a natural orientation
defined as the one on Cn plus the vector ∂

∂sk
. If (M,D, J, g) is oriented, the

charts can be chosen such that both orientations agree. In that situation, Rk
will have positive vertical component. In the non-oriented one, we choose
rk also to have positive vertical component.

Lemma 3.9. The bound |ωk|gk ≤ O(1) implies ∠(kerwk, D) ≥ ε > 0, for k
bigger than some K.

The inequalities |∇jωk|gk ≤ O(c−1/2
k ), j ≥ 1 imply |∇jRk|gk ≤ O(c−1/2

k ), j ≥
1 (also for k bigger than some K).

Proof. Assume that the first statement is not true. That would imply,
for anyK and δ > 0 the existence of a point xk,δ ∈ (M, gk), k ≥ K, for which,
if we denote by vk the orthogonal projection of Rk over Dxk,δ , we would have
|vk|gk > 1 − δ and |vk − Rk|gk < δ. Therefore ωk(vk, Jvk) ≥ (1 − δ)2 and
hence ωk(vk, Jvk) = ωk(vk −Rk, Jvk), and |ωk|gk > (1−δ)2

(δ||J ||) .

Regarding the second statement, let us fix charts adapted to g and
{e1, ..., e2n+1} and orthonormal trivialization of TM for the metric gk (e2n+1

orthogonal to D), and such that |∇rei|gk ≤ O(c−1/2
k ). We can restrict our-

selves to a ball of gk-radius of order O(1).

We recall that since ∇ is the Levi-Civita connection, ∇XRk is orthogonal
to Rk.
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∇ωk(Rk, ei, ·) = d(ωk(Rk, ei))− ωk(∇Rk, ei)− ωk(Rk,∇ei)⇒
⇒ |ωk(∇Rk, ei)|gk ≤ O(c−1/2

k ).

Since∇XRk is far from the kernel of ωk the bound for |∇Rk|gk is deduced
from the bounds for ωk together with the bound by below over D by a fixed
multiple of gk. Also, the bounds for |∇rωk|gk , for |∇jRk|gk , 0 ≤ j ≤ r − 1
and the comparison over D of ωk with gk imply the required bound for the
component of ∇rRk orthogonal to Rk. Regarding the component parallel to
Rk, from 0 = ∇r〈Rk, Rk〉 we conclude that its size is measured in terms of
the inner products 〈∇sRk,∇tRk〉, 0 < s, t s+ t = r. �

From this results it follows that we can use either the metric gk, or the
restriction to D of this metric together with the local vector field Rk, and
we obtain bounds of the same order (that is, we can use either the previous
local basis {e1, · · · , e2n+1} or {e1, · · · , e2n, Rk}, and for both all the local
vector fields have derivatives of order O(c−1/2

k )).

The important consequence of the previous lemma is that we are now
able to construct charts adapted to ωk.

Before, it is necessary to give a notion of proximity between distributions.
When we are given two of them, a natural thing to do it writing one of
them as the graph of a map from the other to a transverse coordinate and
them estimate the norm of the map. In our case we are also interested in
comparing distributions of different dimensions. We recall the notions of
maximal and minimal angle. [46].

Definition 3.10. Let W be a vector space with non-degenerate inner product
so that for any u, v ∈ W we can compute the angle ∠(u, v). Given U ∈
Gr(p,W ) y V ∈ Gr(q,W ) p, q > 0, we define ∠M (U, V ), the maximal angle
of U and V , as follows:

∠M (U, V ) := max
u∈Ur0

( min
v∈Vr0

∠(u, v))

In general, the maximal angle is not symmetric, but when p = q it has
symmetry and defines a distance in the corresponding grassmannian (see
[46]).

The minimum angle between transverse complementary subspaces is de-
fined as the minimum angle between two non-zero vectors, one on each sub-
space. An extension of this notion for transverse subspaces with non-trivial
intersection is:

Definition 3.11. (see [46]) Using the notation of definition 3.10, ∠m(U, V ),
the minimum angle between non-void subspaces U and V is defined as fol-
lows:

• If dimU + dimV < dimW , then ∠m(U, V ) := 0.
• If the intersection is non-transverse, then ∠m(U, V ) := 0.
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• If the intersection is transverse, we consider the orthogonal t the
intersection and its intersections Uc and Vc with U and V respec-
tively. We define ∠m(U, V ) := min

u∈Ucr0
( min
v∈Vcr0

∠(u, v)).

The minimum angle is symmetric.

The most important property relating maximal and minimal angle is:

Proposition 3.12. (Proposition 3.5 in [46]) For non-void subspaces U, V,W
of Rn one has the following inequality:

∠m(U, V ) ≤ ∠M (U,W ) + ∠m(W,V ).

The subspaces should be considered oriented so that the maximum angle
of two smooth distributions of the same dimension, with the appropriate
sign, is a smooth function.

Lemma 3.13. It is possible to construct adapted charts ψk,x : (Cn×R, 0)→
(Uk,x, x) sending the field of vertical directions spanned by ∂

∂sk
to kerwk.

Proof. After lemma 3.9, there exist ε > 0, K ∈ N+, so that ∠m(kerωk, D) ≥
ε for k ≥ K. We can fix initial charts φx,1 : (Cn × R, 0) → (Uk,x, x)
such that ∠M (Dh, D) ≤ ε

2 . Applying proposition 3.12 we deduce that
∠m(φ∗1,x kerωk, Dh) ≥ ε

2 , for k ≥ K. We define the family of charts φk,x
by rescaling φx,1.

Let us denote the flow of φ∗k,xRk by Φt
x,Rk

. We rectify it using the map

χk : Cn × R→ Cn × R
(zk, sk) 7→ Φs

Rk
(zk, 0)

Since |Rk|gk = O(1) and ∠m(Rk, Dh) > ε
2 it follows that the map is

defined for each x and k in a euclidean ball of radius en r1c
1/2
k (or of g-

radius of order O(1)). What is more, it is possible to find a constant γ so
that 1

γ ≤ |χk∗(zk, sk)| ≤ γ. Thus, we can compare the euclidean metric in
the target space of χk with the pushforward of the euclidean metric (and
similarly we have the required bounds for the derivatives). Actually, we can
undo the rescaling and consider, for each k, the map Φt

x,c
1/2
k Rk

induced in

the domain of the chart φ1,x. These maps fix the origin and Dh(0), and for
all their covariant derivatives bounds of order O(1) are available. Therefore,
bounds of order O(c−1/2

k ) are obtained for the compositions ψk,x = φk,x ◦
Φt

x,c
1/2
k Rk

. �

Once we have charts adapted to g (resp. ωk) in which the splitting
Dh ⊕ ∂

∂s almost corresponds to the one given by D and the metric (resp.
ωk), we can introduce the notion of approximate equality for local tensor.
Actually, the concept will be defined for any family of adapted charts, but
since our local tensors will be related to D and both splittings, we restrict
our attention to these two kinds of families of adapted charts.
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We will also give the definition in principle for constant sequences of
bundles E (resp. ED or ED̃), because the “local models” we want to compare
with are related to the geometric data (M,D, J, g).

Definition 3.14. Let us fix ψk,x a family of charts adapted to the metric
(resp. curvatures). Let Tk be a sequences of sections of the vector bundle
E or the subbundles ED (resp. ED̃), and T another local section of the
corresponding bundle; that means that we use the local distribution Dh and
local splitting Dh ⊕ ∂

∂s instead of D and D⊥ (resp. kerωk) in the local
definition of ED (resp. ED̃), which the local bundle where T belongs. The
charts give canonical trivializations of E and of the local subbundles, and
we ask T –defined in the domain of ψk,x– to be given by a fixed expression
independent of k, x. Thus, T is the local model we want to compare with.

Tk is said to be equal to T in the approximate sense (or approximately
equal) to order r, and we denote it by Tk ur T , if for all k bigger than some
K the following bound hold:

| ∂
|p|

∂xpk
(T − ψ∗k,xTk)|g0 ≤ Pr((zk, sk))O(c−1/2

k ), (3.1)

p = (p1, ..., p2n+1), |p| = p1 + · · · + p2n+1, |p| ≤ r, in Bg0(0, O(c1/2
k )) inde-

pendently of k and x, where we have used the notation zik = x2i
k + x2i+1

k ,
sk = x2n+1

k . In case we are only working Bg0(0, O(1)), we ask for the same
kind of inequalities but with Pr = 1 (the first inequality over Bg0(0, O(1))
implies this last one).

When the previous property is fulfilled for all r we speak of an approxi-
mate equality and denote it by Tk u T .

We will speak about flatness in the Cr-approximate sense when T = 0
(i.e., Tk u 0), o more generally when T , being a local tensor, is constant
(parallel w.r.t. the Levi-Civita connection associated to the euclidean met-
ric).

Remark 3.15: Notice that we can use instead of d (usual partial derivatives)
the covariant derivative ∇ and gk in the definition. When we work with
sections of the subbundles ED (resp. ED̃) we can give an equivalent defini-
tion using the restriction of d to Dh (i.e., the partial derivatives w.r.t. the
horizontal coordinates).

Remark 3.16: It is possible to extend the notion of approximate equality for
sequences of sections of E ⊗ (Lk ⊗ F ). Basically, we need to give (unitary)
trivializations of Lk⊗F for each chart, so that the model tensor T is defined
by a fixed formula (for example T = 0). We also need to couple d with the
corresponding matrix of 1-forms in 3.1. Since the use of local models is
oriented to simplify certain calculations, the reasonable thing to do is to
choose trivializations so that the matrix of connection forms is independent
of k and x and easy to handle.

Once adapted charts –which are nothing but an auxiliary tool– have been
fixed (and not necessarily adapted to the metric or curvatures), the distance
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between D and Dh is given by a smooth map ∠M (D,Dh) vanishing at the
origin. Thus, D is approximately integrable (or flat).

It is important to point out that the notions of approximate flatness do
depend on the family of charts. Observe also that Tk ur T for a family
of adapted charts is equivalent to φ∗k,xTk ur T , as long as φk,x : (Cn ×
R, 0) → (Cn × R, 0) verifies φk,x ur I and φ∗k,xDh(0) = Dh(0). Hence, we
will not only use charts adapted to the metric (resp. curvatures) but also
perturbations of the previous order; in other words, charts approximately
adapted to the metric (resp. curvatures) for which D u Dh and D⊥ u 〈 ∂∂s〉
(resp. kerωk u 〈 ∂∂s〉).

We have already mentioned that the theory for almost-complex manifolds
generalizes the setting for calibrated manifolds with a compatible almost
complex structure J and metric g. An important consequence in the latter
situation is that sections close enough to be J-holomorphic (and transverse
to submanifolds close to be J-complex) define submanifolds cutting D sym-
plectically (at linear level). Recall that for any retraction i, by definition a
1-form Γ ∈ i(D)∗C is J-holomorphic if its restriction to D has this property.
Being close enough to be J-holomorphic means that the (1, 0) part of the
restriction to D is big enough compared to the (0, 1) component. But we
have seen that this is equivalent to the same assertion for the components
Γ1,0 ∈ i(D)∗1,0C and Γ0,1 ∈ i(D)∗0,1C .

Indeed, for any subspace Nx ⊂ Dx, J(Nx) ⊥g Nω|D
x so if J(Nx) is close

enough to Nx, the latter will be symplectic. The proximity is measured by
|Γ0,1|/|Γ1,0|.

In the general situation of almost complex manifolds, and similarly to
what happens in the even dimensional setting, this relation can also be
recovered; being close to be J-holomorphic will imply symplecticity (of the
corresponding submanifolds) w.r.t. ωk. To show it, we construct almost-
complex structures Jk compatible with ωk and approximately matching J .
For these new tensors, C0-proximity to J is enough to deduce the desired
result. It is a special feature of the approximately holomorphic theory that
all the relations that hold in the models, are fulfilled in the approximate
sense in (M,D, J, g). For the sake of completeness, we will prove that this
indeed the case for Jk and J (they approximately coincide to any order).

Again, we face the problem of how to take derivatives of the tensors
Jk ∈ Γ(D∗ ⊗ D) (to be defined). On the one hand we can consider either
the metric extensions J̄k or the curvatures extensions J̃k. On the other,
we can either take full derivatives or the derivatives in the corresponding
subbundles. In the next lemma we introduce conditions that eliminate this
ambiguity.

To introduce the necessary notation, we recall that if Tk is a sequence
of sections of a vector bundle E|D associated to D as in definition 3.14, for
the extension T̄k ∈ Γ(ED) (resp. T̃k ∈ Γ(ED̃)) we have a total derivative
∇rT̄k ∈ Γ(T ∗M⊗r ⊗ E) (resp. ∇rT̃k ∈ Γ(T ∗M⊗r ⊗ E)), and a derivative in
ED, ∇̄jT̄k ∈ Γ(T ∗M⊗r ⊗ ED) (resp. ∇̃jT̃k ∈ Γ(T ∗M⊗r ⊗ ED̃)) in which we
compose with the projections



3. LOCAL THEORY 39

πDr : T ∗M⊗r ⊗ E → T ∗M⊗r ⊗ ED

πD̃r : T ∗M⊗r ⊗ E → T ∗M⊗r ⊗ ED̃
If we work locally in adapted charts, the projection is instead πDhr : T ∗M⊗r⊗

E → T ∗M⊗r ⊗ EDh (the identity in T ∗M⊗r tensorized with the projection
parallel to the complementary subbundle).

We will also use the bundle isomorphism qD,D̃r : T ∗M⊗r⊗E → T ∗M⊗r⊗
E defined as the identity in T ∗M⊗rand in the E factor, it is defined as the
isomorphism that sends ED to ED̃ induced by the automorphism of TM
fixing D and sending D⊥ into kerωk parallel to D; equivalently it is induced
also by the automorphism of T ∗M which is the identity on Ann(D) and
sends D̄ into D̃ parallel to Ann(D).

In the domain of adapted charts (either to the metric or curvatures), the
local map qD,Dhr : T ∗M⊗r ⊗ E → T ∗M⊗r ⊗ E is defined as the identity in
T ∗M⊗r, and sends EDh into ED parallel to the common complement (again,
induced by the automorphisms of TM fixing ∂

∂sk
and projecting Dh into D

along the vertical direction).
The maps that have to do with the curvatures splitting do depend on k,

but we omitted the dependence in the notation.
It is clear that the maps πDr have gk-norm O(1), and their derivatives

are of size O(c−1/2
k ), because they are constant sequences. From the bounds

for Rk and its derivatives obtained in lemma 3.9, we conclude the same kind
of bounds for πD̃r and qD,D̃. We also have qD,Dhr u I (I the identity). In
the same way, πDr u πDhr , because we go from one projection to the other
by composing with qD,Dhr .

Notice that in the integrable situation, since Dh is parallel, the deriva-
tive in E (full derivative) and the derivative in EDh coincide. In the non-
integrable situation a bound for the derivative in ED does not imply the
same kind of bound for the full derivative. In any case, we have the follow-
ing result:

Lemma 3.17. Let Tk be a sequence of tensors of E|D and let T̄k and T̃k be
the images of Tk by the immersions of E|D in E given by the metric and
curvatures (we will refer to them as extension by zeros).

First, |∇jT̄k|gk ≤ O(1), ∀j ∈ N if and only if |∇jT̃k|gk ≤ O(1), ∀j ∈ N.
If (any of) the previous bounds hold, then the following conditions are

equivalent:

(1) |∇jT̄k|gk ≤ O(c−1/2
k ).

(2) |∇̄jT̄k|gk ≤ O(c−1/2
k ).

(3) |∇jT̃k|gk ≤ O(c−1/2
k ).

(4) |∇̃jT̃k|gk ≤ O(c−1/2
k ).

The previous equivalence also holds for bounds of order O(1) instead of
O(c−1/2

k ).
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Proof. We will just proof the second equivalence, because the first is
just the equivalence between (1) and (3) for bounds of order O(1).

Let us first consider the case of sections of ED (the equivalence between
(1) and (2)). By definition ∇̄T̄k = πD1 (∇T̄k). Hence, we wish to show that
if |∇T̄k|gk ≤ O(c−1/2

k ) and |πD1 (∇T̄k)|gk ≤ O(c−1/2
k ), then πD1 (∇T̄k) − ∇T̄k

has norm bounded by O(c−1/2
k ). We can work in balls of gk-radius O(1) in

the domain of charts adapted to the metric.

One implication is straightforward: from bounds of order O(1) for the
norm of both T̄k and ∇T̄k we deduce that (πD1 ∇T̄k −∇T̄k)− (πD1 dT̄k − dT̄k)
has norm bounded by O(c−1/2

k ), because the same estimate holds for the
difference dT̄k−∇T̄k. In fact, by using the bounds |∇jT̄k|gk ≤ O(1),∀j ∈ N,
we obtain bounds of order O(c−1/2

k ) for all the derivatives of the previous
difference (here we only need control of order O(1) for πD1 and its derivatives;
also, we use that for tensors F a,b, Gb,c, the relation∇G◦F = ∇G◦F+G◦∇F
holds).

Similarly, (πD1 dT̄k − dT̄k) − (πDh1 dT̄k − dT̄k) and all its derivatives have
norm bounded by O(c−1/2

k ), because πD1 u πDh1 and djT̄k, ∀j ≥ 1, are at
most of size O(1).

Hence, the assertion for the first derivative is equivalent to the same
assertion for the difference πDh1 dT̄k − dT̄k.

It is important to observe that all the higher order derivatives of the
previous difference only require a bound of order O(1) for ∇jT̄k and the
derivatives of the projections. After adding and subtracting the expres-
sion qD,Dh0 (T̄k) a T̄k, the problem reduces to find the same bounds for
πDh1 dqD,Dh0 (T̄k) − dqD,Dh0 (T̄k) (again, the difference approximately vanishes
only requiring bounds O(1) for ∇jT̄k and the projections and their deriva-
tives).

Define Bk,1 := ∇T̄k − ∇̄T̄k. From the previous considerations Bk,1 u 0.
Therefore ∇2T̄k −∇∇̄T̄k u 0. so the proof of the case r = 2 reduces to find
a similar bound for ∇∇̄T̄k − ∇̄2T̄k, and the proof of this fact is just what
we did, but using πD2 , π

Dh
2 and qD,Dh1 .

To bound ∇rTk we use the same ideas with the projections πDr , π
Dh
r and

qD,Dhr−1 , together with the fact that ∇∇r−1Tk−∇dr−1Tk is of order O(c−1/2
k ),

and that Bk,r−1 := ∇r−1T̄k − ∇̄r−1T̄k approximately vanishes by induction.

The equivalence between (3) and (4) follows the same pattern.

Also the equivalence between (1) and (3) is obvious because T̃k = qD,D̃0 (T̄k).

The equivalence for bound of order O(1) is also straightforward.

�

Remark 3.18: We can use the previous idea to prove the same kind of result
but equating the sequence not to zero, but to other tensor (just considering
the difference), or to a tensor locally defined in adapted charts (a model).
Observe also that to prove a global approximate equality Tk ur T , we can
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use a certain family of adapted charts (working in gk-balls of radius O(1))
and then switch to another family for other purposes.

Even though we still have not introduced charts adapted to polarizations
G, is will be evident that under appropriate conditions, we will have similar
results for tensor lying in the subbundles EG.

Remark 3.19: Notice that to prove the equivalence between (1) and (3) we
used the bounds of the map qD,D̃0 and its derivatives. Only bounds of order
O(1) for the derivatives are required in the proof (though the derivatives are
actually bounded by O(c−1/2

k )).

Remark 3.20: The previous lemma holds because in the integrable situation
we have strict equalities. We will see this kind of phenomenon more times.

We any of the four equivalent conditions hold, for the sake of simplicity
we just denote it by Tk u 0.

Lemma 3.21. Given a very ample sequence of hermitian line bundles over
an almost-complex manifold, there is a canonical sequence of almost-complex
structures Jk compatible with ωk = iFk and such that Jk u J .

Proof. We will define instead J̃k, the extension by zeros of Jk using the
curvatures retraction. This should not be strange because the compatibility
condition for Jk is stated in terms of ωk. Throughout the proof, all the
extensions by zeros will be done using the curvatures retraction.

We denote by J̃ and Ĩ the extensions of J and I by zeros (the extensions
do depend on k). Also denote by ω̃k : TM −→ T ∗M the bundle maps
induces by the 2-forms ωk. The composition ω̃k ◦ (−J̃) restricts to D to a
positive morphism from D to D∗. Hence, its symmetrization

Sk(u, v) = 1
2ωk(u, Jv) + 1

2ωk(v, Ju) =

= ωk(u, Jv) + 1
2(ωk(v, Ju)− ωk(Jv, J2u)) =

= ωk(u, v) + 1
2Re(ω

0,2
k (v, Ju)), ∀u, v ∈ D,

defines a metric on D, whose extension by zeros can be seen as a bundle map
S̃k : TM → T ∗M . Let us consider Ak = S̃−1

k ◦ ω̃k and define J̃k = Q−1
k ◦Ak,

where Q2
k = −A2

k and Qk is self-adjoint; the inverses are taken along D and
vanish in kerωk.

To show that J̃ u0 J̃k, we notice that the bundle maps ω̃k◦(−J̃), S̃k : TM →
T ∗M are by definition at distance O(c−1/2

k ). The same holds for the in-
verses –due to the fact that ωk(v, Jv) ≥ gk(v, v), ∀v ∈ D– and thus also for
J̃ = (ω̃k ◦ (−J̃))−1 ◦ ω̃k and Ak. Besides,

| −A2
k − Ĩ|gk = | −A2

k − (−J̃2)|gk ≤ O(c−1/2
k ).

Therefore, |Qk− Ĩ|gk ≤ O(c−1/2
k ). If we use charts adapted to the curva-

tures and diagonalize −A2
k (for example using the Gauss method), it follows

that −A2
k = Gk◦D̃(λ1,k, ...λ2n,k)◦G−1

k , where D̃(λ1,k, ...λ2n,k) is the diagonal
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matrix D(λ1,k, ...λ2n,k, 0), and both |Gk − Ĩ|gk and |D̃(λ1,k, ...λ2n,k) − Ĩ|gk
are of order O(c−1/2

k ). As a consequence,

|D̃
(

1√
λ1,k

, ... 1√
λn,k

)
− Ĩ|gk ≤ O(c−1/2

k ),

which gives the same bound for

Q−1
k = G−1

k ◦ D̃
(

1√
λ1,k

, ... 1√
λn,k

)
◦Gk.

Finally, |J̃ − J̃k|gk ≤ |J̃ −Ak|gk + |Ak − J̃k|gk ≤ O(c−1/2
k ).

The bounds for the derivatives of the difference J̃− J̃k are much easier to
obtain. One checks that |∇r(ω̃k ◦ (−J̃) − S̃k)|gk ≤ O(c−1/2

k ) holds trivially.
The reason is that the tensor is defined in terms of ω̃k and J̃ , and in the
previous expression we have to estimate the size of a bounded number of
summands each of which contains at least a derivative of either ω̃k or J̃ ,
together with terms of size at most O(1). The control for derivatives of J̃
is obvious, because 3.17 implies that this follows from the corresponding
control for J̄ (which holds trivially because what we have is a constant
sequence of tensors).

As we already mentioned –and for tensors T invertible along D (resp.
D̃∗) and vanishing along kerωk (resp. Ann(D))– the inverses that we have
used are computed in the directions of D (resp D̃∗) and defined to be trivial
along kerωk (resp Ann(D)). If T is one such tensor we have T ◦T−1 = I⊕0 =
Ĩ , T−1 ◦ T = I ⊕ 0 = Ĩ. Since |∇r Ĩ|gk ≤ O(c−1/2

k ) (for the same reason as
J̃), we have the usual formulas for the covariant derivatives of T−1, up to
terms of order O(c−1/2

k ). In particular ∇(ω̃k(−J̃) ◦ (ω̃k(−J̃))−1) = ∇(I ⊕ 0)
implies that

∇(ω̃k(−J̃))−1 = −(ω̃k(−J̃))−1◦∇ω̃k(−J̃)◦(ω̃k(−J̃))−1+(ω̃k(−J̃))−1◦∇(I⊕0)

We know use condition (2) in definition 2.2 to bound the gk-norm of
(ω̃k(−J̃))−1 by O(1). The consequence is:

|∇(ω̃k(−J̃))−1|gk ≤ | − (ω̃k(−J̃))−1 ◦ ∇ω̃k(−J̃) ◦ (ω̃k(−J̃))−1|gk +

+ O(c−1/2
k ) ≤ O(c−1/2

k ).

The last step is to check the appropriate bound for |∇r(Qk− Ĩ)|gk . This
can be done using charts adapted to the curvatures; in their domain (in
euclidean balls of radius O(1)) we have to apply the Gauss method to −A2

k ∈
M2n×2n(R) ⊂ M2n+1×2n+1(R). The partial derivatives of any order of the
functions A2

ki,j + δi,j are of size O(c−1/2
k ). One notices that the difference

between the matrix of change of basis Gk and the identity has its entries
as linear combinations of products of the previous functions; that gives the
desired bound for Gk, and similarly for its inverse. The final bounds for the
square root are obtained using the same kind of considerations. �
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When the starting point is a calibrated manifold (M,D,ω) and we apply
the symplectization procedure described in subsection 2.3, the described
extension of J turns out to be compatible only in the leaf M × {0}. It
is obvious that if we apply the corresponding simplified version for even
dimensional almost-complex manifolds of lemma 3.21 to the symplectization,
we obtain J̃k = J̄k (the matric and curvatures retractions do coincide) a
sequence of compatible almost complex structures whose restriction to M ×
{0} is J .

3.3. Darboux charts and reference sections. Now we are in posi-
tion to show the existence of charts approximately matching the flat model
of definition 3.1. For polarized almost complex manifolds, we will also intro-
duce Darboux charts adapted to the polarization (they are indeed a small
modification of the Darboux charts defined in [4]).

Lemma 3.22. For every point x ∈M and k ∈ N+, there exist adapted Dar-
boux charts ϕk,x : (Cn×R, 0)→ (Uk,x, x) with coordinates z1

k, ..., z
n
k , sk. That

is, charts adapted to the curvatures for which ϕ∗k,xωk = ω0. Regarding the
relation between J and J0 (more precisely between J̃ and J̄0, the extension
by zeros given by the euclidean metric in the chart), one has ϕ∗k,xD u Dh,
ϕ∗k,x(kerωk) = ∂

∂s y ϕ∗k,xJ̃ u J̃0.
The precise bounds are:

|ϕ∗k,xD−Dh|gk ≤ O(|(zk, sk)|c−1/2
k ), |∇j(ϕ∗k,xD−Dh)|gk ≤ O(c−1/2

k ), ∀j ≥ 1,

where the inequalities hold in a ball of fixed g-radius uniformly in k and x.
For the antiholomorphic components,

|∂̄ϕ−1
k,x(zk, sk)|gk = O(c−1/2

k + |(zk, sk)|c−1/2
k ),

|∇j ∂̄ϕ−1
k,x(zk, sk)|gk = O(c−1/2

k ),

∀j ≥ 1, uniformly in k and x in a ball of fixed g-radius, where ∂̄ϕ−1
k,x is the

antiholomorphic component of ∇D̃πDh(ϕ−1
k,x), with πDh(ϕ−1

k,x) : Uk,x → Cn.

Proof. We want to prove the existence of adapted charts for with the
distributions Ann(D), D∗1,0 andD∗0,1 approximately coincide with ds, T ∗1,0Cn
and T ∗0,1Cn respectively, and such that ωk u ω0 (being able to obtain
ωk = ω0 as well). The proof follows the lines of that of D. Auroux in [4] for
even dimensional almost complex manifolds.

We start with an initial family of adapted charts φ1,x. For them we can
assume φ∗1,xJx = J0(0), by composing with a linear transformation if neces-
sary. Then we rescale to obtain a family of charts φk,x : Cn × R → (Ux, x).
If φ1,x have been chosen depending smoothly on the center x, the bounds
for φ−1

k,x and their covariant derivatives are obvious. The result for the anti-
holomorphic components follows the same pattern. We just observe that to
compute this components we have to project ∇φ−1

k,x : TBg(x, c)→ T (Cn×R)
over TCn, and ∂̄φ−1

k,x turns out to be the antiholomorphic component with
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respect to J̃ and J̄0 in Cn. The desired bounds, once we know those of
φ−1
k,x and its derivatives, are equivalent to bounds of the same order for the

maximal angle and its derivatives between the subbundles of antiholomor-
phic 1-forms for both almost complex structures in Dh. For the latter, the
bounds follow from the smooth dependence of the charts on the center and
the fact that both structures coincide at the origin. Actually, being abso-
lutely precise, since the charts are not necessarily adapted to ωk, the almost
complex structure J̄0 for the charts it is not quite the one of the statement
of the lemma, because the vertical component is not the image of the ker-
nel of ωk. In any case and from the comments of subsection 2.1 about the
relation between holomorphic and antiholomorphic components for differ-
ent retractions, since we can modify the charts to obtain charts adapted to
the curvatures by composing with the maps Φt

x,Rk
(lemma 3.13) –which fix

Dh(0) (not only at infinitesimal level) and have bound O(1) for the first
derivative and of order O(c−1/2

k ) for the derivatives– we obtain the bounds
O(|(zk, sk)|) for the antiholomorphic component of the inverse of this new
charts and of order O(c−1/2

k ) for the subsequent derivatives.

The rest of the proof uses the arguments of the one for even dimensional
almost complex manifolds. Since the vertical direction coincides with the
kernel of ωk, we can work in one of the symplectic leaves, say Cn×{0}, and
apply the obtained transformation to all the leaves (the restriction of the
2-forms ωk to each leaf satisfy the necessary requirements to apply the even
dimensional theory). �

Remark 3.23: In a Darboux chart it is possible to obtain a suitable trivial-
ization of Lk so that the connection form has a fixed formula. The price to
pay is that J may not coincide with J0 at the origin (though the difference
will be bounded by O(c−1/2

k )). In certain circumstances, it may be conve-
nient to have the equality; we only need to undo the last perturbation in
the lemma, which is of size O(c−1/2

k ).

We speak of approximately holomorphic coordinates whenever we have
adapted charts in which the splitting T ∗CM = Ann(D)C ⊕ D̃∗1,0 ⊕ D̃∗0,1

approximately coincides with T ∗C(Cn × R) = ds ⊕ T ∗1,0Cn ⊕ T ∗0,1Cn, with
bounds as in the statement of lemma 3.22. We also use the same terminology
when the global splitting is Ann(D)⊕D̄∗1,0⊕D̄∗0,1. Actually, we will allows
more general kinds of approximately holomorphic coordinates, but we will
postpone this discussion until the next section.

Remark 3.24: If we work with an even dimensional almost complex manifold
with polarization G, we can compose the Darboux charts with an h0-unitary
(h0 the canonical hermitian metric) such that G approximately coincides
with Cg×{·} and G⊥, represented for example as a Cg-valued function, will
be uniformly bounded by below (its minimal angle with Cg × {·} will be
bounded by below), and all the derivatives of the function will be of order
O(c−1/2

k ) (that is the distribution will be approximately constant). Also,
we will have G∗1,0 u T ∗1,0Cg, G∗0,1 u T ∗0,1Cg. Since the transformation is
h0-unitary, ω0 is preserved.
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We will speak of approximately holomorphic coordinates adapted to G
when the previous bounds measuring the difference between G,G∗1,0, G∗0,1
and G⊥ with the corresponding models hold.

Going back to the odd dimensional situation, we will see that we will
not be able to construct approximately holomorphic sequences of sections
(without using symplectizations) with interesting transversality properties
and so that we keep the same kind of control for the directions of D as for
the whole tangent bundle.

To generalize the notion of approximately holomorphic section we need
to choose a retraction i.

Definition 3.25. Let i be a retraction to the canonical projection T ∗M →
D∗. A sequence of sections τk of Lk is i-approximately J-holomorphic (or
i-A.H.) if positive constants (CDj , Cj)j≥0 exist such that,

|τk|gk ≤ CDj , |∇ji(D∗)τk|gk ≤ CDr , |∇jτk|gk ≤ Cr
|∇j−1∂̄i(D∗)τk|gk ≤ Crc−1/2

k .

A sequence of sections has i-gaussian decay w.r.t. x if positive constants
λ > 0, (Cj)j≥0 and polynomials exist (Pj)j≥0 so that ∀y ∈M y ∀j ≥ 0,

|∇ji(D∗)τk(y)|gk ≤ Pj(dk(x, y))e−λdk(x,y)2
,

|∇jτk(y)|gk ≤ CrPj(dk(x, y))e−λdk(x,y)2

If we are only interested in controlling the first r-covariant derivatives,
we will speak of sequences of i-Cr-A.H. sections (resp. with i-Cr-gaussian
decay).

Notice that ∇ji(D∗)τk is a section of i(D∗)⊗j ⊗Lk constructed recursively
using the confections induced by ∇k, and the induced connection on i(D∗)
via the Levi-Civita connection and the curvatures splitting.

Remark 3.26: We observe that the previous notions do depend on the chosen
retraction. If we use the metric retraction, that for us is the most natural, we
will simply speak of A.H. sequences of sections and of sequences of sections
with gaussian decay. The other important retraction, especially in local
construction is ĩ, the curvatures retraction.

Using the intrinsic theory we will be able to find sequences of ĩ-A.H.
with ĩ-gaussian decay. These will be a fundamental tool to given any
A.H. sequence, construct A.H. perturbations with arbitrarily small constants
CD0 , ..., C

D
r so that when we add the perturbation the resulting sequence has

interesting transversality properties (actually for both retractions ĩ and i).
We want to be able to verify the bounds of definition 3.25 for the retrac-

tion ĩ in Darboux charts (or in A.H.) using Dh, J0, g0 and d (recall that the
Darboux charts are adapted to the curvatures). To prove this kind of state-
ments we use ideas similar to those used in lemma 3.17. The new ingredient
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is the presence of the line bundle Lk. On each chart we fix a unitary trivi-
alization so that the confection form is A0

1
4(
∑n

i=1 z
i
kdz̄

i
k − z̄ikdzik), the same

for all k and x. Recall that d denotes the usual derivative or flat connection
(partial derivatives) and dDh its projection over Dh parallel to ds (the par-
tial derivatives w.r.t. the horizontal coordinates). Likewise, we denote by
dj (resp. djDh) the j-th iterate of the correspondent operator; dA0 denotes
the flat connection coupled with A0, dA0,Dh and dA0,D its projections over
Dh and D parallel to ds, and djA0

, djA0,Dh
and djA0,D

the j-th iterates of the
correspondent operators.

Lemma 3.27. Let E be one of the vector bundles of definition 3.6 and let τk
be a sequence of sections of E ⊗ Lk such that |∇jτk|gk ≤ O(1), j = 0, ..., r.
For a family of Darboux charts and trivializations of Lk with associated
connection forms A0, the following equivalences hold:

(1) |∇jτk|gk ≤ Pj(dk(ψk,x(zk, sk))O(1), j = 0, ..., r is equivalent to
|djτk|g0 ≤ Qj(|(zk, sk)|)O(1), j = 0, ..., r in the points of
Bg0(0, O(c1/2

k )) (or with polynomial equal to 1 over Bg0(0, O(1))).
(2) |∇jτk|gk ≤ Pj(dk(ψk,x(zk, sk))O(c−1/2

k ), j = 0, ..., r is equivalent to
|djτk|g0 ≤ Qj(|(zk, sk)|)O(c−1/2

k ), j = 0, ..., r in the points of
Bg0(0, O(c1/2

k )) (or with polynomial equal to 1 over Bg0(0, O(1))).
(3) |∇j

D̃
τk|gk ≤ Pj(dk(ψk,x(zk, sk))O(1), j = 0, ..., r is equivalent to

|djA0,Dh
τk|g0 ≤ Qj(|(zk, sk)|)O(1), j = 0, ..., r or to

|djDhτk|g0 ≤ Sj(|(zk, sk)|)O(1), j = 0, ..., r in the points of

Bg0(0, O(c1/2
k )) (or with polynomial equal to 1 over Bg0(0, O(1))).

(4) |∇j
D̃
τk|gk ≤ Pr(dk(ψk,x(zk, sk))O(c−1/2

k ), j = 0, ..., r is equivalent to

|djA0,Dh
τk|g0 ≤ Qr(|(zk, sk)|)O(c−1/2

k ), j = 0, ..., r or to

|djDhτk|g0 ≤ Sj(|(zk, sk)|)O(c−1/2
k ), j = 0, ..., r in the points of

Bg0(0, O(c1/2
k ))(or with polynomial equal to 1 over Bg0(0, O(1))).

(5) The bounds of (1) or (2) imply the same kind of bounds for
|∇r−j∇j

D̃
τk|gk , j = 0, ..., r. In particular (3) follows from (1) and

(4) follows from (2).

The polynomials Pj , Qj , Sj are obtained the ones from the others using
formulas independent of k and x.

Proof. Regarding the full derivatives the difference ∇rτk − drτk is the
sum of homogeneous terms, each of which is a product containing some
derivative djτk (with weight j), and other factors which are derivatives of
A0 and of the Christoffel symbols (with weight the order of the derivative
plus one). The Christoffel symbols have size O(c−1/2

k ), A0 is bounded by
|(zk, sk)|O(1), its first derivative is ω0 –of size O(1)–, and its higher order
derivatives are by hypothesis bounded by O(c−1/2

k ). The result follows from
the bounds on τk and its derivatives, that are assumed to be of order O(1).
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Notice also that since each summands contains a derivative of τk, if for

τk = τ̂k ⊗ e−λ|(zk,sk)|2 , λ > 0, (3.2)

with all the derivatives of τ̂ bounded by O(1), then τk, once multiplied by
a suitable bump function βk with support on B(0, c1/6

k ) verifies the second
requirement to be sequence of sections with ĩ-gaussian decay (see [12]).

The statement concerning the derivatives along the distributions is es-
sentially that of lemma 3.17. We define

πD̃k,j : T ∗M⊗j ⊗E ⊗ Lk → D̃∗⊗j ⊗ E ⊗ Lk,
(resp. πDhk,j : T ∗M⊗j⊗E⊗Lk → D̄∗⊗jh ⊗E⊗Lk) as the projection associated
to the curvatures (notice that the bundles vary with k).

The morphisms πD̃k,j (resp. πDhk,j ) are sections (resp. local sections) of
End(T ∗M⊗j ⊗E⊗Lk), with are bundles with a metric induced by gk (resp.
g0) and hk, and a connection induced by ∇g (resp. d) y ∇k. Hence, for
a sequence of sections of these bundles we have the notion of approximate
equality of order r. In particular, the previous sequence of maps can be
written in the form pD̃k,j⊗I (resp. pDhk,j⊗I), where the projections are sections
of T ∗M⊗j⊗E and the identity is a section of End(Lk) = L∗k⊗Lk = C (with
induced trivial connection). The identity has vanishing derivatives. Thus we
deduce –in a ball of radius O(c1/2

k )– bounds of order O(1) for the maps and
of order O(c−1/2

k ) for the derivatives (using both ∇ and dA0). The difference
of the projections is bounded by |(zk, sk)|O(c−1/2

k ) and its derivatives by
O(c−1/2

k ).
Notice that in the whole discussion the choice of unitary trivializations

of Lk does not play any role (we do not ask any requirement about their
dependence on k, x).

Let us write ∇D̃ − dA0,Dh = (∇D̃ − dA0,D) + (dA0,D − dA0,Dh). Using the
previous ideas the difference ∇τk − dA0τk is a sum of products of compo-
nents of τk multiplied by Christoffel symbols. Therefore ∇D̃τk − dA0,Dτk =
πD̃k,1(∇τk − dA0τk) u 0, where the approximate equality is for sections of
E ⊗ Lk (see observation 3.16 after definition 3.14).

Similarly, dA0,Dτk − dA0,Dhτk = (πD̃k,1 − πDhk,1 )dA0τk, and the results are

deduce from |dA0τk|gk ≤ O(1), and πD̃k,1 u πDhk,1 . Finally (dDh,A0 − dDh)τk =
A0τk, and using the same ideas that proved the equivalence (1) we can check
that the required bounds hold. Observe again that is the sequence can be
written as in equation (3.2) (for some point x), then after multiplied by the
mentioned bump function βk, the projection of the first derivative over D̃∗
fulfils the required inequality to have ĩ-gaussian decay w.r.t. x.

The differences for higher order derivatives are computed in the same
way. For example ∇D̃∇D̃ − dA0,DhdA0,Dh = ∇D̃(∇D̃ − dA0,Dh) + (∇D̃ −
dA0,Dh)dA0,Dh . Since already satisfies the bounds ∇(∇D̃ − dA0,Dh)τk, the
same happens for the projection∇D̃(∇D̃−dA0,Dh)τk (and all its derivatives).
For the second summand we apply what we did for the first derivative but
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to the sequence dA0,Dhτk, which satisfies the required bounds. We do the
same to bound the difference d2

A0,Dh
−d2

Dh
. For the r-th derivative we simply

write ∇r
D̃
− drA0,Dh

= ∇D̃(∇r−1
D̃
− dr−1

A0,Dh
) + (∇D̃ − dA0,Dh)dr−1

A0,Dh
, being the

size of the first summand bounded by O(c−1/2
k ) by induction, and also the

second applying the construction for r = 1 to the appropriate sequence. The
bounds drA0,Dh

− drDh are obtained similarly.

If the sequence, for some x ∈M can be written as in equation (3.2), after
multiplying by βk the second conditions required to have ĩ-gaussian decay
w.r.t. x holds.

Point five is straightforward for the decomposition Dh ⊕ ∂
∂s and dA0,Dh

(or dDh).

Thus, if τk is as in (3.2) for some x, the corresponding sequence has
ĩ-gaussian decay w.r.t. x.

�

Remark 3.28: In particular, associated to charts adapted to the curvatures
and using trivializations of Lk as described, from the equivalence (2) we
deduce that can easily define the notion of (local) approximate equality of
order r for sequences of sections of E ⊗ Lk, by requiring the corresponding
bounds for the partial derivatives of order equal or smaller than r (as in
equation 3.1 in definition 3.14). Besides, from the equivalence (4) we de-
duce that if the sections belong to ED̃ ⊗ Lk it is enough to consider partial
derivatives w.r.t. horizontal coordinates.

The content of the following lemma is the existence of A.H. sequences of
sections of Lk that play the role of partitions of the unity for the theory.

Lemma 3.29. There exist κ > 0 and K ∈ N+, such that for all x ∈ M

ĩ-A.H. sequences of sections τ ref
k,x of Lk with ĩ-gaussian decay w.r.t. x (and

with constants in the bounds independent of x) can be constructed, |τ ref
k,x| ≥ κ

in a ball of fixed gk-radius centered at x (the bounds fulfilled from K on).

Proof. We fix Darboux charts (adapted to the curvatures) and unitary
trivializations for which the connection form is A0 = 1

4(
∑n

i=1 z
i
kdz̄

i
k− z̄ikdzik).

Following the ideas of S. Donaldson [12], we consider the local section (for
each k) defined by the function f(zk, sk) = e−|(zk,sk)|2/4. The local section
is multiplied by an appropriate cut-off function βk with support in the ball
of radius c1/6

k . The gaussian decay for g0, d, Dh y | · |2 is straightforward,
and lemma 3.27 gives the result.

The approximate holomorphicity is trivial for J0 (notice that for any
polynomial Qr a constant CQr exists so that for any (zk, sk) ∈ Cn × R and
any λ > 0, |Qr(|zk, sk|)e−λ|(zk,sk)|2)|| ≤ CQr).

From the estimates for |∂̄ϕk(zk, sk)|gk and |∇r∂̄ϕk,x(zk, sk)|gk , we deduce
the required bounds for J̃ . �
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3.4. Relation between the (intrinsic) A.H. theories and the rel-
ative theory. We mentioned the possibility of developing and A.H. theory
which uses the metric retraction, instead of that given by the curvatures. We
have focused ourselves in the second one because the existence of reference
sections for it is more or less obvious.

Let i be any retraction for T ∗M → D∗. We denote by qĩ,i : T ∗M → T ∗M
the bundle isomorphism sending D̃∗ to i(D∗) parallel to Ann(D), and being
the identity in the latter. Let qĩ,ir,j : T ∗M⊗r ⊗ Lk → T ∗M⊗r ⊗ Lk be the
bundle map defined to be identity in all the factors except for the j-th one
of T ∗M⊗r, in which we require it to coincide with qĩ,i.

Lemma 3.30. Let τk be a sequence of sections of Lk. Suppose that bounds
of order O(1) exist for qĩ,i and its derivatives (for k large enough). Then
τk is a ĩ-A.H. sequence of sections if and only if it is a i-A.H. sequence
of sections. Suppose further that for the derivatives of qĩ,i bounds of or-
der O(c−1/2

k ) hold. Then it is possible to find a constant C such that if
|∇D̃τj |gk ≤ CD, j = 0, ..., r, then for k ≥ K |∇i(D∗)τk|gk ≤ CCD. In this
situation the gaussian decay is equivalent for both theories, and it is possible
to estimate the constant C relating the bounds along D for both theories.

If we have the first kind of bounds we speak of equivalent A.H. theories
(for i and ĩ). For the second and stronger bounds, we speak of strongly
equivalent theories.

Proof. The ideas are the ones used in lemmas 3.17, 3.27. Let us check
that ĩ-approximate holomorphicity implies i-approximate holomorphicity.

Let us denote by ∂̄i(D∗) the antiholomorphic component defined by i.

By definition ∂̄i(D∗)τk = qĩ,i1,1(∂̄D̃τk). Its r-th derivative is the sum of 2r

terms which are the composition of some derivative of qĩ,i1,1 acting on some
derivative of ∂̄D̃τk, and thus the result follows easily. It is important to
observe that there is only one summand in which there is no derivative of
qĩ,i1,1, and this is qĩ,i1,1(∇r∂̄D̃τk) (being more precise the extension qĩ,i1,1 acting

on the corresponding covariant derivative is qĩ,ir,1(∇r∂̄D̃τk)). Hence, it we
have strong equivalence the bound that we obtains is approximately the one
of the mentioned summand.

The computation of the derivatives along D the situation is similar. We
first notice that the bounds for qĩ,i can be computed as follows: we select
charts adapted to the metric and a (local) vector field of the form ∂

∂s + vk
spanning the complementary to D associated to i. The bound for the map
is equivalent to one of the same order for the minimal angle between this
complementary and D, which is itself equivalent to a bound by above for
the euclidean norm of vk. bounds for the covariant derivatives of the bundle
map are equivalent to bounds of the corresponding order for drvk. From this
considerations it follows that the bounds on the derivatives imply bounds of
the same order for ∇r−j∇ji(D∗)qr̃,r.
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By definition, ∇i(D∗)τk is the projection along Ann(D) of ∇τk. Being

this line field common for both splittings, we have ∇i(D∗)τk = qĩ,i1,1,∇D̃τk.
Similarly to what happens with full derivatives ∇ri(D∗)τk is the sum of terms

of two kinds: firstly, we have those which include derivatives of qĩ,i or deriva-
tives restricted to i(D∗). By hypothesis, we obtain bounds of the order of
the derivatives of qĩ,i1,1,. The remaining term is qĩ,ir,r ◦ · · · ◦ qĩ,ir,1(∇D̃τk). Hence,
for k large enough and strongly equivalent theories, the total size is that of
this summand up to a term of order O(c−1/2

k ) (and for equivalent theories
we have a bound of order O(1)).

The assertion about the gaussian decay is obvious.
The proof in the opposite direction is the same. �

Since the map relating the metric and curvatures excisions has derivatives
bounded by O(c−1/2

k ) (3.9), we deduce:

Lemma 3.31. There exist κ > 0 and K ∈ N+, such that for all x ∈ M

A.H. sequences of sections τ ref
k,x of Lk with gaussian decay w.r.t. x (and with

constants in the bounds independent of x) can be constructed, |τ ref
k,x| ≥ κ in

a ball of fixed gk-radius centered at x (the bounds fulfilled from K on).

From now on the A.H. theory of our choice will be the one associated to
the metric retraction (and its strongly equivalent ones). Also, for the sake
of brevity in the notation, we will denote the component of the derivative
in D̄ by ∇D instead of ∇D̄ or ∇ī(D∗).

Remark 3.32: We insist on the fact that bounds of order O(1) are enough
to assure that the notion of sequence of A.H. section is the same for both
retractions. This will be something useful to give normal forms for Lefschetz
pencils.

The advantage of the strongly equivalent theories is the following: a fun-
damental problem that we will deal with (sections 4, 5) will be the study
of the transversality properties (to certain stratifications) of the so called
pseudo-holomorphic r-jets associated to an A.H. sequence τk. These new
sections of sequences of vector bundles constructed out of D̄∗1,0, to be intro-
duced in the next section, approximately coincide with ∇rDτk (we recall that
the notation ∇rD substitutes ∇r

ī(D∗)). For a retraction i strongly equivalent
ti ī we can study the same transversality problem for the corresponding
pseudo-holomorphic r-jets, which approximately coincide with ∇ri(D∗)τk. In
the main applications we will see that the corresponding bundle morphism
induced by qĩ,i preserves the stratifications in question (they will be invariant
under the action of Gl(n,C)). The strong equivalence between the theories
the r-jet associated to i will be approximately the image by the mentioned
map of the r-jet associated to ī. The consequence is that transversality for
one r-jet will be equivalent to transversality for the other. For equivalent
theories this is in principle only equivalent for 1-jets (tough we will see that
in certain regions the situation is better).
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Remark 3.33: Actually, a consequence of this discussion is that for a given
(compact) calibrated manifold of integer type, once we have chosen J c.a.c.s
and defined g|D := ω(·, J), different extensions to a metric g in M give
strongly equivalent A.H. theories.

Now we can give a precise definition of what approximately holomorphic
coordinates are.

Definition 3.34. We call approximately holomorphic coordinates to those
associated to adapted families of charts ψk,x : Cn × R→ Ux for which:

(1) ψ∗k,xD u Dh.
(2) The coordinate functions are zjk : Ux → C are A.H.
(3) The gk-unitary local vector field vk so that ∂

∂sk
+ vk ∈ D⊥ has

minimum angle with Dh bounded by below and all its derivatives
are bounded by O(c−1/2

k ).

In other words, approximate holomorphic coordinates are those for which
the corresponding local A.H. theory is strongly equivalent the (global) A.H.
theory that we have fixed (the associated to the metric).

It is possible to weaken the previous notion using families of charts cen-
tered at points of certain sequences of submanifolds of (M,D, J, gk) for which
the bounds of third condition in definition 3.34 are asked to be of order O(1).
That is, we use charts for which the corresponding local A.H. theory is only
equivalent to ours; certain local constructions are not equivalent for both
(though some of them indeed are equivalent, and we will take advantage of
that). Unless otherwise stated, A.H. coordinates form now on are the ones
defined in 3.34.

It is possible to obtain other families of reference sections with similar
bounds using the symplectization. It is enough to consider reference sections
centered at the points of M ×{0} = M , and check that when we restrict to
M the bounds are preserved. To do that, we go to the more general setting
of a polarized almost complex manifold.

Let χk be a sequence of Cr-A.H. of Lk. Then ∂̄Gχk is clearly of size
O(c−1/2

k ). We can Darboux charts adapted to G. In the local model it is
clear that ∂̄Cgχk u 0. To compute ∂̄Gχk and its derivatives we can write
it as the projection of ∂̄Cgχk by the bundle morphism that related both
splittings. The bound for this map is of order O(1), and of order O(c−1/2

k ) for
its derivatives. Thus, if |∇r∂̄χk|gk ≤ O(c−1/2

k ), then |∇r∂̄Gχk|gk ≤ O(c−1/2
k ).

In our symplectization, G = D, and we still really need to compute bound
for the restriction χk |M . Since the metric makes the copies of M orthogonal

to ∂
∂t , we conclude that |∇rM ∂̄(χk |M )|gk ≤ O(c−1/2

k ). We also get the required
bounds for the full derivatives along TM and for the projections over D̄∗ in
the points of M ; the same happens for the gaussian decay. Hence, if χk is
a Cr-A.H.(Cr) sequence of sections defined M × [−ε, ε], then χk |M will be
a Cr-A.H.(CCr, CCr), where C is a constant which does not depend on the
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initial sequence χk. In particular, from the reference sections centered in the
points of M × {0} we obtain a family of reference sections for (M,D, J, g).

Observe that actually the metric has been extended to the symplectiza-
tion in such a way that the induced holomorphic theory from the one in the
symplectization is the one associated to the metric retraction. Actually, we
could have chosen any other extension of the metric (and hence of J) in the
symplectization, and from Lk a very ample sequence over (M,D, J, g) the
bundle with connection over the symplectization defined in 2.3 is also a very
ample sequence; its A.H. sequences of sections restrict to A.H. sections (for
the metric retraction), and also reference sections centered at the points of
M restrict to reference sections for the intrinsic theory.

It is important to observe that we can use the symplectization not only
to induce the local intrinsic theory but also to solve transversality prob-
lems in M along D for a sequence χk|M , where χk is an A.H. sequence in
the symplectization. Indeed, transversality will be equivalent to a condi-
tion on ∇D(χk |M ). By definition ∇D(χk |M ) is the projection over D̄∗ D of
∇TM (χk |M ). One checks that ∇Dχk ∈ Γ(D̄∗⊗Lk) defined in the symplecti-
zation, extends ∇D(χk |M ). Thus we can try to turn the initial transversality
problem into one for∇Dχk (which has been shown to approximately coincide
with ∂χk) in the points of M .

In fact the previous discussion applies in the relative situation (M,ω,G,N),
where (M,ω) is a compact symplectic manifold, N (resp. (Q,D)) is a sym-
plectic submanifold (resp. calibrated) and G is an almost complex distribu-
tion in a neighborhood U of N extending TN (resp. D). Observe that it is
elementary to find a J making an arbitrary local extension of TN (resp. D)
J complex.

When the submanifold is N (symplectic) we can find in the points of N
approximate holomorphic coordinates (for M) adapted to G (rectifying N as
well if we want and so that G⊕G⊥ approximately coincides with Cg×Cn−g).
We deduce that if χk is an A.H. sequence of sections of Lk := L⊗k, the
restriction to N is also an A.H. sequence, and that ∇Gχk extends ∇(χk|N ).

If the submanifold is (W,D) calibrated (by the restriction of ω), one
checks easily that the restriction of L⊗k to (W,D, J) defines a very ample
sequence of line bundles. By taking approximately holomorphic coordinates
for M centered in the points of W , so that W is rectified, the restriction to
W are A.H. coordinates for W and G ⊕ G⊥ approximately coincides with
Cg × Cn−g, if χk is an A.H. sequence defined in M , then it follows that its
restriction is an A.H. sequence (for the metric retraction) and that ∇Gχk
extends ∇D(χk|W ).

3.5. Higher rank bundles. There are similar results for higher rank
bundles which are locally of the form Cm ⊗ Lk in the approximate sense.

Definition 3.35 (see [3]). A sequence Ek →M of rank m hermitian bundles
with unitary connection is asymptotically very ample (or just very ample) is
positive constantsck →∞, (Cj)j≥0 exist, so that the curvature verifies:

(1) 〈iFk(v, Jv)u, u〉 ≥ g(v, v)|u|2, ∀v ∈ D,
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(2) |Fk|D − Fk1,1
|D |gk ≤ Crc

−1/2
k ,

(3) |∇jFk|gk ≤ Cjc−1/2
k ∀j ≥ 0.

A sequence Ek of very ample hermitian bundles is approximately locally
splittable (or just locally splittable), if for each x ∈ M over a ball of fixed
g-radius unitary sections τk,1, ..., τk,m can be found so that τk,1 ∧ ... ∧ τk,m
is bounded by below (they are comparable to a unitary frame), and for the
induced local splitting Ek = Lk,1 ⊕ · · · ⊕ Lk,m, the matrix of 1-forms αk,x
representing the difference between the connection and the induced diagonal
connection verifies |∇rαk,x|gk ≤ O(c−1/2

k ) for all r ≥ 0 in the ball of fixed
g-radius (which actually is a bit stronger than requiring a vanishing in the
approximate sense, because there is no polynomial in the right hand side of
the inequality).

In any case the main applications of the theory will be for bundles of
the form Ek = E ⊗ Lk, where E is a hermitian bundle with connection.
For these bundles, as well as having the metric retraction we also have the
one associated to the curvatures of Lk. The notion of A.H. sequence and
sequence with gaussian decay w.r.t. a point is obvious; one easily checks that
the result of tensoring reference sections for Lk with local unitary frames
of E is a family of A.H. sections with gaussian decay τ ref

k,x,1, ..., τ
ref
k,x,m which

trivialize the bundle in a ball of fixed gk-radius.
For a general sequence of locally splittable bundles the only natural re-

traction is the metric one. Anyhow, if we want to construct reference sections
without using the relative theory, we can consider the very ample sequence
of local line bundles Lk,j and obtain reference sections for them. In this
local construction the local retraction given by the curvatures (different for
each of the m sequences) can be used as an auxiliary tool to obtain A.H.
reference sections, and apply lemma 3.30 to conclude that the sections are
indeed reference sections for the metric retraction.

We have seen that there are as many (intrinsic) A.H. theories as retrac-
tions for the projection T ∗M → D∗. Some of them are equivalent and even
strongly equivalent. In particular, the curvatures retraction and the metric
retraction are strongly equivalent. We have shown the existence of refer-
ence sections for the curvatures retraction. From what we have just said in
the previous paragraph, it implies the existence of reference sections for the
metric retraction.

Finally, we have noticed that it is possible to obtain families of refer-
ences sections using the relative theory. In light of these results, it might
seem that having developed a local intrinsic theory is a useless task, but
this is a wrong impression. In fact both theories, the intrinsic (which are as
many as retractions) and the relative one are two version of an A.H. theory
along distributions (foliations in the local models), and the kind of local con-
structions needed for both are essentially the same: firstly, Darboux charts
adapted to the correspondent distribution are needed; the precise condition
is that the distribution must coincide in the approximate sense with the
foliation, and the complementary distribution –which in the intrinsic case
is given by the retraction and in the relative is the orthogonal distribution–
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has to be approximately constant (i.e., its minimum angle with the model
foliation must be bounded by below and all the derivatives must vanish in
the approximate sense). It turns out that in the intrinsic case and for the
curvatures retraction the Darboux condition implies that the orthogonal line
field actually coincides with the vertical line field.

Secondly, one uses this charts to write down explicit A.H. sequences com-
ing from solution to the Cauchy Riemann equations in the model (analogs to
S. Donaldson’s reference section). At this point, the difference is that in the
intrinsic theory we need a 1-parameter version of S. Donaldson’s construc-
tion (with parameter suitably chosen to have Gaussian decay) and in the
relative construction we just take Donaldson’s solution and make sure –by
using a family of charts adapted to the submanifold– that the restrictions
to the calibrated submanifold have the desired properties.

4. Pseudo-holomorphic jets

The main goal of the theory is showing –for a very ample sequence of
locally splittable bundles– the existence of A.H. sections with nice transver-
sality properties w.r.t. suitably chosen stratifications. The conditions to
be imposed on these stratifications will imply that estimated transversality
will be reduced to a local estimated transversality result for 1-parameter
families of holomorphic functions. Notice that this theory has already been
developed for even dimensional almost complex manifolds, being the main
result a strong transversality theorem for certain stratifications in the bun-
dles of pseudo-holomorphic jets. We will develop a similar theory in the odd
dimensional setting (both and intrinsic and a relative one).

In the relative setting we will show the existence of interesting strat-
ifications associated to a polarization, and that under certain conditions
(essentially those stated in [4]) uniform transversality reduces to local uni-
form transversality relative to submanifold, a problem already solved by J.
P. Mohsen [43].

We introduce the (hermitian vector) bundles of pseudo-holomorphic jets.

4.1. Pseudo-holomorphic jets.

The integrable case. Let E → M be a hermitian bundle over a complex
manifold. To define the holomorphic jets it is necessary to introduce a lin-
ear connection ∇ with F 0,2

∇ = 0, that is, a structure of complex manifold in
the total space of the bundle E (theorem 2.1.53 in [15]; we recall that this
result works for any linear connection, and if it is unitary is equivalent to
the curvature being of type (1, 1)). Such structure gives rise to the notion
of holomorphic section and hence of holomorphic r-jet. The space of r-jets
has natural charts obtained out of holomorphic coordinates in the base, a
holomorphic trivialization of the bundle, and using ∂0 (defined using the
canonical structure J0 in the base and the trivial connection d) for holomor-
phic maps from Cn to Cm; thus we obtain a local identification with J rn,m,
the usual r-jets for holomorphic maps from Cn to Cm (certain equivalence
classes of germs of holomorphic maps from Cn to Cm).
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The connection on the fiber bundle can be used to give a different notion
of local holomorphic r-jet (in principle chart dependent) by just considering
the operator ∂∇ (that is if the connection matrix in the trivialization is
A = A1,0, then the coupled 1-jet of a holomorphic section τ is defined to
be (τ, ∂0τ + Aτ))). It is important to observe that the kind of information
associated to the coupled r-jets does not coincide with that of the usual
jets. At this point it is necessary to explain why this is a useful notion.
First, we assume that the bundle E is of the form Cm ⊗ L, where (L,∇)
is a hermitian line bundle (usually very ample) for which F∇ = F 1,1

∇ (we
point out again that is the connection is hermitian this is equivalent to
having a holomorphic line bundle, and it this is not the case it is a stronger
condition). A holomorphic section τ of E defines a map φ to CPm−1 out of
the points where it does not vanish (its projectivization). We aim to study
the genericity of φ through the genericity of τ . That amounts to transfer
the corresponding transversality problem for the r-jet of φ in the non-linear
bundle J r(M,CPm−1), to a transversality problem in a vector bundle of
coupled r-jets for the coupled r-jet of τ . We start by describing the bundle
of coupled r-jets.

We start by giving a local definition of the coupled r-jets: once we have
chosen holomorphic coordinates, we can use the flat connection d acting on
sections of T ∗1,0M ∼= T ∗1,0Cn; the r-jet of a section τ in the point of the chart
is defined to be (τ, ∂nτ, ..., ∂rnτ), where the iterates of ∂n are constructed
using d in the factors T ∗1,0M .

As we said, in the domain of a holomorphic chart L can be trivialized
with a holomorphic section; thus A0,1 –the antiholomorphic component of
the connection form– vanishes. Over each point the set of coupled r-jets
can actually be identified with the set of usual ones: indeed, for each point
we can trivialize the bundle with sections whose graph is tangent to the
horizontal distribution of the connection H∇. Thus, the connection form
vanishes. This, together with the vanishing of F 2,0

∇ imply the assertion. As
a consequence, the local coupled r-jets fill the bundle

∑r
j=0((T ∗1,0Cn)�j)⊗

Cm = J rm,n (they are symmetric).

The coupled local r-jets do share an important property with the usual
ones: given any coupled (r + 1)-jet σ = (σ0, ..., σr+1) over, say the origin,
a local section α of J rm,n exists with the properties α(0) = (σ0, ..., σr) and
σ = ∂∇α(0) = ∇α(0); it is enough to use the same construction as the one
of the flat case (A = 0). One perturbs linearly πr+1

r (σ) = (σ0, ..., σr) with
appropriate complex homogeneous polynomials, and uses the vanishing of
the connection form at the origin.

At this point, having a local model for coupled r-jets is enough for our
purposes (actually we have described the even dimensional model, and the
odd dimensional one will be the corresponding foliated version). Anyhow,
and for the sake of completeness, we point out that it is possible to give a
global definition of coupled r-jets with do keep the essential properties of
the local ones.
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We only need to introduce a connection on T ∗1,0M . In particular, we
can take the one induced by the Levi-Civita connection. When the met-
ric is Kähler the resulting coupled r-jets are still symmetric. We can fix
holomorphic normal coordinates for which the connection matrix vanishes
at the origin (or equivalently the torsion on the connection vanishes at the
origin [25]) and for which the curvature is of type (1, 1), and that implies
symmetry of the global r-jet. Again, using normal coordinates it is easy to
write an (r + 1)-jet as the 1-jet of a local section of the bundle of coupled
r-jets.

We must notice that the introduction of the metric changes the meaning
of the coupled r-jets, because after projectivizing they will not correspond
anymore to the usual r-jets. Anyhow, we point out that the definition of
pseudo-holomorphic r-jets that we are about to give, will have the property
that when k grows big they will approximately coincide with the local cou-
pled r-jets (in other words, for large values of k the weight of the metric is
approximately vanishing, so up to terms of order O(c−1/2

k ), we can use g0).
Thus, the pseudo-holomorphic r-jets will be important tools to study the
genericity properties of the projectivizations.

Anyway it is interesting to observe that for Kähler metrics the (global)
coupled jets do fill the right vector bundle and do have local representations
(which are important tools to deal with transversality problems).

Another important advantage of the coupled r-jets is that they define
a bundle with a simpler structural group. For the usual r-jets, the corre-
sponding non-linear bundle has group 0Hrn × Gl(m,C), where 0Hrn is the
group of r-jets of germs of biholomorphic transformations of Cn fixing the
origin.

Notice that if we wanted the global coupled are jets to coincide (locally)
with the usual ones (imagine for the moment that the bundle L is triv-
ial and we can use d as connection), then the metric should be flat and
the transition functions of the coordinate charts, being isometries, would
be linear. The result would be a reduction of the structural group from
Gl(n,C) × Gl(m,C) ⊂ Gl(N,C), where N is the dimension of the fiber of
J rn,m. That reduction is exactly the one we get by introducing a connection
(on T ∗1,0M).

In the odd situation the model is essentially a foliated version of the
latter. Assuming integrability for both D and J , we use local identifications
adapted to the foliation integrating D, so that we have an identification
with Cn×R in which we assume that J matches the leafwise canonical com-
plex structure J0. Also, we need a trivialization of L that gives rise to a
connection form independent of the vertical coordinate and whose curvature
restricts to each leaf to a (1, 1) form. The local definition of the coupled (and
foliated) holomorphic r-jets is similar to the one for complex manifolds. One
just consider the restriction of the function (section) to each leaf and applies
the previous construction. Thus, the fiber over each point is that for complex
manifolds (in particular the coupled (foliated) holomorphic r-jets are also
symmetric (here we use that the complex structure is independent of the ver-
tical coordinate and that the restriction of the connection form shares this
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property. In this trivialization any submanifold of J rn,m extends naturally to
a submanifold in J rDh,n,m = J rn,m × R independently of the vertical coordi-
nate). If we further assume that the bundle is Cm ⊗L and the curvature of
L (maybe foliated) is −iω0, the we also have holomorphic trivializations de-
fined multiplying a unitary section whose connection form (maybe foliated)
is A0, times f(z, s) = e−|(z,s)|2/4 or f̌(z, s) = e−zz̄/4 (independent of s), that
we know are solutions of the corresponding Cauchy-Riemann equations.

If we wanted to give a global model –even though the local one is enough
for our purposes– it would be necessary to use a connection on T ∗1,0(Cn ×
R) ∼= T ∗1,0Cn (fiberwise). For example the one induced by the restriction
of the Levi-Civita one to each leaf (the symmetry issue here would be more
complicated).

As we have already mentioned, a local model will be enough for our
purposes. If we wanted to give a global definition the requirement for the
metric so it gives rise to the connection on T ∗1,0M with the right properties
would be more delicate that in the complex case.

There is a final local model we wish to introduce. When we have
polarized even dimensional almost complex manifolds, the local model is
Cg × Cn−g, and we work with foliated coupled jets along the leaves of
Cg×{w}. We denote the corresponding bundle of coupled r-jets by J rCg ,n,m
(it actually coincides with J rg,m × Cn−g). As we pointed out, the transver-
sality problems for this bundle will be transferred to transversality problems
in J rn,m, so we need no further analysis of its properties, though we will be
interested at some point in studying the natural map J rn,m → J rCg ,n,m.

Pseudo-holomorphic jets. Let Ek be a very ample sequence of (locally
splittable) hermitian bundles over the almost complex manifold (M,D, J, g).
We define the bundles J rDEk :=

∑r
j=0((D̄∗1,0)�j)⊗Ek.

The hermitian metric h induced on D gives rise to a hermitian metric on
the (0, 1) component of D∗C. The same happens with (1, 0), by just consider-
ing the same construction for −J . Using the metric retraction we have then
hermitian metric on D̄∗1,0 (just transferred by ī), which induces a hermitian
metric on (D̄∗1,0)�r; for J rDEk the appropriate metric is hk := ckh, because
in adapted charts is comparable to h0 = g0. The Levi-Civita connection
induces a connection in D̄∗1,0, which together with the symmetrization map
symj : (D̄∗1,0)⊗j → (D̄∗1,0)�j , induces a connection on (D̄∗1,0)�j . This con-
nection, together with the one on Ek define a connection ∇k,r on J rDEk.

The definition of pseudo-holomorphic r-jets along D (or just pseudo-
holomorphic r-jets) for a sequence Ek of hermitian vector bundles is the
following (see [4]):

Definition 4.1. Let τk be a section of (Ek,∇k). The pseudo-holomorphic
r-jet jrDτk is a section of the bundle J rDEk =

∑j=0
r ((D̄∗1,0)�j)⊗Ek defined

by induction taking the holomorphic 1-jet associated to ∇k,j to obtain an
element of D̄∗1,0 ⊗ (

∑i=0
j (D̄∗1,0)�j) ⊗ Ek), and then composing with the

symmetrizing map (symj+1⊗ I, · · · , sym2⊗ I, I ⊗ I, I) to obtain a section of
J j+1
D Ek.
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Remark 4.2: The previous definition incorporates the fact that the (r + 1)-
jets are defined as the symmetrization of the pseudo-holomorphic 1-jet of
certain section (holonomic) of J rDEk (actually in the definition we have
considered the degree 1 component of the 1-jet, that after symmetrizing
gives the components of degree 1, ..., r + 1 of the r-jet, that we complete
adding the section itself coming from the degree 0-component to obtain a
section of J rDEk). We obtain the same result if we consider the whole 1-jet
and symmetrize; the only difference is that the components of degrees 1, ..., r
appear twice.

Remark 4.3: The r-jet τk is the sum of r + 1 homogeneous components. To
define jr+1

D τk we just need the degree r component.

Remark 4.4: The pseudo-holomorphic r-jets are useless for low values of k.
When k is large enough, since the metric is approximately flat they approxi-
mately coincide with the local coupled r-jets (in approximately holomorphic
coordinates). In particular is also easy to check that the non-symmetric part
that is annihilated in the definition of the r-jet is approximately vanishing.
Thus, the pseudo-holomorphic r-jets approximately coincide with those de-
fined in Cn × R using J0 and the flat metric fill the bundle J rDEk.

Actually, in the previous paragraph we might be interest in using a holo-
morphic trivialization in the model. For example, if Ek = Cm+1⊗Lk, choos-
ing Darboux charts and a trivialization whose connection form is A0, the
ones associated to the solutions of the Cauchy-Riemann equations f(z, s) =
e−|(z,s)|2/4 and f̌(z, s) = e−zz̄/4 (independent of s).

Remark 4.5: Though the connection on D̄∗1,0 might not be compatible with
the metric hk it has this property in the approximate sense. Anyhow, this
is not really important in the holomorphic case, because our goal will be
to introduce certain connections –compatible or not with the metric– with
curvature of type (1, 1) (not just having vanishing (2, 0) component).

Essentially all the properties and local constructions can be transferred
from Ek to J rDEk. for each point x in M there is a local basis τ ref

k,x,1, ..., τ
ref
k,x,m

made of reference sections. Once A.H. coordinates has been fixed (for exam-
ple adapted to the metric), we have an identification of D̄∗1,0 with T ∗1,0Cn
by considering each dzik ∈ T ∗1,0Cn and identifying it with its component
along D̄∗1,0. It should be stressed that this identification only makes sense
in ball of gk radius O(1), which the region where our computation have to
be more precise. The gaussian decay of the reference sections will take care
of what happens out of this balls. We also notice that by writing dzik we
will mean its component along D̄∗1,0 by the obvious local bundle map. The
important observation is that this bundle map has norm bounded by O(1)
and derivatives bounded by O(c−1/2

k ) (multiplied by a suitable polynomial
if we work in the ball of gk-radius O(c1/2

k )), because the same bounds hold
for the image of the local sections dzik in D̄∗1,0.

Once trivializations (by reference sections) and A.H. coordinates have
been fixed, we have a local identification of J rDEk with J rn,m associated to the
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basis µk,x,I defined as follows: for each (n+ 1)-tuple I = (i0, i1, ..., in), with
1 < i0 < m, 0 ≤ i1+· · ·+in ≤ r, we set µk,x,I := dz1

k
�i1�· · ·�dznk�in⊗τ ref

k,x,i0
.

It is elementary to check that this basis –comparable to a unitary one in
balls of gk-radius of order O(1)– is made of A.H. sections with gaussian
decay w.r.t. x.

Hence, the sequence of locally splittable hermitian bundles J rEk is very
ample (except for the fact that in the definition of ampleness the connection
is required to be unitary, though this has here no real effect because this
property is used to construct reference section, which are already at our
disposal by other means).

When we have a polarized almost complex manifold (M,J,G, g), the
bundle of pseudo-holomorphic r-jets along G will be defined to be J rGEk :=∑r

j=0((Ḡ∗1,0)�j)⊗Ek. Using the splitting D = G⊕G⊥ we can see J rGEk as a
subbundle of J rEk. Extending by zeros, every section of the subbundle is a
section of J rEk. We use the same induction procedure as in the definition of
pseudo-holomorphic r-jets along D, but either before or after symmetrizing,
we project orthogonally TM∗1,0 over Ḡ∗1,0 (or even before taking the (1, 0)
component we project from T ∗MC to Ḡ∗C).

In A.H. coordinates adapted to G and using (g + 1)-tuples Ig as the
previous ones, i.e., only for the coordinates z1

k, ..., z
g
k, one checks that µk,x,Ig ,

where dzik, 1 ≤ i ≤ g, is identified with its projection first over T ∗1,0M and
then over Ḡ∗1,0, is a local basis of the subbundle J rGEk made of A.H. sections
with gaussian decay w.r.t. x, and A.H. as sections of the bundle J rEk.

In this situation there is still a weak point. The main goal is to construct
sections whose r-jets are transverse to certain stratifications. For that we
need the r-jets to be A.H. sections of the bundles J rDEk (or J rEk for even
dimensional a.c. manifolds), so that we can apply the transversality results
from A.H. theory (to be proved). We intend to use holonomic local basis
defined as follows: if I is one of the (n + 1)-tuples introduced before, we
set νk,x,I := jrDτ

ref
k,x,I , where τ ref

k,x,I := (z1
k)i1 · · · (znk )inτ ref

k,x,i0
∈ Γ(Ek). It is

elementary to check that they are a basis comparable to a unitary one in a
ball of fixed gk-radius and they have gaussian decay; the r-jet is essentially
a component of the r-th covariant derivative along D, and we can use the
ideas of lemma 3.27 to check that Cr+h-bounds for τk transform into Ch-
bounds for jrDτk, having good control in how the new constants depend on
those of τk.

Similarly we have local basis νk,x,Ig := jrGτ
ref
k,x,Ig

, where the definition of
τ ref
k,x,Ig

is the obvious one. Again, they are sections with gaussian decay and
do form a basis in the appropriate ball.

It is an observation of D. Auroux that in the Kähler case (see [5]) the cou-
pled jets are not anymore holomorphic sections of J rn,m, w.r.t. the complex
structure induced by the connection (due to the curvature).

This difficulty is overcome by introducing a new almost complex struc-
ture (a new connection) in J rDEk (resp. in J rEk in the even dimensional
case).
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Proposition 4.6. Let Ek → (M,D, J, g) be a very ample sequence of locally
splittable hermitian bundles. The sequence J rDEk –which is very ample for
the connections ∇k,r previously described– admits new connections ∇k,Hr
such that:

(1) ∇k,r − ∇k,Hr ∈ D̄∗0,1 ⊗ End(J rDEk), and therefore both connec-
tions define the same pseudo-holomorphic jets (and similarly for
polarizations when we modify the connection in J rEk).

(2) Let us denote by Fk,Hr and Fk,r the curvatures of ∇k,Hr and ∇k,r.
Then Fk,Hr u Fk,r and hence (J rDEk,∇k,Hr) is a very ample se-
quence. Besides, a local basis of for the bundle is defined by jrDτ

ref
k,x,I ,

where τ ref
k,x,j, j = 1, ...,m is a sequence of reference sections.

(3) If τk : M → Ek is a Cr+h-A.H. sequence of sections, jrDτk : M →
J rDEk is a Ch-A.H. sequence of sections for the connections ∇k,Hr .
We also have that jrGτk : M → J rGEk ⊂ J rDEk is a Ch-A.H. se-
quence of sections of J rEk.

For local coupled holomorphic jets if the curvature Fi of each line bundle
Li, i = 1, ...,m, restricted to the leaves has constant components (w.r.t. all
the coordinates), the previous modification gives an equality for the restric-
tion of the curvature to each leaf. As a consequence, the new almost complex
structure in the total space of J rDh,n,m is also integrable (its restriction to
each leaf of the pullback of Dh). Also, if τ is a holomorphic section (Cm-
valued function), then jrDh,n,mτ is holomorphic for the complex structure.

Proof. We omit the subindices k and r for the connections whenever
there is no risk of confusion.

Let σk = (σk,0, σk,1) be a section (maybe local) of J 1
DEk. We define

∇H1(σk,0, σk,1) = (∇σk,0,∇σk,1)+(0,−F 1,1
D σk,0), where −F 1,1

D σk,0 ∈ D̄∗0,1⊗
D̄∗1,0 ⊗ Ek (see [5]).

The previous formula defines a connection. All the identities can be
checked locally in balls of fixed gk-radius; what is more, since they are
approximate identities we can use the local splitting Ek = Lk,1 ⊕ ...⊕Lk,m,
given by a local basis of Cr+h-A.H. sections τk,1, ..., τk,m, together with the
induced diagonal connection –that we still call ∇– and its curvature F .
Thus, it is enough to prove the theorem for line bundles.

Let Lk be a very ample sequence of line bundles. Using the metric
splitting TM = D ⊕D⊥ we write the connection ∇ = ∂ + ∂̄ +∇D⊥ . Since
for the curvatures splitting FD̃ is approximately of type (1, 1), due to the
results of subsection 2.1 of section 2, we also have F 1,1

D u FD, and thus
FD u ∂̄∂ + ∂∂̄.

The additional term added to define the modified connection is better
understood when it acts over A.H. sections τk. Recall that in coordinates, to
compute the curvature the connection has to be composed with the operator
∇1 : T ∗M ⊗ T ∗M ⊗ Lk → T ∗M ⊗ Lk defined as follows: in a chart where
T ∗M is trivialized using the derivatives of the coordinates, we have the
corresponding flat connection on T ∗M ; the operator ∇1 is d⊗I−I⊗∇, that
composed with the antisymmetrization map asym2 : T ∗M⊗T ∗M → ∧2T ∗M
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gives rise to the curvature. Using A.H. coordinates one checks that FD is
approximately the composition of ∇D with ∇1

D := dD ⊗ ID − ID ⊗∇D and
then with the antisymmetrization map.

The term ∂∂̄τk u dD∂̄τk u d∂̄τk approximately vanishes: we write ∂̄τk =∑n
i=1 dz̄

i
k ⊗ giτk, where dz̄ik ∈ D̄∗0,1. Thus, (dD ⊗ ID − ID ⊗ ∇D) ◦ ∂̄τk u

−(ID⊗∇D)◦ ∂̄τk. Therefore for τk an A.H. sequence FDτk u asym2(−∂̄∂τk)
(the symmetrization and antisymmetrization maps have norm bounded by
O(1) and have derivatives of size O(c−1/2

k )).

Hence ∂̄∂ can be written as the composition of −∂̄⊗∂ with the antisym-
metrizing map. The conclusion is that its action j1

Dτk is approximately the
action on τk of the non-antisymmetrized component of the curvature in D:

∇H(τk, ∂τk) u (∇τk,∇∂τk − ∂̄ ⊗ ∂τk).

Hence,

∇H,D(τk, ∂τk) u (∇Dτk, ∂∂̄τk + ∂̄∂τk − ∂̄ ⊗ ∂τk) u (∇Dτk, ∂∂̄τk),

and therefore,

∂̄Hj
1
Dτk u (∂̄τk, 0) u 0.

In the integrable case (for a very ample line bundle) what we add is
exactly −∂̄ ⊗ ∂ and the 1-jet of a holomorphic section is easily seen to be
holomorphic for the new connection.

To check the identities of the curvature (point (2) in the definition) we
fix A.H. coordinates and the mentioned basis of D̄∗1,0 and D̄∗0,1, completed
with dsk to a local basis of T ∗M ⊗ C.

Consider the local basis of J 1
DLk given by (0, dz1

k) ⊗ τk, ..., (0, dznk ) ⊗
τk, (1, 0)⊗ τk. The covariant derivative in this basis is:

∇H(0, dzik) = (0,∇dzik), i = 1, ..., n,

∇H(1, 0) = (∇1, 0) = (Aikdz
i
k +Bi

kdz̄
i
k + Ckdsk,−F 1,1).

The component of the curvature of ∇ in D is:

FD u
n∑

i,j=1

Ωijdz
i
k ∧ dz̄jk, Ωij =

∂Bj
k

∂zik
− ∂Aik
∂z̄jk

.

For the subbundle spanned by (0, dz1
k), ..., (0, dznk ), the curvature of ∇H

is that of ∇.

Regarding the section (1, 0),
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∇2
H(1, 0) u ∇H(Aikdz

i
k +Bi

kdz̄
i
k + Ckdsk,

n∑

i,j=1

Ωijdz̄
i
k ⊗ dzjk) u

u (F∇1,
n∑

i,j,l=1

(ΩijA
l
kdz̄

i
k ∧ dzlk ⊗ dzjk + ΩijB

l
kdz̄

i
k ∧ dz̄lk ⊗ dzjk) +

+
n∑

i,j=1

(Ckdz̄ik ∧ dsk ⊗ dzjk) +

+
n∑

l,i,j=1

(AlkΩijdz
l
k ∧ dz̄ik ⊗ dzjk +Bl

kΩijdz̄
l
k ∧ dz̄ik ⊗ dzjk) +

+
n∑

i,j=1

(Ckdsk ∧ dz̄ik ⊗ dzjk)) = (F∇1, 0).

Observe that when the curvature along D is of type (1, 1) and dΩij =
0, something that happens in Darboux charts, the previous approximate
equalities are indeed exact equalities. Actually this is the reason why we get
approximate equalities in the non-integrable setting.

There is another way to prove the approximate equality of point (2)
which amounts to choosing a special basis of holonomic sections. Given
τ ref
k,x A.H., the component in D̄∗ of the corresponding connection form ap-

proximately belongs to the subbundle D̄∗1,0. We consider the local basis
j1
D(zlkτk), where zlk is a monomial of degree ≤ 1 (we do not really need to

take reference sections, it is enough to take τk A.H. so that j1
D(zlkτk) is a

basis comparable to a unitary one in a ball of fixed gk-radius). For the next
computations τk can be any A.H. sequence.

∇H(zlkτk, ∂(zlkτk)) u (∇zlkτk,∇∂(zlkτk)− ∂̄ ⊗ ∂zlkτk),
and the curvature can be written:

FH(zlkτk, ∂(zlkτk)) u F (zlkτk, ∂(zlkτk))+(0,−∇∧∂̄⊗∂(zlkτk)−F 1,1
D ∧∇(zlkτk))

(4.3)
Being more precise, the second summand can be computed as follows:

−∇ ∧ ∂̄ ⊗ ∂(zlkτk)− F 1,1
D ∧∇(zlkτk) u

− asym2(d⊗ I − I ⊗∇(−∂̄ ⊗ ∂(zlkτk))) + asym2(I ⊗ ∂̄ ⊗ ∂(∇zlkτk).) (4.4)

The operator −∂̄ ⊗ ∂ is approximately tensorial (because F 1,1
D has this

property). Therefore, writing ∇(zlkτk) u ∂(zlkτk) + Cdsk ⊗ τk = α ⊗ τk +
Cdsk ⊗ τk, α ∈ D̄∗1,0, the second component in the r.h.s of 4.4 is:

asym2(I ⊗ ∂̄ ⊗ ∂(∇zlkτk)) u asym2(I ⊗ ∂̄ ⊗ ∂(α⊗ τk + Cdsk ⊗ τk))
u

∑

i,j

−Ωij((α+ Cdsk) ∧ dz̄jk ⊗ dzik ⊗ τk
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The partial derivatives of the coefficients of F 1,1
D are of order O(c−1/2

k )
(condition (3) in definition 2.2), so that the first component is:

−asym2(d⊗ I − I ⊗∇(−∂̄ ⊗ ∂(zlkτk))) u
∑

i,j

dzlk ⊗ Ωij ⊗ dz̄jk ⊗ dzik ⊗ τk −

−zlkΩijdz̄
j
k ⊗ dzik ⊗ (∂τk + Cdsk ⊗ τk) u

∑

i,j

Ωij(α+ Cdsk) ∧ dz̄jk ⊗ dzik ⊗ τk

Thus, FH u F .

To show that the 1-jets of Cr-A.H. sections are Cr−1-A.H., we just notice
that what we added to the connection is a component of the curvature, whose
coefficients are of order O(1) and has its derivatives bounded by O(c−1/2

k ).

The degree 0 component of the covariant derivative of j1
Dτk = (τk, ∂τk) is

∇rτk. The degree 1 term is ∇r∂τk plus r homogeneous summands of order
r + 1, which are products of derivatives ∇jτk (of order j) and derivatives
∇r−j−2F 1,1

D (of order r− j). The bounds for the full derivatives are obvious.
Those for the derivatives along D follow from the fact that for k >> 0 the
mixture of types in the derivatives (according to the splitting of T ∗M⊗r ⊗
J 1
DEk induced by the metric) is of size O(c−1/2

k ). In particular, the constant
CDr for ∇rDτk transforms into C ′CDr for ∇r−1

D j1
Dτk (here we apply the ideas

and results of lemma 3.27).

The bounds for the antiholomorphic components and its derivatives fol-
low from similar considerations together with ∂̄H(τk, ∂τk) u (∂̄τk, ∂∂̄τk),
when τk is an A.H. sequence of sections.

Being precise, we must notice that all the approximate equalities for
sections of J 1

DLk have been computed using the connection ∇k,1. But from
the previous ideas we easily deduce that the approximate equalities for the
connections ∇k,1 imply approximate equalities for ∇k,H1 .

The gaussian decay of j1
D(τ ref

k,x,I) w.r.t. x is easily checked using A.H.
coordinates. They also form a basis comparable to a unitary one.

To apply induction to the bundles of higher order jets we need the vector
bundles J rDEk, J 1

DJ rDEk to admit a modified connection with the previous
properties. We cannot quite apply what we have done, because it was for
line bundles. In any case, it can be checked that the previous proof also
works because since property (2) holds, the curvature of the modified con-
nection on J rDEk is approximately tensorial in the sense that for ξk a section
of J rDEk, F 1,1

H,Dξk is approximately proportional to ξk (with equality in the
integrable case). This property implies that if ξk is an A.H. sequence, the
new term in the modification approximately coincides with −∂̄⊗∂ξk (which
is then approximately tensorial). At this point it can be checked that due
to the expression of the new term, the proof for line bundles which develops
equation (4.3) (and in which a couple of terms are cancelled) works also for
the bundles J rDEk. Besides, it should be noticed that in the local model this
modification induces (in balls of g0-radius O(1)) in each leaf of D̂h –the pull-
back to the total space of the bundle of Dh– an integrable almost complex
structure which is constant in the vertical coordinate, meaning this that for
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an appropriate holomorphic trivialization the connection form is indepen-
dent of s (for example in Darboux charts with the usual trivialization, we
can use the new trivialization associated to the function f̌(z, s) = e−zz̄/4).

Let us assume that the initial almost complex structure in J rDEk has
been modified so that (J rDEk,∇Hr) is a very ample sequence of bundles for
which the r-jets of certain local basis of A.H. sections give rise to a local
basis of A.H. sections of J rDEk. To be able to apply induction we make the
usual identification of J r+1

D Ek with the subbundle of J 1
DJ rDEk spanned by

holonomic sections. The bundle J 1
DJ rDEk is endowed with a connection ∇̃Hr

(using ∇g in D̄∗1,0 and ∇Hr in J rDEk) which by induction can be modified to
∇Hr+1 . We want to prove that the subbundle o J r+1

D Ek inherits a connection
with the desired properties.

Let us check first the situation in the integrable case: we consider the
basis τ ref

k,x,I , where τ ref
k,x,j is holomorphic and independent of the vertical co-

ordinate of the chart (for certain trivialization). By definition, jr+1
Dh

τ ref
k,x,I =

j1
Dh

(jrDhτ
ref
k,x,I). The connections induced by ∇ in J 1

Dh,n
J rDh,n,m and J r+1

Dh,n,m

are the same. For the first bundle the holomorphic and vertical components
of this induced connection coincide by induction with those of the modified
connection ∇̃Hr and also with those of the modification ∇Hr+1 . Finally

∇Hr+1j
r+1
Dh

τ ref
k,x,I =

(∇Hr+1

)
j1
Dh

(jrDhτ
ref
k,x,I) =

=
(
∂Hr+1 +∇Hr+1,

∂
∂sk

)
j1
Dh

(jrDhτ
ref
k,x,I) =

=
(
∂ +∇ ∂

∂sk

)
j1
Dh

(jrDhτ
ref
k,x,I) =

(
∂ +∇ ∂

∂sk

)
jr+1
Dh

τ ref
k,x,I ,

which by definition is a 1-form with coefficients in J r+1
Dh,n,m

(because in the
end we get the holomorphic and vertical components of the connection in-
duced by ∇). Since the connection preserves the subbundle for a local basis,
∇H defines a connection on J r+1

Dh,n,m
. Once more we are endowing the bun-

dle J r+1
Dh,n,m

with an integrable almost complex structure in each leaf of the
total space.

In the non-integrable case we use the symmetrization map

symr+1 := (symr+1 ⊗ I, · · · , sym2 ⊗ I, I ⊗ I, I) : J 1
DJ rDEk → J r+1

D Ek,

composed with ∇̃Hr to define a connection ∇Hr+1 on J r+1
D Ek. Notice that

the holomorphic component ∂Hr+1 and the vertical one∇Hr+1,D⊥ of this con-
nection coincide with the corresponding ones of ∇, the original connection
of J r+1

D Ek. for the local basis jr+1
D τ ref

k,x,I ,

∇Hr+1j
r+1
D τ ref

k,x,I = ∂̄Hr+1j
r+1
D τ ref

k,x,I + ∂Hr+1j
r+1
D τ ref

k,x,I +∇Hr+1,D⊥j
r+1
D τ ref

k,x,I .

By the previous observation, the second and third summands belong to
J r+1
D Ek. The first one is –by induction– of size O(c−1/2

k ). Since jr+1
D τ ref

k,x,I is
a local basis, the size of the non-symmetric component that we have to sub-
tract from ∇̃Hrjr+1

D τ ref
k,x,I to define ∇Hr+1j

r+1
D τ ref

k,x,I is bounded by O(c−1/2
k );
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in fact all its derivatives (taken with the connection ∇̃Hr) are also bounded
by the same quantity (one just needs to use the bounds for the antiholomor-
phic component and the bounds of orderO(1) for symr+1 and its derivatives).

The geometrical meaning is that the horizontal distribution of the con-
nection ∇Hr on J 1

DJ rDEk is –in the points of J r+1
D Ek– at distance O(c−1/2

k )
of the tangent space of the subbundle (and also all the derivatives of the
difference between ∇Hr+1 and ∇Hr). Thus, the same approximate equalities
will hold for both connections.

Regarding the curvature, using the local basis jr+1
D τ ref

k,x,I one has:

FHr+1 = symr+1 ◦ ∇̃Hr ∧ symr+1 ◦ ∇̃Hr u F∇̃Hr u F 1,1,

where F 1,1 is the (1, 1) component of the original connection on J r+1
D Ek.

The previous approximate equality is valid both for ∇̃Hr and for ∇Hr+1 .
Using similar considerations it can be deduced that the (r + 1)-jet of a

Cr+1+h-A.H. sequence of sections of Ek is a Ch-A.H. sequence of sections
of (J r+1

D Ek,∇Hr+1). The only difference is the composition with the sym-
metrization map. One checks that the different excision commute with the
symmetrization. This, together with the bounds for the symmetrization
map reduces the assertion on the bounds to the corresponding assertion for
the sequence j1

Dj
1
Dτk and the connection ∇̃Hr , which is fulfilled by induction.

The gaussian decay of jr+1
D τ ref

k,x,I is checked similarly.

Regarding the relative theory, for any Cr+h-A.H. sequence τk of sections
of Ek, jrGτk is a Ch-A.H. sequence of sections of J rEk. The computations
can be made in A.H. coordinates adapted to G. In that situation, the result
is approximately that of the flat model. In the latter jrGτk is a component
of the vector jrτk, and the same happens with the derivatives ∇pHrjrGτk and
∇p−1
Hr

∂̄Hrj
r
Gτk, p = 0, ..., h.

Again, gaussian decay of the sections jrτ ref
k,x,Ig

of the subbundle J rGEk
follows from the same ideas, as well as the fact that they define a local basis
of the subbundle.

�

Remark 4.7: The approximate equality FH1,k u Fk has important conse-
quences. In A.H. coordinates and after the local identification of D̄∗1,0 with
T ∗1,0C, the connection form of ∇H is approximately the sum of the con-
nection forms for Ak,j in Lk,j (for suitable trivializations), plus the sum of
the curvatures ωk,j . We have bounds of order O(1) for the norm of the
curvatures and of order O(c−1/2

k ) for the partial derivatives of its compo-
nents. The consequence is that we will have the same kind of control on the
metric on the total space of J 1

DEk induced by the modified connection that
we had for the initial connection. By induction we obtain the same kind of
result for the sequences J rDEk. For sequences of the form Cm ⊗ L⊗k over
a calibrated manifold, in Darboux charts (the metric splitting matches that
of the curvatures) and taking the appropriate trivialization the connection
form and curvature coincide approximately with m copies of A0 and ω0, so
we have (approximately) and explicit formula for the modified connection.
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The above property will imply that if we have some kind of structure in
the total space of the jet bundles, for example a sequence of stratifications,
such that in the above mentioned stratifications are independent of k and
x, then the different bounds associated to elements of those stratifications
(basically those of functions defining locally the strata) will not depend on
k and x (again we can compute them for the corresponding model in charts
and with the euclidean metric elements).

We will also take advantage that in the holomorphic case what we have
are equalities (and hence an induced holomorphic structure on J rDh,n,m for
which the r-jet of a holomorphic section of Cm ⊗ L is holomorphic for the
new structure).

5. Approximately holomorphic stratifications and transversality

Our main goal is to state a transversality principle for A.H. sequences
to certain sequences of stratifications of the total space of a very ample se-
quence of bundles (a strong transversality principle if the sequence of bundles
is J rDEk). It is precisely the fact of being A.H. plus certain conditions on
the stratifications what will allow us to define the perturbation so that the
desired transversality properties hold. Though so far we have only consid-
ered sequences of vector bundles, we can apply the theory to more general
sequences of fiber bundles Fk with fiber an almost complex manifold (of
even dimension), and a connection in the bundle compatible with the met-
ric and almost complex structure on the fiber. For these almost complex
fiber bundles we can readily generalize some of the previous concepts.

Definition 5.1. Given positive constants c, CD, C, a section τ of an almost
complex bundle is Cr-A.H. with bounds c, CD, C (Cr-A.H.(CD, C, c)), is the
following inequalities hold:

|τ |+ |∇Dτ |+ ...+ |∇rDτ | ≤ CD

|∇τ |+ ...+ |∇rτ | ≤ C

|∂̄τ |+ ...+ |∇r−1∂̄τ | ≤ Cc−1/2

When ck → ∞, a sequence of sections of a sequence of almost complex
bundles is Cr-A.H. if positive constants CD, C exist so that the sections τk
are Cr- A.H.(CD, C, ck).

We speak of A.H. sequences when we have (CDj , Cj) a sequence of bounds

controlling the norms of ∇j and ∇jD,∇j−1∂̄ (the latter multiplied by c−1/2
k )

for all j ∈ N.

5.1. Approximately holomorphic stratifications. The total spaces
of a sequence of almost complex bundles inherit a metric ĝk, a distribution
D̂ of the same codimension as D and an almost-complex structure Ĵk. We
will consider stratifications S = (Sak), a ∈ Ak, whose strata Sak intersect
each fiber (transversely) with minimum angle uniformly bounded by below.
The strata will verify certain constraints that under certain circumstances
will be equivalent to the A.H. (w.r.t. gk y Ĵk and D̂) of functions locally
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defining them. The stratification will be required to be finite in the sense
that #(Ak) must be bounded independently of k and the boundary of each
strata ∂Sak = S̄bk − Sak will be the union of the strata of smaller dimension:

∂Sak =
⋃

b<a

Sbk

Finally we will work with uniform Whitney stratifications.

Definition 5.2. (see [3]) Let Fk be a sequence of almost complex bundles
over (M,D, J, g) and (Sak)a∈Ak finite Whitney stratifications of Fk whose
strata are transverse to the fibers. Let r ∈ N, r ≥ 2. The sequence of
strata is Cr-approximately holomorphic (Cr-A.H.) if for any bounded open
set Uk of the total space of Fk and any ε > 0 positive constants CDε , Cε, ρε
only depending on ε and on the size of Uk –but not on k– can be found, so
that for any point y ∈ Uk in a strata Sak for which dĝk(y, ∂Sak) > ε, there
exist complex valued functions f1, ..., fp such that Bĝk(x, ρε) ∩ Sak is given
f1 = ... = fp = 0, and the following properties holds:

(1) (Uniform transversality w.r.t. fibers + transverse comparability)
The restriction of df1 ∧ ... ∧ dfn to T vFk –the tangent space to the
fibers– is bounded by below by ρε.

(2) (Approximate holomorphicity along the fibers) The restriction of
the function f = (f1, ..., fp) to each fiber is Cr-A.H.(CDε , ck).

(3) (Horizontal approximate holomorphicity + holomorphic variation
of the restriction to the fiber + estimated variation of the restriction
to the fiber) For any λD, λ, ck, and τ Cr-A.H.(λD, λ, ck) local sec-
tion of Fk with image cutting Bĝk(y, ρε), fj◦τ is Cr-A.H.(λDCDε , λCε, ck).
Moreover, if θ is a local Cr-A.H.(λD, λ, ck) section of τ∗T vFk,
dfτ (θ) is Cr-A.H.(λDCDε , λCε, ck).

(4) (Estimated Whitney condition) ∀y ∈ Sbk at distance smaller than
some ε0 of its boundary ∂Sbk, with Sak ⊂ ∂Sbk, the maximal angle be-
tween the distribution tangent to the level sets of f = (f1, ..., fp) and
the distribution tangent to the stratum Sbk is bounded by Cεdĝk(y, Sak).

Remark 5.3: For the main applications of our theory (actually only if we
use the intrinsic theory) we will need stratifications all whose derivatives
are controlled (A.H. stratifications).

Remark 5.4: When D is the whole tangent bundle we recover the definition
given by D. Auroux in [4].

Local description of the Cr-A.H stratifications. It is possible to give a
local geometric description of a Cr-A.H. sequence of stratifications of almost
complex bundles pk : (Fk, ĝk) → (M, gk), provided we have 1-comparable
charts (subsection 3.2) for each y ∈ ∐k∈N Fk (the constants uniform in the
family).

A first example of bundles with that property are the trivial bundles with
trivial connection and fiber (Qk, ḡ), Qk compact. A family of r-comparable
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charts in the total space is obtained by multiplying a fixed family of r-
comparable charts in the fiber times approximately holomorphic coordinates
in the base.

The second class is that of very ample sequences of hermitian bundles
with (linear) connection. In the domain of A.H. coordinates a basis compara-
ble to a unitary one is fixed. If in this basis the connection form is uniformly
bounded, then r-comparable charts are obtained multiplying A.H. coordi-
nates times balls of some fixed radius in the fiber (the fiber is some CN with
euclidean metric). A bound of order O(1) for the curvature gives a bound of
the same order for the Christoffel symbols. In general bounds of order O(1)
in the partial derivatives of order r − 1 of the curvature give bounds of the
same order for the partial derivatives of the Christoffel symbols of order up
to r − 1.

In our applications the sequence of bundles will be of one of the two pre-
viously introduced classes. Besides, the bundles will always have “enough”
A.H. sections in the sense that for any y ∈ Fk, it will be possible to find τ a
Cr-A.H. section (with constants CD, C only depending on the norm of y, if
we are in a vector bundle which is the only example of almost complex fiber
bundle with non-compact fiber we will deal with) such that τ(pk(y)) = y.
Similarly, for any u ∈ τ∗T vFk, a Cr-A.H. section θ ∈ Γ(τ∗T vFk) exists with
θ(p(y)) = u (the constants only depending in the norm of u, and in the norm
of y also in a vector bundle).

Going to a family of 1-comparable charts of Fk, and for C2-A.H. strat-
ifications, The bounds that do not have to do with the anti-holomorphic
required to hold in points (2) and (3) of definition 5.2 follow from (uniform)
bounds of order O(1) for |f |, for |df | –the norm of the derivative– and for
|d2f | –the norm of the partial derivatives of order 2– measured with the eu-
clidean metric or the induced one (equivalently one can consider instead of
the second partial derivatives only defined locally, ∇df). If we fixed a family
of r-comparable charts, similar results are obtained for Cr-A.H. stratifica-
tions and bounds of order O(1) for |djf |, j = 0, ..., r –the norms of the
partial derivatives of order smaller or equal than r.

It can also be checked that the assertion relative to the antiholomorphic
components in points (2) and (3) of 5.2 follows –in r-comparable charts– from
the corresponding assertion for dj ∂̄f , j = 0, ..., r− 1 (the partial derivatives
of ∂̄f of order smaller than r ), where the almost complex structure can be
any approximately coinciding with the induced one in the chart. When the
Fk are vector bundles, in A.H. coordinates we can consider an A.H. trivial-
ization so that the fiber is identified with CN ; then the above calculations can
be made w.r.t. to the standard almost complex structure Jn+N

0 := Jn0 ×JN0 .
Indeed, since the connection form in the chosen A.H. trivialization is ap-
proximately complex linear, from the bound for the Jn+N

0 -antiholomorphic
component we deduce the corresponding one for the Ĵ-antiholomorphic com-
ponent; for higher derivatives of the latter, we use the bounds on the higher
derivatives of the former together with control of order O(1) relating the
derivatives of the product horizontal distribution with the horizontal distri-
bution for ∇ (such control follows in the fiber directions from the linearity of
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the connection and in the “base directions” form the control in the deriva-
tives of the connection form).

Once a family of 1-comparable charts for the total space of the bundles
has been fixed, we can modify them so that f : R2n+1+2N → R2p –which is
a submersion– becomes the canonical projection in 2p-coordinates, and so
that the new charts are still 1-comparable.

To do that we denote the foliation defined by ker df the foliation defined
by f . We consider the tangent space to the leaf of ker df through the origin
and we use a linear transformation so that it can be assumed to coincide with
the set of zeros of 2n+ 1 + 2N − 2p coordinates –that we denote by x– and
such that the zero set of the remaining coordinates –that we denote by t– is
a subspace of the tangent space to the fiber; the norm of this linear transfor-
mation is uniformly bounded due to the bound by below in the minimal angle
between fibers and the foliation ker df (this bound comes from the bound by
below for |df1∧· · ·∧dfp| of condition (1) in 5.2). We set φ(x, t) = (x, f(x, t)).
The bound is the partial derivatives of order 2 of f implies that the tangent
spaces to leaves do not vary much. In particular a constant r1 > 0 exists
so that φ : Bg0(0, r1) → R2n is a diffeomorphism. There re also positive
constants r2, r3 such that Bg0(f(0), r2) ⊂ φ(Bg0(0, r1)) ⊂ Bg0(f(0), r3); the
existence of r3 follows from the bound for |df |. The euclidean orthogonal
to the leaf at the origin when parallel translated to any point of Bg0(0, r1)
is still transverse to the leaf through that point. The differential of the
projection restricted to this orthogonal has norm bounded by above (this
projection is the meaningful part of the change of coordinates acting of this
subspace). Similarly the image of the unit sphere in this subspace by df is
an ellipsoid whose distance at the origin is bounded by below (again form
the bound by below for |df1∧· · ·∧dfp| in the fiber and also because df is ap-
proximately complex when restricted to D̂). From these considerations we
deduce a bound by below for the determinant of the change of coordinates
φ (in particular the image of the level set t = 0 contains an euclidean ball
of uniform radius r2).

The conclusion is that the induced metric φ∗ĝk is comparable to the
euclidean. This, together with the bound by above for |d2f | gives a bound
by above for the Christoffel symbols, so we even get a family of 1-comparable
charts for which the local foliation is rectified (or if we want the model chart
for a codimension 2p-foliation).

5.2. Estimated transversality. We want to construct A.H. sequences
of sections which are transverse along the directions of D to A.H. stratifica-
tions. The strategy is to focus into the local transversality problem, which
by the use of reference frames and the functions locally defining the strata
will be seen to be equivalent to a transversality problem for functions. Then
we add all the local perturbations. The weak point is that by using the
reference sections, we will be able to solve the problem in balls of gk-radius
O(1); but the reference sections have support of order O(c1/6

k ), something
that creates interference between the local solutions and eventually destroys
the transversality. This difficulty is overcome using the strongest concept of
estimated transversality instead of usual transversality.
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Definition 5.5. Let (E,∇)→ (M,D, g) be a hermitian bundle with connec-
tion. Given η > 0 and τ a section of E, we say that τ is (η,D)-transverse
to 0 (or η-transverse along D to 0 or simply η-transverse to 0), if in each
point x where |τ(x)| < η, we have |∇Dτ(x)| > η.

In the previous definition we can think of ∇D either as the restriction of
∇ to D or as its component along D̄∗, because both have the same norm.
Actually, we can use any retraction i so that qĩ,i has norm of order O(1),
because the norm of the restriction to D and of the component along i(D∗)
are then comparable.

It is possible to give a more geometric definition for which it is more
convenient to think of ∇D as the restriction of ∇ to D: the total space
E has a metric and a distribution D̂. The distribution tangent to the 0
section of E can be extended by parallel transport to a distribution T ||
defined in a tubular neighborhood of radius η; next, we intersect it with
D̂ and denote the resulting distribution by T

||
D. Let us denote by Tτ the

distribution tangent to the graph of τ and by TDτ its intersection with D̂.
The definition of estimated transversality is equivalent to the existence of a
constant η′ > 0 such that ∠m(T ||D, TDτ) > η′ in the points where τ(x) enters
in the tubular neighborhood of radius η′ of the 0 section. In the original
definition the distribution we use is H∇D , the intersection of D̂ with H∇ –
the horizontal distribution of ∇–. Since the connection is linear and hence
tangent to the 0 section, H∇D and T

||
D will be as close as needed in a small

enough tubular neighborhood of the 0 section. This argument proves also
that estimated transversality using different connections gives comparable
quantities (and the comparability constant is deduced form an upper bound
for the connection matrix relating both connections).

The notion of estimated transversality can be easily extended to finite
Whitney stratifications S = (Sa)a∈A of E. For each stratum Sa, let us
denote by T ||Sa the parallel transport (Levi-Civita connection) of the tan-
gent bundle of Sa to a small tubular neighborhood; define T ||DS

a to be its
intersection with D̂. If the parallel transport is transverse to the fibers then
automatically T

||
DS

a will have the expected dimension (dimSa − 1). For a
section τ of E we still use the notation Tτ for the tangent distribution to its
graph and TDτ to denote its intersection with D̂. Given any point x ∈ M ,
TDτ(x) will denote the vector subspace of the distribution TDτ in the point
τ(x). Once we work with a fixed section τ , T ||DS

a(x) will be the subspace
of the corresponding distribution in the point τ(x) (if τ(x) belongs to the
points where the distribution is defined).

Definition 5.6. Let η be a positive number. The section τ is (η,D)-transverse
to S (or simply η-transverse) if in each point x where τ is at distance
smaller than η of a stratum Sa, T ||DS

a(x) has the expected dimension and
∠m(TDτ(x), T ||DS

a(x)) > η.
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A sequence of sections is uniformly transverse to 0 (resp. to a sequence of
stratifications) if a constants η > 0 exists so that for k bigger than some K,
the sections τx are η-transverse to 0 (resp. to the sequence of stratifications)

The definition of estimated transversality to a stratum makes sense only
out of a tubular neighborhood of its boundary, because in the points at
distance of the boundary smaller than some ε, we might have not enough
control on the geometry of the stratum so that for example the tubular
neighborhood where T ||Sa is defined tend to zero with ε. Thus, it is more
convenient to work in a compact region of the stratum (points at distance
of the boundary bigger than some ε) and define estimated transversality
in the complementary only in the points of the strata, i.e., if τ(x) hits the
stratum in one of this points very close to the boundary, we demand that
the intersection inside D̂ happens with minimal angle bounded by below.
We will see that to solve the uniform transversality problem in this region
the uniform Whitney condition will be enough (condition (4) in definition
5.2).

The notion of uniform transversality to an A.H. sequence of stratifi-
cations admits a nice local formulation, as long as we have 1-comparable
charts as described in the previous subsection (with the local foliation kerdf
rectified).

Before it is necessary to study a bit further the notion of minimal angle.

Variations of the maximal and minimal angle. Recall that to measure
the minimum angle between transversal subspaces U, V ⊂ Rn we proceed as
follows:

Let us first suppose that U, V are complementary subspaces: let V1 be
the intersection of the unit sphere with V . For each point v ∈ V1, its distance
to U coincides with the distance of πU (v) –its orthogonal projection onto U–
to U . The corresponding angle is comparable to the norm of the orthogonal
projection of v onto U⊥. It follows that the minimal angle can be compared
with the distance to the origin of the ellipsoid πU⊥(V1) ⊂ U⊥.

With the previous interpretation of the minimum angle it is clear that if
instead of using the euclidean metric in U⊥ we use a comparable one, the
corresponding minimal angle is comparable to the original one. We can also
use a comparable metric in V and obtain a comparable minimum angle. In
particular we can represent V as the graph of a linear function τ∗ : U → U⊥.
By definition, the amount of transversality of τ∗ to 0 is the distance to the
origin of pU⊥(graf(τ∗(U1))). Notice that graf(τ∗(U1)) is the unit sphere in V
for the pushforward by τ∗ of the euclidean metric in U . This induced metric
is comparable to the euclidean with comparison constant γ obtained out of
an upper bound for τ∗. Therefore, provided we can control the norm of τ∗,
a bound by below for the minimal angle is equivalent to a bound by below
for the amount of transversality for the function τ∗.

More generally, we can change the metric in the whole space to a compa-
rable one; it is easily checked that for any U , V complementary subspaces,
the restriction of the new metric to V and U⊥ is comparable to the euclidean
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one: the unit ellipsoid contains an euclidean ball of radius ρ1 and it is con-
tained in an euclidean ball of radius ρ2. This property still holds when we
intersect with any subspace (and obviously the comparison constant for the
total space is valid for the restrictions of the metric to any subspace).

When U and V are transverse subspaces with nontrivial intersection, the
situation is similar. If we change the euclidean metric to a comparable one g
we obtain comparable notions of minimal angle: to check that let us denote
by W the orthogonal to U∩V w.r.t. the new metric. Imagine for the moment
that W is also the euclidean orthogonal. As we observed, the induced metric
by g in W is comparable to the euclidean with the same comparison constant
as in the whole space. In general W will not coincide with the euclidean
orthogonal, but one checks that the map π(U∩V )⊥ : W → (U ∩ V )⊥ sends
the complementary subspaces in W whose angle has to be measured to the
intersection of U and V with (U ∩ V )⊥. Hence, we have to measure in
(U ∩ V )⊥, but with the pushforward by π(U∩V )⊥ of the euclidean metric in
W . This is equivalent to finding a bound by below for the norm of the map
with follows form a bound by below for ∠m(W,U ∩ V ). This last bound
is a consequence of the comparison between g and g0 in the total space:
indeed, such bound by below for the angle would not exist we might find a
matrix relating to orthonormal basis (one for each metric) with determinant
arbitrarily small. We proceed by contradiction: we take u ∈ (U∩V )⊥ of unit
euclidean norm such that u+ z ∈W is a vector with large norm and rescale
it to λ(u+ v) so that its g-norm becomes 1; thus, λ will be very small. It is
possible to complete it to a g-orthogonal basis in W , and then in the whole
space by adding a g-orthogonal basis in U ∩ V . The change of basis can be
written w.r.t. an euclidean orthogonal basis {e1, ..., en}, where e1, ..., es span
U ∩V and es+1, ..., en span (U ∩V )⊥. According to this splitting the matrix
have four blocks. The upper left one represents the change of basis in U ∩V
and hence by hypothesis its determinant is bounded by above. Since the
upper left block of the matrix in vanishing we only need to study the lower
right one. By hypothesis, its components are bounded by above. Since one
of the lines are the components in (U ∩ V )⊥ of λu, we conclude that the
determinant can be made as small as desired by letting λ go to zero.

It is an easy exercise to check that the from biggest quantity for the
minimal angle is achieved when we use as complementary subspace the or-
thogonal to the intersection.

In certain circumstances there will be a natural choice of complementary
W to measure the angle which will make the calculations easier. But we
must make sure that the minimum angle between W and the intersection
U ∩ V is bounded by below, so that we obtain a comparable quantity when
we measure the minimum angle in W .

A way of choosing a complementary is as follows: we consider W1 ⊂
U ∩ V and W c

1 a complementary subspace (in the total space); next we
select W2 ⊂ (U ∩ V ) ∩W c

1 and W c
2 a complementary in W c

1 . We iterate the
construction. In some step, we will have taken Wt such that Wt is the whole
intersection (U ∩ V ) ∩W c

t−1. The complementary W is defined to be W c
t .

By construction, W is complementary to U ∩ V .
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Lemma 5.7. If in the previous construction we have bounds ∠m(Wj ,W
c
j ) >

δj (the minimum angle as complementary subspaces of W c
j−1), then a con-

stant η(δ1, ..., δj) > 0 exists so that ∠m(U ∩ V,W ) > η.

Proof. Assume that the total space has dimension 3 and that t = 2 and
dimW1 = dimW2 = dimW = 1. It is easier to translate the problem into
the corresponding one of spherical geometry: we can think of (U ∩ V ) ∩ S2

as the equator of the sphere S2. W1 is then a point in the equator (and its
antipodal) and W a point in the sphere; we have to show that it is far enough
form the equator. The hypothesis on W c

1 implies that the corresponding
geodesic it is not very close to the point W1 in the equator. Thus, it cuts the
equator with angle bounded by below; otherwise it would be contained in an
arbitrarily small tubular neighborhood of the equator and hence arbitrarily
close to W1. The mentioned condition on the angle, together with the fact
that W is a point in the geodesic far enough form the intersection with the
equator –which by definition is W2– implies that the distance of W to the
equator is bounded by below.

When the dimensions of W1,W2,W are arbitrary, the proof can be re-
duced to the previous one. If w ∈ W , u = u1 + u2 ∈ W1 + W2 = U ∩ V ,
the angle ∠(w, u) can be measured in the subspace R3 spanned by w, u1, u2,
with the induced metric (comparable to the induced by the euclidean with
the same comparison constant). It is obvious that the lower bounds for
∠m(W1,W

c
1 ),∠m(W2,W ) do hold for W1∩R3 = 〈u1〉, W c

1 ∩R3 = 〈u2〉⊕〈w〉,
W2 ∩R3 = 〈u2〉 and W ∩R3 = 〈w〉 (because the measured minimum angles
are between complementary subspaces). Therefore, ∠(w, u) is bounded by
below.

If t ≥ 2, we can apply induction. We just set W̃1 = W1 + W2 and
W̃ c

1 = W c
2 . From what we just showed, ∠m(W̃1, W̃

c
1 ) is bounded by below.

Thus the hypothesis still hold but now for t− 1. �

A consequence of this lemma is the following result.

Corollary 5.8. Let U, V, V̂ subspaces of Rn, with V ⊂ V̂ . If a bound
∠m(U, V ) ≥ δ is available, then a constant η(δ) exists such that ∠m(U, V̂ ) ≥
η.

Proof. We can choose an appropriate complementary. We chooseW1 =
U∩V andW⊥1 as complementary. We know that for the intersections U⊥, V ⊥

–which are complementary subspaces inside W⊥1 – the bound ∠m(U⊥, V ⊥) ≥
δ holds . We set W2 = V̂ ∩U⊥ and as a complementary –which will already
be W– the span of V ⊥ and the orthogonal to W2 in U⊥. If a lower bound
for ∠m(W2,W ) is assumed, then W can be safely used as complementary:
by definition W ∩V = V ⊥ and W ∩U ⊂ U⊥. Hence ∠m(W ∩U,W ∩V ) ≥ δ.

The bound on ∠m(W2,W ) that we assumed can be checked using lemma
5.7. We start with V ⊥ ⊂ W ; the complementary (inside W⊥1 ) is chosen to
be U⊥ and the bound for the minimal angle follows from hypothesis. Inside
U⊥ we select the orthogonal to U⊥ ∩ V̂ and U⊥ ∩ V̂ as complementary.
Applying again lemma 5.7, we obtain a bound for the minimal angle between
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U⊥ ∩ V̂ = W2 and the span of V ⊥ and the orthogonal to U⊥ ∩ V̂ which is
W . �

Now we can move into a local characterization of uniform transversality
w.r.t. a sequence of stratifications as in definition 5.2.

Lemma 5.9. Let Sa be a sequence of strata as those in the stratifications of
definition 5.2. Let y ∈ Fk be a point in the stratum at distance more than ε
of the boundary, and let f1, ..., fp the corresponding local functions defining
the stratum in Bĝk(y, ρε). Then uniform transversality of τk to Sak (along
D) in that ball is equivalent (comparable) to uniform transversality (along
D) of the function (f1 ◦ τk, ..., fp ◦ τk) to 0.

Thus, for the points of the strata at distance more than ε of the boundary,
uniform transversality of the sequence to these regions follows from a uni-
form lower bound for the amount of transversality to 0 of the corresponding
local transversality problems for functions.

Proof. By simplicity we omit the subindices for the sections τk.
The proof consist of to parts. The first one amounts to proving that es-

timated transversality of f ◦τ (along D) is equivalent to estimated transver-
sality (of TDτ) w.r.t. the distribution T ||DS

a
k and it can be proven as follows:

Let us forget for the moment about D and assume that we are trying to
state the same result but for full transversality (considering TM instead of
D).

To measure the minimum angle we take instead of Tτ∩ker df , W defined
to be the span of the orthogonal to Tτ ∩ ker df in ker df , and the subspace
dτ(L), where L is the orthogonal (in the base) to the kernel of d(f ◦ τ).
By construction ∠m(W,Tτ ∩ ker df) coincides with ∠m(dτ(L), T τ ∩ ker df)
measured in Tτ . A lower bound for the latter is deduced from an upper
bound for the norm of dτ .

Next, we will do to changes of metric: the first one amounts to taking
inside dτ(L) the pushforward by τ of the euclidean in L (again an upper
bound for |τ∗| guarantees control for the distortion of the metric). The
second one occurs in the orthogonal to ker df ∩W in W , where we use the
pullback by df of the euclidean metric in Cp; this subspace has minimum
angle with ker df bounded by below. The consequence is that controlling the
change of metric in it is equivalent to controlling it in ker df⊥ (the pullback of
the euclidean metric in Cp), or in any other complementary V to ker df such
that ∠m(V, ker df) is bounded by below. Our choice of V is the orthogonal
to ker df ∩T vFk inside T vFk (the tangent space to the fibers). Observe that
if ∠m(T vFk, ker df) ≥ η holds, then ∠m(V, ker df) ≥ η′ follows by lemma 5.7.

Let us call U to the intersection of ker df with the orthogonal to T vFk ∩
ker df . We want to show that U is not very close to T vFk. If U is written
as the graph of a linear map from T vF⊥k to the orthogonal to T vFk ∩ ker df
inside T vFk, we look for and upper bound for the norm of that map. If
such a bound did not exist we could find a vector u in the orthogonal to
T vFk∩ker df inside T vFk such that df(v) is arbitrarily small. But this would
contradict the bound by below for the restriction of df1∧ ...∧dfn to the fiber.



5. A.H. STRATIFICATIONS AND TRANSVERSALITY 75

It is clear that with the new choices of complementaries and metric what
we are computing is exactly the amount of transversality of d(f ◦ τ) to 0.

Thus, estimated transversality of d(f ◦ τ) to 0 is equivalent to a bound
by below ∠m(Tτ, ker df), and the equivalence depends on the norms of τ∗, f∗
and ∠m(ker df, T vFk).

We we intersect everything with D̂, the previous argument equally works.
The only difference is that we only use the bound for the restriction of τ∗ to
D. It is important to notice that the previous changes of complementaries
and metric do occur inside D̂ (see that with the notation of the previous
paragraphs, the complementary V is inside T vFk which is itself contained
in D̂, so we can apply property (1) in 5.2 to conclude the equivalence).

The second part of the proof reduces to proving that for any ε > 0
∠M (T ||DS

a, ker df ∩ D̂) ≤ ε in a tubular neighborhood of radius %(ε) of the
stratum. This is equivalent to proving the same result for ∠M (T ||Sa, ker df)
and then use the bound by below for ∠m(D̂, ker df). The equivalence follows
from proposition 3.7 in [46], where in their notation V = V ′ = D̂, U =
ker df , U ′ = T ||Sa. Anyway, this result can easily be proven using the ideas
about the alternative definitions of the minimum angle. One just notices
that U and U ′ of the same dimension and ∠M (U,U ′) small enough, U ′ is the
graph of a linear map from U to U⊥. The maximal angle is comparable to the
distance of the ellipsoid pU⊥(U ′1) ⊂ U⊥. One checks that intersecting with
a transversal enough subspace of V corresponds to working in a subspace
with comparable metric.

The bound for ∠M (T ||Sa, ker df) ≤ ε is a consequence of the existence
of 1-comparable charts for which f is the projection in 2p-coordinates. As
we mentioned in subsection 3.2 of this section, since the stratum becomes
a vector space (of dimension 2p) it is possible to compare tubular neigh-
borhoods for the induced metric and the euclidean. In the corresponding
g-tubular neighborhood of radius %, each point q is the endpoint of a g-
geodesic. Any vector v ∈ T ||q Sa is the result of parallel translating certain
vector u ∈ TyS

a. In the geodesic, parallel transport is controlled by the
Christoffel symbols (also for the tangent field to the geodesic). Thus, in the
point of the geodesic for time t ∈ [0, r], the difference between the g-parallel
transport of U and its g0-parallel transport is bounded by etΓ − 1, where
Γ > 0 is a constant depending on the bounds for the induced connection.
In particular |v− u| ≤ etΓ− 1. By definition u (over the point q) belongs to
ker df . Therefore ∠M (T ||Sa, ker df) ≤ erΓ − 1. �

Remark 5.10: It is important to notice that for even dimensional a.c. man-
ifolds and for any distribution Q ⊂ TM , there is an obvious definition of
estimated transversality to a sequence of A.H. stratifications. The role of D̂
is replaced by Q̂, the pullback of Q to the total space of the bundle. It can
be checked that the proof of lemma 5.9 works for any distribution. Thus,
transversality to a stratum far from the points of its boundary is equivalent
to estimated transversality to 0 of the function f ◦ τ along the directions of
Q. This is specially interesting when the distribution is integrable, because
we can study the transversality along one single leaf instead of in the whole
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manifold, where it turn out to be equivalent to the transversality of the
restriction of the function f ◦ τ to the leaf. We can generalize this situation
by considering just a submanifolds Q ⊂ M . Estimated transversality of τ
to the strata along the directions of Q (in the points of Q) is equivalent to
full estimated transversality to 0 of the function (f ◦ τ)|Q.

For a stratum whose codimension 2p is less or equal than the dimension
of Q (submanifold), it is clear that estimated transversality of f ◦ τ to
0 along Q implies estimated transversality of the function along all the
directions of TM . When the codimension is smaller then we conclude than
in neighborhoods of uniform gk-radius of Q, the sections do not touch the
corresponding stratum (assuming control of order O(1) in the derivatives).
Observe that for odd dimensional a.c. manifolds and the distribution D, if
2p > dimD then 2p > dimD+1 = dimM . From this observation we deduce
that transversality along D –which has been seen to imply transversality
along all the directions of TM– is unobstructed in the sense that the expect
codimension for which transversality along D implies empty intersection is
the same as for full transversality.

Lemma 5.11. Let S = (Sak)a∈A be a sequence of A.H. stratifications as in
definition 5.2. Assume that the sequence τk is uniformly transverse to S
along the directions of a distribution Q whose dimension is greater of equal
than the codimension of the strata, and that the uniform bound |∇τk|gk ≤
O(1) holds. Then for each a ∈ A, τ−1

k (Sak) is a subvariety of M uniformly
transverse to Q.

Proof. We omit the subindices for sections and stratifications. The
proof of the result is specially easy for those points of M that are sent by τ
far from the boundary of the strata Sak . We need to find a subspace Qc ⊂
ker d(f ◦ τ) complementary to Q whose minimum angle with Q is bounded
by below (such a complementary always exist because of dimQ ≥ 2p). We
take u1, ...., un−q a basis of Q⊥. There exists a unique vi in the orthogonal
to ker d(f ◦ τ)∩Q inside Q so that ui + vi ∈ ker d(f ◦ τ). The ideas used to
define different notions of minimum angle show that the bound we look for
is equivalent to a bound by above in the norm of vi, which follows from the
hypothesis on the norm of ∇τ (the norm of df is bounded and the minimum
angle between the horizontal distribution of ∇ and the fiber is bounded by
below) and from the bound by below for the norm of vi (deduced from the
bound by below along the directions of Q).

We mention that this argument can be modified to work in the total
space of Fk instead of with the function f . Thus, it is also valid for those
points in the strata close to the boundary. �

In particular, the following corollary is deduced.

Corollary 5.12. Let S = (Sak)a∈A be a sequence of A.H. stratifications over
the a.c. manifold (M,D, J, g) as in definition 5.2. Assume that the A.H.
sequence τk is uniformly transverse to S (along D) and that the uniform
bound |∇τk|gk ≤ O(1) holds. Then for each a ∈ A, τ−1

k (Sak) is either empty
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–if the codimension of Sak is bigger than the dimension of D (or M)– or a
subvariety uniformly transverse to D.

For a even dimensional a.c. manifold and transversality along the di-
rections of a (compact) subvariety Q (assuming the mentioned bound on
|∇τk|gk), then either τ−1

k (Sak) is at gk-distance of Q bounded by below or is a
subvariety (at least defined in a gk-neighborhood of Q) uniformly transverse
to Q.

We would like to finish this section giving sufficient conditions for a
sequence of stratifications of a sequence of very ample bundles Ek to be
A.H. (and finite and Whitney).

We introduce the following definitions:
Using A.H. trivializations of Ek, and A.H. coordinates each bundle is

locally identified with (Cn × R)× Cm → Cn × R.

Definition 5.13. We say that a submanifold of the total space of (Cn ×
R)× Cm is constant if it is fiberwise constant. The (constant) submanifold
is holomorphic it its intersection with a fiber is holomorphic submanifold of
Cm. We also say that a submanifold of the total space is Gl(n,C)×Gl(m,C)-
invariant when its intersection with each fiber has this property.

We say that a stratification of Ek is constant (resp. holomorphic) when
we have local identifications for each point so that the corresponding strata
are identified with a fixed constant (resp. holomorphic) submanifold (for
k >> 0). A constant stratification of Ek is Whitney if the model has this
property. We say that the stratification is Gl(n,C) ×Gl(m,C)-invariant is
the intersection of the stratification with each fiber of Ek has this property.

Lemma 5.14. Let (Sak)a∈A be a holomorphic finite Whitney stratification
of Ek invariant under the action of Gl(n,C) × Gl(m,C) or Gl(n,C) × C∗.
Then the sequence (Sak)a∈Ak is as in definition 5.2.

Conversely, from a stratification of (Cn × R) × Cm → Cn × R with the
mentioned properties, using the local identifications it is possible to induce
an A.H. sequence of finite Whitney stratifications of Ek.

Proof. Using the local identification conditions (1), (2), (3) y (4) in
definition 5.2 hold trivially. Maybe we should point out that the strata (in
the fiber over the origin for example) are submanifolds of Cm and the bounds
we get might be not independent on the points (for example for the Whitney
condition). But we are only interested in working on compact regions, we
the bounds are uniform.

The previous comments proof the lemma for even dimensional a.c. man-
ifolds. In the odd dimensional situation the total space has structure of a.c.
manifold (we use the splitting given by the metric). That is the, the orthog-
onal to D̂ is defined by D⊥ and the connection over this line bundle. That
means that when using A.H. coordinates and holomorphic sections to trivi-
alize Ek we obtain coordinates z1

k, ..., z
n
k , u

1
k, ..., u

m
k , sk in which the strata are

defined by A.H. functions (usually independent of z1
k, ..., z

n
k , sk) w.r.t. these
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coordinates. Again, it might very well happen that these coordinates are not
strictly A.H. for the total space, because ∂

∂sk
does not approximately coin-

cide with D̂⊥ (due to the presence of the connection). Anyway, the control
on the connection and its derivatives imply that we have A.H. coordinates
in a weak sense that assures that if f is A.H. in these coordinates, then it
is A.H. for the structure of A.H. manifold in the total space of the bundle
(and the metric retraction). �

5.3. Quasi-stratifications of J rDEk. The main application we seek
for is for a generalized stratification (quasi-stratification) of J rDEk, where Ek
is Cm+1 ⊗ Lk, and Lk is a very ample sequence of line bundles (the powers
of the prequantizable line bundle if we start form a calibrated manifold).
It is through this quasi-stratification that we want to study the genericity
properties of the projectivization of a section of Ek away from its vanishing
set.

In contrast to what happen for 0-jets, it is not easy to find non-trivial
A.H. stratifications for higher order jets. There are even some which arise
naturally but which do not have the required properties. The difficulty
comes from the fact that the modification of the connection that makes the
r-jets of A.H. sections also A.H. sections of J rDEk, makes it difficult to make
sure that the strata are given by functions whose composition with an A.H.
section is an A.H. function. A sufficient condition will be that the functions
f are A.H., but this is precisely the condition hard to be checked.

Example 5.15: Let L⊗k the sequence of powers of the prequantum line
bundle of a symplectic manifold. Let us consider the following sequence of
strata in J 1L⊗k:

Σk,n = {(σ0, σ1)|σ1 = 0}
Using the base µk,x,I , where I = 1, ..., n, and taking reference sections in

Darboux charts, we get coordinates z1
k, ..., z

n
k , v

0
k, v

1
k, ..., v

n
k for the total space.

Σk,n is then defined by the zeros of the function f = (v1
k, ..., v

n
k ) : C2n+1 →

Cn, which is not holomorphic (or A.H.) w.r.t. the modified almost complex
structure of the total space. Otherwise, the composition f ◦j1(z1

kτ
ref
k,x) would

be A.H., but that composition is (1+z1
k z̄

1
k, z

1
k z̄

2
k, ..., z

1
k z̄
n
k ). It is not only that

for these functions the strata are not A.H., but for any choice. Such choice,
when composed with the mentioned 1-jet would just be the composition of
(1 + z1

k z̄
1
k, z

1
k z̄

2
k, ..., z

1
k z̄
n
k ) with a self diffeomorphism of Cp fixing. It is easy

to see that one cannot obtain a holomorphic map in such a way, because
f ◦ j1(z1

kτ
ref
k,x) has image in Rn (it cannot be A.H. either).

For the main application we need to weaken the notion of stratification:

Definition 5.16. (see [5]) Let S be a submanifold of J rDh,n,m. We define
ΘS to be the set of points σ ∈ S for which it can be found an (r+1)-jet whose
r-jet is σ (truncating it), and that seen as a 1-jet (along Dh or foliated) of
a local section of J rDh,n,m, cuts S in σ transversely along Dh (its restriction
to Dh cuts S transversely).
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We refer to ΘS as the holonomic transversal subset of S.

We mention that when we represent an (r + 1)-jet σ as a local section
of J rDh,n,m, in order to check whether πr+1

r σ ∈ S belongs to ΘS , the local
representation is essentially unique. Regarding transversality, it is enough
to consider the degree 1 part of the Taylor expansion in the coordinates
z1
k, z̄

1
k, ..., z

n
k , z̄

n
k (we turn the section into a function using the basis µI).

The degree 0 part is determined by the r-jet, the hypothesis imply that the
antiholomorphic part is vanishing and the holomorphic part is determined
by the (r+1)-jet. That means in particular that we can restrict our attention
to holomorphic representations if necessary.

If we use the trivialization given by the basis µI , some of the notions
introduced in the previous section can be extended to stratifications of
J rDh,n,m.

A submanifold of J rDh,n,m is constant if in the previous trivialization is
fiberwise constant.

A stratification is of J rDh,n,m is constant if all its strata are constat. Each
strata is thus defined by its intersection with one fiber. It is clear that if S
is constant, ΘS is also constant. It can also be checked that if S is invariant
under the fiberwise action of Gl(n,C) × Gl(m,C), then ΘS has the same
invariance property.

Definition 5.16 can be translated to the bundles J rDEk using local rep-
resentations for ∇H . The problem is that since the connection has been
modified if the strata Sk –identified with S– is given by conditions that
involve the components of degree higher than zero, once Sk ⊂ J rDEk is iden-
tified with S ⊂ J rDh,n,m, ΘSk is not necessarily identified with ΘS because
we cannot compare the local representations for dDh and ∇H,D. Anyway,
there will be examples where this identification occurs.

It is convenient to use local A.H. representations for the (r + 1)-jets.

Definition 5.17. Let σk be a pseudo-holomorphic (r+1)-jet over a point x.
A section αk of J rDEk is c-local (CD, C)-representation of σk if αk is local
C1-A.H.(CD, C) section defined in Bgk(x, c) and we have:

(1) αk(0) = πr+1
r σk

(2) ∇H,Dαk(0) = σk,

where ∇H,D is the component of ∇H along D (using as usual the metric
splitting).

The next step is showing that any (r + 1)-jet admits (global) (CD, C)-
representations with constants not depending on k, x (though they depend
on the norm of the (r+1)-jet). This fact is a consequence of certain features
of the modified connection ∇H .

Lemma 5.18. Let Ek be a very ample sequence of locally splittable hermit-
ian bundles over M and (J r+1

D Ek,∇H) the sequences of bundles of pseudo-
holomorphic (r+1)-jets with the modified connection. For any (r+1)-jet σk
over a point x ∈M , there exists a natural K and constants CD, C depending
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on the norm of σk and the geometry of M , but not on k and x, such that
we have a (global) (CD, C)-A.H representation αk of σk.

Proof. Let us fix A.H. coordinates with J = J0 in the origin. Using
the local identification given by these coordinates and a trivialization (for
example given by reference sections τ ref

k,x,j), we push the connection ∇H to a
connection in J rDh,n,m still denoted by ∇H . Since the local representations
are tools to deal with the points of the stratum where an A.H. sections cuts
in a non transversal way (approximately), we assume for the moment the
existence of a sequence Sk of A.H. stratifications of J rDEk, which in the
previous local identifications coincides with a Gl(n,C)×Gl(m,C)-invariant
stratification of S of J rDh,n,m. For each stratum Sak it would be reasonable to
define ΘSak

as the subset of Sak of those r-jets σ which have at least an (r+1)-
jet extending σ, with a local representation (not necessarily A.H.) cutting Sak
transversally alongD. We would like the local identification with J rDh,n,m, to
send ΘSak

to ΘSa , but this is not true in general. A sufficient condition would
be to be able to relate the local representations w.r.t. dDh and ∇H,D, or
being more precise, the value of the component of the connection form on D̄∗
in the point in question. Since S has been assumed to beGl(n,C)×Gl(m,C)-
invariant, we can use this action to modify the connection form of ∇H,D
(while we keep d and S). If we could get the vanishing of the connection
form on the point with this action, then the subsets of transverse holonomy
would coincide.

Let us see what happens in the models. In the Kähler case (even dimen-
sion) –and for the original connection– would be enough to trivialize Ek with
holomorphic sections such that the connection form vanishes at the origin
and use normal coordinates. It turns out that once we modify the connec-
tion we will always have an antiholomorphic component. Hence, it seems
reasonable to use a holonomic trivialization (jets of holomorphic sections).

In the non-integrable case –and now back to odd dimension– it is ele-
mentary to kill the connection form along D at the origin. It already has
this property in the approximate sense provided we select appropriate A.H.
trivializations of Ek killing its connection form. Since the metric has weight
O(c−1/2

k ), a small modification in the choice of dzik ∈ D̄∗1,0 makes the work.
Notice that the modification does not come necessarily form a change of
A.H. coordinates, but it only uses the action of Gl(n,C).

For the modified connection form it is not possible to get such property
starting form the basis µI (which homogeneous in the sense that each section
only has non-vanishing components of a certain order) and using the action
of Gl(n,C)×Gl(m,C); such action preserves the homogeneous subbundles of
J rDEk, whereas the connection does not preserve its sections. In particular
for J 1

DLk and any section τ of Ek with τ(0) 6= 0, ∇H1(τ, 0) = (∇τ,−F 1,1
D τ),

where −F 1,1
D τ(0) 6= 0 (somehow this reflects what happens in example 5.15).

It is evident what we have to do to obtain local A.H. representations.
We start with the basis νk,x,I of J r+1

D Ek. Over the origin, any (r+1)-jet σ is
a linear combination

∑
I βIνk,x,I . By linearity σ = jr+1

D (βIτ ref
k,x,I), and there-

fore πr+1
r σ = jr(βIτ ref

k,x,I)(0). Since is an A.H. section, σ−∇H,Djr(βIτ ref
k,x,I)(0)
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has size O(c−1/2
k ). Thus, a linear perturbation of size O(c−1/2

k )) in the coor-
dinates x1

k, y
1
k, ..., x

n
k , y

n
k gives the desired representation, whose bounds are

given in terms of those of τ ref
k,x,j and of the norm of the (r + 1)-jet; they do

not depend neither on k nor in x. �

Definition 5.19. Let Sk be a submanifold of J rDEk transverse to the fibers,
and let CD, C, c > 0. we define ΘSk(CD,C,c) ⊂ Sk as the set of points σk in
Sk that have a c-local (CD, C)-A.H. representation αk for a lift of σk cutting
Sk transversely (in σk) along the directions of D.

In certain circumstances we will forget about the constants and will speak
of ΘSk as the set of points for which there are lifts with transverse local
representations. This will only happens when in the local identifications this
subsets can be identified with the corresponding ΘS.

Remark 5.20: The definition of the sets ΘSk(CD,C,c) is only useful when k is
very large, being the reason that if a sequence of r-jets of Cr+1-A.H.(CD, C)
sections of Ek is uniformly transverse to a sequence of strata Sk ⊂ J rDEk,
then the intersection will occur in points of ΘSak (C̄D,C̄,c), where the constants
C̄D, C̄ only depend on CD,C and on the geometry of Ek and M , but not k
(and c is any positive number smaller than the injectivity radius).

Remark 5.21: If an (r + 1)-jet σ̃k is the derivative along D of certain Cr+1-
A.H.(CD, C) local section, then ||σk|| ≤ CD +O(c−1/2

k ).

We recall the following important example (see [5]):

Example 5.22: Let us denote by Zk the set of r-jets corresponding to sec-
tions intersecting the 0 section of Ek.

Zk = {σ = (σ0, ..., σr) |σ0 = 0}
If we look at Zk as a submanifold Z of J rDh,n,m and work in the integrable

setting (where there is no need of using constants that measure the lack of
integrability) one checks that ΘZ are those jets for which σ1 is onto (and
hence is empty ifm > n). If now we think of Z a sequence Zk of submanifolds
of J rDEk, the subsets ΘZk(CD,C,c) will be empty if the dimension of the fiber
is bigger than that of D. Otherwise, they will the points σ such that the
r+ 1-jet (σ, 0) has a c-local representation with the appropriate bounds and
σ1 is onto.

Observe that this is a rather special example because it is defined by
conditions only involving 0-jets. That means that the modification of the
connection does not affect, and thus in the local identifications ΘZk goes to
ΘZ .

We want to perturb A.H. sequences of sections so that their r-jets be-
come transverse to certain stratification (quasi-stratifications). Moreover,
the perturbations will be arbitrarily small in the directions of D (say in Ch-
norm, i.e., controlling the first h covariant derivatives along D). That means



82 I. THE GEOMETRY OF CALIBRATED MANIFOLDS

that the set of r-jets and (r + 1)-jets we will work with will be uniformly
bounded. Thus if we consider the subsets ΘSk(CD,C,c), where the constants
(CD, C) are chosen to be bigger than those controlling the A.H. to order 1 of
jrDτk (and such that there are c-local representations of a uniformly bounded
set of (r + 1)-jets containing jr+1

D τk and its nearby perturbations), the lack
of transversality to Sk of r-jets of A.H. sequences close enough to jrDτk can
be stated in terms of its (approximate) belonging to the complementary to
ΘSk(CD,C,c) en Sk.

Definition 5.23. (see also [5]) Let (A,≺) be a subset with a binary rela-
tion without cycles (a1 ≺ · · · ≺ ap ⇒ ap ⊀ a1). A finite Whitney quasi-
stratification of J rDh,n,m indexed by A is a finite family of smooth submani-
folds (Sa)a∈A not necessarily disjoint such that:

(1) ∂Sa ⊆ ⋃b≺a S
b,

(2) for any point in the boundary q ∈ ∂Sa there has to be b ≺ a such
that either q /∈ ΘSb or Sb ⊂ ∂Sa and the Whitney condition holds
for Sb ⊂ ∂Sa (or at least q belongs to those points far from the
boundary where that condition holds).

The quasi-stratification will be said to be constant (resp. holomorphic, Gl(n,C)×
Gl(m,C) invariant) if its strata have this property.

It is possible to give a similar definition of finite Whitney A.H. stratifi-
cations for the bundles J rDEk: the family of not necessarily disjoint smooth
submanifolds (Sak)a∈Ak has to be transverse to the fibers, with local equa-
tions as in definition 5.2 for those points far from the boundary, defined in
balls of uniform radius proportional to the distance to the boundary and
verifying conditions (1), (2) y (3) in that definition. The difference occurs in
the points close to the boundary: there we have ∂Sak ⊆

⋃
b≺a S

b
k, and there

has to exist a natural number K such that for any k ≥ K, in any point of
the boundary q ∈ ∂Sak there is an index b ≺ a such that q ∈ Sbk and either
of the following conditions hold:

i Sbk ⊂ ∂Sak and the uniform Whitney condition (the fourth in defini-
tion 5.2) holds in all the points of Sbk, or at least in those which are
far from the boundary, being q in that subset (and not necessarily
for all the precedent indices).

ii q approximately does not belong to ΘSbk
; that is, for each triple

(CD, C, c) another positive constant Č exists depending on the
triple but not on k, such that for any (r+ 1)-jet σ with πr+1

r σ = q,
any local (CD, C)-representation α of σ cuts Sbk (in q) with mini-
mum angle at most Čc−1/2

k .

It is obvious that for even dimensional a.c. manifolds, and for Sk a finite
Whitney A.H. stratification of J rEk we can define the sets ΘSak (C,c), and
give the corresponding definition of quasi-stratification.

5.4. The Thom-Boardman-Auroux quasi-stratification for maps
to projective spaces. To study the genericity of maps to CPm defined as
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projectivizations of sections of Ek = Cm+1⊗Lk, we introduce the non-linear
bundle of pseudo-holomorphic r-jets of maps to CPm. Its main properties
will be analyzed in the next to propositions that follow. Before we re-
call that Zk denotes the sequence of strata of J rDEk –already introduced
in example 5.22– of r-jets whose degree 0-component vanishes. We define
J rDE∗k := J rDEk − Zk. When the almost complex manifold is even dimen-
sional, we set J rE∗k := J rEk − Zk, and J rGE∗k := J rGEk − ZGk for the
subbundle associated to a polarization G, where again Zk denotes the set of
r-jets of J rEk whose degree 0 component vanishes, and ZGk = Zk ∩ J rGEk.

Definition-Proposition 5.24. A non-linear bundle of pseudo-holomorphic
r-jets (along D) J rD(M,CPm) can be defined so that for any function φ : (M,D, J, g)→
CPm a notion of r-jet jrDφ ∈ Γ(J rD(M,CPm)) with the following properties
can be given:

(1) There exist a bundle map jrπ : J rDE∗k → J rD(M,CPm) which is a
submersion. For any section τk of Ek, in the points where it does
not vanish it defines a projectivization φk and the following relation
holds:

jrπ(jrDτk) = jrDφk. (5.5)
(2) The fibers of J rD(M,CPm) admit a canonical integrable almost com-

plex structure so that the map jrπ is fiberwise holomorphic and for
any A.H. sequence τk of Ek, jrπ(jrDτk) ∈ Γ(J rD(M−τ−1

k (0),CPm))
is an A.H. sequence of sections of J rD(M,CPm).

There is an analogous definition of the bundle J r(M,CPm) for even
dimensional a.c. manifolds (see [4]). It also has a canonical integrable
a.c. structure on the fibers so that the map jrπ : J rE∗k → J r(M,CPm)
is a fiberwise holomorphic submersion. Given φ : M → CPm, there is a
corresponding notion of pseudo-holomorphic r-jet for which the following
relation holds:

jrπ(jrτk) = jr(π ◦ τk), (5.6)
For each A.H. sequence τk A.H. of Ek, jrπ(jrτk) ∈ Γ(J r(M−τ−1

k (0),CPm))
is an A.H. sequence.

Given a polarization G we can define J rG(M,CPm)
irG
↪→ J r(M,CPm) so

that the following commutative square of submersions holds:

J rE∗k
prG−−−−→ J rGE∗kyjrπ

yjrπ

J r(M,CPm)
prG−−−−→ J rG(M,CPm)

The maps prG are induced by the orthogonal projection T ∗M → Ḡ∗ and
if jrGτk is a section of J rGE∗k, for the restriction of jrπ we have:

jrπ(jrGτk) = jrG(π ◦ τk). (5.7)

If τk is an A.H. sequence, jrGφk is also an A.H. sequence of sections of
J r(M − τ−1

k (0),CPm)) ⊂ J rG(M − τ−1
k (0),CPm).
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Definition-proof. We define the non-linear bundle J rD(M,CPm) as
follows: we fix a system of holomorphic charts for CPm. For example
in Cm+1 with coordinates z0, ..., zm we consider the canonical projection
π : Cm+1−{0} → CPm, and take the charts ϕ−1

i : Ui → Cm sending [z0, ..., zm]
to ( z

1

z0 , ...,
zm

z0 ); we denote the change of coordinates ϕ−1
j ◦ ϕi by Ψji. For

each chart ϕi we consider the bundle

J rD(M,Cm)i := (
r∑

j=0

(D̄∗1,0)�j)⊗ Cm.

Over each point x, in the intersection Ui∩Uj the fiber over x of J rD(M,Cm)i
and J rD(M,Cm)j are identified using the same transformation jrΨji in J rn,m
induced by the holomorphic change of coordinates Ψji. In other words, if
we take A.H. coordinates containing x and make the corresponding local
identification con T ∗1,0Cn, we get an induced identification of J rD(M,Cm)i
with J rDh,n,m. Thus, an r-jet σ is represented as the r-jet of a holomorphic
function F : Cn → Cm. The identification we made is the one that identifies
σ with the r-jet of Ψji ◦ F as an element of J rDh,n,m ∼= J rD(M,Cm)j . This
map does not depend on the local identification with T ∗1,0Cn (because we
can compose on F with the corresponding element of Gl(n,C)), and there-
fore it is globally defined (in all the base space because in the overlaps of the
charts the definition has been seen to be compatible). This identifications
jrΨji define an equivalence relation, that is, the cocycle condition holds –
because it happens so in the integrable case– and thus give rise to a well
defined locally trivial fiber bundle J rD(M,CPm).

Let φ : (M,J,D) → CPm. Its r-jet jrDφ is defined as follows: the charts
of the projective space induce maps φi := ϕ−1

i ◦ φ : M → Cm. Using the
trivial connection d in this trivial vector bundle, and using as usual the
induced connection on D̄∗1,0 we can define the corresponding symmetrized
r-jet jrDφi (see definition 4.1). We must check jrDφj = jrΨji(jrDφi). More
generally, instead of using a holomorphic diffeomorphism Ψji : Cm → Cm we
will consider any holomorphic map H : Cm1 → Cm2 that will give rise to a
map jrH : J rD(M,Cm1)→ J rD(M,Cm2), so that for a function φ : M → Cm1

the equation jrD(H ◦ φ) = jrH(jrDφ) holds.
The proof uses induction on r. First we may assume m2 = 1 and it is

enough to check the equality for the component of order r of the r-jet. The
computation of j1

D(H ◦φ) is done by firstly taking in ∇(H ◦φ) its projection
over D̄∗. Next the holomorphic component is singled out and then we keep
its symmetrization. Thus,

∇(H ◦ φ) =
m1∑

a=1

∂H

∂za
∇φa,

is the sum of partial derivatives of H multiplied by the components ∇φa of
∇φ. The algebraic expression is exactly the same as the one for j1H(j1

Dφ)
except for the fact that in the latter the partial derivatives of H multiply the
components ∇φa of the 1-jet j1

Dφ. In any case, taking ∇D(H ◦ φ) amounts
to substitute in the previous algebraic expression the factors ∇φa by ∇Dφa.
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Since H is holomorphic, ∂(H ◦φ) is equivalent to taking the component ∂φa
of ∇Dφa (in the algebraic expression we can consider partial derivatives of
H in the variables z, z̄, where the latter are vanishing). The symmetrization
is not needed for 1-jets.

We proceed similarly to compute j2
D(H ◦ φ).

∇j1
D(H ◦ φ) =

m1∑

b,a=1

∂2H

∂za∂zb
∇φa ⊗ ∂φb +

m1∑

c=1

∂H

∂zc
∇∂φc. (5.8)

In this algebraic expression we have (2, 0) terms –those containing a sec-
ond covariant derivative or equivalently a first partial derivative of H– and
(1, 1) terms which contain a second partial derivative of H or the (tensor)
product of two first covariant derivatives. Taking the component along D
and then the holomorphic part does not alter the algebraic expression; we
just write ∂φa instead of ∇φa and ∂2φc instead of ∇∂φc. It is easily checked
that the algebraic expression is the same as that of j2H(j2

Dφ), being the
only difference that in the latter we have ∂2

symφc, the symmetrization of the
term ∂2φc in the former. Thus, our problem reduces to showing that the
symmetrization of 5.8 is the same algebraic expression but changing ∂2φc
by its symmetrization.

We observe that what we just said holds for any function H. Let x be
the point in whose fiber we are working,. We define H ′ : Cm1 → C as the
degree 2 homogeneous component of the Taylor expansion of H around x.
It is clear that j2

D(H ′ ◦ φ) are the (1, 1) terms in 5.8. Thus, the algebraic
expression of j2

D(H ′ ◦φ) coincides with that of j2H ′(j2
Dφ). But in these case

we have equality because the difference in the factors only occurs in (2, 0)
terms. Since by hypothesis j2H ′(j2

Dφ) is symmetric, then j2
D(H ′ ◦ φ) is also

symmetric. Thus, the (1, 1)-terms in j2
D(H◦φ) are symmetric. Therefore, the

symmetrization being a linear projector does not alter them. Now one checks
that the symmetrization of each summand ∂H

∂zc∇∂φc is exactly ∂H
∂zc∂

2
symφc.

By definition, to compute jrH(jrDφ) after the local identification us-
ing A.H. coordinates we take F holomorphic whose usual r-jet coincides
with jrDφ, and define jrH(jrDφ) to be jrDh(H ◦ F ). The summands are
tensor products with factors ∂riFa1 ,

∑
ri = r, multiplied by a partial de-

rivative of F in the variables zai of order the number of factors in the
tensor products. By hypothesis we assume that when we substitute in
these expression ∂riFa1 by ∂risymφai , we obtain jrD(H ◦ φ). From that we
deduce that the algebraic expression for ∇jrD(H ◦ φ) coincides with that
of jr+1(H ◦ F ) ∼= jr+1H(jr+1

D φ). Taking the holomorphic part does not
change it. In each summand of ∂jrD(H ◦ φ) all the factors but at most one
in the tensor product are of the form ∂∂risymφa1 , and hence already sym-
metric. We want to show that symr(∂jrD(H ◦ φ)) = jr+1H(jr+1

D φ). Since
symr(jr+1H(jr+1

D φ)) = jr+1H(jr+1
D φ), proving that the symmetrization of

each summand amounts to putting ∂risymφai instead of ∂riFa1 and symmetriz-
ing the resulting expression would be enough. But this is an elementary
result concerning symmetric products.
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Therefore, we conclude that the pseudo-holomorphic r-jet of a map to
CPm is well defined.

If M is an even dimensional a.c. manifold the definition of J r(M,CPm)
is the same (we just do not need to project the full derivative into the
subspace D̄). When we have a polarization G there is an analogous defini-
tion of the bundle of pseudo-holomorphic r-jets along G. Using the previ-
ous holomorphic charts of the projective space we consider the subbundles
J rG(M,Cm)i := (

∑r
j=0 (Ḡ∗1,0)�j)⊗ Cm, where J rG(M,Cm)i ⊂ J r(M,Cm)i,

using the splitting G ⊕ G⊥ = TM . It is easily checked that the identifica-
tions jrΨji : J r(M,Cm)i → J r(M,Cm)j preserve these subbundles, because
the elements of these subbundles are characterized by being vanishing when
they act over any vector of G⊥; the algebraic expression that gives rise to
the identification between J r(M,Cm)i and J r(M,Cm)j has this property.

The proof that shows that the jrφ is well defined is exactly the same
we gave for odd dimensional a.c. manifolds; a small modification shows
that jrGφ is well defined (instead of keeping the component ∇D of the odd
dimensional case, we project over Ḡ∗).

The next property to be checked is the existence of a submersion
jrπ : J rDE∗k → J rD(M,CPm) (resp. jrπ : J rE∗k → J r(M,CPm) that restricts
to a submersion J rGE∗k → J rG(M,CPm)), so that for any section τk of Ek, in
the points where it does not vanish jrD(π◦τk) = jrπ(jrDτk) (resp. jr(π◦τk) =
jrπ(jrτk) y jrG(π ◦ τk) = jrπ(jrGτk)), i.e., the equations 5.5, 5.6 and 5.7 hold.

Going back to odd dimensional manifolds, we define jrπ to have the same
expression as in the integrable case. That means that we fix A.H. charts
and a section of Lk to trivialize so that the r-jet σ in question is identified
with the usual holomorphic r-jet in a point of a holomorphic function F . We
compose with the appropriate chart ϕ−1

i of the projective space and jrπ(σ)
to be the r-jet of ϕ−1

i ◦F ; the arguments that showed that the holomorphic
r-jets are well defined –together with a small observation– also prove that
jrπ(σ) is well defined independently of the A.H. coordinates and of the chart
of CPm we used. The observation is that also that the map is independent
of the trivialization of Lk, or in other words, of the connection ∇ we use in
Lk, so we can work with d (and then we are exactly in the same situation
that proved that the rDφis well defined). The reason is that ϕ−1

i ◦ F is a
section of Cm ⊗ (Lk ⊗ L−1

k ) with connection ∇⊗∇−1 = d (composing with
a chart amounts to dividing by one of the coordinates). It is clear that the
map is a submersion.

The equality jrD(π◦τk) = jrπ(jrDτk) holds because when we compose with
a chart ϕ−1

i , by definition jrD(π ◦ τk) is jrD(ϕ−1
i ◦ π ◦ τk). Also by definition

jrπ(jrDτk) coincides with jr(ϕ−1
i ◦ π)(jrDτk), and the equality between both

expression has already been proved (recall that the definition of jrπ does
not depend on the connection in Lk, so we can trivialize it and use d).

To show that for even dimensional a.c. manifolds jrπ : J rE∗k → J r(M,CPm)
is a well defined submersion and that the equation 5.6 holds, the previous
ideas work word by word. If we have a polarization G, the commutativity
of the diagram 5.24 follows from the commutativity in the holomorphic case
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(because going through one of the sides we restrict the holomorphic func-
tion to the leaf Cg × {·} and then compose with π, and w.r.t. the other we
compose and the restrict, and the result is the same). It is also clear that
jrπ : J rGE∗k → J rG(M,CPm) is a submersion.

Regarding point (2) of this definition-proposition, the fibers of J rD(M,CPm)
(resp. J r(M,CPm)) admit a canonical holomorphic structure because us-
ing local identifications the fiber is some CN and the change identifications
jrΨji (the formulas are those of the holomorphic case).

jrπ is fiberwise holomorphic for the same reason; in each fiber we have
a map from some CN1 to some CN (after composing with a chart ϕi) whose
formula is that of the integrable case which is trivially holomorphic.

To be able to say when a sequence of functions of J rD(M,CPm) is A.H. we
need to introduce a metric and an a.c. structure in the total space of the r-
jets. This can be done using a connection (for example out of the Levi-Civita
connection associated to the Fubini-Study metric in the projective space and
of the connection on T ∗D). In our case we choose to do something different
but equivalent. We just fix a system of holomorphic charts for CPm so that
on each charts we only work in a compact domain of Cm, and such that for
the change of coordinates for these regions we have uniform bounds in the
family. For example, in CP1 we can take all the charts that are the result of
removing a hyperplane (point), and work in the complement of a uniform
ball of the point.

Each chart ϕ defines J rD(M,Cm)ϕ ⊂ J rD(M,CPm) which is of the form
(
∑r

j=0 (D̄∗1,0)�j) ⊗ Cm=J rDCm. In each of these vector bundles we intro-
duce the metric and almost-complex structure induced by considering the
sequence of trivial hermitian bundles M ×Cm →M with trivial connection.

If we compose with one of these charts, say ϕ, it is straightforward that
if τk is an A.H. sequence of sections of Ek, then where its projectivization φk
is defined it defines an A.H. sequence of functions. It follows that jrDτk is an
A.H. sequence of sections of J rD(M,Cm)ϕ = J rDCm. Notice that the notion
is well defined because when we make a change of chart, the identification
of J rD(M,Cm)ϕ with J rD(M,Cm)ϕ′ is given by an A.H. map. Indeed, we
just need to go to the models and realize that the almost-complex structure
induced in J rDh,n,m, by that of J rD(M,Cm)ϕ approximately coincides with
the canonical one (and the metrics are comparable). Since the change of
coordinates in CPm induces a holomorphic map in J rDh,n,m,, we are done.

The situation is the same for even dimensional a.c. manifolds. For a
given polarization, one checks using adapted charts toG that jrGφk is an A.H.
sequence of sections of J r(M,CPm) whose image lays in J rG(M,CPm). �

Once we have defined the non-linear bundles of r-jets of maps to CPm
and indicated its relation with the bundles J rDE∗k (resp. J rE∗k , J rGE∗k), we
want to pullback transversality problems for jrD(π◦τk) to quasi-stratifications
of J rD(M,CPm), to transversality problem for jrDτk to the pullback of the
quasi-stratification to J rDE∗k . Being more precise, we need to define –at least
for certain kinds of strata PSak of J rD(M,CPm)– the corresponding subsets
of transversal holonomy ΘPSak . That will not be very difficult due to the
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fact that this non-linear bundles have been defined identifying bundles of
the form J rDCm. The purpose two define this subsets it twofold: on the
one hand they are necessary to define the notion of quasi-stratification of
J rD(M,CPm) (definition 5.23 and its extension to the non-integrable situa-
tion), and the important property is that if inside Sak := jrπ∗PSak we define
ΘSak

:= jrπ∗ΘPSak , the latter does not belong to ΘSak (CD,C,c) in the approxi-
mate sense, for certain constants. The consequence is that if we start from
an appropriate Whitey stratification of PS, then if we consider its pullback
S and add the strata Zk, we obtain a Whitney quasi-stratification, up to
checking that when the strata Sak approach Zk they accumulate in the points
of Zk −ΘZk . The second purpose in the introduction of the subsets ΘPSak is
that they are used in the definition of the Thom-Boardman-Auroux quasi-
stratification (though we will see that we will refine it to a genuine Whitney
stratification of J rD(M,CPm) so that when it is pullbacked to J rDEk the
quasi-stratification condition in the boundary of each stratum (see defini-
tion 5.23 and its extension to the non-integrable situation) is only used for
the closure of each strata in Zk).

In the relative theory we start form an appropriate sequence of strata
PSGk of J rG(M,CPm), and our purpose it to obtain transversality of jrG(π◦τk)
to them by getting transversality of jrGτk to SGk := jrπ∗PSGk ⊂ J rGE∗k ; again,
this is done by making jrGτk uniformly transverse to Sk := pr∗G S

G
k ⊂ J rE∗k .

Thus, we need to define also the subsets ΘPSGk and study its properties.

Definition-Proposition 5.25. If PSk is a sequence of strata of J rD(M,CPm)
(resp. J r(M,CPm)), so that for a fixed choice of charts of CPm and A.H. co-
ordinates it is identified with a stratum PS of J rDh,n,m (resp. J rn,m) invariant
under the action of Gl(n,C), then we can give an obvious definition of the
subsets ΘPSk by asking them to coincide in the local identifications with ΘPS
(defined in 5.16). Thus, for Sk –the pullback of PSk to J rDE∗k (resp. J rE∗k)–
we can define ΘSk to be the pullback of ΘPSk . Moreover, if we take A.H.
trivializations of Lk and consider the submersion J rDh,n,m+1−Z → J rDh,n,m
(resp. J rn,m+1 − Z → J rn,m) in which Sk is identified with a stratum S,
then the image of ΘSk in the chart coincides with ΘS (see definition 5.16).
Finally, the points of Sk − ΘSk approximately do not belong to ΘSk(CD,C,c)

(resp. ΘSk(C,c)), for certain constants.

For the relative theory we assume that for a choice of A.H. charts adapted
to G and holomorphic charts of the projective space, the sequence PSGk ⊂
J rG(M,CPm) is identified with an stratum PSG of J rCg ,n,m = J rg,m × Cn−g,
invariant under the action of Gl(g,C). Then there is an obvious definition
of ΘPSGk which in local identifications in nothing but ΘPSG. We then define
the subset ΘSk ⊂ Sk ⊂ J rDE∗k by pulling back this subset to J rDE∗k using
either of the sides of the commutative diagram 5.24. Using the lower part of
the diagram 5.24 we define PSk := pr∗G PSGk . It follows that ΘPSk (as defined
in the first paragraph of this definition-proposition) coincides with pr∗G ΘPSGk .
Thus, we can apply the results of the preceding paragraph to conclude that
the point of Sk − ΘSk approximately do not belong to ΘSk(C,c), for certain
constants.
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definition-proof. We want to define the subsets ΘPSk y ΘSk and see
th relation of the former with the subsets ΘSk(CD,C,c) of Sk. Once we have
fixed A.H. coordinates and holomorphic charts of the projective space, we
have the bundles J rD(M,CPm)i = J rDCm for which the definition of ΘSk,i
and its identification with ΘSi is obvious, because we are working with a
sequence of trivial bundles with trivial connection and the strata are assumed
to be Gl(n,C)-invariant. Thus, our only task reduces the showing that the
subsets ΘSi glue well under the maps jrΨji (everything can be checked in
the integrable case, due to the local identifications).

Let ψ be an r-jet in ΘPSi . Hence, we have a lift ψ̃ and a local rep-
resentation α of the lift cutting Si transversally in ψ. As we mentioned,
regarding transversality the local representation is essentially unique. That
means in particular that any other representation α′ will also share the
transversality property. By definition ψ̃ is the (r + 1)-jet of a local holo-
morphic function F (independent of sk if we want). Then jrDhF (0) = ψ

and dDhj
r
Dh
F (0) = ∂jrDhF (0) = jr+1

Dh
F (0) = ψ̃. Therefore jr+1Ψjiψ̃ a lift

of jrΨjiψ with local representation jrΨjij
r
Dh
F = jrDh(Ψij ◦ F ), which is

obviously transverse to jrΨjiPSi = PSj , because jrΨji is a diffeomorphism.

Since ΘPSk is well defined, its pullback to J rDE∗k is a well defined subset
of Sk. Next, we want to show that the pullback of ΘPS by the submersion
jrπ : J rDh,n,m+1−Z → J rDh,n,m is ΘS , which follows easily form the previous
arguments. Let σ be an r-jet projection over φ. Any lift ψ̃ is the projection
of a lift σ̃ of σ. The latter admits a local representation jrDhH, with H

holomorphic, and it is clear that jrDh(π ◦ H) is a local representation for
ψ̃. Being jrπ a submersion, transversality of jrDhH to S is equivalent to
transversality of jrDh(π ◦H) to PS.

We now prove that an r-jet σ ∈ Sk−ΘSk does not belong to ΘSk(CD,C,c)

in the approximate sense, for constants that essentially depend on the norm
of the lifts σ̃ and on the constants associated to the basis νk,x,I . σ does
not belong to ΘSk if and only if jrπ(σ) = ψ does not belong to ΘPSk . We
know that for any lift σ̃ of σ, we can find local A.H. representations of the
form α = jrDξk + hIj

r
Dτ

ref
k,x,I , where the hI are degree 1 polynomials in the

coordinates x1
k, y

1
k, ..., x

n
k , y

n
k of size at most O(c−1/2

k ) (lemma 5.18). Thus,
jrπ(α) − jrD(π ◦ ξk) and its derivative along D have size O(c−1/2

k ), which
implies that jrπ(α) is at distance O(c−1/2

k ) of defining a lift for φ. It follows
that the minimum angle of intersection between jrπ(α) and PSk in φ is at
most of order O(c−1/2

k ), and thus the same happens for α and Sk.

In the relative theory for each chart ϕ−1
i we have a sequence of vector

subbundles J rG(M,Cm)i ↪→ J r(M,Cm)i. The subbundle inherits a connec-
tion form that of J r(M,Cm)i (it comes from the Levi-Civita connection and
the metric retraction for Ḡ∗). We can slightly modify the trivialization of
Ḡ∗1,0 coming from A.H. coordinates adapted to G (the perturbation of size
O(c−1/2

k )), so that the connection form vanishes at the origin. If the stratifi-
cation is Gl(g,C)-invariant, then there is an obvious definition of the subset
ΘPSGk,i which under the local identification is nothing but ΘPSGi (because
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for each J rG(M,Cm)i the action of Gl(g,C) kills the connection form at the
origin). Using the identification with holomorphic foliated r-jets one proves
that the holonomic transverse subsets are well defined. For PSk := pr∗G PSGk ,
there is already a definition of the subsets ΘPSk . Using the local identifica-
tion given by charts adapted to G, the pseudo-holomorphic r-jets along G
go to J rCg ,n,m = J rg,m×Cn−g, and the projection J rn,m over the subbundle is
the trivial projection suppressing some coordinates (those corresponding to
elements of the base µk,x,I , where I is not of the form Ig). It follows that ΘPS
is the pullback of ΘPSG , because the projection J rn,m → J rCg ,n,m is induced
by the holomorphic submersion Cn → Cg, and then the same ideas that
proved that ΘS ⊂ J rn,m+1 coincided with the pullback of ΘPS ⊂ J rn,m apply.
Going through the lower side of the commutative diagram 5.24 we obtain
a local description of ΘSk (defined to be the pullback of PSGk using either
of the sides) as jrπ∗ΘPSk . Hence, applying the first part of this proposition
the points of Sk −ΘSk approximately do not belong to ΘSk(C,c), for certain
constants.

�

The Thom-Boardman-Auroux is nothing but the pullback to J rDE∗k by
jrπ of the analog of the Thom-Boardmann stratification of J rD(M,CPm)
(see for example [1, 7]), together with the strata Zk. The definition is the
one given for even dimensional a.c. manifolds by D. Auroux in [4].

Given σ ∈ J rDE∗k , let us denote by φ = (φ0, ..., φr) its image in J rD(M,CPm).
Let us define

Σk,i = {σ ∈ J rDE∗k | dimC kerφ1 = i}
If max(0, n−m) < i ≤ n, the strata Σk,i are smooth submanifolds whose

boundary is the union of ∪j>iΣk,j and of a subset of Zk −ΘZk .
It is clear that Σk,i is defined by conditions on φ. Thus, the strata are

pullback of constant and holomorphic strata PΣk,i, and the given definition
of their closure is easy to check (also having into account the description of
ΘZk described in example 5.22).

For r ≥ 2, ΘΣk,i is the subset of r-jets σ = (σ0, ..., σr) ∈ Σi so that

Ξk,i;σ = {u ∈ D1,0, (iuσ, 0) ∈ TσΣk,i}
has the expected codimension in D1,0, which is the codimension of Σk,i in
J rDEk.

Indeed, we can work with the projection and observe that ΘPΣk,i are
exactly those points of PΣk,i which have a lift with a transverse local repre-
sentation. Since the term that we add to the r-jet to define the lift is of order
r + 1 > 2, the transversality of the local representation does not depend on
the lift, that can be chosen to have vanishing r + 1-order component. Let
us define

PΞk,i;σ = {u ∈ D1,0, (iuφ, 0) ∈ TφPΣk,i},
One checks that ΘPΣk,i are those φ for which PΞk,i;σ has the codimension

of PΣk,i in J rD(M,CPm). It is easy to see using the ideas of proposition 5.25
that ΘΣk,i –the pullback of ΘPΣk,i– is the subset previously described.
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If p+ 1 ≤ r, we define inductively

Σk,i1,....,ip,ip+1 = {σ ∈ Θk,i1,...,ip ,dim ker(φ1 ∩ Ξk,i1,...,ip;σ) = ip+1},
with

Ξk,I;σ = {u ∈ D1,0, (iuσ, 0) ∈ TσΣk,I}.
As in the previous case, we define ΘΣk,I as the points such that the

codimension of Ξk,I;σ in D1,0 is the same as the codimension of Σk,I in
J rDEk.

If i1 ≥ · · · ≥ ip+1 ≥ 1, Σk,i1,...,ip+1 is a smooth submanifold (constant and
holomorphic) whose closure in Σk,i1,...,ip is the union of the Σk,i1,...,ip,j , j >
ip+1, and a subset of Σk,i1,...,ip − Θk,i1,...,ip [7]. The problem is that for
large values of r, n,m, the closure of the strata is hard to understand, and
what we have defined, once Zk has been added, might very well not be a
Whitney quasi-stratification. For low values of r, n,m we have a Whitney
quasi-stratification of J rDEk, because it comes from a Whitney stratification
of J rD(M,CPm), and because the strata do not accumulate in points of ΘZk .

Anyhow, we can use the results of Mather [39] to refine the stratifica-
tion of J rD(M,CPm) (which is constant, holomorphic and Gl(n,C) × Hrm-
invariant), so that locally (after the identifications we obtain a constant,
holomorphic Whitney stratification invariant under the action of Gl(n,C)×
Hrm on each J rDh,n,m, and such that the submanifolds PΣk,I are unions of
strata of the refinement. A consequence of the mentioned invariance is that
the refinements –defined locally using the identifications provided by A.H.
coordinates and holomorphic charts in CPm– glue well under the identifica-
tions jrΨji defining a global refinement, which is indeed independent of the
choices. Thus, its pullback is a finite Whitney stratification of J rDE∗k and
such that the Σk,I are union of strata. It is important to notice that since
all the strata are contained in the closure of Σk,max(0,n−m)+1, they accumu-
late near Zk in points of Zk − ΘZk . Therefore, by adding Zk we obtain a
quasi-stratification of J rDEk.

If we have a polarization, we use exactly the same definitions but in
the subbundle J rGEk instead of J rG(M,CPm); the result is a stratification
PSG of J rG(M,CPm) that locally –given the identification of J rCg ,n,m with
J rg,m × Cn−g– coincides with the corresponding Thom-Boardman stratifi-
cation of J rg,m multiplied by Cn−g (this is exactly what happens in the
odd dimensional situation, where we get a 1-parametric version of the even
dimensional model). Using the lower part of the commutative diagram,
the pullback of this stratification PS is locally multiplying by the remain-
ing coordinates of J rn,m, because the submersion J rn,m → J rCg ,n,m amounts
to suppress certain coordinates. Thus, to refine S, the pullback of SG to
J rE∗k , we first locally refine PSG (this is made by refining one fiber of PSG
en J rg,m × Cn−g). The local refinements of PSG glue well, because they are
Gl(g,C) × Hrm-invariant and thus define a sequence of Whitney stratifica-
tions J rG(M,CPm) which does not depend neither on the A.H. coordinates
adapted to G nor in the chosen holomorphic charts of CPm. Its pullback to
J rGE∗k refines SG to a sequence of Whitney stratifications. Finally, its pull-
back by prG : J rE∗k → J rGE∗k is another sequence of Whitney stratifications
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refining S. Once we add Zk (also the pullback of ZGk ⊂ J rGEk), we obtain
a sequence of Whitney quasi-stratifications of J rEk(the local descriptions
imply that the strata only accumulate in points of Zk −ΘZk ⊂ Zk).

Definition 5.26. (see [5]). Given (M,D, J, g) (resp. (M,J,G, g)) and a
very ample sequence of hermitian line bundles Lk, let us denote Cm+1 ⊗Lk
by Ek. The Thom-Boardman-Auroux (T-B-A) quasi-stratification of J rDEk
(resp. J rEk, J rGEk) is the quasi-stratification given by the submanifolds
Zk ⊂ J rDEk (resp. Zk ⊂ J rEk, ZGk ⊂ J rGEk) and a refinement as de-
scribed of the analog of the Thom-Boardmann stratification of J rDE∗k (resp.
of J rE∗k, J rGE∗k).

We say that an A.H. sequence τk A.H. of sections of Ek → (M,D, J, g)
(resp. Ek → (M,J, g)) is r-generic if it is uniformly transverse to the Thom-
Boardman-Auroux quasi-stratification of J rDEk. In such situation we will
speak about r-genericity of φk, the sequence of projectivizations of τk.

Lemma 5.27. The Thom-Boardman-Auroux quasi-stratification of J rDEk
(resp. J rEk) is approximately holomorphic (and also finite and Whitney).

In the relative case the pullback to J rEk of the T-B-A quasi-stratification
of J rGEk is also an approximately holomorphic quasi-stratification.

Proof. The description of the closure of the strata inside Zk implies
that the quasi-stratification condition holds. We observe that for low values
of r, n,m for which we do not need to refine to obtain Whitney stratification
in J rD(M,CPm), its pullback is a quasi-stratification of J rDEk, once the Zk
have been added.

The delicate point is checking that the strata are A.H. (for the modified
connection). First we study the sequence Zk. Though for this sequence the
approximate holomorphicity is obvious, we will give a proof that works for
other sequences of strata.

Indeed, Zk ⊂ Ek is obviously an A.H. sequence of Ek. We will see that
the natural projection πrr−h : J rDEk → J r−hD Ek is A.H. Thus, the pullback of
an A.H. sequence of strata of J r−hD Ek will define an a.H. sequence of strata
of J rDEk. In particular, Zk ⊂ J rDEk will be an A.H. sequence because is the
pullback of the sequence of 0 sections of Ek.

The projection πrr−h is clearly A.H. because locally the choice of A.H.
coordinates and of a basis made of reference sections jrDτ

ref
k,x,I , gives rise to

A.H. coordinates z1
k, ..., z

n
k , u

I
k, sk (I is one of (n + 1)-tuples introduced at

the beginning of section 4) in the total space of the bundles. Since the
image of jrDτ

ref
k,x,I is jr−hD τ ref

k,x,I –which is A.H. (and hence will be given by
A.H. functions vI

′
k (zk, sk), for a basis of sections jrDτ

ref
k,x,I′ , where I ′ is an

appropriate (n + 1)-tuple)– and the projection is fiberwise complex-linear,
the projection turns out to be A.H. (again we also have the problem of the
choice of sk as “vertical” coordinate of the total space, but the comment of
the proof of lemma 5.14 also applies).

We want to do something similar with the strata ΣI and the projection
jrπ : J rDE∗k → J rD(M,CPm).
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We have similar properties because the image of a trivialization jrDτ
ref
k,x,I is

jrD(π◦τ ref
k,x,I), also A.H. Equally, the map is fiberwise holomorphic (definition-

proposition 5.24), but the difference is the non-linearly of the restriction to
the fibers.

We adopt a different strategy. The approximate holomorphicity of the
map to order 0 (the size of the norm of the (1, 0) component of the dif-
ferential) is obvious. If both structures were integrable, checking the holo-
morphicity of this differential wold be enough. We can locally find (in the
product of a ball of gk-radius O(1) in the ball times a ball in the fiber of ra-
dius O(1)) new distributions and almost-complex structures such that they
approximately coincide with the initial ones, they are integrable and the
map jrπ is holomorphic for them.

We just take Darboux charts for Lk and substitute D,J by Dh, J0. The
result of proposition Los 4.6 in the integrable case (and for curvature with
trivial derivative, as is the case in Darboux coordinates) imply that the per-
turbations of the connection define a new almost-complex structure J̄ in
the total space of J rDh,n,m which is integrable. The integrability for J̄0 in
J rDh(Cn × R,CPm) is obvious. Recall that after the local identification of
the jets with J rDh,n,m+1 and J rDh,n,m, it has been checked that the definition
of jrπ matches that of the holomorphic situation. For this map the holo-
morphicity is clear because it is fiberwise holomorphic and sends “enough”
holomorphic sections of J rDh,n,m+1 to holomorphic sections of J rDh,n,m. To
be more precise, for any point σ ∈ J rDh,n,m+1, and any vector v in its tan-
gent space not tangent to the fiber, we can find a holomorphic section F
whose r-jet in x is σ and such that the tangent space to its graph contains
v. Since jrπ(jrDhF ) = jrDh(π ◦ F ) is also a holomorphic section, we deduce
that jrπ∗(J̄v) = J̄0(jrπ∗(v)).

It is easy to check that in the domain of these local models the new
distributions and A.H. structures approximately coincide with the original
ones.

Exactly the same proof shows that jrπ : J rE∗k → J r(M,CPm) is A.H.
In the relative case, and for a sequence of strata PSk fulfilling the conditions
of proposition 5.25, the approximate holomorphicity of pr∗G j

rπ∗Sk follows
from the commutativity of the diagram 5.24, and from the approximate
holomorphicity of jrπ : J rE∗k → J r(M,CPm) and of prG : J r(M,CPm) →
J rG(M,CPm) (for the latter is follows from the J-complex linearity of the
map T ∗1,0M → Ḡ∗1,0).

�

Remark 5.28: Now we can be more precise about the way in which the rela-
tive theory is to be applied. If we work with the symplectization (M,D, J, g),
or even with (M,ω) a symplectic manifold with N (resp. (Q,D)) a sym-
plectic submanifold (resp. calibrated submanifold), G is a local J-complex
distribution extending TN (resp. D), and we start from an A.H. sequences
of sections χk of Ek = Cm+! ⊗ Lk, we know from subsection 2.3 that the
restriction of χk to N (resp. Q) is an A.H. sequence of sections. Thus, we
can projectivize it to obtain φk |N (resp. φk |Q) an A.H. sequence of maps
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to CPm, whose r-genericity is a transversality problem for jr(φk |N ) (resp.
jrD(φk |Q)), which a section of J r(N,CPm) (resp. J rD(Q,CPm)). Once we
take holomorphic charts of the projective space, we obtain a chart for the
non-linear bundle of r-jets of the form J r(N,Cm) (resp. J rD(Q,Cm)). Since
this linear bundle has no curvature (the connection is trivial), the r-jet ap-
proximately coincides with ∇r(φk |N ) (resp. ∇rD(φk |Q)). Similarly, jrGφk, the
r-jet along G –defined in the points ofM where the distributionG is defined–
approximately coincides with ∇rGφk. Exactly in the same way as we did in
subsection 2.3, and having into account that the connection is trivial– one
checks that (∇rGφk)|N u ∇r(φk|N ) (resp. (∇rGφk)|Q u ∇rD(φk |Q)). There-
fore the r-jet along G jrGφk approximately extends the r-jet of the restriction
ofφk. The last observation in order is that the identification of J r(N,CPm)
(resp. J rD(Q,CPm)) with J rG(M,CPm) in the points of the submanifold
coming form the identification T ∗N ∼= Ḡ∗ (resp. D̄∗ ∼= Ḡ∗) given by the
metric, preserves the T-B-A quasi-stratifications. Thus, if we obtain uniform
transversality of jrGφk to the T-B-A quasi-stratification of J rG(M,CPm) in
the points of the subvariety, we also obtain uniform transversality for the
r-jet of the restriction to the corresponding T-B-A quasi-stratification.

6. The main theorem

We aim to perturb A.H. sections of Ek so that its r-jets are transverse
to an A.H. quasi-stratification of J rDEk. It will possible to control the size
of the perturbation along D to any fixed finite order. We introduce a new
notation: we say that a sequence τk is C≥h-A.H.(CD) if the sequence is A.H.,
i.e., we have bounds for the derivatives of all the orders, and the constant
CD controls the norm of the sections and of the derivatives along D up to
order h. We will also speak of C≥h-A.H. without explicitly mentioning the
bound.

Theorem 6.1. Let Ek be a sequence of locally splittable very ample her-
mitian bundles and S = (Sak)a∈Ak a C≥h-A.H. sequence of finite Whitney
quasi-stratifications of J rDEk (h ≥ 2). Let δ be a positive constant. Then a
constant η > 0 exists such that for any C≥r+h-A.H.(CD) sequence τk of Ek,
it is possible to find an A.H. sequence σk of Ek so that for every k bigger
than some K,

(1) |∇jD(τk − σk)|gk < δ, j = 0, ..., r + h.
(2) jrDσk is η-transverse to S.

In the statement of the theorem the natural number K and the constants
C̃j controlling the approximate holomorphicity of σk will depend on the
whole sequence of bounds (CDj , Cj) of τk. The constant η will not be in
general independent of a finite number of the (CDj , Cj)

It is important to make sure that all our constructions do not depend on
the size of the constants Cj of the sequences to which they will be applied.
The reason is that these bounds will change when we add a new local per-
turbation (the final perturbation will be the result of adding a huge number
of local perturbations). The only dependence that we allow is on the choice
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of constant K from which the assertions start to hold: for example to go
from bounds along Dh in a chart to bounds along D we need bounds of order
O(1) in the full derivatives no matter how big its value might be (we avoid
the effect of its size by increasing k); the same happens when we want to
make the holomorphic component arbitrarily small (it is of size Crc

−1/2
k ).

We will also make some of the constructions depend on the bound Cr+2 of
the initial section τk to be perturbed.

We also have an analogous transversality result for even dimensional
a.c. manifolds with polarization along compact subvarieties. The proof is
a modification of that of D. Auroux in [4] together with the local transver-
sality result to submanifolds of J. P. Mohsen [43]. Anyway, we state the
corresponding theorem.

Theorem 6.2. Let Ek be a very ample sequence of locally splittable hermit-
ian bundles over (M,J,G, g), and let Q be a compact submanifold of M .
Let us consider S = (Sak)a∈Ak a Ch-A.H. sequence of finite Whitney quasi-
stratifications of J rEk whose strata are pullback of strata of J rGEk (h ≥ 2).
Let δ be a positive constant. Then a constant η > 0 and a natural number
K exist such that for any Cr+h-A.H.(C) sequence τk of Ek, it is possible to
find a Cr+h-A.H. sequence σk of Ek so that for any k bigger than K,

(1) |∇j(τk − σk)|gk < δ, j = 0, ..., r + h (σk es Cr+h-A.H.(δ)).
(2) jrGσk is η-transverse to S along Q (along the directions of TQ in

the points of Q).

Observe that in the relative case we do not need to work with sequences
all whose derivatives are controlled, and both K and η depend only on
C. The odd dimensional situation is different because the quality of the
perturbations is much worse due to the non-integrability of D; basically
the derivatives along the directions of D (up to some finite order h) will
be arbitrarily small only if we have control for the full derivative of all the
orders and k is chosen to be very large. The exact reason will become clear
along the proof.

Theorem 6.2 is not quite the result we look for, but almost; our goal is a
uniform transversality theorem to sequences of “quasi-stratifications” SG of
J rGEk (what is asked to be a quasi-stratification is its pullback S ⊂ J rEk).
The reason to work in the bundle J rEk is avoiding the task of checking the
ampleness of the bundle J rGEk.

If we have a stratification SGk in J rGEk the way to define estimated
transversality w.r.t. a distribution TQ of TM is the obvious one; we just
note that the parallel transport is made using the metric in the total space
of J rGEk induced by that of J rEk; using local trivializations of Ek, A.H. co-
ordinates adapted to G and the correspondent euclidean metric, we obtain
local identifications of J rEk ∼= J rn,m+1 and J rGEk ∼= J rCg ,n,m+1 such that
J rn,m+1 = J rg,m+1 × Cu; what is more, we have seen that the stratification
S of J rn,m+1 also is the product of SG times Cu. The euclidean metric is
comparable to ĝk and its restriction (also euclidean) is also comparable to
the induced one in J rGEk; for the euclidean metric estimated transversality
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of jrGτk to S is exactly the same as estimated transversality of jrGτk to SG.
The consequence is the following result:

Theorem 6.3. Let Ek be a very ample sequence of locally splittable hermit-
ian bundles over (M,J,G, g), and let Q be a compact submanifold of M .
Let us consider S = (Sak)a∈Ak a Ch-A.H. sequence of finite Whitney quasi-
stratifications of J rEk whose strata are pullback of strata of J rGEk (h ≥ 2).
Let δ be a positive constant. Then a constant η > 0 and a natural number
K exist such that for any Cr+h-A.H.(C) sequence τk of Ek, it is possible to
find a Cr+h-A.H. sequence σk of Ek so that for any k bigger than K,

(1) |∇j(τk − σk)|gk < δ, j = 0, ..., r + h (σk es Cr+h-A.H.(δ)).
(2) jrGσk is η-transverse to SG along Q (along the directions of TQ in

the points of Q).

This corollary has an important consequence. Let us start from (M,w)
symplectic with (Q,D) compact calibrated submanifold and G a J-complex
polarization extending D (and exactly the same if what we have a symplectic
submanifold), and suppose that SG in the points of Q comes from a strat-
ification SD of J rDEk → (Q,D) through the identification J rDEk ∼= J rGEk
in the points of Q (the metric identifies T ∗Q with a subset of T ∗M and D̄∗

goes to Ḡ∗). One checks that estimated transversality to SD (that requires
the use of the induced metric on Q) is comparable (over Q) to the already
given definition of estimated transversality to SG (using A.H. coordinates
adapted to G that rectify Q and induce A.H. coordinates on it). Thus, we
deduce uniform transversality of (jrGτk)|Q to SD. When there is no curva-
ture (for example when we work with the projectivizations) or when r = 0
–circumstances that will occur in all our applications– there is an approx-
imate identification between (jrGτk)|Q and jrD(τk|Q), which implies uniform
transversality to SD of the latter, something which is the final objective of
the relative theory: constructing A.H. sequences of sections whose restriction
to the submanifold has good uniform transversality properties (and possible
the sequence itself inside M).

6.1. Proof of the main theorem. The proof follows the same pattern
as that of D. Auroux in [4] for the even dimensional case, but with certain
technical complications.

Definition 6.4. A family of properties Pk(η, x)x∈M,η>0,k>>0 of sections of
Ek is called local Cr+1-open if given a sequence τk Cr+h-A.H. verifying prop-
erty P(η, x) (h will depend on the property in question P), for any Cr+h-
A.H. sequence of sections χk such that |∇jD(τk − χk)|gk ≤ ε, j = 0, ..., r+ 1,
χk verifies P(η − Lε, x) for every k bigger than some K(CR), where the
constant L > 0 is independent of η, ε, x and of the sequence χk.

We point out that in the previous definition only the derivatives along
D are taken into account.

Let us fix a sequence of strata Sbk of J rDEk. A section τk verifies Pk(η, x)
if either jrDτk(x) is at distance of ∂Sbk smaller than N1η and if it cuts the
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stratum it does it with minimum angle ∠m(TDSbk, TDτk) ≥ η, or it remains at
distance of ∂Sbk bigger than N2η and it is η-transverse to Sbk. The constants
N1 > N2 > 0 –most likely very large– depend on η. The meaning of the
constant N1 is that in points whose distance at the boundary of the stratum
is close to N1η, the radius of the ball where the local η. N2 can chosen to
be bigger than N1 − 1 and it simply allows us to have an overlap region
for both notions of estimated transversality. We also require η to be small
enough compared with the constants (CD, C) of τk.

Uniform transversality w.r.t. a sequence of strata Sbk is defined to be the
existence of some η > 0 such that Pk(x, η) holds for every x and k >> 0.
If Pk(x, η) –as defined for a sequence of strata Sbk of an stratification of
J rDEk– is shown to be a local Cr+1-open (or just open) property, if we
perform perturbations of size along D a fraction of η, we will still have for
the new sequence, say, η

2 -transversality w.r.t. Sbk in all the points of M .

The strata of Sk (for each k) are reordered in such a way that for any
index b, ∂Sbk ⊂ ∪a<bSak . To show that Pk(x, η) w.r.t. Sbk is an open property
it is necessary to assume that Pk(x, α) holds for all the preceding indices,
where α is an appropriate multiple of η. We need to assume this property
in order to prove the openness in points close to the boundary of Sbk.

We note that once uniform transversality w.r.t. the preceding indices is
assumed, the constructions (essentially the amount of transversality to be
obtained) will depend on the constants C of τk (it actually depend on the
size of the first covariant derivative of jrDτk which depends on Cr+2). As we
mentioned, once we have achieved uniform transversality to a sequence of
strata, we will not be able to determine the constants C̃j of the perturbed
section. If the number of indices is greater or equal than 2 and having into
account that the amount of transversality obtained depends on the constant
C̃r+2, we will not be able to determine it (we will see that the exception
occurs for 0-jets).

Lemma 6.5. Let τk be a C≥r+h-A.H.(CD) sequence so that P(x, α) holds
w.r.t. all the indices preceding b and in all the points of M (h ≥ 2). Then
if η > 0 is small enough (depending on the size of Cr+2) and ε is again
small enough when compared to η, then Pk(x, η) for τk w.r.t. Sbk is a local
Cr+1-open property.

Proof. Notice that we need to assume that the property we want to
prove holds w.r.t. all the strata of preceding indices in order to deal with
the points close to the boundary. This is not a contradiction because at
least the first strata has empty boundary so we start the induction.

Assume that P(η, x) holds for τk w.r.t Sbk. If χk is another Cr+1-
A.H.(ε, Cr+1) sequence, then for k large enough |jrDχk| < B1ε and |∇DjrDχk| <
B1ε (B1 as close as we want to 1).

Recall that the distance along the fiber is comparable with the ĝk dis-
tance. By choosing L large enough, it is possible to find new constants
N ε

1, N
ε
2 so that if y = jrD(τk + χk)(x) is at distance of the boundary bigger

than N ε
2(η−Lε), the distance to the boundary of q = jrDτk(x) is bigger than
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N2η (the distance in the total space of J rDEk between points of the same
fiber is comparable to the hermitian distance along the fibers). Also if the
distance for y is smaller than N ε

1(η − Lε), then the corresponding distance
for q is smaller than N1η.

Let us first try the case when y, q are far from the boundary of the stra-
tum. we can assume than both y and q (and the corresponding vector sub-
spaces TDjrD(τk+χk)(x) and TDjrDτk(x)) are in the domain of a 1-comparable
chart, which is the product of A.H. coordinates times a ball in the fiber; we
use the euclidean metric ĝ0 and its parallel transport, because it is compa-
rable to the parallel transport w.r.t. ĝk. If ε is a small enough fraction of η
and k is large enough, then ∠M (TDjrD(τk+χk)(x), TDjrDτk(x)) ≤ B2ε, where
B2 does not depend on k, x. The reason is that the tangent space to the
graph of each section along D approximately coincides with the (r + 1)-jet,
and the difference using ∇D is comparable to that obtained using dD. Also
the ĝk-parallel transport of T ||Sbk(y) along the segment in the fiber joining
y and q differs from the ĝ0-parallel transport is a quantity proportional to
the distance. If this variation is small enough compared to ∠m(T ||Sbk, D̂),
exactly the same happens for T ||DS

b
k(y) and T

||
DS

b
k(q). Therefore, for ε small

enough compared to η, we deduce P(η − Lε, x) for χk to w.r.t. Sbk. We
observe that for η small enough the constant κ1 so that ε = κ1η, does not
depend on η (and either on the bounds of the section because we can make
the antiholomorphic part arbitrarily small by increasing k appropriately).

The second possibility is that q is at distance of the boundary less than
N1η. We will see that if this quantity is chosen appropriately, a point p ∈ Sak ,
a < b, at distance of q smaller than the mentioned quantity will never avoid
ΘSak

in the approximate sense. Thus, the Whitney condition can be applied
to deduce transversality in a small neighborhood of the boundary of the
strata.

If τk is a Ch+r-A.H.(CD, C) sequence, for any x ∈ M and q = jrDτk(x),
positive constants ρ1, ρ2 exist such that jrDτk(Bgk(x, ρ1)) ⊂ Bĝk(q, ρ2) (we
recall that jrDτk is Ch-A.H.(C̄D, C̄)); the choice of constants depends on C̄.

Let p ∈ Bĝk(q, ρ2) and let its projection over M be the point x′. Let us
call p−q′ = jrDτk(x

′). There exist unique coefficients βI so that q′ = βIνk,x,I .
By the linearity of the r-jets jrD(τk + βIτ

ref
k,x,I)(x

′) = p. We select ρ2 in such
a way that the size of these coefficients is a small fraction of the amount
of transversality α of jrDτk in x. We want to show that α-transversality of
jrDτk in q (the image of x) implies α−B3dĝk(p, q)-transversality of jrD(τk +
βIτ

ref
k,x,I) in p (the image of x′); that would contradict —for an appropriate

choice of ρ2– the fact that p does not belong to ΘSak
in the approximate

sense. We simply observe that we have to show a similar relation for the
variation of the angle from T

||
DS

a
k(q) to T

||
DS

a
k(p) and from TDj

r
Dτk(x) to

TDj
r
D(τk + βIτ

ref
k,x,I)(x

′) (measured for example using ĝ0). The first relation
has already been proved; for the second, we use the triangular inequality
comparing firstly TDjrDτk(x) with TDjrDτk(x

′), and secondly the latter with
TDj

r
D(τk + βIτ

ref
k,x,I)(x

′). The last comparison follows from the size of the
coefficients β (it is the same situation that we have just proved for points
far from the boundary of the stratum); for the first comparison we use
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the bound on ∇∇DjrDτk which controls the variation of TDjrDτk (in the
approximate sense, due to the non-integrability of D).

Thus, we impose N1η to be smaller than ρ2. In particular the point p is
far from the boundary of Sak ⊂ ∂Sbk and it belongs to those points in the stra-
tum Sak where the Whitney condition applies. That means that a constant
ρ > 0 exists so that for any y ∈ Bĝk(p, r)∩Sbk, ∠M (T ||Sak(y), TSbk(y)) ≤ B4ρ,
where both ρ and B4 do not depend neither on k nor in y. The quanti-
ties ∠m(D̂, T ||Sak),∠m(D̂, T ||Sbk) are bounded by below, and we deduce that
∠M (T ||DS

a
k(q), TDSbk(q)) ≤ B5ρ, and thus the existence of a small constant

κ2 > 0 such that for any α > 0 small enough, α-transversality of jrDτk to Sak
implies α

2 -transversality to Sbk in the neighborhood of radius ρκ2.

Hence, we further impose N1η to be at most one half of min(ρ2, ρκ2),
and this concludes the proof. �

Remark 6.6: Notice that in the induction process the amount of transver-
sality obtained in the points close to the boundary of the corresponding
stratum is not used at all; is in that region where the constant Cr+2 is im-
portant in order to choose the size of the tubular neighborhood of ∂Sbk where
α
2 -transversality is deduced form the Whitney condition.

To give a proof for theorem 6.2, we define property P(x, η) for the Cr+h-
A.H.(C) sequence τk as η-transversality in x to Sbk of jrGτk along Q. One
proves similarly that this is a local Cr+1-open property (the definition anal-
ogous to 6.4 uses the whole derivative ∇ instead of ∇D). One just simply
has to make sure that |∇r+1τk|gk ≤ ε, implies |∇QjrGτk|gk ≤ Lε, and that
|∇r+2τk|gk ≤ C gives rise to a uniform bound for |∇∇Qτk|. It has already
been shown that a Cr+h-bound C for τk a Ch-bound C̄ = B′C for jrGτk
is obtained; thus the first question is straightforward and the second can
be checked using a family of charts adapted to TQ × TQ⊥ in the points
of Q. We equally notice that if x ∈ Q and jrGχk(x) cuts Sak along TQ
with minimum angle bounded by below, then it belongs to the subset of
holonomic transversality ΘSak

of Sak . This comments are enough that the
previous arguments works also for transversality in the points of Q of r-jets
along G.

The proof of theorem 6.1 requires the choice of a constant c1 so that for
any points x, x′ ∈ M with dk(x, x′) ≤ c1, we have dĝk(τk(x), τk(x′)) ≤ η

2 .
The constant will depend on (CD, Cr+2). The set Bτk of “good points” for τk
is defined as the set of points x ∈ M such that τk(x) is at distance smaller
than 2η of those points in Sbk at distance of ∂Sbk greater than N2η. The
interesting property is that if x ∈ Bτk , then Bgk(x, c1) belongs to the region
where the local functions of definition 5.2 are available. Also, if χk is a
perturbation whose Cr+1-size along D is smaller than η

2 , then the image of
Bgk(x, c1) by jrD(τk + χk) stays in that region. If x /∈ Bτk , then both jrDτk
and jrD(τk + χk) send the ball Bgk(x, c1) out of the set of points at distance
of Sbk ∩Bĝk(∂Sbk, N2η) greater η.

Summarizing what we said, if x /∈ Bτk and χk is of Cr+1-size along D ε

smaller than η
2 , then Pk(x′, η − Lε) holds for τk + χk w.r.t. Sbk in all the
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points x′ ∈ Bgk(x, c1). Therefore, we will only need to work in the points of
Bτk to obtain estimated transversality to the stratum.

In the relative case we can also find a constant c1 with similar properties,
and single out a set of good points Bτk to work in.

Proposition 6.7. Let P(η, x)x∈M,η>0,k>>0 be a family of local Cr+1-open
properties of sections of Ek. Let us assume the existence of positive constants
c, c′, c,′′ e, so that for any δ > 0 and ξk a C≥r+h-A.H.(CD) sequence of
sections of Ek (h ≥ 2), it is possible to find for any x ∈ M C≥r+h-A.H.
sections χk,x with the following properties for k >> 0:

(1) χk,x is C≥r+h-A.H.(c′′δ).
(2) the sections 1

δχk,x have gaussian decay w.r.t. x with bounds for all
the derivatives, so that the bound controlling the derivatives along
the directions of D to order r+ h does not depend on the sequence
ξk).

(3) P(γ, y) holds for ξk+χk,x for every y ∈ Bgk(x, c) with γ = c′log(δ−1)−e.

Then given any α > 0 and any C≥r+h-A.H. sequence of sections τk of Ek,
there exist a C≥r+h-A.H. sequence σk of sections such that for k large enough
τk−σk is C≥r+h-A.H.(α), and property P(η, x) holds for the sections σk for
certain uniform η and for every point x ∈M .

Proof. See for example [50]. �

In the previous proposition the constant c is uniform and can be chosen
to be arbitrarily small; for our starting sequence τk we impose c to be smaller
than ρ1. For any point x /∈ Bτk we select as perturbation the zero section.
Thus, the proof of theorem 6.1 (resp. 6.2) is reduced to prove the existence
of the perturbations χk centered at the points in Bτk , and for any given
C≥r+h-A.H. (resp. Cr+h-A.H.) sequence ξk.

The local perturbation. (Continuation of the proof of the main theorem).
Let x be a point in Bτk and ξk a Cr+h-A.H(C̄D) sequence of sections such
that |∇jDjrDτk −∇jDjrDξk|gk ≤ δ, j = 0, ..., h, where δ < η

2 . Thus, we deduce
that jrDξk(Bgk(x, c1)) lays in the region where the local description of the
stratification of definition 5.2 holds. By condition 3 in that definition, the
function F = (f1 ◦ jrDξk, ..., fp ◦ jrDξk) is C≥h-A.H.(C1,ηC̄

D), C1,η being a
uniform constant. It is a consequence of lemma 5.9 that for γ > 0 small
enough, γ-transversality of F to 0 is equivalent to Aγ-transversality of jrDξk
to the stratum, where A is a uniform constant. If c1 is chosen small enough
the ball Bgk(x, c1) will be in the domain of A.H. coordinates (we can also
ask the coordinates to be adapted to the metric) where we have the local
basis jrDτ

ref
k,x,I of the bundle of r-jets; we will define the perturbation using

elements of this basis spanning the complementary directions to the stratum.
Rescaling th sections, it can be assumed that |τ ref

k,x,I |Cr+h ≤ 1
δ . Being

more precise it is important that the function to be perturbed is F , and
for that reason we will use an appropriate basis of A.H. sections (functions)
of Cp, which is the target space for F . For each I, the Cp-valued function
ΘI = (df1(jrDξk)j

r
Dτ

ref
k,x,I , ..., dfp(j

r
Dξk)j

r
Dτ

ref
k,x,I) is C≥h-A.H.(C2,γC̄

D), for a
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certain uniform constant C2,γ . Using condition 1 in 5.2, and maybe making
c1 smaller, we conclude the existence of complex numbers λI,i, i = 1, ..., p,∑

I |λI,i| < 1, such that the functions Θi = ΘI give rise to a basis of Cp
comparable to a unitary one (the determinant |Θ1(x) ∧ · · · ∧ Θp(x)| is uni-
formly bounded by below), basically because the r-jets we chose conform a
basis for the orthogonal to ker df comparable to a unitary one). In this new
basis F = µ1Θ1 + · · ·µpΘp, where the properties of F and of the Θi im-
ply that µ = (µ1, ..., µp) is C≥h-A.H. over the ball Bgk(x, c1) (an C≥h-A.H.
function in terms of an A.H. basis has C≥h-A.H. coordinates). We define
the corresponding perturbation to be ζk,x,i =

∑
I λI,iτ

ref
k,x,I ; notice that these

are sections of Ek.

If necessary, a neighborhood of x can be rescaled so that the image of
Bgk(x, c1) in the domain of the A.H. coordinates contains B+× [0, 1], where
B+ ⊂ Cn is the euclidean ball of radius 1. We fix also c < c1 so that the
image of Bgk(x, c) is contained in B1/2 ⊂ Cn×R, the euclidean ball in Cn×R
of radius 1

2 . We pullback µ to the chart to obtain a function µ̃ : Cn×R→ Cp
to which we can apply the local estimated transversality result extending
the original one of S. Donaldson for A.H. functions from Cn to Cp, whose
proof we postpone until the end of this section.

Proposition 6.8. Let F : B+ × [0, 1] → Cp, 0 < δ < 1
2 a constant and

σ = δ(log(δ−1)−e, where e is a fixed integer depending only on the dimensions
n, p. Assume that for any s ∈ [0, 1], the following estimates hold for Fs in
B+:

|Fs| ≤ 1, |∂̄Fs| ≤ σ, |∇∂̄Fs| ≤ σ
Then, a smooth curve w : [0, 1] → Cp exists such that |w| < δ and the

function F − w is σ-transverse to 0 over B1/2 along the directions of Cn

(or along Dh). Moreover, if |∇j∂F/∂s| < Cj for all j ∈ N, then w can
be chosen so that |djw/dsj | < Φj(δ), for all j ∈ N and djw/dsj(0) = 0 y
djw/dsj(1) = 0 for all j ∈ N, where Φj is a function only depending on the
dimensions n, p.

In proposition 6.8 the norms are computed using the euclidean metric,
the covariant derivative is the flat one and the almost-complex structure is
J0.

Once k is large enough, we can apply this proposition (and possibly after
rescaling), because for example using the results of lemma 3.27 we know that
approximate holomorphicity of the function w.r.t. D, gk, J is equivalent to
approximate holomorphicity w.r.t. Dh, J0, g0 (and the change of bounds can
be controlled is k is large enough).

Therefore, we can find a smooth curve in Cp, (w1, ..., wp), so that µ̃−w
is γ-transverse to 0 over B1/2 along D. This implies A1γ-transversality of
µ−w to 0 over Bgk(x, c1), for a uniform A1 and thus A2γ-transversality to
0 of F − w1Θ1 − · · · − wpΘp over the same ball.

It is important to point out that what we have obtained is a solution for
the transversality problem in the bundle of r-jets, but what we look for is a



102 I. THE GEOMETRY OF CALIBRATED MANIFOLDS

solution to the strong transversality problem, that is, a perturbation which
is the r-jet of a sequence of sections of Ek. The natural candidate is

χk,x = −(w1ζk,x,1 + · · ·+ wpζk,x,p).

It is clear that χk,x is an A.H. sequence with gaussian decay w.r.t. x.
In order to prove that the constants governing the derivatives and gaussian
decay along D are comparable to δ, it is necessary to choose the curve
w with vanishing derivatives along D or at least approximately vanishing.
By construction –and in contrast to the even dimensional case where this
functions are constants– the derivatives along D do not vanish. In the
corresponding A.H. coordinates the w are constant along Dh. Since we
have uniform bounds for the derivatives along the vertical direction we can
conclude that the derivatives along D vanish in the approximate sense. The
subtlety is that if we worked with Cr+h-A.H. sequences, we would be able
to conclude uniform bounds for the derivatives of the local perturbations
(or the derivatives of w) up to order h; but to keep on with the inductive
process we need control to order r+h (of order h for the r-jets). This is the
precise reason that have forced us to work with C≥r+h-A.H. sequences.

Regarding estimated transversality, if we denote

F̃ = (f1 ◦ jrD(ξk + χk), ..., fp ◦ jrD(ξk + χk)),

it is enough a bound for |∇jD(h̃ − (h − w1Θ1 − · · · − wpΘp)|gk , j = 0, 1, of
size A2

γ
2 to obtain A2

γ
2 -transversality for ξk +χk. Notice that the difference

between both functions comes from the fact that when we compose with
f and perturb linearly, the corresponding perturbation is not linear on the
fibers of J rDEk. In other words, in the comparable 1-charts that rectify the
foliation ker df the fibers J rDEk of are not linear subspaces. In any case,
the lack of linearity is controlled by the second derivative of f . Being more
precise,

F̃ = F − w1Θ1 − · · · − wpΘp +O(c−1/2
k ) +O((δ + c

−1/2
k )2),

by the bounds on the second derivatives of the fi and because jrDσk,x −
(w1Θ1 + · · ·+wpΘp) is of size O(c−1/2

k ). The important observation is that
we obtain not only C0-control of size O(c−1/2

k ) + O((δ + c
−1/2
k )2), but also

the same kind of control for the derivatives along D. Due to the formula of
γ in terms of δ, if δ is small enough the latter is a quadratic term in δ much
smaller than A2γ. The outcome is A3γ-transversality for F̃ over Bgk(x, c),
which gives A4γ- transversality of jrD τ̃k to Sak over the ball. Therefore,
P(A4δlog(δ−1)−e), y) holds for ξk + χk in all the points y ∈ Bgk(x, c), and
this finishes the proof of theorem 6.1. �

The proof of theorem 6.2 is the same but with to small modifications.
The first one is that we can span the directions complementary to the
distribution ker df using the r-jets along G, because by hypothesis the
strata are pullback of submanifolds in J rGEk by the orthogonal projection
J rEk → J rGEk. The second modification is J. P. Mohsen’s local transversal-
ity result to a subvariety Q (see section 5 in [43]), which essentially amounts
to compose on the right with A.H. coordinates adapted to G an rectifying
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the submanifold. The advantage is that the corresponding perturbation is
a linear combination of the sections τ ref

k,x,Ig
and that means that we can use

Cr+h-A.H. sections. Besides, the final amount of transversality only depends
on the geometry of the manifold and stratification and on the constant that
controls the derivatives of order smaller of equal than r+ h of the sequence
to be perturbed.

Proof of the local estimated transversality theorem. (Proposition 6.8).
The proof is a modification of proposition 5.1 in [50], which is an extension
of the proof of lemma 11 in [32], that again refines preposition 3 in [2] and
Donaldson’s original local estimated transversality result in [12] (proposition
25).

For the function Fs : Cn → Cp, the sets U(Fs, w, δ, σ) are defined as the
image in B(0, δ) of the set of points in B′ = B(0, 1

2) ⊂ Cn for which Fs−ws is
σ-transverse to 0 (here we mean full transversality, because all the directions
are those of Dh).

The key point is being able to show that U(Fs, w, δ, σ) contains the com-
plementary of a set W which is union of a certain number not greater than
N(δ) of balls of radius σ. Assuming that result, for a couple of points x, y
in the complementary, we consider a curve (in the complementary) defined
as follows: the segment [x, y] cuts ∂W in at most 2N points. The pieces of
the segment in the interior of W are removed and we draw instead piecewise
smooth curves which are the result of patching geodesics in the subsets of
the spheres that conform the boundary of W . We the perturb this curve w0

to a smooth curve w1.
The proof that it is possible to find a curve w1 with its derivatives of

order i bounded in terms of a function Φi(δ) is as follows: each smooth
piece of w0 is either a segment or a piece of geodesic in the corresponding
sphere. Thus, all the derivatives of this pieces are bounded in terms of σ,
and therefore in terms of δ. We actually need the length of each piece to
be bounded by below by a fraction of δ, because to define w1 we will just
glue contiguous pieces using a cut-off function, which will be the result of
rescaling a fixed one. If we are able to use in both sides a piece of curve
of length bounded by below by a multiple of σ, then the desired result will
hold.

The only thing that we need to do is choose the balls that define W with
some care. Actually, what we do is taking a fixed covering of B(0, δ) ⊂ Cp
by balls of radius σ, and W will be the union of those balls intersecting the
complementary of U(Fs, w, δ, σ). Since we look uniform bounds in δ and σ
we use our usual strategy. We take a covering for σ = 1 and rescale it.

For these value σ = 1, we consider the lattice of integer points and
actually cover the whole Cp with balls of some radius ρ centered at the
points of the lattice. The radius ρ = O(1) is chosen so that:

(1) ρ >
√

2p
2 , so that we get a covering.

(2) The spheres are in general position.

We want to cover the whole Cp, so that when we contract the picture
multiplying by an arbitrary σ we are still able to cover the ball of radius δ.
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Although the covering has an infinite number of balls, since it is translation
invariant the condition on the intersection has to be checked only for a finite
number of balls. That implies the existence of a radius ρ = O(1) with the
desired properties. The important point is that Sn−1 –the boundary of each
ball– splits into regions with the following properties: for each region R, its
boundary ∂R is stratified with maximal strata ∂Ri. For each r > 0 we define
∂Ri,r as the set of points in ∂Ri at distance of its boundary grater than r.
It is possible to find r0 > 0 so that for any x ∈ ∂Ri,r0 , y ∈ ∂Rj,r0 ,i 6= j,
there exists a piecewise geodesic joining them whose total length is bounded
by above and the length of each piece bounded by below. Again this is a
consequence of the fact that we only have to check things for a finite number
of balls of the covering.

Given δ and σ arbitrary, we rescale the construction so that ρ becomes
σ and we just consider the balls intersecting B(0, δ) ⊂ Cp. Recall that W
is now defined as the union of balls intersecting the complementary of the
image of U(Fs, w, δ, σ) ⊂ B(0, δ), and it is a consequence of for example
lemma 11 in [32] that the number of balls of W is bounded by N(δ).

One checks that two points in ∂W can be joined by a piecewise geodesic,
so that the number of pieces is bounded by a multiple of the number of balls
N ; each piece has length bounded by below by bσ, with b independent of σ.
If the starting of ending point of the curve is too close to the boundary of the
corresponding region ∂Ri,r, we can go back along the piece of geodesic that
of the sphere (so that the length of the piece would violate the bound by
below), we can go back toward the interior again, and then start from that
point; this change only amounts to increase the number N(δ) bounding the
number of smooth pieces to N + 2. Regarding the segments, those which
are not either the initial or the final lay in balls not belonging to W , if
they connect points of balls in W with empty intersection, then its length is
bounded by below appropriately; if the intersection is non-empty, we change
the segment by one going from the initial point to the center of the ball not
in W containing the segment, and another from the center to the endpoint.
For the initial and final segment, if they are very short, we move back to
the center of the ball (not in W ) and then draw another segment towards
the intersection point.

We simply recall that the final curve w is built taking slices Cn × {s} ⊂
Cn × [0, 1], constructing there curves wq as described and connecting them
with vertical segments (see lemma 11 [32]). Since the length of such seg-
ments has the appropriate bound by below, the perturbation using cut-off
functions as described gives the desired bounds for w. �

7. Applications

We now prove the results stated in the introduction.

Proof of theorem 1.5. We consider a more general situation than
that of the statement of theorem 1.5. Let Ek → (M,D, J, g) be a very
ample sequence of locally splittable hermitian vector bundles of rank m.
Notice that for a calibrated manifold of integer type and example of such
sequence is E ⊗ L⊗k, E a rank m hermitian bundle.
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Given any point x, the construction of a calibrated submanifold through
x of real codimension 2m is as follows (see [38]). It is necessary to select
reference sections “adapted” to x; in A.H. coordinates (for example adapted
to the metric) we take the sections zjkτ

ref
k,x,j , j = 1, ...,m ≤ n and consider its

direct sum, a section of Ek This sequence of sections vanishes on x and it
is uniformly transverse to the 0 section in a gk-ball of radius O(1) centered
at x. In the globalization procedure we start by these balls and consider
no local perturbations over them. Now the point is not altering the section
in x when we add other local perturbations. We are specially concerned
with those points at gk-distance smaller than O(c1/6k ), because that is the
size of the support of the reference sections. If y is one of those points, we
multiply the reference sections τ ref

k,y,j by a function hy,x that is required to be
J-complex at y, vanishing at x, bounded by below in a ball of gk-radius O(1)
centered at y and with derivatives uniformly bounded by above. The result
is still a sequence of A.H. sections with gaussian decay w.r.t. y, trivializing
the bundle in a ball Bgk(y,O(1)) and vanishing at x. Notice that as long as
the gk-distance between x and y is uniformly bounded by below, the choice
of such hy,x is possible. But that is enough for our purposes, because we do
not need to perturb in the balls Bgk(x,O(1)).

Therefore, it is possible to find sequences of A.H. sections τk of Ek uni-
formly transverse to 0 and vanishing at x (since we deal with 0-jets, we
can work with C2-A.H. sequences). Let us call Wk to the submanifolds
τ−1
k (0) (for k >> 0), that are uniformly transverse to D (corollary 5.12)

and approximately almost complex.
To study its topology we proceed very much as in the symplectic and

contact case (see [12, 2, 32]).
The function fk = log |τk|2 : M −Wk → R, is a Morse function that will

give a surgery construction of M from Wk.
We need to proof that the critical points of fk are isolated (Morse con-

dition) and that their index is bigger than n−m.
It is straightforward that fk tends −∞ when we approach Wk, and that

is x is a critical point for fk, then |τk(x)| ≥ η, where η is the amount of
estimated transversality.

If the critical point is sent to the tubular neighborhood of the zero section
where the estimated transversality condition holds, the surjectivity of ∇Dτk
implies that a v ∈ D exists such that ∇vτk(x) = τk(x).

Since

dfk =
1
|τk|2 (〈∇τk, τk〉+ 〈τk,∇τk〉),

the derivative of dfkv(x)would not vanish, and that leads to a contradiction.

In particular we can find a perturbation of size O(c−1/2
k ) out of a tubular

neighborhood of Wk of gk-radius O(1) (whose points are regular for fk), so
that the new fk is Morse. Observe that the Morse condition in the directions
of D holds for the original fk but without perturbation the critical points
might form 1-dimensional manifolds transverse to D.
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From the previous comments we deduce

∂fk =
1
|τk|2 (〈∂τk, τk〉+ 〈τk, ∂̄τk〉). (7.9)

Since on the critical points all the components of the derivative vanish,
using 7.9 we have the following equality on the point x,

|〈∂τk, τk〉| = |〈τk, ∂̄τk〉|, (7.10)

whose importance comes from the fact that we know the size of the r.h.s.

If we differentiate 7.9 and evaluate at x, we have:

∂̄∂fk =
1
|τk|2 (〈∂̄∂τk, τk〉 − 〈∂τk, ∂τk〉+ 〈∂̄τk, ∂̄τk〉+ 〈τk, ∂∂̄τk〉). (7.11)

Recall that we still use the metric gk. Having into account the approx-
imate equality ∂∂̄ + ∂̄∂ u F 1,1

D and the estimates for the antiholomorphic
components, we can transform 7.11 into

∂̄∂fk = 〈F 1,1
D τk, τk〉 − 〈∂τk, ∂τk〉+O(c−1/2

k ). (7.12)

Since the norm of τk is bounded by below in the critical point and F 1,1
D is

the curvature of a locally splittable bundle, for any vector u ∈ D of gk-norm
uniformly bounded by below, 〈F 1,1

D (u, Ju)τk, τk〉 = O(1).

Let us consider the subspace Hx of Dx of vectors which are sent by
∂fk(x) to the complex line of Ek spanned by τk. Hx is J-complex and its
real dimension is at least 2n− 2m+ 2.

If u ∈ Hx,
|τk||∂uτk| = |〈∂uτk, τk〉| = |〈τk, ∂̄τk〉|,

so |∂|Hxτk| = O(c−1/2
k ), and thus over this subspace the dominant term of

the r.h.s. of 7.12 is 〈F 1,1
D τk, τk〉.

Having into account that the restriction to D of the Hessian Hfk verifies
Hfk(u) +Hfk(Ju) = −2i∂̄∂fk(u, Ju), over Hx will necessarily be negative.

Suppose for the moment that the index of the Hessian is smaller than
n−m−1. That implies the existence of a subspace V ⊂ Dx of real dimension
at least n + m non-negative for Hfk . The dimension of V ∩ JV is at least
2m, but this contradicts that the Hessian is negative over Hx, because (V ∩
JV ) ∩Hx is non-trivial.

The results for the homology and homotopy groups follows from a clas-
sical argument from Morse theory.

�

Remark 7.1: Notice that the perturbation we made of τk in order to get the
Morse condition for fk, did not affected the points of Wk. Hence the results
we obtained are really for the relative topology of the pair (M,Wk).
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The next theorem we want to prove is about the existence of determi-
nantal submanifolds, that is still a transversality result for 0-jets (vector
bundles Ek), but not anymore to the 0 section but to a non trivial sequence
of (non-linear) A.H. stratifications.

Proof of proposition 1.6. Let Lk → (M,D, J, g) be a very ample
sequence of line bundles over an a.c. manifold. For a calibrated manifolds
of integer type, Lk will be for example the sequence of powers of the pre-
quantum line bundle.

Let E, F be hermitian bundles with connection, and let us define the
sequence of very ample vector bundles Ik := E∗ ⊗ F ⊗ Lk. In the total
space of Ik we consider the sequence of stratifications Sk whose strata are
Sik = {A ∈ IK | rk(A) = i}, where A ∈ End(E,F ⊗ Lk) and rk(A) is its
rank.

If we apply 5.14, we deduce that Sik is an A.H. sequence of finite Whitney
stratifications. Therefore we can apply theorem 6.1 to construct an A.H.
sequence of sections τk of Ik uniformly transverse to Sk.

Hence, for k large enough M is stratified by the submanifolds Siτk = {x ∈
M | rk(τk(x)) = i}, which are uniformly transverse to D and approximately
almost complex.

If the original manifold was calibrated and of integer type, the previous
stratification is by calibrated submanifolds.

�

Theorem 7.2. Let Lk be a very ample sequence of line bundles over (M,D, J, g)
and set Ek = Cm ⊗ Lk. Any A.H. sequence of sections of Ek admits an ar-
bitrarily small perturbation (in the sense of C≥r+h or Cr+h-A.H. sequences,
depend on whether we use the intrinsic or the relative theory) such that the
corresponding A.H. sequence of projectivizations φk : M − Ak → CPm is
r-generic (Ak submanifold of base points of real codimension 2m+ 2).

Proof. The proof is just the transversality theorem applied to the T-
B-A quasi-stratification. �

We must point out that the situation is not as good as in the even
dimensional situation. The description of the A.H. functions close to the
points of the degeneration loci (the different strata induced by the T-B-A
quasi-stratification) is more complicated.

Firstly, and similarly to what happens for even a.c. manifolds, to ob-
tain normal forms it is necessary to add perturbations so that the function
becomes holomorphic (at least in certain directions); otherwise the approx-
imate holomorphicity is not significative due to the vanishing of the holo-
morphic part (or more generally degenerated). Secondly, we have an extra
non-holomorphic direction that we do not control. At most, we can ap-
ply the usual genericity results to that direction (but perturbations of size
O(c−1/2

k ) so as not to destroy the other properties). In certain circumstances
that will be enough to obtain useful normal forms.
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One instance of the preceding situation is when the target space has large
dimension so that the generic map is an immersion without self intersections,
as is the case of corollary 1.8, whose proof we give now.

Proof of corollary 1.8. Let Lk → (M,D, J, g) be a very ample se-
quence of line bundles over an a.c. manifold and set Ek = Cm ⊗ Lk, where
m ≥ n+ 2.

We apply theorem 6.1 or 6.2 to the T-B-A quasi-stratification of J 1
DEk →

(M,D, J, g) (resp. J 1
GEk → (M × [−ε, ε], J,G, g) with G = D and along the

submanifold Q = M × {0})), to obtain maps φk 1-generic. From the choice
of m it follows that the set of base points and of points where ∂φk is not
injective, are empty. It is clear that by construction φ∗k[ωFS ] = [wk].

Also the choice of m allows us to perturb the section τk ∈ Γ(Ek) such
that φk is an embedding. Moreover, if the perturbation is of size O(c−1/2

k )
none of the properties of φk is lost (we still have a 1-generic sequence of
sections). �

We finish this section by mentioning that it is possible to obtain uni-
form transversality to a finite number of quasi-stratifications of the same
sequences of bundles. For example we can obtain the genericity result that
gives rise to embeddings in CPm transverse to a finite number of complex
submanifolds of CPm, and more generally analogs to complex codimension
1 foliations for symplectic manifolds [9]. In the fist case we just need to con-
sider for each submanifold the sequence of stratifications of J 1

D(M,CPm)
whose unique stratum (for each k) is defined to be the 1-jets whose de-
gree 0-components is a point of the submanifold; next we pull it back to
a stratification S ′ of J 1

DE
∗
k (the structure near Zk is not relevant because

transversality to T-B-A means that the sections stay away from Zk). There-
fore, we have defined a stratification of J 1

DEk which is trivially A.H. because
is the pullback by A.H. maps of an initial A.H. stratification of J 0

D(M,CPm).
Any 1-generic sequence of A.H. sections of Ek uniformly transverse to S ′,

once perturbed to give an embedding in CPm, gives rise to maps φk : M ↪→
CPm uniformly transverse to the submanifold along the directions of D.

Recall that a codimension 1 holomorphic foliation of CPm is given by a
holomorphic section $ of T ∗1,0CPm⊗L, where L is a holomorphic line bun-
dle. We consider in J 1

D(M,CPm) the set PS$ of points sent to the 0 section
by $ : J 1

D(M,CPm) → L. It can be partitioned into strata corresponding
to the inverse images of the vanishing set of $ and its complementary, of
codimension n. It can be seen that transversality to the former implies that
the 1-jet does not touch the latter in a tubular neighborhood [9] (a kind of
Whitney condition).

In this way –and for k >> 0– φ∗k$ defines after a suitable stratification
a sequence of calibrated foliations. Basically this perturbation is needed to
obtain normal forms in the zeros of $(j1

Dφk) that do not come from the
singular set (real dimension 1); in particular it guarantees that when the
leaves approach this singular set, they are still calibrated submanifolds.

Let us point out that the immersions in projective spaces with extra
transversality properties w.r.t. foliations is a non-trivial result, in contrast
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with the embeddings of corollary 1.8 that can be obtained using the theory
of characteristic classes (though without any reference to the almost complex
structure).

Another possible application is, as proposed by D. Auroux for even di-
mensional a.c. manifolds [4], to obtain r-generic applications to CPm whose
composition with certain projections CPm → CPm−h are still r-generic (the
corresponding stratifications are A.H. because they are pullback of A.H.
stratifications by the A.H. map; the structure near Zk is also seen to be
appropriate).

Ir is also possible to develop an analogous construction but for A.H. maps
to grassmanians Gr(r,m), starting from sections of Cr+1 ⊗ Ek, Ek of rank
m (see [46, 5]).

8. Normal forms for A.H. maps to CP1

In this section Ek will denote the sequence of bundles C2⊗Lk, where Lk
is a very ample sequence of line bundles over (M,D, J, g).

In the bundle J 1
DEk the Thom-Boardman-Auroux quasi-stratification

has only to strata: Zk and Σk,n.
Any C≥1+h-A.H. (resp. C1+h-A.H. using the relative theory) sequence,

h ≥ 2, can be perturbed to a sequence τk –with control on the derivatives
to order 1 +h along the directions of D (resp. in the directions of the whole
tangent space)– uniformly transverse to Zk and Σk,n.

Therefore, we obtain φk : M −Ak → CP1 an A.H. sequence (by A.H. we
mean form now on either C≥1+h-A.H. or C1+h-A.H. depending on whether
we use the intrinsic or the relative theory) of functions with the following
properties:

(1) The set of base points Ak = τ−1
k (Zk) is a compact submanifold of

M of real codimension 4 cutting D transversely (in a uniform way),
and such the subspace D ∩ TAk ⊂ D is approximately J-complex.

(2) Σn(φk), defined as the set of points where ∂φk is singular (and
where in principle dDφk does not vanish due to the presence of the
anti-holomorphic component), is a compact submanifold of codi-
mension 2n (a link) uniformly transverse to D.

So far the kind of A.H. coordinates we have used –except for the to-
tal spaces of the bundles– have been those adapted to the metric and the
strongly equivalent ones. In this section we will use more general A.H. co-
ordinates (equivalent to the usual ones, i.e., with bounds of order O(1) for
the derivatives of ∠m(Dh, D

⊥)) which will be centered only in the points of
a sequence of submanifolds.

The content of the following propositions is that we can find A.H. co-
ordinates z1

k, ..., z
n
k , sk, so that in the points of Ak the function φk is the

quotient of two coordinates z1
k, z

2
k , and in those of Σn(φk) is the analog to

a complex Morse function (quadratic in the zk).

Proposition 8.1. For every point a ∈ Ak A.H. coordinates z1
k, ..., z

n
k , sk

centered at a can be found (and a holomorphic chart of CP1) so that in a
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ball of fixed gk-radius in the domain of the coordinates Ak is described as
z1
k = z2

k = 0, and the function out of the points of Ak has the expression

φk(zk, sk) = z2
k

z1
k

.

Proof. Let us start form usual A.H. coordinates centered in a ∈ Ak
with an A.H. trivialization of Lk. Thus the section is represented by a couple
of A.H. functions f ik : Cn×R→ C, i = 1, 2, A.H.; both define a foliation with
real codimension 4 leaves uniformly transverse to Dh, and intersecting Dh

in A.H. submanifolds. We can assume, maybe composing with a complex
linear transformation composed with another linear map whose size does
not exceed O(c−1/2

k ), that in the origin the intersection with Dh has tangent
space z1

k = z2
k = 0 (in the origin J approximately coincides with J0). The

coordinates we look for are obtained by rectifying the foliation, that is, using
f1
k , f

2
k , z

3
k, ..., z

n
k , sk as new coordinates. The properties of φk are clearly

satisfied. Uniform transversality implies that the domain of the new charts
contains a ball of uniform gk-radius O(1) (the image of the functions in the
original A.H. coordinates fills a ball in C of radius uniformly bounded by
below). The bounds of order O(1) for the full derivatives of f1

k , f
2
k –together

with those measuring the lack of antiholomorphicity– imply that what we
have defined are generalized A.H. coordinates. �

Remark 8.2: In the new A.H. coordinates the curvature restricted toDh(0) =
D(0) is approximately of type (1, 1). For certain results we might be inter-
ested in not making any reference to the almost complex structure J of the
calibrated manifold. Then it does not make any sense to speak about A.H.
coordinates. Instead we can use modify a bit the sections to obtain the
previous proposition in coordinates with a compatibility condition w.r.t. ω.

Proposition 8.3. It is possible to find a perturbation of τk of order at most
O(c−1/2

k ) so that for the corresponding projectivization φ′k we can find A.H.
coordinates centered in the points b of Σn(φ′k), and holomorphic charts of
CP1, such that

φ′k(zk, sk) = φ′k(0, sk) + (z1
k)2 + · · · (znk )2

Being more precise, we can find radius ρ2 > ρ1 > 0, new distributions,
almost-complex structures Jk and functions φ′k such that:

(1) Dk u D, Jk u J , with Dk = D, Jk = J out of the tubular neigh-
borhood of Σn(φk) of radius ρ2, and both integrable in the tubular
neighborhood of radius ρ1.

(2) φk u φ′k, φk = φ′k out of the tubular neighborhood of Σn(φk) of
radius ρ2 and φ′k holomorphic in the tubular neighborhood of radius
ρ1.

Proof. For each component of Σn(φk)λ, λ ∈ Λk, we consider the model
of the tubular neighborhood constructed using the exponential map along
the directions of D(b), b any point in the component. This is a vector bundle
with almost complex fibers. Thus, is a complex bundle. Since its base space
is S1, it has to be trivial.
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Since each component of Σn(φk)λ –once reparametrized by the arc (for
the metric gk)– has bounds for its derivatives of order O(1), it is possible to
find a trivialization of the bundle whose sections have angle with D bounded
by below (their graphs as functions from S1 to the fiber Cn) and all its
derivatives bounded by O(1). Using the mentioned trivialization we obtain
a map

ϕk,λ : Nρ(Σn(φk)λ)→ Cn × S1

It is important to point out that the radius of the tubular neighborhood
ρ is independent of k, and fills a tubular neighborhood of {0} × S1 whose
euclidean radius is also independent of k and λ. These maps are also complex
in the points of Σn(φk)λ (J is sent into J0).

Generalized A.H. coordinates z1
k, ..., z

n
k , θk are obtained by just by com-

posing with the canonical projections to Cn, where we can think of θk either
taking values on an appropriate interval or in [0, 2π] if we want to parame-
trize the whole tubular neighborhood.

The fibers and complex structure J0 of the vector bundle induce a local
foliation and integrable almost complex structure that are denoted by Dh

and J0. In the domain of ϕk,λ it is evident that D u Dh and J u J0. The
distribution and almost complex structure of the statement of the propo-
sition are the result of interpolating from the integrable structures to the
original ones (in the annulus of radii ρ1, ρ2). It is worth pointing out some
details.

i. The interpolation is made using bump functions that only depend
on the euclidean distance to {0}×S1. It the functions do not vary
too fast, the bounds of order O(c−1/2

k ) measuring the difference
between the initial structures D, J and the final ones will hold
trivially. Since the radius ρ is independent of k, λ, we can make
such choice of bump functions.

ii. Dk, the result of interpolating from D to Dh is obtained by writing
Dh as the graph of a function D → D⊥; in other words, we perturb
in the direction of D⊥) (we could equally have used the angular
coordinate θk).

iii. The case of the almost-complex structures is similar. We think of
them as sections of T ∗M ⊗ TM vanishing along D⊥. Therefore,
both restrict to almost-complex structures on Dk. We interpolate
using the linear structure of the space of endomorphisms to define
new tensors J̌k, which approximately coincide with J0 and J . The
result of squaring these tensor is not necessarily −I, but it is ap-
proximately true. It is not difficult to perturb them to define Jk
with J̌k u Jk and J2

k = −I: it is enough to choose a trivialization of
the form e1, J0e1, ..., en, J0en, with |∇jei|gk ≤ O(1), ∀j ∈ N. Jk is
defined acting on the previous basis by the formula Jk(ei) = J̌k(ei),
J2
k (ei) = −ei. The bounds for the derivatives of the basis imply

that the new tensor approximately coincides with J̌k. By definition
Jk is an almost complex structure; in the points where J̌k coincides
with J0 and J respectively, Jk has this property also.
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In the normal bundles parametrized by Cn × S1 it is possible to con-
sider a different A.H. theory, we will investigate further in the next section.
Essentially, since Dh is integrable it is not necessary to use retractions to
define covariant derivatives of sections of D∗h. We can restrict the metric
gk to each leaf and use the corresponding Levi-Civita connection. In any
case, since in the leaf the Christoffel symbols and its derivatives are of size
O(c−1/2

k ), we can use as usual the trivial connection on each leaf. The se-
quence φk : Cn × S1 → CP1 is A.H. (for D, J or Dk, Jk) if and only if is
A.H. for the foliated theory in Dh with J0 and g0, where g0 is the euclidean
metric in Cn × [θ0 − ε, θ0 + ε], for small intervals of gk-length O(1) covering
S1 (it is equivalent to consider the product metric g′ in Cn×S1 with factors
the euclidian and the spherical). Notice that by definition the foliated A.H.
theory coincides with the A.H. theory associated to the metric retraction
for g0 (or g′); it is clear that fro this retraction is not strongly equivalent to
ī, but the bounds in the charts imply that they are equivalent, so we can
apply lemma 3.30.

Moreover, ∂φk y ∂0φk are related by a bundle map qī,i0 (the comparison
of the euclidean metric with g) and the same happens with∇D∂φk u ∂2

symφk
and ∂2

0φk, but here in the approximate sense and in a small enough tubular
neighborhood.

Notice that in light of observation 3.32 this is something characteristic
of the strongly equivalent theories and not of the equivalent ones. But we
have:

∂2
0φk u qī,i02 (∂2

symφk) + dDq
ī,i0(∂φk).

The second term vanishes in {0} × S1 and the first one is bounded by
below, and thus in a neighborhood of small enough radius ρ the mentioned
result holds.

The first consequence is that in Nρ({0} × S1), the variation of ∂φk is
equal to that of ∂0φk en . Thus, if ρ has been chosen small enough the zeros
of ∂0φk are diffeomorphic to the zeros of ∂φk (that is, only an S1 in the
domain of ϕk,λ). Besides, since both holomorphic components are related
by a bundle map which is the identity in the 0 section, the zeros of ∂0φk
are exactly {0} × S1 = Σn(φk)λ. For the same reason the zeros of ∂Jkφk
coincide with the zeros of ∂φk.

Working with the foliated theory, we write φk in the coordinates zk, θk.
By simplicity we omit the subindex for the angular coordinate.

At this point it is reasonable to interpret our approximation problem
for φk as an approximation problem for a smooth family of function with
parameter S1 of A.H. functions from Cn in C. Let us point out that in
principle the image of φk lays in CP1, and we want to find charts ϕk : C ↪→
CP1 so that ϕ−1

k ◦ φk(Nρ(Σn(φk)λ)) has image uniformly bounded, so we
obtain uniform bounds for the family of functions. In principle it is possible
to find points in CP1 missed by the image of the solid torus Nρ({0} × S1).
Finding balls of uniform radius missing the image is of course a uniform
transversality problem.



8. NORMAL FORMS FOR A.H. MAPS TO CP1 113

Indeed, we fix say, ∞ = [0 : 1] ∈ CP1, that defines an obvious A.H.
sequence of strata PS∞k in J 0

D(M,CP1). Its pullback to J 1
D(M,CP1) de-

fines a sequence of strata of PS∞k which is also A.H. One checks that the
sequence is transverse to PΣk,n, so the intersection defines PΣ∞k,n an A.H.
sequence of strata. We can decompose PΣk,n into this intersection and its
complementary subset PΣCk,n. After pulling it back to J 1

DEk, we obtain
Σ∞k,n,Σ

C
k,n, Zk an finite Whitney A.H. quasi-stratification. We can make τk

uniformly transverse to it. Therefore φk(Nρ(Σn(φk)λ)) will be at least at
distance η of ∞ ∈ CP1, for k >> 0.

With this observation we can suppose that φk(zk, θ) is an A.H. sequence
of maps in the coordinates zk, θ and with bounded image in C).

In this point and following the ideas of [12] and [50], we can make a first
choice of function φ′k satisfying all the requirements of the statement of this
proposition, but its closeness to φk.

Let us call Hθ(zk) to the quadratic form associated to 1
2∂0∂0φk(0, θ),

the foliated hessian in the points of {0} × S1. φ′k is defined interpolating
between H(zk) + φk(0, θ) and φk in a suitable annulus (as we did with the
distribution and almost-complex structure).

φ′k is Jk-holomorphic in the corresponding tubular neighborhood.

Regarding the difference between φk and H(zk) + φk(0, θ), we simply
observe that on each leaf Cn×{θ} the second is –in the approximate sense–
the Taylor expansion to order 2 of the first. Thus

φk(zk, θ)− (H(zk) + φk(0, θ)) = O(c−1/2
k (|zk|+ |zk|2)) +O(|zk|3).

In the points where φ′k coincides with H(zk) + φk(0, θ) one has |∂φ′k| ≥
|∂̄φ′k|, where the equality only holds in the points of Σn(φk): for ∂0 and ∂̄0

the assertion is evident; the desired result is obtained by observing that the
derivative of φk along ∂

∂θ is bounded by above and the quadratic form H
bounded by below. By choosing appropriately the size of the annulus where
the interpolation occurs, the mentioned inequality holds for φk that is still
A.H. and with the required transversality problem.

It is possible to choose φ′k with better properties; basically instead of
taking the holomorphic part of the Taylor expansion to order 2, we take the
whole series. Being more precise and following th ideas of S. Donaldson y
D. Auroux ([12, 2]), we observe that the restriction of φk to on each leaf
Cn × {θ} is A.H. A function H ′(zk, θ) : B(0, ρ′)× S1 → C, r′ < r, exists, so
that:

(1) H ′ is smooth.
(2) H ′θ : B(0, ρ′) ⊂ Cn → C is holomorphic for every θ ∈ S1.
(3) For all j ∈ N a positive constant Cj exists such that for k >> 0

the partial derivatives up to order j of φk − H ′ and bounded by
Cjc
−1/2
k , or in other words, φk u H ′ as functions from B(0, ρ′)×S1

to C.

This result is a consequence of a parameter version of the solution to the
∂̄-problem in the ball of radius 1 in Cn. For the sake of completeness, we
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include in appendix A a rather elementary proof of the parametric solution
(corollary A.2) out of the usual solution to the ∂̄-problem.

φ′k is defined interpolating between φk and H ′. Since φ′k approximately
coincides with φk, the points where ∂0φ

′
k vanishes approximately coincide

with the vanishing set for ∂φk. Moreover, we can add a perturbation of size
O(c−1/2

k ) to make them match (it would be a translation on each leaf). Also
the hessian 1

2∂0∂0φ
′
k is uniformly bounded by above and below.

The previous properties for φ′k remain valid if we add perturbations of
size O(c−1/2

k ) that are leafwise holomorphic and at least quadratic at the
origin. In particular, with one of these we can make the Hessian H ′θ at the
origin to have different eigenvalues (generic property).

The only remaining step is to apply Morse’s lemma with parameter to
find a map Ψ: Cn×S1 → Cn×S1, (zk, θ) 7→ (w(zk), θ),so that φ′k(zk(w)) =
φ′k(0, θ) + (w1)2 + · · · (wn)2.

We simply point out that a proof of Morse’s lemma is based in the
diagonalization of symmetric matrices (see for example [42]). In each of
the steps of the algorithm it is necessary to make a linear transformation so
that the upper left entry of certain symmetric matrix Mθ is non-vanishing;
it is at this point where we use that the eigenvalues are different (so that
the eigenspace have complex dimension 1 and the linear transformation is
reduced to choose certain eigenspace, being this choice smooth in θ). �

Combining the previous propositions we obtain the existence of “Lef-
schetz pencils” structures for calibrated manifolds.

Definition 8.4. In a calibrated manifold a chart ϕ : Cn×R→M is said to
be compatible with ω (we speak about compatible coordinates) if in the origin
Dh matches D and ω is positive and of type (1, 1) w.r.t. J0.

As we pointed out before, we use these charts when we do not want to
make any reference to the compatible almost-complex structures J , so that
the concept of A.H. coordinates does not make much sense. It is obvious
that a chart in which J0 matches J in the origin is compatible with ω.

Proof of theorem 1.10. Let J be a c.a.c.s. and τk an A.H. sequence
of C2 ⊗ Lk uniformly transverse to the quasi-stratification of J 1

DEk with
strata Zk,Σ∞k,n,Σ

C
k,n. Once propositions 8.1 and 8.3 have been applied, for

large values of k the triple (Ak, φ′k,Σn(φ′k)) defines a Lefschetz pencil struc-
ture. We simply mention that the genericity of φ′k(Σn(φ′k)) follows from
one of the perturbations of lemma 8.3 independent of the holomorphic co-
ordinates. We also note that proposition 8.1 gives A.H. coordinates which
are not necessarily compatible with ω (the problem is that TAk ∩D is not
necessarily J-complex). In any case, following the ideas of S. Donaldson
or F. Presas ([14, 50]) it is possible to modify the sequence of sections to
obtain coordinates compatible with ω in the points of Ak with the needed
description for Ak and φ′k. �
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Very much as for contact manifolds, the existence of pencils through
A.H. sequences of sections of C2 ⊗ Lk allows to relate the topology of any
two (sequences of) divisors of (M,D,ω) constructed as the zeros of A.H.
sections of Lk (possibly for different almost complex structures).

Proposition 8.5. Let (M2n+1, D, ω) be a closed calibrated manifold of in-
teger type and let J1 and J2 c.a.c.s Let τ1

k and τ2
k two sequences of A.H.

sections of Lk w.r.t. J1 and J2 respectively, both uniformly transverse to 0.
Then a natural number K ∈ N exists such that for k ≥ K the “divisor” W 1

k

is cobordant to W 2
k by a cobordism that amounts to adding only n-handles.

In particular we deduce that Hi(W 1
k ;Z) ∼= Hi(W 2

k ;Z) and πi(W 1
k ) ∼=

πi(W 2
k ), for i = 0, ..., n − 2 (a weaker result than the hyperplane Lefschetz

theorem for divisors of theorem 1.5).

Proof. The proof is almost word by word the one given for contact
manifolds in [50]. For the sake of completeness, we give a rough idea of it
goes.

Let us assume J1 = J2. With the sections τ1
k and τ2

k an A.H. sequence
of sections (τ1

k , τ
2
k ) of C2 ⊗ Lk is constructed. We perturb it to obtain

a Lefschetz pencil but without normal forms for Bk := Σn(φk). If the
perturbation is small enough compared with the amount of transversality η
for both sequences, the new sequences –to be denoted as the old ones– will
give divisors isotopic to the initial ones. Thus we can assume 1-genericity
for (τ1

k , τ
2
k ). In the corresponding Lefschetz pencil φk : Ak → S2 we have to

compare the fibers over 0 and ∞. The cobordism will be the inverse image
of a segment joining both points. Being more precise, we need to blow up
M in the points of Ak and along the complex directions of D; the tubular
neighborhood of the base locus has fiber C2 and each point of the 0-section
(base locus) is substituted by a CP1. We notice that this operation only
occurs at differentiable level, and we do not put any calibrated structure in
the M̃ .

The immersed curve φk(Bk) splits S2 into connected components iso-
morphic to disks. It is clear that fibers (now we really have fibers in we
work in M̃) over points in the same connected component are isomorphic,
because φk is a submersion there. Therefore, we must study what happens
when the segment joining 0 and ∞ crosses f(Bk).

Now we make the necessary perturbation to obtain normal forms for φk
in the points of Bk. It does not affect the points of W 1

k and W 2
k .

If the segment intersects Bk in a point b, we take a chart centered at b
and modify it so that φ′k(z, s) = s+ iO(s2)+(z1)2 + · · · (zn)2 (the cobordism
occurs in an arbitrarily small neighborhood of the origin of the coordinate
chart). We also alter the segment to make it coincide with the imaginary
axis of C (f(Bk) is tangent to the real axis at the origin)

With this expression for the function one can construct an appropriate
Morse function for the cobordism and compute the index of the critical
point, which is n (see [50]).
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When J1 and J2 are different we just need to show that once a distance
in the space of c.a.c.s. have been fixed, for each J a positive εJ exists so that
if J ′ is at distance of J smaller than εJ , then we can find A.H sequences τk
and τ ′k whose corresponding sequences of divisors are isotopic for k >> 0.
We refer to the reader to [50] to check this assertion. �

9. Almost-complex foliated manifolds

Let (M,D, J, g) be an almost-complex manifold for which D integrates
into a foliation F . In this situation we do not need to use a retraction for
T ∗M → D∗ to define a covariant derivative in the latter bundle. On each
leaf we consider g|F and its Levi-Civita connection. This gives rise to a
new A.H. theory that is the most natural one in this situation. We use the
subindex F to denote the operators associated to this theory.

We also have all the strong transversality and normal forms results that
we had proven for the intrinsic theory associated to the metric retraction.
We do not need to repeat all the constructions.

For any Ek very ample sequence of locally splittable hermitian bundles,
we have the bundle maps

r̄j(D∗1,0)�j ⊗ Ek → (D̄∗1,0)�j ⊗Ek,
induced by the retraction r̄ associated to the metric. One checks in A.H.
coordinates (adapted to the metric), that not only τk is A.H. if and only if is
A.H. for the foliated theory, but r̄j(∂

j
sym,Fτk) approximately coincides with

∂jsymτk as well. Thus, the image of jrFτk by the corresponding bundle map
approximately coincides with jrDτk. Also the corresponding T-B-A quasi-
stratifications are preserved by the bundle map J rFEk → J rDEk induced by
r̄. Therefore, if jrDτk is uniformly transverse to it, for k >> 0 large enough
jrFτk will also have this property.

If we decide to repeat all the constructions of the intrinsic theory, it is
convenient to use charts adapted to the foliation in the whole domain and
not only in the origin. The advantage that we get by identifying Dh with
D is that the local perturbations wτ ref

k,x,j are constant along Dh and thus
along D. That means that even for r-jets (r ≥ 0) we can work with Cr+h-
A.H. sequences, (h ≥ 2), instead of considering C≥r+h-A.H. sequences that
require control in all the derivatives.

Notice that for certain foliated a.c. manifolds some of the geometric
results of sections 7,8 are a direct corollary of the 1-parametric results for
symplectic manifolds. This is something we mentioned in the introduction
that can now be stated in a more precise way.

If we want to avoid local considerations we have to restrict ourselves to
1-parameter families of symplectic manifolds. In other words, the foliated
calibrated manifold M(M,ω, ϕ) is the mapping torus of a symplectomor-
phism ϕ of (M,ω).

M(M,ω, ϕ) :=
M × [−1, 1]
∼ϕ
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To construct divisors W (or more generally Lefschetz pencils (A, f,B)),
we just need to find a smooth family Wt, t ∈ [−1, 1], with ϕ(W1) = W−1.
We fix J−1 compatible and construct Wk,−1 as the zero set of an A.H. se-
quence τk uniformly transverse to 0. It is straightforward that ϕ−1∗ (J−1) is
compatible with ω, and that τk ◦ ϕ is ϕ−1∗ (J−1)-A.H. and uniformly trans-
verse to 0. The zeros are the symplectic submanifolds Wk,1 = ϕ−1(Wk,−1).
The uniparametric results guarantees –for k large enough– the existence of
smooth families Wk,t interpolating between Wk,−1 and Wk,1.

For Lefschetz pencils –at least concerning genericity– we equally interpo-
late between the sequences τk and τk◦ϕ of C2⊗Lk. Since ϕ is an ϕ−1∗ (J)−J-
complex map, uniform transversality of j1

Dτk implies the same result for
j1
D(τk ◦ ϕ) (where the amount of transversality obtained is related by the

norm of ϕ). The isotopy result in [14] (that can be modified to get not only
continuity, but also smoothness) gives an interpolation (Ak,t, φk,t, Bk,t) be-
tween the triples (Ak,1, φk,1, Bk,1) and (Ak,−1, φk,−1, Bk,−1), where Ak,t, Bk,t
are symplectic and φk,t A.H. for certain a.c. structures Jt. The computation
of normal forms is –have we have seen– a natural generalization of that for
symplectic manifolds. Therefore, the constructions of Lefschetz pencil struc-
tures in this case can be seen as a corollary of the A.H. theory for symplectic
manifolds.

9.1. Calibrated foliations in closed 3-manifolds. We want to write
explicitly some of our applications for 3-dimensional calibrated foliations
(smooth taut foliations).

When a foliation in a 3-dimensional manifold is defined, the changes of
coordinates are usually asked to be leafwise Cr and at least continuous in
the transverse direction. We speak of a foliation defined by a Cr cocycle.

Our theory needs smoothness. In other words, we need the foliation
to be given by a smooth 1-form. In this point we can use a result that
states that for any foliation given by a Cr cocycle (in particular C∞) a new
(conjugate) smooth structure can be chosen so that the foliation is defined
by a Cr 1-form (see comment 1.1.2 in [17]).

By a recent result of D. Calegari [8], any foliation F defined by a Cr

cocycle is isotopic to a foliation defined by a C∞ cocycle and so that the
leaves give smooth immersions with continuous variation in theC∞ topology.
We can apply the result of the precedent paragraph to this new foliation F ′
and thus obtain a smooth foliation in M3. What is more, the new foliation
is still taut if F had this property.

Therefore, our techniques can be applied too any topological taut folia-
tion (we apply them to F ′ and undo the isotopy).

We write again some of the applications for 3-dimensional smooth taut
foliations.

Theorem 1.5 gives us the existence of transverse cycles through any point
and is of little importance because this is the characterization of a taut
foliation (M 6= S2 × S1).

Regarding Lefschetz pencils, the first observation is the absence of base
points (the set has codimension 4).
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Corollary 9.1. Let (M3,F) be a taut foliation in a closed 3-dimensional
manifold and ω a closed 2-form of integer type that dominates/calibrates the
foliation.

There exist pairs (f,B), where B is a transverse link and f : M3 → S2

a smooth map such that:

(1) f is a submersion along D in M3 −B.
(2) f(B) is in general position (inducing in S2 a particular CW-complex

structure).
(3) On each point b ∈ B there are coordinates z, s compatible with ω and

holomorphic coordinates in S2 ∼= CP1, so that f(z, s) = g(s) + z2,
with g(0) = 0, g′(0) 6= 0.

We now give an interpretation of the Lefschetz pencils as an unipara-
metric version of an existing construction for surfaces.

For any closed Riemann surfaceΣ we want to find the simplest kind of
map to the simplest Riemann surface, that is, with CP1 ∼= S2. The map has
to be a holomorphic branched covering f : Σ → S2, which local models of
the form z 7→ z2 (index 2 points).

The uniparametric version, or else the foliation version of the previous
result would be a map defining a branched cover on each leaf (with index 2
points). It is reasonable that the branching set is given by a 1-parametric
family of divisors –i.e., a transverse link– and the ramification points –which
will not be isolated– are asked to be a set of curves in S2 in general position.

The Lefschetz pencil structure is thus a natural extension to smooth taut
foliations of the mentioned result for Riemann surfaces.



CHAPTER II

A new construction of Poisson manifolds

1. Introduction and results

The use of almost complex methods in symplectic geometry together
with new surgery techniques have increased notably our understanding of
the topology of symplectic manifolds (see for instance the foundational pa-
pers [26, 12, 24]). These results constitute an extraordinary mixture of
“soft” and “hard” mathematical ideas in the sense of Gromov [27]. In spite
of all this success very little is known for nontrivial families of symplectic
manifolds. Families of symplectic manifolds lead naturally to the notion of
Poisson manifolds.

Definition 1.1. A Poisson structure on a manifold M is a Poisson algebra
structure on its sheaf of functions. That is to say, given two local functions
f, g on M we define on its common domain of definition a bilinear bracket
{f, g} verifying the following properties:

(1) Skew-symmetry, {f, g} = −{g, f} .
(2) Leibnitz’ rule, {f, gh} = g{f, h}+ {f, g}h.
(3) Jacobi identity, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Alternatively, a Poisson structure on a manifold M is given by a bivec-
tor Λ such that [Λ,Λ] = 0, where [·, ·] denotes the Schouten bracket (see
for instance [54] and references therein). The Poisson bracket {f, g} of two
functions is given in terms of Λ by Λ(df, dg). Moreover, the Poisson tensor
Λ defines a natural bundle morphism #: T ∗M → TM whose range de-
fines an involutive distribution SΛ whose integral leaves are equipped with
a canonical symplectic structure. Conversely, any foliation S by symplectic
manifolds of a manifold M such that for any smooth function the hamil-
tonians of the restriction of the function to each leaf glue into a smooth
vector field, induces a unique Poisson structure whose symplectic foliation
is precisely S [54]. In this sense we make precise the idea above that Poisson
structures on manifolds provide the geometrical setting to describe smooth
families of symplectic structures.

Looking at the known examples of Poisson manifolds, we see that in
most occasions the starting point for them is an algebraic structure (a Lie
algebra, a cocycle, etc.) and then we construct the manifold whose Poisson
structure is related with the initial algebraic one.

However it would be most interesting to explore the converse viewpoint.
Given a manifold M determine the nontrivial Poisson structures that it sup-
ports. This is of course an extremely difficult task because of the intrinsic

119
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nonlinearity of Poisson structures. Some work in this direction has been
already done by M. Bertelson who has studied in [6] the problem of charac-
terizing regular foliations which arise from Poisson structures. In order to
accomplish part of this task, another step which is worth taking is check-
ing the possibility of extending the smooth topological constructions to the
Poisson category. Some of them have already been carried to the symplectic
setting; D. McDuff [40] has defined the blowing up of a symplectic sub-
manifold. R. Gompf [24] has used the normal connected sum to construct
symplectic manifolds with arbitrary fundamental group. In this sense sym-
plectic geometry is “flexible” in sharp contrast with Kähler geometry. Of
course, trivial families of symplectic manifolds can be constructed just by
taking the product of a symplectic manifold M with an arbitrary compact
manifold Q. Such trivial product Poisson structures will have the same fun-
damental group as M provided that π1(Q) = 0. Hence unless we are looking
for one-parameter families of symplectic manifolds, the existence of families
with arbitrary fundamental group is trivial (not at all its classification).

Thus the problem of constructing Poisson manifolds with arbitrary fun-
damental group is reduced to the particular situation of codimension 1 sym-
plectic foliations, and more concretely to the search of 5-dimensional com-
pact Poisson manifolds of constant rank 4 with arbitrary fundamental group.

In the process of constructing them, we will introduce a surgery operation
for Poisson manifolds that naturally extends Gompf’s construction (theorem
4.4).

We will start recalling in section 2 how any orientable closed 3-manifold
can be endowed with a regular rank 2 Poisson structure. This construction
–based on classical results of foliation theory in 3-manifolds– contains the
essential ideas that lead to a surgery construction for Poisson manifolds.

Roughly speaking, out of the normal connected sum for symplectic man-
ifolds we will introduce a parametric version for Poisson manifolds (with
compact parameter). In order to do that certain properties of fibred Poisson
structures will be recalled (section 3), because the analog of the symplectic
submanifold used in the symplectic case will be a transverse fibred Poisson
submanifold (definition 3.1).

Section 4 is devoted to the proof of the main construction: any foliated
manifold constructed as the normal connected sum admits a unique Poisson
structure (unique in a sense to be made precise) extending the ones on the
summands (theorem 4.4). To way to prove this result is clear. Without
being very precise, we want to find certain models for the Poisson structures
of the subsets to be identified. These models will be parametric versions
of the symplectic ones, and we will be able to find them because in the
symplectic case they are obtained with the aid of certain operators, that of
course will also exist for compact families.

In section 5 we study the modular class (see [57]) of some of the con-
structed varieties via surgery. The results indicate the strong topological
character of the construction because certain properties of the Poisson struc-
tures of the summands may very well change in the normal connected sum.
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It is this flexibility what will allow us to prove in section 6 the main
application of the surgery construction to be introduced.

Theorem 1.2. Let G any group finitely presented. Then for any natural
numbers n, d ≥ 4, d even, a closed oriented Poisson manifold (Mn,d,Λ) of
dimension n and rank d exists such that π1(Mn,d) ∼= G. Moreover, this
foliated manifolds have vanishing Godbillon-Vey class, but those with a codi-
mension 1 symplectic foliation are not unimodular (and neither calibrated).
They can also be chosen to admit spin structures.

We will conclude this charter in section 7 with an application that we
find of interest in light of the study of calibrated manifolds of the previous
chapter. We will describe conditions under which the normal connected sum
of two calibrated manifolds –which is a Poisson manifold with codimension
1 leaves– admits a lift to a calibrated structure extending the ones of the
summands (theorem 7.1).

2. Poisson structures on 3-dimensional manifolds

A regular Poisson structure on a 3-manifold M3 is just a foliation by
surfaces with a leafwise smooth area form. In particular, if M3 is orientable,
finding such a structure turns out to be an easy problem of differential
topology, whose non trivial part is to endow the manifold with the foliation.
The problem of finding a codimension one foliation on an oriented 3-manifold
is a classical one which is already solved. We now give an outline of a solution
(in which we do not ask much to the foliation), because it essentially contains
the ideas that give rise to a surgery construction for Poisson manifolds.

Recall that every orientable compact 3-manifold M can be obtained from
S3 by surgery on a link with components kj . Moreover, the framings are
of the form (mj ± 1lj), where mj , lj are the meridian and longitude of the
boundary tori. Notice that the components of the link can be chosen to
be very close to the unknot and hence transversal to the Reeb foliation R
of S3, i.e., the knots are submanifolds transversal to the leaves inheriting
the trivial Poisson structure. Once open tubular neighborhoods of kj have
been removed, in the solid tori Tj = D2 × S1 to be glued, the boundary of
the leaves of R will be non separating curves on ∂Tj (and cutting once the
meridian). This curves are non-trivial in the homology of Tj , so we cannot
hope to add a punctured surface to get closed leaves, but if we remove a
small tubular neighborhood Nj of the longitude αj = {0} × S1 we can find
a map φj : Tj −Nj → S1 × I × S1 such that the image of the curve mj on
Tj goes to S1 × {0} × {e}, the meridian of S1 × I × S1 ⊂ D2 × S1. Hence,
pulling back the Reeb foliation of S1×I×S1 we get a foliation except inside
a solid torus, where we again put a Reeb component. We have thus proved
the following well known proposition.

Proposition 2.1. Every oriented compact 3-manifold admits a regular rank
2 Poisson structure.
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Using the ideas above we see that any fibred knot of a 3-manifold gives a
foliation with a Reeb component and a “modified” Reeb component, where
instead of having disks approaching to the torus we have punctured oriented
surfaces (the Seifert surfaces of the knot).

It is for dimensions bigger than 3 where surgery constructions are a
powerful tool to construct manifolds with prescribed topology (for example
arbitrary finitely presented fundamental group). Hence having one such
construction compatible with Poisson structures would allow us to conclude
the existence of Poisson manifolds with a wide range of different topological
properties.

3. Fibred Poisson structures

We have seen in the previous section that to perform surgery in an ori-
ented Poisson 3-manifold we do not need to worry about the Poisson tensor
itself but only about extending the symplectic foliation we had. It is not
difficult to propose a surgery technique for Poisson manifolds which is in-
deed an extension of the normal connected sum for symplectic manifolds.
Roughly speaking, we will use a transversal submanifold that intersects sym-
plectically with the leaves of the symplectic foliation. This will allow us to
perform the normal connected sum along the symplectic submanifolds and
we will show that the resulting manifold admits a Poisson structure deter-
mined (up to sum extent) by the ones we had initially. We will see that with
the appropriate setting the proofs will be natural generalizations of those of
Gompf [24].

3.1. Poisson structures compatible with fiber bundle struc-
tures. Let π : P → Q be a fiber bundle. We call a Poisson structure ΛP on
P compatible with the fiber bundle structure if the symplectic leaves of ΛP
are the fibers of π (hence the fibers are connected). We will also call the
triple (P, π,ΛP ) a fibers Poisson manifold. If P is compact this is equivalent
to saying that the space of leaves is a smooth manifold Q such that the
projection π : P → Q is a submersion.

We begin by noticing that whenever one has a foliation, one can do the
usual exterior calculus in the bundles associated to the distribution. In our
case we will have a locally trivial fibration π : P → Q and the bundle we
are interested in is the one of vertical vectors, i.e., the kernel of π. We will
speak of vertical vector fields and k-forms, Lie derivatives in the direction
of vertical vector fields and exterior derivative of vertical k-forms. We shall
denote the set of vertical k-forms by Ωk

fib(P → Q), and by dπ the exterior
vertical derivative (or just d if there is no risk of confusion). Recall that one
can pullback vertical forms by fiber bundle morphisms and that any known
relation involving Lie derivatives also holds for vertical vector fields and
forms (it holds fiberwise and defines a smooth section of the corresponding
bundle).

Let us denote the cohomology groups of the complex (Ω∗fib(P → Q), dπ)
by Hk

fib(P → Q). We have the corresponding forgetful maps f : Ωk(P ) →
Ωk

fib(P → Q), and f : Hk(P )→ Hk
fib(P → Q).
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It is straightforward to check that a Poisson structure ΛP on P compat-
ible with the fibration π : P → Q is determined by a closed non singular
vertical 2–form ωP ∈ Ω2

fib(P → Q) (and hence [ωP ] ∈ H2
fib(P → Q)). We

will call ωP the Poisson 2-form (or just the Poisson form) of ΛP .
There are some results about the cohomology H∗fib(P → Q) that will be

used later. We start by recalling that for a closed manifold with a metric,
Hodge theory allows one to obtain for any k-form α a unique decomposition:

α = dβ ⊕ δη ⊕ ρ
where β is coexact, η exact and ρ harmonic, and all three are images of

α by smooth operators. Moreover we also have relative Hodge theory for
a pair (N,K), where N is a compact manifold and K a closed set (i.e, for
forms with support contained in N − K). This implies that we also have
the above results for a compact manifold N with non empty boundary and
forms with support in the interior on N (to show it just double the manifold
and apply relative Hodge theory).

When π : P → Q is a locally trivial fibration and P closed, we can also
apply Hodge theory to get the same decomposition of eq. (3.1) above for
vertical k-forms. We observe that any metric on P restricts to a metric on
each fiber and there we can apply the usual Hodge theory. After gluing what
we construct in this way fiberwise, we get again smooth projection operators
because in a trivialization we are just working in a fiber with a smooth family
of forms and metrics. If P is compact and ∂P 6= ∅, the relative Hodge theory
(P, ∂P ) (where we use forms whose support do not intersect ∂P ) also holds
because on each trivialization (that we use to see that the construction is
smooth) the boundaries are setwise identified. As a consequence, we see that
for π : P → Q locally trivial and P closed (resp. compact with ∂P 6= ∅), a
vertical closed form (resp. a closed form whose support does not intersect
∂P and hence vanishing in a neighborhood of the boundary) is exact if and
only if it is fiberwise exact (resp. exact with potential form vanishing in a
neighborhood of the boundary). The result also implies that for a smooth
(compact) family of exact vertical k-forms one can find a smooth family
of vertical (k − 1)-forms whose exterior derivative is the initial family (we
would be working with vertical forms on the direct sum of our initial bundle
and the trivial bundle with rank the number of parameters of the family).
If all the k-forms of the family vanished in a neighborhood of the boundary,
the k − 1 forms will also vanish in that neighborhood.

3.2. Transversal Poisson fibred submanifolds. A smooth Poisson
submanifold [56] of a Poisson manifold (M,ΛM ) is defined as a triple (P,ΛP , j)
where j : (P,ΛP ) → (M,ΛM ) is a Poisson morphism embedding P into M .
Besides these, there are submanifolds of a Poisson manifold which inherit a
Poisson structure (the foliation induces a foliation by symplectic subman-
ifolds which fits into a Poisson structure) and where the natural inclusion
map is not a Poisson morphism. We will consider submanifolds of Poisson
manifolds from this more general perspective. Thus, a Poisson submani-
fold of a given Poisson manifold (M,ΛM ) will be a submanifold intersecting
the leaves in symplectic submanifolds and inheriting a Poisson structure
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(necessarily unique) from ΛM (these are the natural generalization of the
symplectic submanifolds of a symplectic manifold). In particular we will be
dealing with a special class of Poisson submanifolds compatible with a given
fibration.

Definition 3.1. Let (M,ΛM ) be an n-dimensional Poisson manifold of rank
d, (P,ΛP ) a Poisson manifold where P is compact and fibers over the (n−d)-
dimensional manifold Q, and ΛP is compatible with the fibration. An em-
bedding j : P → (M,ΛM ) is said to embed (P,ΛP ) as a transversal Poisson
fibers submanifold of (M,ΛM ) if:

i. j(P ) is contained in the regular set of (M,ΛM ).
ii. j(P ) cuts transversally the symplectic leaves of (M,ΛM ).
iii. j(P ) inherits a Poisson structure from (M,ΛM ) that coincides with

ΛP .

The existence of such a submanifold implies that the symplectic leaves
of (M,ΛM ) are nicely arranged in a neighborhood of the submanifold. To
be more precise:

Lemma 3.2. If j : P → (M,ΛM ) embeds the fibers Poisson manifold (P,ΛP )→
Q in M as a codimension r transversal Poisson fibers submanifold of (M,ΛM ),
then its normal bundle, with the induced Poisson structure, is also a fibers
Poisson manifold over Q.

Proof. For each x ∈ P let SM (j(x)) be the symplectic leaf of ΛM
passing through the point j(x), thus ΛM |S(j(x)) is the inverse of a symplectic
form ωM (x) on Tj(x)S(j(x)) and Tj(x)(j(P ) ∩ S(j(x)))⊥ωM , the symplectic
orthogonal of Tj(x)(j(P ) ∩ S(j(x))), is a symplectic r-plane transversal to
Tj(x)j(P ), so we can take it as model for the normal bundle ν(P ) of the
embedding. Moreover, for each leaf SP ⊂ P , the restriction of this model
of normal bundle is the corresponding model for the embedding of that leaf
SP ⊂ SM . In fact, one can choose any compatible almost complex structure
for the regular set of (M,ΛM ) and consider the leafwise associated metric.
Tj(x)(j(P )∩S(j(x)))⊥ωM is then the orthogonal complement of Tj(x)(j(P )∩
S(j(x))) with respect to this metric. We can use this leafwise metric to
identify the normal bundle with a small enough tubular neighborhood of
j(P ). This open set inherits a Poisson structure which can be pulled back
to the normal bundle (hence the Poisson structure depends on the almost
complex structure, but different choices give isomorphic structures). The
local triviality of the fiber bundle π̃ : ν(P ) → Q follows from that of the
associated sphere bundle, which is a compact manifold (and the projection
a surjective submersion). �

4. The main construction: Poisson surgery

Let (M,ΛM ) be an n-dimensional Poisson manifold of rank d and let
(P,ΛP ) be a fibers compact (n − 2)-dimensional Poisson manifold over the
(n − d)-dimensional manifold Q (ΛP is compatible with the fiber bundle
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structure π : P → Q). Suppose we have two disjoint embeddings ja : P →
M , a = 1, 2, that both embed (P,ΛP ) as a transversal Poisson fibers sub-
manifold of (M,ΛM ). Assume that the normal bundles νa (using the model
provided by Lemma 3.2 and considering the orientation induced by the
Poisson bracket) have opposite Euler class. After identifying νa with a
tubular neighborhood Va of ja(P ), any orientation reversing identification
ψ : ν1 → ν2 allows us to get a diffeomorphism ϕ : V1 − j1(P ) → V2 − j2(P )
preserving the orientation of the fibers (the disks) as the composition of ψ
with the diffeomorphism h(x) = x/‖x‖2 that turns each punctured normal
fiber inside out.

Definition 4.1. Let #ψM denote the smooth, foliated manifold, obtained
from M − (j1(P ) ∪ j2(P )) by identifying V1 − j1(P ) with V2 − j2(P ) via the
composition h ◦ ψ. If M is a disjoint union M1

∐
M2 and ja maps P into

Ma, the manifold will be called the normal connected sum of M1 and M2

along P (via h ◦ ψ) and will be also denoted by M1#ψM2.

It is easy to check that the diffeomorphism type (as a foliated manifold) it
is determined by (j1, j2) and the orientation reversing identification ψ : ν1 →
ν2 (up to fiber preserving isotopy). Once one of these identifications has been
chosen, the remaining possibilities are [P, S1] ∼= H1(P ;Z).

4.1. Topological remarks. If we are given an orientation µM on (M,ΛM ),
it determines in a neighborhood of ja(P ), together with the Poisson struc-
ture, an orientation on P , and this one together with the restricted Poisson
form ωP , an orientation on Q. It is clear that if the orientations on Q ob-
tained in this way from each neighborhood Va are the same, then µM induces
an orientation on #ψM .

There are some very well know results about the topology of M1#ψM2

(see the remarks by Gompf [24]). First of all, #ψM is (oriented) cobordant
to M . This is seen after identifying in the cobordism M × [0, 1] neighbor-
hoods of j1(P ) and j2(P ) in the level {1}, and then rounding corners to get
the cobordism manifold X.

Hence, the Pontrjagin numbers (#ψM oriented) behave additively, and
in the even dimensional case the formuli for the Euler characteristic and
signature are, respectively,

χ(M1#ψM2) = χ(M1) + χ(M2)− 2χ(P ).

σ(M1#ψM2) = σ(M1) + σ(M2), (#ψM oriented)

As it is the case for symplectic manifolds, if #ψM is oriented the surgery
construction is compatible (choosing an appropriate framing) with spin
structures, and we can conclude:

Lemma 4.2. If M admits a spin structure and H2(P ;Z) has no Z2–torsion,
then there is a choice of ψ such that #ψM admits a spin structure extending
the one on M .
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Proof. See [24], proposition 1.2. �

4.2. Remarks regarding the foliation of #ψM . If we start from
a regular transversally orientable manifold M , then #ψM is also regular
transversally orientable (orientability in regular Poisson manifolds is equiv-
alent to transversal orientability), and its Godbillon-Vey class GV (#ψM,Λ)
can be computed in terms of the one of M . In particular:

Lemma 4.3. Let M be transversally orientable. Then GV (M,ΛM ) = 0 if
and only if GV (#ψM,Λ) = 0.

Proof. We know that be can remove disjoint fibers neighborhoods
(closed) Wa of ja(P ) such that we have an inclusion i : M − (W1 ∪W2) →
#ψM and both ends of M − (W1∪W2) fiber over P (with fiber an annulus).
The condition GV (M,ΛM ) = 0 implies, by naturality, the vanishing of the
Godbillon-Vey class of M − (W1 ∪W2). Since its ends are fibers, one can
choose a representant β of the class vanishing on these ends and conclude
the existence of a form γ vanishing on the ends and whose exterior deriv-
ative is β. Finally, extending β and γ to forms β̃ and γ̃ defined on M we
obtain dγ̃ = β̃, where [β̃] = GV (M,ΛM ). The other direction is proven
similarly. �

4.3. Constructing the Poisson form on #ψM . Our final aim is to
put a Poisson structure on #ψM . To do that, we have to modify slightly the
previous construction. Since we have to construct a symplectic structure on
each resulting leaf, it is more convenient to use instead of the normal bundles
(whose fibers have infinite area), the bundles ν0

a of disks of radius π−1/2. We
will compose ψ (that can be assumed to preserve the area of each fiber) with
the map

i(x) =
(

1
π‖x‖2 − 1

)1/2

x ,

which turns each punctured disk inside out.
We notice that V1, V2 and Y , the image of (V1 ∪ V2) × [0, 1] in X (the

cobordism between M and #ψM), are locally trivial fiber bundles over Q.
Any closed form ω ∈ Ωk

fib(V1 ∪ V2 → Q) satisfying j∗1ω = j∗2ω induces a
form ΩṼ ∈ Ωk

fib(Ṽ → Q), up to a choice of a compactly supported exact
k-form dα, α ∈ Ωk−1

fib (Ṽ → Q), where Ṽ ⊂ #ψM is the image of V1 ∪ V2

in #ψM . The way to get a representant ΩṼ of this family is by retracting
disjoint neighborhoods of ja(P ) (containing V 0

a , the image of ν0
a) onto ja(P )

and extending this map to a smooth retraction ρ : M → M isotopic to the
identity, which coincides with the identity out of a compact set of V1 ∪ V2,
preserves the fibers of Va and commutes with ̂2 ◦ψ ◦ ̂−1

1 on V1 and V2). This
k-form is the restriction to Ṽ of the one induced on Y by ρ∗ω. Two different
choices of the retraction will give raise to two k-forms whose difference will be
a compactly supported element of Ωk

fib(Ṽ → Q). To see that this compactly
supported closed form is exact, it is enough to check it fiberwise. The
procedure is the one described by Gompf. We recall that when we round
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corners to get the cobordism manifold Y , we can think of having added
some new levels (i.e., we now have a map p2 : Y → [0, 1 + ε]) so that the
level set 1 + ε is Ṽ , where the circumferences of radius π−1/2 are identified.
As we go from 1 + ε to 1 we identify circumferences of smaller and smaller
radius until we reach the level set 1 where j1(P ) and j2(P ) are identified.
The level sets corresponding to the values smaller than 1 are diffeomorphic
to V1 ∪ V2. Given another retraction ρ′, to evaluate the difference of the
k-forms ρ∗ω|Ṽ − ρ′∗ω|Ṽ , we homotope (“pushing down”) the corresponding
smooth oriented k-manifold Mk ⊂ p−1

2 (1 + ε] (possibly singular) such that
it lies in p−1

2 ([0, 1]) and in the level 1 is contained in j1(P )× {1}, cut open
Y and project (V1 ∪ V2) × [0, 1] → V1 ∪ V2 × {0}, and in the zero level set
integrate ρ∗ω − ρ′∗ω over the correspondent manifold with boundary M ′k.
But since the retractions were homotopic to the identity, both ρ∗ω and ρ′∗ω
represent the same homology class as ω. This, together with the fact that
j∗1ω = j∗2ω, implies that

∫
M ′k

ρ∗ω − ω = 0 =
∫
M ′k

ρ′∗ω − ω . Hence their
difference integrates to 0.

Now we will see that this construction works in the Poisson category.

Theorem 4.4. Let (M,ΛM ) be an n-dimensional Poisson manifold of rank
d ≥ 2 and let (P,ΛP ) be a compact (n − 2)-dimensional Poisson manifold
such that ΛP is compatible with the fiber bundle structure π : P → Q, where
Q is a (n − d)-dimensional manifold. Let ja : (P,ΛP ) → (M,ΛM ), a =
1, 2, be two disjoint embeddings of (P,ΛP ) as a transversal Poisson fibers
submanifold of (M,ΛM ). Suppose that there is an orientation reversing
isomorphism of the normal bundles ψ : ν1 → ν2. Then #ψM , the normal
connected sum along the normal bundles of ja(P ), can be given a canonical
Poisson structure Λ, characterized as follows:

Given disjoint identifications ̂a : νa → Va of normal bundles with tubular
neighborhoods Va of ja(P ) that send fibers into leaves, if we denote by Ṽ the
image of V1 ∪ V2 in #ψM , Ṽ is a locally trivial fiber bundle with base space
Q. Then, there exists a unique fiber isotopy class of Poisson forms on Ṽ
containing elements ω satisfying the following characterization:

(1) Let ΩṼ be any of the 2-forms induced in Ṽ by ωM (as shown in
the previous paragraph). Then ω − ΩṼ ∈ Ω2

fib(Ṽ → Q) (which is
closed) has compact support and is exact (it does not depend on the
representative).

(2) The identification ̂1 : ν1 → V1 ⊂ M can be chosen in such a way
(i.e., isotopic (rel. j1(P )) by an isotopy with compact support) that
the Poisson 2-form ωM is SO(2)-invariant on V 0

1 = ̂1(ν0
1), with

ν0
1 the open disk bundle of radius π−1/2, and on the closure of each

fiber of V 0
1 it is symplectic with area t0 independent of the fiber

(we can isotope the initial embedding into the second one fixing the
complement of each disk of radius r > π−1/2). The forms (1 −
s)ωM + sπ∗ωP , 0 ≤ s < 1, are all Poisson on the closure of V 0

1 .
(3) There is a closed vertical 2-form ζ with compact support in V 0

2 =
̂2(ν0

2), with ν0
2 the open disk bundle of radius π−1/2, such that for

all t ∈ [0, t0] the form ωM +tζ is Poisson on both V1∪V2 and j2(P ).
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(4) There is a map χ : ν2 → ν2 (preserving the disks) isotopic to the
identity by an isotopy with support in ν0

2 , such that outside of a
compact subset K of V 0

1 , the map ϕ = ̂1 ◦ ψ ◦ i ◦ χ ◦ ̂2 : V 0
1 −

j1(P ) → V 0
2 − j2(P ) (where ̂1 is as in point 2) is Poisson with

respect to the Poisson form ω̃M = ωM + t0ζ on M (i.e, we modify
the embedding ̂2 to χ ◦ ̂2). The manifold #ψM is obtained from
(M − (K ∪ j2(P )), ω̃M ) by gluing via ϕ (it follows that ω equals ωM
on the image on #ψM of the complement of V 0

1 ∪ V 0
2 ).

Moreover, different choices of embeddings of the normal bundles are con-
nected by an isotopy that preserves the isotopy class described above.

Finally, the form ω depends smoothly on ωM , ωP (and hence on j1, j2)
and it can be constructed with each Va, a = 1, 2 lying inside any preassigned
neighborhood of ja(P ).

Now we will devote the next paragraphs to prove Theorem 4.4.

4.4. The contraction operator. We recall that ν(P ) is an SO(2)-
bundle. Let τs : ν(P ) → ν(P ), 0 ≤ s ≤ 1 denote the multiplication by s on
each disk and let Xs denote the corresponding vector field. Since Xs is a
vertical vector field with respect to the fiber bundle structure ν(P ) → Q,
we can define the operator I : Ωk

fib(ν(P )→ Q)→ Ωk−1
fib (ν(P )→ Q) by

I(ρ) =
∫ 1

0
τ∗s (iXsρ)ds

As usual, if ρ is closed and j∗ρ = 0, then dI(ρ) = ρ. It is also true that
I commutes with any action preserving the SO(2)-bundle structure.

Corollary 4.5. Let ω1, ω2 be two Poisson forms on ν(P ) compatible with
the fiber bundle structure ν(P )→ Q verifying j∗ω1 = j∗ω2 and inducing the
same orientation on ν(P ). There exist U1, U2 neighborhoods of P in ν(P )
and an isomorphism φ : ν(P )→ ν(P ) isotopic (rel. P ) to the identity, by an
isotopy with compact support, such that φ : U1 → U2 verifies φ∗ω2 = ω1. If
both forms already coincide over a compact subset C of P , we may assume
the isotopy to have support on a preassigned neighborhood of the closure of
P − C.

The isomorphism φ can be chosen to depend smoothly on ω1 and ω2. In
fact, if we are given smooth families ω1,r, ω2,r, b ≤ r ≤ c, coinciding on
a fixed neighborhood of a given compact set C, and construct isomorphisms
(as in the proof that follows) φb, φc verifying φ∗bω2,b = ω1,b and φ∗cω2,c = ω1,c,
then there exists a smooth family φr that verifies φ∗rω2,r = ω1,r on a fixed
neighborhood of P and equals the identity in the chosen neighborhood of the
closure of P − C.

Proof. As in the Darboux-Weinstein theorem proof, we consider the
vertical closed 2-form η = ω1−ω0 and the family ωt = ω0 + tη (also vertical
closed 2-forms). We can find a small neighborhood of P in which the ωt
are non-degenerate (because on P both forms induce the same orientation
on the normal disk and because of the compactness of P ). There, we know
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that η = dα, with α = I(η), and we can find a family of vertical vector fields
Yt characterized by the equation iYtωt = −α. After using a suitable bump
function, this 1-parameter family defines a global flow Ψt on ν(P ), leaving P
stationary. Computing d

dt(Ψ
∗
tωt) we conclude that Ψ∗tωt does not depend on

t near P . If the forms coincided in a neighborhood of C, η vanishes on that
neighborhood. Regarding families, we see that in the procedure we made a
choice of a bump function, and we can smoothly join two such choices. �

Corollary 4.6. Let (M,ΛM ) be an n-dimensional Poisson manifold of rank
d. Let (P,ΛP ) be a regular compact Poisson manifold of dimension n − 2
which fibers over the (n − d)-dimensional manifold Q and such that ΛP
is compatible with the fiber bundle structure. Assume that ja : (P,ΛP ) →
(M,ΛM ), a = 1, 2, embeds (P,ΛP ) as a transversal Poisson fibers sub-
manifold of (M,ΛM ). Suppose that both normal bundles are trivial and let
ψ : ν1(P )→ ν2(P ) be a bundle isomorphism identifying them and preserving
the orientation of the fibers. Then #ψM can be given a Poisson structure
Λ.

Proof. We can identify each normal bundle with P ×R2 in such a way
that each disk {z} ×D2 has area form dx∧ dy. We also have isomorphisms
̂a : P×D2

ε → Va, a = 1, 2, and ψ̃ : P×D2
ε → P×D2

ε . The main point is that
since the normal bundles are trivial, j∗aωa + dx ∧ dy are Poisson structures
that restrict to j∗aωa on P . Hence, we can find a real number δ > 0, and
diffeomorphisms ̃a : P × D2

δ → Ua with ̃∗1ω1 = j∗1ω1 + dx ∧ dy, ψ̃∗̃∗2ω2 =
j∗1ω1 + dx ∧ dy, Ua ⊂ Va neighborhoods of ja(P ). Composing ψ̃ with the
area preserving map (r, θ) 7→ (

√
δ2 − r2,−θ) preserves the Poisson structure

and hence allows us to define a Poisson structure on #ψM . We notice
that we could have equally asked our initial fiber bundle morphism ψ to
reverse the orientation of the fibers, because by composing with the leafwise
reflection (r, θ) 7→ (r,−θ) one can always reverse the orientation of a trivial
bundle. �

Remark 4.7: In the above construction, the Poisson structure coincides with
ΛM on M − (j1(P ) ∪ j2(P )). But we have to allow perturbations in a
neighborhood of one of the embeddings to have uniqueness up to isotopy.

The main obstruction to finally solve the problem posed in Thm. 1 in
general is that one cannot put a global Poisson structure on νa induced by
j∗aωa and the symplectic structure on the symplectic orthogonals, unless the
normal bundle is trivial. We can overcome this difficulty in the following
way. We consider ν0

a , the bundles of open disks of radius π−1/2, and identify
the punctured disks by composing i with ψ to get B, an S2-bundle with
structural group SO(2) whose fibers have an SO(2)-invariant area form ωS2

that integrates into 1 on each of them. We have two embeddings i0 : P →
B, i∞ : P → B with ̂1i0 = j1, ̂2i∞ = j2. Let us denote E0 = B − P∞
(resp. E∞ = B − P0). Using Thurston’s ideas (see [41], Thm. 6.3) we can
construct a vertical 2-form η restricting to the above defined area form on
each fiber: we consider a form β on q : B → P representing the Poincar
dual of P0 so that it integrates to 1 on each fiber (sphere transverse to P0).
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It can be chosen to have support in a small neighborhood of P0, so that it
vanishes on P∞. We take trivializations hk : q−1(Uk)→ Uk × S2 of B and a
partition of the unity ρk subordinated to {Uk}. Since h∗kπ

∗
S2ωS2−β = dαk on

q−1(Uk), η = f(β+d
∑

k(ρk◦ q)αk), where f is the forgetful map f : Ω2(B)→
Ω2

fib(B → Q), satisfies the requirements. The result of averaging η − q∗i∗0η
(both q, i0 are maps lifting id: Q→ Q) under the SO(2)-action is a vertical
SO(2)-invariant 2-form, that we will still call η, such that it restricts to the
canonical volume form on each sphere and i∗0η = 0. We can even choose η so
that η|E0 extends over ν1 to a closed vertical form that is symplectic on the
planes (fibers). We only need to pick β with support away of P∞, so that on
the intersection of that neighborhood with q−1(Ui) (Ui contractible) αk can
be chosen to be h∗kπ

∗
S2α

′, for any α′ with dα′ = ωS2 on that neighborhood.
In particular, the restriction of the 1-form α = 1/2(r2− 1

π )dθ ∈ Ω1(R2−{0})
(given in polar coordinates) to the disk of radius π−1/2 admits an extension
to a form α′ on S2 − {0} with dα′ = ωS2 .

The forms ωt = q∗j∗1ω1 + tη are non-degenerate for 0 < t ≤ t1 because,
as Thurston observed, q∗j∗1ω1 is non-degenerate on the orthogonal to the
tangent space of the spheres (which does not depend on t because it is
determined by η). For a choice of η extending to ν1 as described above, the
forms ωt will be symplectic near the closure of E0 ∼= ν0

i in ν1 for t1 ≤ t small
enough.

4.5. Comparing the Poisson structures on B, E0 and E∞. Now
that we have a family of closed non-degenerate 2-forms on B, we would like
to compare one of them with the ones defined on E0 ∼= ν0

1 and E∞ ∼= ν0
2 that

come from ω1 and ω2. Following Cor. 4.5, for each t we could find neigh-
borhoods (Wt

0, ωt) of P0 and (Wt∞, ωt) of P∞ which are Poisson equivalent
to some neighborhoods (depending on t) of (j1(P ), ω1) and (j2(P ), ω2). But
nothing guarantees that B =Wt

0 ∪Wt∞, for some t.
Instead, we use Gompf’s construction again. On E0, let ϕ = I(η) and

define the vertical vector fields Yt, 0 < t ≤ t1 by the condition iYtωt = −ϕ
(also defined in a neighborhood of the closure of E0, if η was chosen to extend
to ν1). The key property is that these vector fields are SO(2)-invariant. For
a fixed t0, the flow Ψt, required to be the identity for t = t0, is SO(2)-
invariant and of course verifies Ψ∗tωt = ωt0 . In principle, we know that for
any SO(2)-invariant compact set K ∈ E0 there exists an interval J of t0
in (0, t1] where the flow Ψ: K × J → E0 is defined. But in can be shown
that Ψ is defined on E0 × [t0, t1]. Given any point x on E0, it determines
an SO(2)-orbit on its fiber and hence a disk D(x). We define:

A(x) =
∫

D(x)
η

and,

At(x) =
∫

D(x)
ωt ,

where the forms are pulled back to the disk. The map A : E0 → [0, 1) is a
smooth SO(2)-invariant proper surjection and it is clear that At(x) = tA(x).
Given x ∈ E0, t0 ∈ (0, t1] and K = D(x) we obtain a flow as above on D(x).
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Let D(Ψt(x)) be the disk whose boundary is the SO(2)-orbit of Ψt(x) (it is
also Ψt(∂D(x))). Then we have:

tA(Ψt(x)) = At((Ψt(x))) =
∫

D(Ψt(x))
ωt

=
∫

Ψt(D(x))
ωt =

∫

D(x)
Ψ∗tωt =

∫

D(x)
Ψ∗t0ωt0 = t0A(x),

So we can conclude that A(Ψt(x)) = t0
t A(x). Since A, which is proper, de-

creases with the flow lines (with t increasing), these flow lines cannot aban-
don E0 and hence Ψ is defined in E0×[t0, t1]. The inequality A(Ψt1(x)) < t0

t1

implies that choosing t0 small enough, Ψt1 sends E0 into any initially fixed
tubular neighborhood of P0. In particular, we choose t0 so that Ψt1(E0) ⊂
Wt1

0 . Hence ̂1Ψt1 sends (E0, ωt0) into (̂1Ψt1(E0), ω1). Actually, the Pois-
son morphism Ψt1 extends to a neighborhood of the closure of E0, for suit-
ably chosen η and thus it can further be extended to a diffeomorphism
Ψt1 : ν1 → ν1 isotopic to the identity by an isotopy with compact support
(but only Poisson in a neighborhood of the closure of E0 ∼= ν0

1) .

The restriction of each ωt to P∞ induces also a Poisson structure, but in
general i∗∞ωt 6= j∗2ω2. But we can modify ω2 in a neighborhood of j2(P ) (ω2

has not been involved in all the previous work) so that the above equality
holds: we choose µ : B → B an SO(2)-equivariant map lifting id : P → P
such that µ fixes a neighborhood of P∞ and collapses a neighborhood of P0

to P0. The composition of the restriction of ̂−1
2 to V 0

2 with µ can be extended
to a map λ from a closed neighborhood U2 of V 0

2 in V2 (a neighborhood of
∂U2 is sent to P0). We can then modify the Poisson structure of (U2, ω2) ⊂
(V2, ω2) (without modifying the symplectic foliation), by adding to ω2 a
closed vertical 2-form ζ such that ω2 + ζ is non degenerate (and hence
Poisson) and ζ vanishes in a neighborhood of ∂U2 in U2. If we call ζ = λ∗η,
then there exists t2 > 0 (by the compactness of P ) such that for all 0 ≤ t ≤
t2, ω̃M = ω2+tζ is non degenerate. To solve the problem we just need to pick
our previous t0 smaller than t2 (and use of course ω̃M = ωM + t0ζ). So we
can glue to define a Poisson form ω on Ṽ that satisfies all the requirements of
theorem 4.4. To be more precise, we can find a map χ : E∞ → E∞ isotopic
to the identity by an isotopy (rel. P∞) with support in ν0

2 and Poisson,
with respect to the forms ωt0 and ωM + t0ζ, in a neighborhood U∞ of P∞
(the map can actually be extended to a diffeomorphism of ν2 isotopic to the
identity). We glue using the map ̂2 ◦ χ ◦ i ◦ ψ ◦Ψ−1

t1
◦ ̂−1

1 : V 0
1 → V 0

2 , where
Ψt1 and χ are thought as diffeomorphisms of the normal bundles (instead
of having domain in the sphere bundle B). The embeddings we finally use
are ̂1 ◦ Ψt1 and we modify ̂2 by composing on the right with χ : ν2 → ν2.
The only condition that needs to be checked is that the difference [ω −ΩṼ ]
(which by construction has compact support) is exact. As we saw ,it can be
checked fiberwise. Thus, it is enough to show that

〈ω − ΩṼ , F 〉 = 0, ∀F ∈ H2(Ñ ,Z),
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for all the fibers Ñ of Ṽ → Q. This time we will not write the proof of
equation 4.5 because it is, word by word, what Gompf showed ([24] pag.
547-548).

Concerning uniqueness, for any smooth family of Poisson forms ωt ∈
H2

fib(Ṽ → Q), t ∈ [0, 1], such that the forms ωt−ΩṼ are exact and compactly
supported, the forms ωt−ω0 are exact in compactly supported cohomology
(we can find common compact set W of Ṽ containing all the supports).
Hence we can find a family of compactly supported 1-forms αt with d

dtωt =
d
dt(ωt−ω0) = dαt and apply Moser’s theorem to show that there is an isotopy
with support in W ⊂ Ṽ pulling back all the forms of the family to ω0. The
isotopy class of the form constructed using the described procedure is fixed.
A different choice of t ≤ t0 can be absorbed using the parametrized version
of Corollary 4.5. Equally, for any other choice η̂ the family ηs = sη+(1−s)η̂
is valid for the construction and we can again apply the same corollary to
the family Ψs,t. Any other choices can be connected by smooth families, and
the same happens when we change the embeddings of the normal bundles
(preserving the foliations) and the choice of ψ (preserving the fiber bundle
structure) by isotopic identifications.

Any Poisson 2-form ω verifying the four conditions of theorem 4.4 is
isotopic to one constructed using the described procedure. We use ψ to
recover the sphere bundle B and the modified embeddings to put in B a
SO(2)-invariant Poisson form ωt0 that agrees with ωM on V 0

1 and with ω̃M
near j2(P ), and that is also the result of applying the construction of the
theorem with η = 1

t0
(ωt0 − q∗ωP ) and t1 = t0. SO(2)-invariance implies that

the fibers are ωt0-orthogonal to P∞, so η is actually non-degenerate on the
fibers at P∞. Non degeneracy of ωt at P∞ , (t ≤ t0) follows from condition 3,
applied first to TP∞. We can extend η to ν1 after shrinking the embedding
̂1 : ν1 → M (rel. E0)(non-degeneracy is an open condition). If we apply
the construction to the embedding of condition 2 (shrinked (rel. E0), if
necessary), when t = t0 we get the same embedding (Ψt0 = id) because
it was already Poisson. The same happens for the second embedding (the
correction χ equals the identity), provided we chose the given ζ defining ω̃M ,
rather than setting ζ = λ∗η. Hence, the gluing map equals ϕ−1 near j2(P ).
The only price to pay is that ζ may not be λ∗η, for λ extending the restriction
of ̂−1

2 to V 0
2 (but we have that j∗2ζ = i∞η, and ζ can be assumed to vanish

outside ̂2(B − P0) = V 0
2 ). We will show that ω and ω′, constructed using

ζ ′ = λ∗η, are isotopic (by an isotopy fixing the complementary of a compact
set in Ṽ ). It will be enough to show that the Poisson forms constructed
using ζs = sζ ′ + (1 − s)ζ, satisfy the condition 1 of the theorem. But that
can be proven using the ideas that proved 〈ΩṼ − ω, F 〉 = 0 ∀F ∈ H2(Ñ ;Z)
(see [24] pag. 549). �

5. The modular class of #ψM

Let (M,ΛM ) a Poisson manifold that we assume for simplicity to be
orientable. An important invariant of the Poisson structure is the modular
class [57]. Roughly speaking, it measures up to which extent the Poisson
manifold admits a measure transverse to the leaves invariant by all the
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hamiltonian vector fields. The modular class belongs to the first group of
Poisson cohomology of (M,ΛM ) (see [54]). For each volume form µ, a vector
field (derivation) representing the modular class is defined by the formula

φµ : f 7→ divµXf ,

where Xf is the Hamiltonian vector field associated to f and divµ the di-
vergence with respect to µ.

A Poisson manifold with vanishing modular class is called unimodular. It
is clear from what we said that a orientable Poisson manifold is unimodular
if and only if there exists a volume form invariant by all the hamiltonian
vector fields. Since (at least in the regular set) a volume form is the wedge
product of the leafwise Liouville volume form (which is invariant by the
hamiltonian vector fields) and a transverse volume form, the invariance of
this transverse volume form is equivalent to the invariance of the whole form
(and that is why we spoke about measuring the existence of an invariant
transverse volume form).

Now let us assume that #ψM is oriented.

Proposition 5.1. If (#ψM,Λ) is unimodular then (M,ΛM ) is also unimod-
ular, but the converse is not true.

Proof. We first notice that if we have an oriented Poisson manifold
(N,ΛN ) and an open set U such that (U,ΛN |U ) is unimodular, then (N,ΛN )
will be unimodular if any of the invariant volumes on (U,ΛN |U ) can be
extended to an invariant volume on (N,ΛN ). We will see that there are
cases where (N,ΛN ) is unimodular but not all the invariant volumes on a
certain open set can be extended to be invariant on (N,ΛN ). It is worth
noticing that when (N,ΛN ) is a Poisson fibers manifold and U cuts each
leaf in an open connected set (non-empty), then any invariant volume form
in (U,ΛN |U ) extends to a unique invariant form on (N,ΛN ) [57]. It follows
easily that in a general Poisson manifold (N,ΛN ), if we take a closed set
V contained in an open one U , such that U (connected) is fibers and V
intersects each fiber in a non-empty set whose complement (in the fiber) is
connected, then (N,ΛN ) is unimodular if and only if (N − V,ΛN |N−V ) is
unimodular. As a consequence, any perturbation of the Poisson bivector on
V that preserves the foliation does not affect the unimodularity (resp. non-
unimodularity) of (N,ΛN ). Hence, the unimodularity of (#ψM,Λ) implies
the unimodularity of (M,ΛM ). If we start with (M,ΛM ) unimodular, since
Va fibers over Q, any invariant volume on (M,ΛM ) will determine a couple
of volume forms on Q. It is clear that (#ψM,Λ) will be unimodular if and
only if we are able to find an invariant volume form such that the induced
volume forms on Q are the same. Though in general this not true (and we
will end up the proof of the proposition constructing counterexamples), we
will describe now some situations where this occurs.

Definition 5.2. Let (M,ΛM ), (P,ΛP ) and j1 : (P,ΛP ) → (M,ΛM ) be as
in Theorem ??. Assume that j1(P ) has trivial normal bundle. Then once
we have fixed a trivialization ψ of the normal bundle, we can apply our
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construction to the disjoint union of (M,ΛM ) with (M,ΛM ). We denote
the resulting manifold by (M#ψM,ΛM#ΛM )

Corollary 5.3. Let (M,ΛM ), (P,ΛP ) be as in the above definition . Then
(M,ΛM ) is unimodular if and only if (M#ψM,ΛM#ΛM ) is unimodular.

To construct counterexamples we begin by proving the following lemma:

Lemma 5.4. There exist Poisson fibers manifolds (actually symplectic bun-
dles) with open sets having invariant volume forms which do not extend to
invariant volume forms on the whole manifold.

Proof. The idea is to start with our fibers open set, and then glue
some of the fibers into a single one (so we are putting restrictions on the
volume form we pull back from the base space). We consider the Poisson
fibers manifold S2n−1 ×D2 → S2n−1, where D2 is the corresponding closed
unit disk with its usual symplectic form (have in mind the case n = 1).
For each point of S2n−1 we consider its image by the antipodal map and
identify the boundaries of the corresponding fibers via a reflection (say, on
the y-axis) ry : S1 → S1. The resulting manifold is a symplectic bundle
over RP 2n−1 with fiber the sphere with the usual area form (it can also be
constructed by considering S2n−1 ⊂ R2n ⊂ R2n+1, taking a closed tubular
neighborhood of fixed radius of S2n−1 ⊂ R2n+1 and identifying its boundary
using the antipodal map and then rescaling the area form). If we remove
all the equators we obtain the initial open disk bundle. In this open set,
the invariant volume forms come from volume forms on S2n−1, but only the
ones invariant under the action of the antipodal map on S2n−1 extend to
invariant volume forms on the whole manifold.

There is a third way of constructing these manifolds, starting from
the final Poisson manifold, which gives much more examples. We choose
(Q,G, (F, ω), ρ) where Q is a compact manifold, G is a normal subgroup
of π1(Q) of finite index and ρ is a representation of K = π1(Q)/G in the
group of symplectomorphisms of (F, ω) such that there are points in F with
trivial stabilizers. QG, the cover of Q associated to the subgroup G is a
principal K-bundle, so we can construct the associated bundle to the cho-
sen representation ρ by symplectomorphisms. Our resulting manifold M is
a symplectic bundle and hence a Poisson manifold, but as a bundle, since it
has discrete structural group, it has the unique lifting property. Thus, if on
the fiber over the base point x0 of Q, we pick a point z with trivial stabilizer,
the lifting to z of all the homotopy classes of paths based on x0 gives us an
embedding of QG in M (transverse to the fibers). On the fiber over x0, the
points close to z have trivial stabilizer which implies that the normal bundle
to QG is trivial. We can even take as a tubular neighborhood the result
of pushing a small disk around z using the unique lifting property, which
gives us a symplectic subbundle. It is clear that the invariant volumes on
a small tubular neighborhood of QG that extend to invariant volume forms
on the whole manifold are those which come from K-invariant volume forms
on QG. �
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Now we are ready to finish the proof of proposition 5.1:
To construct the counterexample we take two copies of any of the sym-

plectic fibrations (Q,G, (F, ω), ρ)→ Q of lemma 5.4 (with F a surface) and
consider in both the same embedding of QG. Now we fix a volume form µ
on QG that descends to Q. Then we pick a point z ∈ QG and consider
a diffeomorphism f : QG → QG homotopic to the identity (rel. z) which
is the identity in a neighborhood of the remaining points of the orbit of z
and which does not preserve µ in z. We identify both embeddings of QG
in M via f and perform the fibers connected sum using any framing ψ to
obtain manifold which is non unimodular. If it was, an invariant volume
form would induce a volume form ehµ on QG both invariant by the action
of K and the action of K conjugated by f , but this cannot happen at the
point z. �

6. Poisson manifolds with arbitrary fundamental groups

Using the previous results we can prove the theorem for Poisson mani-
folds stated in the introduction that extends results for symplectic manifolds.

Proof of theorem 1.2. As it was remarked in the introduction, we
only need to prove the case n = 5, d = 4 because Gompf already showed
it for n even and d 6= n − 1 (multiplying one of its manifolds by an sphere
of the appropriate dimension), and the odd higher dimensional cases follow
from the 5-dimensional one (by multiplying by simply connected symplec-
tic manifolds of the appropriate dimension in the case of a codimension 1
symplectic foliation).

We first recall Gompf’s proof: one starts with a closed symplectic man-
ifold T 2 × Σg such that G can be obtained by collapsing some elements
of its fundamental group. The symplectic form is chosen so that these el-
ements are the simple curves of some trivially embedded symplectic tori.
The key step is that the manifold which is glued along each one of this
tori is a rational elliptic surface (along one of its regular fibers), and the
resulting fundamental group, which does not depend on the chosen framing,
is the old one with the homotopy of these tori killed. It is worth recall-
ing the topology of this rational elliptic surfaces. They are diffeomorphic

to CP 2
9
# (−CP 2) and an example can be constructed by blowing up the

nine points of CP 2 where two generic cubics intersect. We get in this way

a fibration p : CP 2
9
# (−CP 2) → CP 1 whose fibers are the pencil of cu-

bics generated by the two given ones. The general fiber is a smooth cubic
(topologically a torus) and we also have 12 singular fibers which topologi-
cally are a sphere with a self intersection point (the result of collapsing a
non-separating regular curve of the generic fiber). It is easy to check that
the complement of a regular fiber is simply connected. Roughly speaking,
the complement fibers over a disk so we only have to care about the fiber.
Following [33] , we see that this complement can be constructed starting
from D2 × T 2, T 2 =< a > × < b >. Extending the fibration to a bigger
disk (in CP 1) containing a singular fiber, amounts to gluing a two handle
(with some framing) over either a or b (we have 12 singular fibers, and 6 of
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the disks go over a and 6 over b). The last step is to glue a neighborhood of
the regular fiber over ∞. Hence, any curve contained in a fiber is trivial in
p−1(CP 1 − {0,∞}).

To get our Poisson 5-manifold M with π1(M) ∼= G, we consider one
of Gompf’s manifolds (MG, ωMG

) with π1(MG) = G. We can also assume

that MG = NG#CP 2
9
# (−CP 2) and that the fiber removed is p−1(∞).

Let M1 = MG × S1 with the product Poisson structure (the vertical 2-form
p∗1ωMG

, that we rename as ωMG
). In MG, the fiber p−1(0) = T is a trivially

embedded symplectic torus with symplectic form ω0. Now let M2 = T × S3

with the product Poisson structure coming for ω0 and a Poisson structure
of S3 determined by the Reeb foliation and the usual volume form, and let
k ⊂ S3 be the unknot, which is a Poisson submanifold of S3 transverse to
the foliation. We consider the Poisson submanifolds P1 = T × S1 ⊂ M1,
P2 = T × k ⊂ M2. It is clear that both are transversal Poisson fibers
submanifolds. Moreover, they are trivially embedded and any identification
of k with the factor S1 of P1 identifies P1 and P2 as Poisson manifolds.
Any identification between normal bundles will allow us to construct the
corresponding connected sum along the normal directions. In this case, we

have canonical framings; the one in P1 comes from the projection p : CP 2
9
#

(−CP 2) → CP 1 and the one in P2 from the zero-framing of the unknot.
Using this framing and < a, b, s > as base of H3(T × S1;Z) (the choice of s
depends on the orientation we pick for M1), any other framing is given by
a triple (l1, l2, l3) ∈ Z3. We will denote the obtained Poisson manifold by
M1#(l1,l2,l3)M2. The computation of its fundamental group is mere routine,
but we will do it anyway because this is not quite the manifold we are looking
for. As usual, we apply Seifert-Van Kampen’s theorem:

Let D1 be the unit disk contained in CP 1 and W2 = k ×D2 be a small
tubular neighborhood of k in S3. Let us call V1 = p−1(D1) × S1, V2 =
T ×W2. M1 − V1 = (MG − p−1(D1)) × S1 and π1(MG − p−1(D1) has the
same generators as π1(MG) and the same relations except from the one
that assures that the loop α̂, a lift of α = ∂D1, is vanishing. π1(M2 − V2)
is the free group generated a, b and by the loop β = ∂D̄2 generating the
homotopy of S3−W2. Now we see that the loop s generating the homotopy
of S1 in (MG − V1) × S1 goes to a curve isotopic to k + l3β. The curves
a, b ⊂ T × {x} ⊂ M2 − V2 are seen as the correspondent simple curves
generating the homology of a fiber over a point in ∂D1 plus some multiple
of α̂. Finally, the loops α̂ and β are the same.

We probably did not get the desired manifold because we cannot con-
clude that α̂ is contractible, but we turned our initial problem of killing the
generator of the homotopy of S1 in MG × S1 into a problem that amounts
to kill a curve in a manifold whose topology we know quite well.

In MG, we consider T2, be the torus generated by the loops α̂ + a, b.
T2 is a symplectic torus trivially embedded (the symplectic structure on
p−1(0) × D2

1+ε can be assumed to be the product symplectic structure).
Applying Gompf’s construction to MG and a rational elliptic surface along
the normal directions of T2 and a regular fiber we get a symplectic manifold
M̃G . It is clear that π1(M̃G) = π1(MG), but in M̃G we have a disk that
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bounds α̂ lying in M̃G − p−1(D1). Thus, if we do the fiber connected sum
of M̃G × S1 and T × S3 along P1 and P2 (T = p−1(0) is of course in M̃G),
we get a Poisson manifold M̃1#(l1,l2,l3)M2 such that π1(M̃1#(l1,l2,l3)M2) ∼=
G. It is worth noticing that the diffeomorphism type of M̃1#(l1,l2,l3)M2

depends at most on l3. To see that we observe that M2 − V2 is a tubular
neighborhood of T × β̂, where β̂ is a loop in the interior of M2− V2 isotopic
to β and thus ∂(M2 − V2) has an S1-bundle structure (over T × β̂) . Hence
the diffeomorphism type of the connected sum is totally determined by the
image in ∂(M̃1 − V1) of the S1-bundle structure of ∂(M2 − V2) (because
M̃1#(l1,l2,l3)M2 is the result of collapsing to a point the fibers of the described
fibration), and these fibrations are classified by the value of l3 (the authors
do not know whether different values of l3 yield different diffeomorphism
types).

As we already observed, if we use Kummer surfaces instead of rational
elliptic ones to construct M̃G, both M̃1 and M2 can be given spin structures.
For any such structures, since H2(Pi;Z) has no torsion, one can find integers
l̄1, l̄2, l̄3 with M̃1#(l̄1,l̄2,l̄3)M2 admitting a spin structure extending any given
ones. �

Remark 6.1: In the examples above (dimension 5) there are three kinds of
symplectic leaves. We have a family parametrized by S1 which are diffeo-
morphic to M̃G − T1 and hence have G as fundamental group; we have
another S1-family of leaves diffeomorphic to R2 × T1 and both families fill
open connected sets separated by a compact leaf T1 × T , where T is the
closed torus of the Reeb foliation of S3. Any of the non-closed leaves has
the closed one as set of accumulation points.

7. An application to the construction of calibrated foliations

The normal connected sum of two calibrated Poisson manifolds is a reg-
ular Poisson manifold with codimension 1 leaves. The existence of a lift to a
calibrated structure can be studied through a spectral sequence. In our case,
we are just going to give sufficient conditions and an effective construction
of the lift in that situation.

Theorem 7.1. Let (M2n+1
a ,Fa, ωa), a = 1, 2 be two taut foliations of in-

teger type. Let (P 2n−1,ΛP ) be a Poisson manifold which is a symplectic
bundle over S1 (connected fibers). Assume that we have two disjoint embed-
dings ia : P → Ma, a = 1, 2 as transversal fibers Poisson submanifolds of
(M2n+1

a ,Fa,Λa) such that:

(1) H2(P ;Z) has no torsion.
(2) The normal bundles of the embeddings νa(P ) are trivial.
(3) The positive 2-forms ωP,a = i∗aωa define the same cohomology class

in H2(P ;Z) (we already know that they define the same leafwise
2-form).

Then, for a choice of isomorphism ϕ, then there are Poisson structures
Λ defined in the normal connected sum M1#ϕM2 that admit a lift to a taut
structure of integer type ω.
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Proof. Let us recall that when the normal bundles of the embeddings
are trivial, the surgery technique works without perturbing the leafwise 2-
form. Applying theorem 4.4 without modifying the structures we obtain Λ
a leafwise non-degenerate closed 2-form on M1#ϕM2.

We want to define the lift ω as the curvature of a line bundle with her-
mitian connection, whose choice it is clear from the conditions we imposed.

Taking any integer lift of ωa, we have a choice (La,∇a) of (isomorphism
class) of line bundle with hermitian connection such that iFa = ωa.

The pullbacks LP,a = i∗aLa are isomorphic bundles. The reason is that
for both, the curvatures ωP,a define the same real cohomology class (con-
dition (3)), and since the integer cohomology has no torsion, the LP,a are
representatives of the unique isomorphism class of hermitian line bundles
with connection associated to the cohomology class [ωP,1] = [ωP,2].

The gluing map that defines M1#ϕM2 identifies a set A1 which is tubu-
lar neighborhood of i1(P ) minus the submanifold (zero section) , with A2,
another tubular neighborhood of i2(P ) minus section the zero, so that when
we approach j1(P ) we are leaving j2(P ).

We just want to show that the identification ϕ : A1 → A2 lifts to a bundle
isomorphism Ψ: L1|A1

→ L2|A2
. Actually the existence of the isomorphism

follows from the fact that LP,1 and LP,2 are isomorphic complex hermitian
bundles.

Indeed, we can think of the annulus as a family Sa,t, t ∈ (1, 0) of trivial
circle bundles over ja(P ) so that ϕ sends S1,t to S2,1−t. The restriction to
Sa,t = S1 × ja(P ) of La is isomorphic to the pullback by p2 : S1 × ja(P )→
ja(P ) of LP,a. Thus, this restrictions are isomorphic and it is straightforward
to define then and isomorphism Ψ.

The hermitian bundle L1#ΨL2 →M1#ϕM2 has two not everywhere de-
fined hermitian connections ∇1,∇2. They overlap for example in the an-
nulus A1 ⊂ M1#ϕM2. Using a bump function β in M1#ϕM2 that vanishes
in M1 − A1, starts growing a bit after entering in the annulus, reaches the
value 1 before leaving it, and keeps it in M2 − A2. Let us call Ā1 ⊂ A1 to
the points where its value is neither 0 nor 1.

One first attempt is to consider the hermitian connection β∇1+(1−β)∇2.
Its curvature multiplied by i defines a closed 2-form. It clearly coincides with
ω1
∐
ω2 in the complement of Ā1. Over this second annulus, we would like

its leafwise curvature to coincide with βF1 + (1− β)F2 = −iΛ. This is not
true in general because in A1, ∇1 = ∇2 + B, where B is in principle a
non-vanishing complex valued 1-form.

Instead of trying to define a new identification Ψ, we proceed modifying
the connection ∇2 globally in M2.

Since ∇1 is hermitian, B = iC, where C is a real valued 1-form. Now,
we consider the restriction of the bundle and connections to the (symplectic
leafs) of A1. The foliated 1-form C|F1

is exact, because ω2|F1
+ idC|F1

–the
leafwise curvature of (L2,∇2) thought over A1 after the identification– is
Λ = ω1|F1

= ω2|F2
in A1.

Hence we can find on each leaf a potential for C|F1
. It is easy to make

a choice on each leaf so that the resulting function is smooth in A1. For
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example, we take a “section” P̃ of A1 (a copy of P that cuts each leaf of
A1 once), and choose the unique potential function f vanishing at P̃ . The
next step is to extend f , defined in a subset of M2, to a function g defined
everywhere in M2. We will probably need to modify it in the points close
to j2(P ), and we do it so that g|Ā1

= f .

Define in L2 the hermitian connection ∇̃2 = ∇2 − idg. It is clear that
∇ = β∇1 + (1− β)∇̃2 is a hermitian connection on L1#ΨL2 whose leafwise
curvature coincides with −iΛ.

ω
def
= iF∇ is the sought for closed 2-form dominating the foliation of

M1#ϕM2 and restricting to Λ over the leaves. �





CHAPTER III

Global classification of generic multi-vector fields
of top degree

1. Introduction

The recent classification by O. Radko [51] of generic Poisson structures
on oriented surfaces, raises the question of whether it is possible to extend
it to higher dimensions.

This classification –though stated in the language of Poisson geometry–
relies on general results from differential geometry and the classification of
area forms on closed surfaces. The reason is that, in dimension 2, the inte-
grability condition that a bi-vector field must satisfy in order to be Poisson is
void. So, for generic Poisson structures on an oriented surface Σ, the difficult
problem of classifying solutions of a non-linear PDE reduces to the classi-
fication of (generic) sections of the trivial line bundle X2(Σ) ≡ Γ(∧2(TΣ)).
Then, standard methods from differential geometry apply and the problem
is greatly simplified.

In this chapter we show that O. Radko’s classification can be extended
to higher dimensions for generic multi-vector fields of top degree.

A bi-vector field is a Poisson structure of top degree. More generally, a
multi-vector field of top degree is a Nambu structure of top degree.

In fact, Nambu structures are natural generalizations of Poisson struc-
tures: a Nambu structure of degree r, on a manifold M , is a r-multilinear,
skew-symmetric bracket,

{·, . . . , ·} : C∞(M)× · · · × C∞(M)︸ ︷︷ ︸
r

→ C∞(M),

which satisfies the Leibniz rule in each entry, and a Fundamental Identity
that naturally extends the Jacobi identity. For top degree structures the
Fundamental Identity is void.

In spite of the formal similarities between Nambu structures and Poisson
structures, for r > 2 the fundamental identity imposes much more restrictive
conditions than one would expect from the Jacobi identity. That is, Nambu
structures are in a sense harder to find than Poisson structures. On the
other hand, Nambu structures are easier to describe.

We are interested in generic Nambu structures of top degree on a compact
oriented manifold M . By the Leibniz rule, such a structure is given by a
multi-vector field Λ ∈ Xtop(M) and genericity means that Λ cuts the zero
section of the line bundle ∧topTM transversally. In particular, the zero locus
H of the multi-vector field Λ is a hypersurface in M . We will show how one

141
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can attach to each connected component H i of H a numerical invariant,
called the modular period, which depends only on the germ of Λ at H i.
We construct also a global invariant which measures the ratio between the
volumes of the connected components of the complement of H, called the
regularized Liouville volume. These notions generalize corresponding notions
for 2-dimensional Poisson manifolds.

Our main result is the following:

Theorem 1.1. A generic Nambu structure Λ ∈ Xtop(M) is determined, up
to orientation preserving diffeomorphism, by the the diffeomorphism type of
the oriented pair (M,H) together with its modular periods and regularized
Liouville volume.

For dimension 2 this result recovers the classification of [51].
Using Theorem 1.1 we are also able to describe the Nambu cohomol-

ogy group H2
Λ(M) which determines the infinitesimal deformations of the

Nambu structure. On the other hand, we show that for dimension larger
than 2, the Nambu cohomology group H1

Λ(M), which determines the outer
automorphisms of the structure, is infinite dimensional.

The plan of the chapter is as follows. In section 1, we recall the definition
of a Nambu structure of degree r (definition 2.1) and list briefly some of its
main properties.

In section 2, we consider generic Nambu structures of degree n on a
n-dimensional oriented manifold (definition 3.1). We define, for each hy-
persurface H where the n-vector field Λ vanishes, a couple of equivalent
invariants. They are the modular (n − 1)-vector field XH

Λ (definition 3.2)
and the modular (n − 1)-form ΩH

Λ , which give two equivalent ways of de-
scribing the linearization of Λ along H.

In section 4, we introduce the modular period THΛ , which is just the
integral (or cohomology class) of the modular (n − 1)-form, and depends
only on the values of Λ on a tubular neighborhood of H. Conversely, we
can recover the Nambu structure in a tubular neighborhood of the oriented
hypersurface (H,ΩH

Λ ) once the modular period THΛ is specified (proposition
4.4).

The proof of main result is given in section 5 (theorem 5), where we also
introduce the regularized Liouville volume.

In section 6, among the possible cohomologies one can attach to a Nambu
structure, we consider (i) the group of infinitesimal outer automorphisms
and (ii) the group of infinitesimal deformations of the structure. The later
will turn out to have as many generators as the numerical invariants above
and we will exhibit explicitly a set of generators, which extends the one
for 2-dimensional Poisson manifolds (theorem 6.1). On the other hand,
we will show that the first cohomology group is infinite dimensional for
n ≥ 3, something to be expected from the local computations of this groups
presented in [44].

Finally, in section 7, we observe that the correspondence between isotopy
classes of generic bi-vectors on Σ = S2 and isomorphism classes of weighted
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signed trees given in [51], holds for those generic Nambu structures in Sn

for which the zero locus H only contains spheres (proposition 7.5).

2. Nambu structures

Poisson manifolds (M, {·, ·}) are the phase spaces relevant for Hamilton-
ian mechanics. For a Hamiltonian system the evolution of any observable
f ∈ C∞(M) is obtained by solving the o.d.e.

df

dt
= {H, f},

where H ∈ C∞(M) is the Hamiltonian, a conserved quantity for the system
(the “energy”).

In 1973 Nambu [48] proposed a generalization of Hamiltonian mechanics
based on a n-ary bracket. The dynamics of an observable f ∈ C∞(M) would
be governed by the an analogous o.d.e.

df

dt
= {H1, ..., Hn−1, f},

associated to n− 1 Hamiltonians H1, ..., Hn−1, so now we would have n− 1
conserved quantities.

In order to have the “expected” dynamical properties this bracket had
to satisfy certain constraints. These were clarified by Takhtajan [53], who
gave the following axiomatic definition of a Nambu structure.

Definition 2.1. A Nambu structure of degree r in a manifold Mn, where
r ≤ n, is a r-multilinear, skew-symmetric bracket,

{·, . . . , ·} : C∞(M)× · · · × C∞(M)︸ ︷︷ ︸
r

→ C∞(M),

satisfying:

(i) the Leibniz rule:

{fg, f1, . . . , fr−1} = f{g, f1, . . . , fr−1}+ {f, f1, . . . , fr−1}g,
(ii) the Fundamental Identity:

{f1, . . . , fr−1, {g1, . . . , gr}} =
r∑

i=1

{g1, . . . , {f1, . . . ., fr1 , gi}, . . . , gn};

The Liebniz rule shows that the operator Xf1,...,fr−1 : C∞(M)→ C∞(M)
which is associated to r − 1 functions f1, . . . , fr−1 by

Xf1,...,fr−1(g) = {g, f1, . . . , fr−1},
is a derivation and hence a vector field. This is called the Hamiltonian vector
field associated with f1, . . . , fr. More generally, the Leibniz identity shows
that we have a r-vector field Λ ∈ Xr(M) such that

Λ(df1 ∧ · · · ∧ dfr) = {f1, . . . , fr}.
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On the other hand, the Fundamental Identity is equivalent to the fact
that the flow of any Hamiltonian vector field Xf1,...,fr−1 is a canonical trans-
formation, i.e., preserves Nambu brackets. Its infinitesimal version reads

LXf1,...,fr−1
Λ = 0.

Obviously, for Nambu structures of top degree the Fundamental Identity
becomes void.

Example 2.2: On Rn we have a canonical, top degree, Nambu structure
which generalizes the canonical Poisson structure in R2. The Nambu bracket
assigns to n functions f1, . . . , fn the Jacobian of the map Rn → Rn, x 7→
(f1(x), . . . , fn(x)), so that

{f1, . . . , fn} = det
[
∂fi
∂xj

]
.

More generally, any volume form µ ∈ Ωtop(M) on a manifold M determines
a Nambu structure: if (x1, . . . , xn) are coordinates on M , so that µ = fdx1∧
· · · ∧ dxn, then the Nambu tensor field is

Λ ≡ 1
µ

=
1
f

∂

∂x1
∧ · · · ∧ ∂

∂xn
.

The Fundamental Identity for r > 2 is of a more restrictive nature than
one would expect from the case r = 2, when it reduces to the usual Jacobi
identity: if r > 2 besides requiring the fulfilment of a system of first order
quadratic partial differential equations, the coefficients must also satisfy cer-
tain system of quadratic algebraic equations. For example, for a constant
r-vector field (M a vector space) the system involving first derivatives is
automatically satisfied, while the algebraic relations are non-trivial, and in
fact coincide with the well-known Plücker equations. Hence, only decom-
posable r-vectors define constant Nambu structures. Another example of
this rigidity is the following well known proposition (see [53]):

Proposition 2.3. Let Λ be a Nambu structure. For any function f ∈
C∞(M), the contraction idfΛ is also a Nambu structure.

This rigidity makes it harder to “find” Nambu structures than Poisson
structures. On the other hand, it makes Nambu structures easier to describe.
Henceforth, we will assume that r > 2 if n ≥ 3.

First of all, the Hamiltonian vector fields span a generalized foliation for
which the leaves are either points, called singular points, or have dimension
equal to the degree of the structure. Around these regular points we have
the following canonical form for a Nambu structure (see for example [55]):

Proposition 2.4. Let x0 ∈M be a regular point of a Nambu structure Λ of
degree r. There exist local coordinates (x1, . . . , xn) centered at x0, such that

Λ =
∂

∂x1
∧ · · · ∧ ∂

∂xr
.
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For the singular points there are some deep linearization results due to
Dufour and Zung [16].

3. Generic Nambu structures of top degree

In this section we consider Nambu structures of degree n in a compact
orientable n-dimensional manifold M . Notice that in this case the Funda-
mental Identity is void, so a Nambu structure is just a multi-vector field
Λ ∈ Xn(M). We will restrict our attention to generic Nambu structures:

Definition 3.1. A Nambu structure Λ ∈ Xn(M) is called generic if it cuts
the zero section of the line bundle ∧nTM transversally.

The generic sections form an open dense set in the Whitney C∞ topology.
Let us fix a generic Λ ∈ Xn(M) once and for all. Its set of zeros, denoted

H, is the union of a finite number of hypersurfaces: H =
⋃
i∈I H

i, #I <∞.
Fix one of them and call it H.

Over the points of H there is some linear information attached to Λ,
namely the intrinsic derivative dΛH ∈ T ∗HM ⊗ ∧nTM . It can be defined
as dΛH ≡ ∇Λ|H , where ∇ is any linear connection on ∧nTM . This is
independent of the choice of connection. The intrinsic derivative gives the
linearization of the Nambu structure at H: if we view Λ as a section, it is
the tangent space to the graph of Λ. It is important to observe that dΛH

never vanishes due to the transversality assumption. Notice that dΛH is a
section of T ∗HM ⊗∧nTM , but due to the nature of our (trivial) line bundle
it has two equivalent interpretations which we shall now explain.

Fix a volume form Ω in some neighborhood of H in M , so that dΛH⊗Ω ∈
T ∗HM .

Definition 3.2. The modular (n−1)-vector field of Λ along H is the unique
(n− 1)-vector field XH

Λ ∈ Xn−1(H) such that iXH
Λ

Ω = dΛH ⊗ Ω.

This definition does not depend on the choice of Ω: if Ω̃ is another volume
form, then Ω̃ = fΩ for some non-vanishing smooth function f , and we find

iXH
Λ
fΩ = dΛH ⊗ fΩ.

Notice that since XH
Λ is tangent to H and no-where vanishing, we can

define the modular (n− 1)-form along H to be the dual (n− 1)-form ΩH
Λ ∈

Ωn−1(H); that is, ΩH
Λ (XH

Λ ) = 1. If we fix a vector field Y over H, which is
transverse to H, the modular form along H is given by

ΩH
Λ = (−1)n−1 1

dY ΛH ⊗ Ω
j∗iY Ω,

where j : H ↪→ M is the inclusion. This expression is independent of Y .
The modular (n − 1)-form along H is non-zero, and hence Λ determines
an orientation in H. It is clear that to give either of dΛH , XH

Λ or ΩH
Λ ,

determines the others.
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Let us relate these definitions with the well-known notion of modular
class of a Poisson manifold. For any Nambu structure of degree r in a
oriented manifold there is a natural generalization of the modular class of
a Poisson manifold [?], which we now recall. Again we fix a volume form Ω
on M . Then, for any (n− 1)-functions f1, . . . , fn−1 on M , we can compute
the divergence of the corresponding Hamiltonian vector field:

(f1, . . . , fn−1) 7→ div Ω(Xf1,...,fn−1) ≡ 1
Ω
LXf1,...,fn−1

Ω.

It turns out that this defines a (n − 1)-vector field MΩ
Λ on M . If Ω̃ = gΩ

is another volume form, where g is some non-vanishing smooth function, we
have

MΩ̃
Λ =MΩ

Λ +Xg,

where Xg is the (n− 1)-vector field

Xg(f1, . . . , fn−1) = {f1, . . . , fn−1, g}.
One can introduce certain Nambu cohomology groups to take care of this
ambiguity so that the cohomology class [MΩ

Λ] is well-defined and indepen-
dent of Ω. This class is called the modular class of the Nambu manifold M
and is the obstruction for the existence of a volume form on M invariant
under hamiltonian automorphisms.

Each volume form Ω determines a modular (n−1)-vector fieldMΩ
Λ repre-

senting the modular class, and which will depend on Ω. However, at points
where the Nambu tensor vanishes all modular vector fields give the same
value (see [30]). The modular (n − 1)-vector field XH

Λ along H, that we
have introduced above, is nothing but the restriction of any modular vector
field to H. In our case, however, it has the additional properties that it is
non-zero and tangent to H.

4. Local characterization of a Nambu structure

In this section we study the local behavior of a generic Nambu structure
Λ ∈ Xn(M) in a neighborhood of its zero locus. We show that the germ of
Λ around a connected component H of its zero locus is determined, up to
isotopy, by the modular periods (to be introduced below).

Since the intrinsic derivative is functorial we immediately conclude that

Lemma 4.1. Given two generic Nambu structures Λ1 and Λ2, with zero
locus H1 and H2, and a diffeomorphism of Nambu structures ψ : (M,Λ1) −→
(M,Λ2) then

ψ∗XH1
Λ1

= XH2
Λ2
, and ψ∗ΩH1

Λ1
= ΩH2

Λ2
.

Hence, it follows that a necessary condition for such a map to exist is
that the cohomology classes [ΩH2

Λ2
] and [ΩH1

Λ1
] correspond to each other.

Now recall that, given a generic Nambu structure Λ, each component
H of its zero locus H has an induced orientation from the n-vector field
Λ. Hence, a class in Hn−1

dR (H) is completely determined by its value on the
fundamental cycle H.
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Definition 4.2. The modular period THΛ of the component H of the zero
locus of Λ is

THΛ ≡
∫

H
ΩH

Λ > 0.

In fact, this positive number determines the Nambu structure in a neigh-
borhood of H up to isotopy. To prove that we need the following classical
result concerning the classification of volume forms.

Lemma 4.3. (Moser, [45]) Let M be an orientable closed manifold, Ω1

and Ω2 two volume forms in M . If [Ω1] = [Ω2] ∈ Htop(M), there exists
a diffeomorphism isotopic to the identity which sends Ω1 to Ω2. Moreover,
it can be chosen to be the identity in the closure of the complement of the
closed set where the two volume forms coincide.

The above result can be adapted to volume forms in compact manifolds
with boundary which coincide in neighborhoods of the boundary compo-
nents. We can now state and prove the main result in this section.

Proposition 4.4. Let Λ1 and Λ2 be generic Nambu structures in M which
share a common component H of their zero locus, and for which the modular
periods coincide: THΛ1

= THΛ2
. Then, there exists a diffeomorphism ϕ : M →

M , isotopic to the identity, and neighborhoods U1 and U2 of H, such that ϕ
sends (U1,Λ1) to (U2,Λ2).

Proof. First we can use Moser’s lemma to construct a diffeomorphism
φ : M → M isotopic to the identity, which maps H to itself and sends ΩH

Λ1

to ΩH
Λ2

. Hence, we can assume that ΩH
Λ1

= ΩH
Λ2

, and the problem reduces to
a global linearization one.

We fix a collar U = [−1, 1] × H of the hypersurface H, with trans-
verse coordinate r. Denoting the Nambu structure by Λ we define Λ0 =
(−1)n−1 ∂

∂r ∧ XH
Λ . We can write Λ = fΛ0 for some f ∈ C∞(U) and the

linearization of Λ is Λ1 = rΛ0. We look for a change of coordinates that
only reparametrizes the radial coordinate:

φ : U → U, (r, x) 7→ (g(r, x), x),

and satisfies φ∗fΛ0 = rΛ0. We obtain an o.d.e. for g whose solutions are
g(x, r) = ke

R
1
f
dr, with k ∈ R. Since f vanishes to order 1 along the radial

direction, this o.d.e. has a one parameter family of smooth solutions which
fix the hypersurface H and define diffeomorphisms (if k 6= 0) in a collar
of H. Choosing any solution with k > 0 we obtain the desired coordinate
change. �

Remark 4.5: The existence of a one parameter solutions for the equation
above reflects the fact that for any linear structure cr ∂∂r ∧XH

Λ , rescaling the
radial coordinate is a canonical transformation. Note also that reflection
along H gives a canonical transformation reversing the orientation of the
tubular neighborhood. We are interested in transformations isotopic to the
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identity (and hence preserving the orientation of the tubular neighborhood),
so our choice of g above is with k > 0.

5. The global description of Nambu structures

In order to have a diffeomorphism between two Nambu manifolds it is
necessary to have a diffeomorphism sending the zero locus of one structure
to the zero locus of the other, preserving their induced orientations. Assum-
ing that condition to hold, our problem is that of transforming a generic
structure Λ1 into another Λ2, with common oriented zero set H =

⋃
i∈I H

i.

First of all, we saw in the previous section that if the modular periods of
each component coincide, we can find collars U i1 and U i2 of the hypersurfaces
H i, and a diffeomorphism isotopic to the identity ϕ sending (U1,Λ1) to
(U2,Λ2), where Uj =

⋃
i∈I U

i
j .

Second, H splits M into the maximal leafs of both structures. The re-
striction of the Nambu structures to each of these components define volume
forms. However, their volumes are infinite so one cannot require them to
match. Instead, we could try to define ratios of the volumes between the
various components which are finite. This raises some accounting problems,
so instead observe that for a component H, a volume form Ω defined in a
neighborhood of H and the volume form Λ−1 define orientations on the com-
plement of H, which match on one side of H and are opposite on the other
side. Given any function h ∈ C∞(M) vanishing linearly in the components
of H (its graph is transverse to the zero section and vanishes exactly at H),
we let M ε(h) = f−1(R − (−ε, ε)), with ε > 0 small enough so that M ε(h)
contains the complement of the union of collars of the H i, and we set

V ε
Λ(h) =

∫

Mε(h)
Λ−1.

Here Λ−1 denotes the volume form dual to Λ, and to integrate we use the
given orientation of M . The following definition generalizes the one given
in [51] for the case of 2-dimensional Poisson manifolds.

Definition 5.1. The regularized Liouville volume of Λ is defined as

VΛ = lim
ε→0

V ε
Λ(h),

where h is any function vanishing linearly at H.

One has to check that the limit exists and is finite and that it does not
depend on the choice of function h. In fact, we only need to prove the
independence on the choice of function, because granted this we can use a
function that locally coincides with a radial coordinate in which the n-vector
field is linear. For this function the existence of the limit is trivial.

To check the independence on the choice of h, we fix coordinates (r, x)
around each component H such that Λ = (−1)n−1r ∂∂r∧XH

Λ , and we consider
two cases:
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(1) Assume h(r, x) = g(x)r, with g(x) 6= 0 for all x ∈ H. The difference
V ε

Λ(h) − V ε
Λ(r) vanishes for all ε > 0. This is because on each

collar we have the product measure, so the integral is obtained by
averaging over the open regions of H where g < 1 and g > 1, the
integrals of the odd function ±1

r , over two intervals symmetric with
respect to the origin and not containing it.

(2) Assume now that h vanishes linearly at H. Then, h − ∂h
∂r (0, x)r

vanishes in the radial direction at least to second order at H. The
compactness of H implies that for all x ∈ H and all ε > 0, there
exist constants k1 and k2 such that the absolute value V ε

Λ(h) −
V ε

Λ(∂h∂r (0, x)r) is bounded by the average over H of the integral
of the function ±1

r over the segments [−bε,−aε] ∪ [aε, bε], where
aε > k1ε and bε − aε < k2ε

2. Hence, there exists a constant k
(independent of x and r) such that the integral over the segments
in the ray through x is bounded by kε; this makes the total integral
smaller that kεTHΛ . Hence when ε→ 0 the difference vanishes.

The modular periods and the regularized volume determine the Nambu
structure:

Theorem 5.2. For j = 1, 2, let Mj be oriented compact manifolds with
generic Nambu structures Λj having zero locus Hj =

⋃
i∈I H

i
j. Assume that

there exists a diffeomorphism ψ sending (M1,H1) to (M2,H2) and preserving
the induced orientations of the zero locus. Then there exists an isomorphism
between the two Nambu structures, isotopic to ψ, if and only if the following
conditions are satisfied:

(i) the modular periods coincide, i.e., TH
i
1

Λ1
= T

ψHi
1

Λ2
, ∀i ∈ I,

(ii) the regularized volumes match, i.e., VΛ1 = εVΛ2, where ε = 1 if ψ
is orientation preserving and ε = −1 if it reverses the orientations
on the Mi.

Proof. As we saw above, if the modular periods of each component
coincide, we can find collars U i1 and U i2 of the hypersurfaces H i, and a
diffeomorphism isotopic to the identity ϕ which sends (U1,Λ1) to (U2,Λ2),
where Uj =

⋃
i∈I U

i
j .

Now, H splits M in the maximal leafs of both structures, whose area with
respect to the duals Λ−1

i of any of the n-vectors is infinite. For any such leaf
L, we can select a hypersurface H i0 on its boundary and shrink accordingly
the size of either U i01 or U i02 (recall we have canonical transformations doing
that) such that one can find compact submanifolds Wj ⊂ L which are the
result of removing from L the corresponding side of the collars of radius, say,
1/2 (the original radius is 1), verifying: (i) the Λ−1

1 -volume of W1 coincides
with the Λ−1

2 -volume of W2 and (ii) ϕ sends W1 to W2. Finally, we apply
Moser theorem to conclude the existence of a diffeomorphism isotopic to the
identity also matching the Nambu structures at L.

Observe that when we modify the size of, say, U i01 , we are changing
the volume of both L − U1 and L′ − U1, where L and L′ are the leaves
whose boundary contains H i0 . It follows that we can make our n-vector
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fields coincide, as well as in the collars of H, in all the maximal leaves but
possibly one. To see this we can take the graph dual to the splitting given
by H, where each vertex represents a maximal leaf and an edge joining two
vertices stands for a hypersurface on its common boundary. This graph is
indeed a tree; we fix a vertex v0 on this tree and consider the graph distance
(of vertices) with respect to v0. We can then proceed by stages, where at
each stage we consider all the vertices with the same distance, starting from
the furthest way vertices. For those vertices, i.e., maximal leafs, we apply
the above reasoning to the hypersurface representing the only edge reaching
them (there are no loops). When we are done we erase those vertices and
edges connecting to them, so we obtain a smaller tree. We keep on doing
that until we reach the vertices at distance one. One can use all but one edge
and there will remain only one hypersurface which splits two components.
The fact that the regularized volumes match, grants us the matching of the
areas of both remaining components for an appropriate collar, and we are
done. �

The set of generic Nambu structures has an action of Diff0(M) (resp.
Diff+(M)). Its space of orbits has as many connected components as
isotopy classes (resp. oriented diffeomorphism classes) of oriented hyper-
surfaces H =

⋃
i∈I H

i. Theorem gives an explicit parametrization of each
connected component of this moduli space.

6. Nambu cohomology

There are several cohomology theories one can associate to a Nambu
manifold (see [30, 44]). Here we will be interested in the cohomology asso-
ciated with the complex

0 −→ ∧n−1C∞(M) −→ X(M) −→ Xn(M) −→ 0

where the first map is f1 ∧ · · · ∧ fn−1 7→ Xf1,...,fn−1 , while the second map
is X 7→ LXΛ. Notice that the associated cohomology groups have simple
geometrical meanings:

• H0
Λ(M) is the space of Casimirs of the Nambu structure;

• H1
Λ(M) is the space of infinitesimal outer automorphisms of the

Nambu structure;
• H2

Λ(M) is the space of infinitesimal deformations of the Nambu
structure.

Computations of Nambu cohomology for germs of Nambu structures
defined by quasipolynomials (functions vanishing at the origin with finite
codimension) were done by Monnier in [44]. Here we are interested in global
Nambu structures with the simplest singularity. These computations can
be though of as a infinitesimal version on the classification theorem; in
particular, H2

Λ(M) will turn out to be the tangent space of the class of [Λ]
in the moduli space of generic Nambu structures.

The main result of this section is the following
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Theorem 6.1. Let Λ be a generic Nambu structure on a oriented compact
manifold M with zero locus H =

⋃
i∈I H

i. The group H2
Λ(M) has dimension

#I + 1 and a set of generators is given by

β1(−1)n−1r
∂

∂r
∧XH1

Λ , . . . , β#I(−1)n−1r
∂

∂r
∧XH#I

Λ , Ω,

where Ω is a volume form, and each βi is a bump function supported in a
collar of the hypersurface H i.

We can give a geometric description of the isomorphismH2
Λ(M) ' R#I+1

as follows. Each Θ ∈ Xn(M) is cohomologous to an n-vector field whose
vanishing set contains H and is generic in a neighborhood of H. Then we
can write [Θ] = [gΛ] where g is some smooth function which assumes a
constant value ci in the collar of each U i. The isomorphism is

[Θ] 7−→
(
TH

1

Λ

TH
1

Θ

, . . . ,
TH

#I

Λ

TH
#I

Θ

, V H,ΛΘ

)
,

where:

(a) TH
i

Λ /TH
i

Θ = ci,
(b) V H,ΛΘ is the regularized integral of g 1

Λ .

The rest of this section is dedicated to the proof of this result, which
consists of a Mayer-Vietoris argument: we first compute the groups in the
collars and then we glue them using information about the infinitesimal
automorphisms in those neighborhoods.

6.1. Computation of H2
Λ(U). Let us fix H ⊂ H and U = (−1, 1)×H

a collar.

Proposition 6.2. H2
Λ(U) ' R and a generator is the linearization (−1)n−1r ∂∂r∧

XH
Λ .

Proof. Any vector field X can be written X = A ∂
∂r + XH , where

A ∈ C∞(U), XH ∈ (−1, 1)× TH. Defining Λ0 = (−1)n−1 ∂
∂r ∧XH

Λ , one has:

LXΛ = AΛ0 + rLXΛ0 =

= (A− r∂A
∂r

)Λ0 + (−1)n−1r
∂

∂r
∧ LXHXH

Λ =

= (A− r∂A
∂r

+ rdiv ΩHΛ (XH))Λ0,

where div ΩHΛ (XH) is the divergence of XH with respect to ΩH
Λ .

We want to show that any n-vector field fΛ0 in U is equivalent to a
linear one. We first make it vanish at the origin by adding L−f ∂

∂r
Λ (so it

becomes r ∂f∂rΛ0) and still call it fΛ0. Let us assume for the moment that
has at least quadratic vanishing at the origin so we can write f = r2g.
Notice that L−r R gdrΛ = (−r ∫ gdr + r

∫
gdr + r2g)Λ0 = fΛ0. Writing

f = rf̂ , we look at the value c =
∫
{0}×H f̂ΩH

Λ ∈ R, and observe that we can

always find Y ∈ X(H) such that f̂|H + divΩHΛ (Y ) = c. The n-vector field
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Λ1 = fΛ0 + LY Λ has cΛ0 as constant linear part at H. Finally, Λ1 − crΛ0

has at least quadratic vanishing at H and hence it is a coboundary.
We still have to show there are no perturbations sending a linear struc-

ture to another with different relative period (the constant c above). This
amounts to showing that the equation Ec ≡ A − r ∂A∂r − rdivΩHΛ (XH) = cr
has no solutions for c = 1. Actually we need also to study the equation E0

of Nambu infinitesimal automorphisms.

Lemma 6.3. The equation E1 has no solutions, and Z1
Λ(U), the space of

solutions of E0, can be identified with the vector space:

Z1
Λ(U) ∼= span < r

∂

∂r
,XH ∈ (−1, 1)× TH| divΩHΛ (XH(0)) = 0 >

Proof of Lemma 6.3. In the equationsEc we can write the term divΩHΛ (XH)
in the form ψr, where ψr is a smooth family in r ∈ (−1, 1) of functions in
C∞(H) which satisfy

∫
H ψrΩ

H
Λ = 0, ∀r ∈ (−1, 1). We can think of them

as given data in the equations. Then the solutions of E1 can be explicitly
written as:

A = kr + r

∫
ψr − 1
r

dr, k ∈ R
Any solution has to be a smooth continuation of the above expression

but it cannot exist. Indeed, since ψ0 has vanishing integral, we can find a
point x in H, such that ψ0(x) = 0. Hence, in a small segment [−ε, ε]× {x}
the real valued function r

∫ ψr(x)−1
r dr is ,up to a smooth function, rlnr (not

even C1). �

With this we have finished the computation of H2
Λ(U). �

Remark 6.4: Regarding E0, its solutions are of the form

A = kr + r

∫
ψr
r
dr,

which will be smooth if and only if ψ0 = 0, or the corresponding vec-
tor field XH(0) is divergence free with respect to ΩH

Λ . Hence the space of
solutions Z1

Λ can be identified with:

Z1
Λ
∼= span < r

∂

∂r
,XH ∈ (−1, 1)× TH| divΩHΛ (XH(0)) = 0 >

6.2. From H2
Λ(U) to H2

Λ(M). The remaining step is to piece all the
local information. We just showed that in the same radial coordinate in
which Λ is linearized in U i = (−1, 1)×H i, we can find a representant Θ of
the cohomology class such that Θ|U i = ci(−1)n−1r ∂∂r ∧ XHi

Λ = ciΛ, where

the relative period TH
i

Λ

TH
i

Θ

is ci, which might be zero. In particular, for a

non-vanishing structure all the local invariants vanish because by looking
at its dual form it is clear that since it does not vanishes, we can push
its graph down (or up) to the zero section to make it vanish in the U i’s.
This operation can be made without changing the area (do it randomly and
multiply by the ratio of both areas). We also saw that we can restrict our
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attention to coboundaries X such that X|U i is a solution of E0 in the radial
coordinates. Now it has to be proven that the global regularized volume
with respect to Λ is well defined. But this is equivalent to showing that the
regularized volume of LXΛ vanishes, for X infinitesimal automorphism of
Λ in U i. For a function h coinciding with the radial coordinate in each U i,
M r(h) = M −⋃i∈I(r, r)×H i. We have:

∫

Mr(h)
LXΛ =

∫

Mr(h)
diX

1
Λ

= ±
∑

i∈I

(∫

{r}×Hi

iX
1
Λ
−
∫

{−r}×Hi

iX
1
Λ

)

And for a fixed component H and X = kr + r
∫ divΩHΛ (XH)

r dr ∂∂r + XH ,
the function

I(r) =
∫
{r}×H iX

1
Λ equals:

I(r) = (−1)n−1

∫

{r}×H

1
r

(
kr + r

∫
divΩHΛ (XH)

r
dr

)
ΩH

Λ = (6.13)

= (−1)n−1

∫

{r}×H

(
k +

∫
divΩHΛ (XH)

r
dr

)
ΩH

Λ (6.14)

Due to the fact that divΩHΛ (XH)(0) = 0, the above formula defines a
smooth function for all r ∈ [−1, 1]. Its derivative is easily computed:

dI

dr
= (−1)n−1 d

dr

∫

{r}×H
(k +

∫
divΩHΛ (XH)

r
dr)ΩH

Λ =

= (−1)n−1

∫

{r}×H

divΩHΛ (XH)
r

ΩH
Λ = 0

The vanishing is clear for r 6= 0 and follows by continuity. Hence I(r) is
constant and V H,ΛΘ is well defined.

It only remains to show that two n-vectors Θ1 and Θ2 with equal lin-
earizations and regularized volume are in the same class. Its difference Θ̃

vanishes in a neighborhood of the boundary of M −
◦
U . Then the form

1
Λ(Θ̃) · 1

Λ has compact support (shrinking a bit the collars if necessary) and
vanishing integral, so we can find a compactly supported vector field Y
whose divergence is 1

Λ(Θ̃) · 1
Λ . It follows that LỸ Λ = Θ̃, where Ỹ extends Y

trivially. The assertion about the basis of H2
Λ(M) follows easily.

6.3. Some comments about H1
Λ(M) and H0

Λ(M). We will focus our
attention in what happens in a collar U . There we need the description of the
Hamiltonian vector fields in order to draw some results. Given f ∈ C∞(U)
we split at each point its derivative df = ∂f

∂r dr + dHf . We can express the
vector space B1

Λ(U) of Hamiltonian vector fields as follows:

B1
Λ(U) = {(−1)n−1rXH

Λ (dHf1, . . . , dHfn−1)
∂

∂r
+
n−1∑

j=1

(−1)n−ir
∂fj
∂r

XH
Λ (dHf1, . . . , ˆdHfj , . . . ., dHfn−1)},
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with f1, . . . , fn−1 ∈ C∞(U).

Hence all Hamiltonian vector fields must vanish along H. Let us denote
for each H i by Xfree(Hi) the vector space of divergence free vector fields in
Hi with respect to the volume form ΩHi

Λ . If we call for the moment ri to
the corresponding radial coordinate, we have the following

Corollary 6.5.

(1) < ri
∂
∂ri

> ⊕Xfree(H i) ⊂ H1
Λ(U i).

(2)
⊕
i∈I

(< φi · ri ∂∂ri > ⊕φi · Xfree(H i)) ⊂ H1
Λ(M), where φi are bump

functions supported in the collars. For n ≥ 3 this space is clearly
infinite dimensional.

Proof. The assertion about the divergence free vector fields is clear.
Regarding the size of the space just notice that it can be identified with
closed n − 2-forms in H i which contain the exact ones. From the de-
scription of B1

Λ(U) we see that the coefficient of r ∂∂r contains the factor
XΛ(dHf1, . . . , dHfn−1) which cannot be everywhere non-vanishing on each
{r} ×H by compactness. �

We see that the case n = 2 is quite special and in fact one can easily
compute H1

Λ((−1, 1)× S1).

Corollary 6.6. H1
Λ((−1, 1)×S1) is spanned by the modular vector field XS1

Λ

and r ∂∂r .

Proof. XS1

Λ trivializes TS1 so one can writeXH = gXS1

Λ , g ∈ C∞((−1, 1)×
S1). One checks that

B1
Λ = {−rXS1

Λ (dS1f)
∂

∂r
− r∂f

∂r
XS1

Λ | f ∈ C∞((−1, 1)× S1)}

Z1
Λ = {

(
kr + r

∫
XS1

Λ (dS1g)
r

dr

)
∂

∂r
+gXS1

Λ | g ∈ C∞((−1, 1)×S1), g|S1 = k1, k, k1 ∈ R}

Thus, gXS1

Λ − k1X
S1

Λ is a cocycle; just take f = − ∫ g−k1

r dr. �

In general determining the group H1
Λ(U) seems to us a very difficult

problem.

Also there seems to be little hope to compute H0
Λ(M). For example for

n = 3 we see that Xf,g = 0 implies that df and dg have to be proportional.
If we assume f to be a Morse function, g has to be constant on its leaves.
So we have as many choices for g as the ring of smooth functions of the leaf
space M3/f . This is a one dimensional space that can be very different for
the same manifold (one can construct them from a handle decomposition of
the manifold just looking at how the π0 changes when we add handles).
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7. Some special families of Nambu structures

As we have seen, the problem of classifying Poisson structures on a given
manifold includes that of the classification of certain arrangements of ori-
ented hypersurfaces (those arrangements that come from the zeros of a func-
tion). For Mn one can consider the dual tree to (M,H) and put a plus sign
if the orientation of the n-tensor in the corresponding maximal leaf coincides
with that of M and minus otherwise. Giving the signs is equivalent to giving
the orientation of the hypersurfaces.

For S2, O. Radko [51] defines Gk(S2) as the set of generic Poisson struc-
tures on S2 with k vanishing curves. A weighted signed tree is defined as
a tree with a plus or minus sign attached to each vertex so that for each
vertex, those belonging to the boundary of its star have opposite sign; each
edge is weighted with a positive number (the modular period), and a real
number (the regularized volume) is assigned to the whole graph. She proves
the following:

Theorem 7.1 ([51]). The set Gk(S2) up to orientation preserving isomor-
phisms coincides with the isomorphism classes of weighted signed trees with
k + 1 vertices (the isomorphism has to preserve the real number attached to
the graph).

The result relies on the fact that there is a one to one correspondence
between arrangements of k circles in S2 (in fact up to isotopy) and isomor-
phism classes of trees with k + 1 vertices (observe also that every tree can
be signed in two ways). One can isotope two arrangements with equivalent
graph because, up to isotopy, the circle can sit in S2 in a unique way splitting
S2 in two disks, and that results admits a well known generalization.

Theorem 7.2 (Smooth Schoenflies theorem). Any smooth embedding of
j : Sn−1 ↪→ Sn bounds an n-dimensional ball and hence splits the sphere
into two n-dimensional balls. In particular it is isotopic to the standard one
where Sn−1 sits inside Rn ⊂ Rn∪{∞} = Sn as the boundary of the euclidean
ball of radius one. It also holds for embeddings in Rn.

As consequence of this result one easily proves the following:

Lemma 7.3. There is a one to one correspondence between arrangements
of k (n − 1)-spheres in Sn and isomorphism classes of trees with k + 1
vertices.

Definition 7.4. Let us define Gk(Sn) to be the set of generic Nambu struc-
tures in Sn whose vanishing set consist of k spheres.

Give Sn the usual orientation, so we can put signs in the dual trees. We
just proved the following

Proposition 7.5. The set Gk(Sn) is, up to isotopy, the same as the equiv-
alence classes of weighted signed trees with k + 1 vertices.





Conclusions and future research

In this thesis we have studied different aspects of 3-different geometries
with topological character, (2)-calibrated structures, Poisson structures and
generic Nambu structures. In our opinion the most interesting results have
been those obtained for calibrated compact manifolds. For them we have
shown the existence of an approximately holomorphic geometry giving rise
to a number of topological constructions compatible with the calibrated
structure: Lefschetz pencils, calibrated cycles, determinantal subvarieties
and embeddings in CPm transverse to certain holomorphic foliations of CPm.

The local geometry of calibrated manifolds have been analyzed, showing
thus the existence of Darboux charts and reference sections for very ample
sequences of locally splittable hermitian line bundles. Also some aspects
of the A.H. theory for symplectic manifolds (or even a.c. manifolds) have
been clarified as those related to the modification of the almost complex
structure in the hermitian bundles of r-jets and the construction of the non-
linear bundles of pseudo-holomorphic r-jets for maps to projective spaces
and their properties.

As well of the mentioned results that have been treated in detail, there
is a number of questions and potential applications that show up naturally,
essentially associated to the study of calibrated foliations.

When the leaves are complex manifolds it is natural to ask whether it
is possible to perturb the sequence of sections so that they become holo-
morphic. The difference w.r.t. to the even dimensional situation –in which
this perturbation exists– is the absence ,in principle, of a natural elliptic
operator whose solutions are the holomorphic sections.

We can even consider the previous question for taut foliations in 3-
manifolds. For them, every almost complex structure is integrable. More-
over, the results of E. Ghys show that it is possible to develop a meaningful
theory for leafwise holomorphic sections (see [21]). In particular, E. Ghys
proves the existence of holomorphic maps to CP2 which immerse each leaf;
this is exactly the same kind of result that we have been able to obtain
but with A.H. maps. A deep understanding of Ghys’ methods should share
some light about how A.H. sections can be perturbed into holomorphic ones,
but maybe using local methods developed in this monograph (that is, being
able to construct holomorphic reference sections as Donaldson does in the
symplectic case [12]).

We also think that a detailed study of the combinatorial aspects of Lef-
schetz pencils for taut foliation is needed, because we think that these struc-
tures are potential tools in the study of taut foliations. Without being pre-
cise, the image of the link of singular points endows S2 with a CW-complex
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structure. The inverse image of the 1-skeleton (of the image of the link)
defines a singular surface (the structure of the self intersections can be un-
derstood using the local model). All the information of the taut structure is
carried by this surface, because its complement is a collection of tori trivially
foliated. Thus a combinatorial characterization of these surfaces would be
really helpful. Since any taut foliation admits a Lefschetz pencil structure,
we might be able to construct not only the foliation (from the foliated surface
plus some piece of combinatorial data) but the foliation with a compatible
Lefschetz pencil structure.

There is another kind of potential applications obtained form the theory
we have developed for which the starting point are “quasi-contact struc-
tures”, i.e., (closed) manifolds M2n+1 endowed with non-degenerated closed
2-forms ω (and for which we select an auxiliary codimension 1 distribution
transverse to the kernel of the 2-form). Next, we construct n-generic maps
φk : M → CPn. By definition, n is the smallest dimension for which the
maps have empty base loci. The pullback of ωFS is cohomologous to kωand
we can think of it as a choice of 2-form is such class with interesting dy-
namical properties. φ∗kωFS degenerates along an stratified submanifold Σk,
which is the degeneration locus of φk. We must have into account that
the geometric interpretation is only approximately true. To get the usual
interpretations it would be necessary to assume φk to be holomorphic in
a neighborhood of the corresponding strata, something possible for n = 1
and possibly for n = 2 (for the latter there is a 3-manifold Σ1(φk) of points
where the rank drops to 2 and inside it a link Σ1,1(φk) of points where the
kernel is approximately tangent to Σ1(φk)). The new 2-form gives rise to a
dynamical system (in principle non-smooth) defined as follows: we consider
Xk the vector field in the kernel of φ∗kωFS with positive coorientation and
whose component along the kernel of kω has norm 1 in the gk-metric. It is
only defined in the complement of Σk. To give a global definition we mul-
tiply it by the unique function g ∈ C∞(M) so that g(kωn) = φ∗kω

n
FS over

F . The function g tends to zero as the point approaches Σk, which gives an
extension by zeros of gXk. in principle the extension might be non-smooth.
If we started from a 3-manifold with a calibrated foliation then the vector
field is indeed smooth. Still in dimension 3 and for arbitrary distribution D
dominated by ω, one checks that even though gXk might be non-smooth, it
is possible to rescale it (using Darboux charts covering Σk and gluing with
appropriate bump functions) to define a smooth vector field proportional to
Xk with the same fixed points. We expect –for any dimension– the existence
of smooth rescalings of gXk (with the same fixed points). It is clear that
the existence of normal forms would be extremely helpful and would give a
description of the flow near Σk. It would be necessary and alternative qual-
itative study of such flow in a neighborhood of Σk. The important property
of this flow is that the trajectories either are fixed points, or converge to Σk

(both when time tends to ∞ and −∞) or are periodic. In dimension 3 this
is nothing but information obtained out of a Lefschetz pencil structure (the
latter gives also information about the orbit space). Of course if we start for
example with a calibrated foliation instead of with a quasi-contact structure
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it is also true that the non-fixed orbits are transverse to the foliation and
also the degeneration locus is transverse to it.

Observe that all the applications of the A.H. theory that we have stated
are for calibrated manifolds. But we have deliberately developed a relative
theory that can be applied not only for symplectizations, but in more general
situations.

It is more or less clear that the relative theory that we have developed
has as immediate corollaries the existence of constructions relative to sym-
plectic submanifolds or to calibrated submanifolds of compact symplectic
manifolds. For example: given (M,ω) a compact symplectic manifold of
integer type any oriented hypersurface Q with a transverse vector field de-
fined in a neighborhood of Q canonically defines a calibrated structure in
Q ( Dis defined to be the kernel of iXω). We can for example construct
relative Lefschetz for the quadruple (M,ω,Q,X), i.e., Lefschetz pencils for
(M,ω) whose restriction are Lefschetz pencils for (Q,D, ω|Q) (in fact we
only have local models around the base points in A∩X seen as base points
for the Lefschetz pencil in M). This situation is specially interesting when
LXω = qω, q ∈ Z, because Q is either a contact hypersurface or Poisson (in
the latter it is a symplectic bundle because [ω] is an integer class). Notice
that the symplectic manifold can have non-empty boundary and the hyper-
surface in question its boundary. The obvious example we have in mind is
that of symplectic fillings of contact manifolds.

One can also construct relative Lefschetz pencils for triples (M,ω,N),
N any symplectic submanifold.

Regarding the contents of chapter II, a surgery construction for Poisson
manifolds has been introduced; the main corollary is that the fundamen-
tal group does not obstruct the existence of (non-trivial) Poisson structure.
Following with the more topological spirit of chapter II, a question we think
worth investigating is the following: when the summands of the normal con-
nected sums are integrable Poisson manifolds in the sense of R. L. Fernandes
and M. Crainic [11] (for example calibrated foliations of integer type) and
the corresponding normal connected sum is also integrable (which itself is
another interesting question; anyway we know that for calibrated structures
the sum is also calibrated and hence integrable), does it correspond to any
surgery construction in the symplectic grupoid? Notice that the main tool
we have to study this question is the description –more or less manageable–
of the symplectic grupoid as a quotient of classes of A-paths (see [11] for
the corresponding definitions). The interesting observation is that both the
symplectic and the Poisson surgery occur along codimension 2-submanifolds.
If there is any construction of the grupoid of the normal connected sum as
a symplectic surgery for the grupoids and the fibred submanifold, this con-
struction will be a new one because it would use codimension 4 “submani-
fold”.

Finally, in the third chapter we have given a classification of generic
Nambu structures in closed orientable manifolds. We think that regarding
the classification of geometries without local invariants (or with invariants
easy to describe, as is the case of generic Nambu structures), the most inter-
esting questions are those related to poisson structures (even in surfaces),
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but with more complex singularities. In fact, not only the classification
of this structures is important but also that of other objects defined out
of them. For example, and even for generic Poisson structures in surfaces
it would be of interest to give a description of the space of contravariant
connections (see [18]), and more explicitly, the existence of geometric struc-
tures in this space (recall that the moduli space of covariant connections
for symplectic structures is symplectic, or Poisson when the boundary is
non-empty).



APPENDIX A

The ∂̄-Neumann problem with parameters

The ∂̄-Neumann problem, in principle for domains Ω ⊂ Cn with smooth
boundary, asks about the solutions and its regularity for the P.D.E.

∂̄β = α, (A.1)

where α is a (p, q)-form –at least of integrable square– and necessarily ∂̄
closed.

The basic reference we will follow in this appendix is chapter 7 of [35].
A first observation is that if β is a solution and λ is (p, q − 1)-form with

holomorphic coefficients, then β + λ is another solution. Thus, in order to
obtain a reasonable theory is necessary to make a canonical choice of “good
solution” solution. A reasonable choice is in case we have solutions, taking
the one orthogonal to the holomorphic functions in Ω.

We will state a existence theorem in which the regularity of the solu-
tion in the boundary of Ω will depend on its geometry. We recall that a
closed domain Ω is strictly pseudo-convex if its Levi form is positive definite
in all the points of the boundary (definition 7.4.3 in [35]). Let us denote
by H(p,q)

s (Ω) the Hilbert space of (p, q)-forms with coefficients int he corre-
sponding Sobolev space and ∧p,q(Ω) the (p, q)-forms with smooth coefficients
(also in the boundary). The fundamental result is the following:

Theorem A.1. (Theorem 7.9.14 in [35]) Let q ≥ 1, α ∈ H(p,q)
0 (Ω), where Ω

is strictly pseudo-convex. There a unique β ∈ H(p,q)
0 (Ω) exists such that β is

orthogonal to the kernel of ∂̄ and ∂̄β = α. If α ∈ ∧p,q(Ω) then β ∈ ∧p,q−1(Ω)
and the following fundamental estimate holds:

|β|s ≤ As|α|s, ∀α ∈ ∧p,q(Ω), (A.2)

where As does not depend on α, and | · |s is the corresponding Sobolev norm.
β will be called from now on the canonical solution.

It is necessary to notice that one of the most delicate points is the be-
havior of the solution at the boundary, the extra regularity obtained which
is less than the one on the interior (“hypoellipticity”).

We pretend to deduce from this result and using rather elementary meth-
ods a parametric version with estimates for Ch norms.

For our main application Ω is B2n, the unit ball -which is clearly strictly
pseudo-convex– and we do not need all the power of the previous result.

Indeed, from φ(z, θ) ∈ C∞(B2n(0, 1 + ε) × S1), we want to construct
a function φ′ ∈ C∞(B2n(0, 1 − ε) × S1) holomorphic for each fixed θ and
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whose Ch-distance to φ is controlled by the corresponding norm of ∂̄φ. To
do that we want to solve equation A.1 with αθ = ∂̄φ(z, θ) and use the unique
solution βθ given by A.1 to define φ′(z, θ) = φ(z, θ)−βθ(z). Moreover, since
we do not φ′ to be defined in the same domain as φ it will be enough to
consider αθ = f∂φ, where f is a cut-off function so that αθ has compact
support (in the interior of B2n), so we do not need the delicate analysis at
the boundary.

In any case, we will see that from theorem A.1 we easily deduce the
following corollary.

Corollary A.2. Let (P, g) be a compact riemannian manifold of dimension
u, q ≥ 1 and Ω a domain of Cn strictly pseudo-convex and compact. Let
α(z, t) ∈ ∧p,q(Ω ×M) with ∂̄αt = 0. Then a unique β ∈ ∧p,q−1(Ω ×M)
exists such that βt is orthogonal to the kernel of ∂̄ and ∂̄βt = αt. Moreover,
∀j ∈ N positive constants Bj not depending on α exist so that

|β|Cj ≤ Bj |α|Cj , (A.3)

where |·|Cj is the sum of the norms of the supremum for the form and its first
j covariant derivatives. We use the product metric with factors the euclidean
in Ω and g, and the covariant derivatives are w.r.t. the corresponding Levi-
Civita connection.

Proof. Define β(z, t) so that βt is the canonical solution given by the-
orem A.1 with data αt. Uniqueness implies that β(z, t) is well defined.

We will see that once the smoothness of β has been proven the bounds
of A.3 follows easily.

We observe that we can assume P to be an open set of Ru (with coordi-
nates t1, ..., tu).

Let (z′, t′) ∈ Ω×Ru be any point. To prove continuity of β we apply the
triangular inequality to write

|β(z, t)− β(z′, t′)| ≤ |β(z, t)− β(z′, t)|+ |β(z′, t)− β(z′, t′)|.
The continuity of βt is consequence of theorem A.1. Thus continuity for

β in (z′, t′) would follow from proving that for any ε > 0 an δ > 0 exists so
that

sup
z∈Ω
|β(z, t)− β(z, t′)| ≤ ε, if |t− t′| ≤ δ. (A.4)

For each t ∈ Ru set γt(z) := βt(z) − βt′(z). It is straightforward that
γt : Ω→ C is orthogonal to the holomorphic functions (because is the differ-
ence of two vectors in that subspace) and that ∂̄γt = αt−αt′ . Therefore γt is
the canonical solution with data αt − αt′ , so we can apply the fundamental
estimates. In particular and recalling that | · |s denote the corresponding
Sobolev norms, for s > n we have:

|γt|C0 ≤ Ks|γt|j+n ≤ KsAs|αt − αt′ |s ≤ KsAsVs|αt − αt′ |Cj+n . (A.5)

The first inequality is deduced from the Sobolev immersion theorem,
the second from theorem A.1 and the third is obvious. Finally, αt − αt′ ,
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together with all its derivatives (in the coordinates of Cn) vanish for t′. The
compactness of Ω and the smoothness of α imply that A.4 holds.

The next step is to prove that ∂β
∂tm

, 1 ≤ m ≤ u, exists and it is con-
tinuous. The obvious candidate is the canonical solution with data ∂α

∂tm
.

Denote it by β̇. Let us fix t′ ∈ Ru and consider the function ζ(z, t) :=
βt′ +

∫ tm
t′m

β̇(z, t1, ..., tm−1, v, tm+1, ..., tu)dv. If we show that ζ coincides with

β, then from the fundamental theorem of calculus ∂β
∂tm

= β̇. Since β̇ itself is
the canonical solution, as we just saw it will be continuous. Thus, we would
deduce that β is C1 (the existence and continuity of the partial derivatives
along Cn is guaranteed by theorem A.1).

Since β̇ is continuous, ∂̄
∫ tm
t′m

β̇dv =
∫ tm
t′m

∂̄β̇(z, v)dv. Hence ∂̄ζ = αt′ +∫ tm
t′m

∂α
∂t dv = αt(z). moreover, if F is any holomorphic function,

∫

Ω
(
∫ tm

t′m
β̇dv)F̄ dw =

∫ tm

t′m
(
∫

Ω
β̇F̄ dw)dv = 0,

because the integrals commute by continuity of β̇ and F .
Therefore ζ coincides with β because both are the canonical solution

with data α.
Regarding the partial derivatives of order 2, those only involving the

variables zi, z̄j exist and are continuous by theorem A.1. Existence and
continuity of ∂2β

∂zi∂tm
, ∂2β
∂z̄j∂tm

and ∂2β
∂tq∂tm

, with 1 ≤ i, j ≤ n, 1 ≤ q,m ≤ u,

follow from the fact that ∂β
∂tm

is the canonical solution and as we just saw

it is C1. Continuity of the partial derivatives ∂2β
∂zi∂z̄j

, ∂2β
∂z̄j∂zi

is a consequence
of the inequality corresponding to A.5, but starting form the | · |C2-norm on
the leftmost term.

The last possibility is a derivative of the type ∂2β
∂tm∂zi

or ∂2β
∂tm∂z̄j

, whose
existence and continuity follows from Schwartz’s lemma. Recall than in its
weakest form it assures that if both ∂2β

∂zi∂tm
(resp. ∂2β

∂z̄j∂tm
) and ∂β

∂zi
(resp. ∂β

∂z̄j
)

exist and are continuous then ∂2β
∂tm∂zi

(resp. ∂2β
∂tm∂z̄j

) exists, it is continuous

and coincides with ∂2β
∂zi∂tm

(resp. ∂2β
∂z̄j∂tm

). The only necessary ingredient is

the continuity of ∂β
∂zi

(resp. ∂β
∂z̄j

), and this follows from inequality A.5 for
norms | · |C2 .

Once β has been shown to be C2, differentiability to higher orders follows
by induction using the commutativity of the partial derivatives. Indeed, if
we assume that β is Ch and we have a partial derivative of order h + 1, it
can be of three types. The first is that in which there is no derivative w.r.t.
a variable tm, and existence and continuity follow from theorem A.1 and
the inequality correspondent to A.5 but starting with | · |Ch+1 norms. The
second possibility is a partial derivative in which a derivative w.r.t some tm
is taken, but not in the last position (not of n+1). We can switch the partial
derivative to the first place and use that ∂β

∂tm
is of class Ch by induction.

The third possibility is where we have a unique tm in the partial derivative
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in the last position. Again we apply Schwartz’s lemma to the corresponding
derivative of order h− 1 of β.

Thus, we deduce that the canonical solution β : Ω× Ru → C is smooth.
The existence of constants Bj so that A.3 holds is obvious, because

whenever we have a partial derivative of order j, it can be written ∂jβ
∂za∂z̄b∂tc

,
where a, b, c representing certain multiindices. It is now enough to consider
the ∂̄-problem ∂α

∂tc , and apply the bounds of theorem A.1 together with the
ones coming form the appropriate Sobolev embedding to obtain the desired
result.
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