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1. Introduction

Let us say a few words about the two key concepts in the title of the course,
topology and differentiable manifolds.

1



2 D. MARTÍNEZ TORRES

1.1. Topology. It studies topological spaces and continuous maps among them,
i.e. the category TOP with objects topological spaces and arrows continuous maps.

Definition 1. Let (X, TX), (Y, TY ) be topological spaces, f : (X, TX) → (Y, TY )
continuous is a homeomorphism if there exists g : (Y, TY ) → (X, TX) such that
g ◦ f = 1X , f ◦ g = 1Y .

In other words, a homeomorphism is an invertible arrow in TOP. Being homeo-
morphism is an equivalence relation '.

Main aim of topology: Study orbits = equivalence classes of TOP under ',
in particular:

• When two topological spaces (X, TX) and (Y, TY ) are homeomorphic, i.e.
when two objects in TOP belong to the same '-orbit.
• According to Klein’s view point understanding the topology of (X, TX)

should amount to studying those properties of (X, TX) invariant under
homeomorphism, i.e. studying the invariants of the homeomorphism type
of a topological space which are nothing but the properties of the '-orbit.
For example compactness, separation properties...

From now on all our maps will be assumed to be continuous. A very good
strategy is given (X, TX) to study maps from and to very simple topological spaces,
e.g. the interval I = [0, 1]. For example according to Urysohn’s lemma being normal
amounts to have “enough” maps to I.

Studying the orbits of ' is extremely difficult in general. It is often convenient
to consider a weaker equivalence relation, homotopy.

def:homotmaps Definition 2. We say that f, g : (X, TX)→ (Y, TY ) are homotopic, and denote it
by f ∼ g, if there exist

H : X × I → Y,

such that H0 = f,H1 = g, where Ht(x) := H(x, t).

In other words, two maps are homotopic if they can be joined by a “continuous
path of maps” (see remark 12).

Definition 3. f : (X, TX) → (Y, TY ) is a homotopy equivalence if there exists
g : (Y, TY )→ (X, TX) such that g ◦ f ' 1X , f ◦ g ' 1Y .

Homotopy equivalence is weaker than homeomorphism, hence two topological
spaces not in the same ∼-orbit cannot be homeomorphic.

Definition 4. A property of the ∼-orbit of (X, TX) is an invariant of its homotopy
type.

Compactness is an invariant of the homeomorphism type but not of the homotopy
type (for example Rn is homotopic to {p}).

Invariants come often as functors.
We have similar definitions for pairs (X,A) where A is a subset of X (relative

theory). So we consider the category of pairs A ↪→ X ∈ TOP, and the arrows
are subset preserving (or equivalently they are pairs of arrows making the obvious
diagram commute). Then we have invertible ones (homeomorphisms of pairs), and
hence '-orbits. We also have the notion of homotopy of maps between pairs (the
maps must preserve the subsets) giving rise to ∼-orbits.

Exercise 1. Define homeomorphism and homotopy of pairs.

Notice how we can combine the idea of homotopy and the study of maps from
simple topological spaces as follows:
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Definition 5.

π0(X) = {f : {p} → X}/ ∼1:1↔ {path− connected components of X }

π1(X,x) := {f : (I, ∂I)→ (X,x)}/ ∼,

πn(X,x) := {f : (In, ∂In)→ (X,x)}/ ∼

For n ≥ 2, πn(X,x) is abelian and very difficult to compute.
Being more precise, we have functors from pointed topological spaces to groups

(X,x) 7→ πn(X,x)

(so that a homotopy equivalence between pointed spaces induces an isomorphism
between the corresponding homotopy groups).

Other invariants: Homology and cohomology theories. Algebraic topology is
the subject dealing with the study of these (algebraic) invariants for topological
spaces. Topological spaces can be very complicated; techniques from algebraic
topology specially suited for CW-complexes (see chapter 0 in

Ha
[2]).

1.2. Manifolds.

Definition 6. An atlas on (X, TX) of class Cr, r ∈ N̄ (N̄ := N ∪∞), is defined
by the following data:

• {Ui}i∈I an open cover of X.
• ϕi : Ui → Rmi mapping Ui homeomorphically onto an open subset of Rmi .
• For each non-empty overlap Ui ∩ Uj,

ϕij := ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) ⊂ Rmj → ϕi(Ui ∩ Uj) ⊂ Rmi

is a diffeomorphism of class Cr.
We call ϕ−1

i a chart for Ui, and the components of ϕ coordinates on
Ui.

There is a notion of Cr-map between topological spaces endowed with Cr-atlas.
Then we can define the notion of two Cr-atlases being compatible by asking the

identity map to be Cr w.r.t. to one atlas in the domain and the other in the target.
There is also a partial order for compatible atlases -where an atlas precedes a second
one if all charts of the former are charts of the latter- and among compatible ones
there is a unique maximal atlas.

Definition 7. A Cr-manifold structure on (X, TX) is given by a maximal atlas.
Equivalently, it is given by any Cr-atlas, as any such is associated to as unique
maximal one.

A Cr-manifold is a topological space endowed with a Cr-manifold structure.
C0-manifolds are often called topological manifolds, and C∞-manifolds smooth

manifolds. Also for us a differentiable manifold will stand for a Cr-manifold,
for some r ≥ 1.

In other words, by a Cr-manifold structure we make (X, TX) look locally like
some Rm, up to Cr-diffeomorphism.

Remark 1. There are more kinds of manifold structures:

• Analytic structures (Cω).
• Piecewise linear structures (PL).
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So we have the categories MANr, r ∈ N̄, and the same fundamental questions
as for TOP apply, i.e. determine when two objects are isomorphic, and describe
properties up to isomorphism.

Differentiable topology: Study of differentiable manifolds and differentiable
maps, i.e. of MANr, r ≥ 1.

The study of topological manifolds and differentiable manifolds uses very different
techniques. For the latter we have tools coming from calculus, which simplifies a
lot the answering of certain basic questions.

For example we have the following result.

Proposition 1. Any connected Cr-manifold can be assigned a positive number, its
dimension. It is defined as the dimension of the domain vector space of any chart.

Proof. To check that dimension is well defined, we just need to show that if we
have U ⊂ Rm an open subset and

ϕ : U → Rn

sending U Cr-diffeomorphically into an open subset, then n = m.
If r ≥ 1, then the differential at any point must be invertible, and therefore the

result follows.
It the topological case, it follows from Brouwer’s invariance of domain the-

orem that asserts that if f : U ⊂ Rm → Rm is injective and continuous, then it is
open (i.e. a homeomorphism).

Now we can assume w.l.o.g. that n<m, then the composition f = i◦Φ, i : Rn ↪→
Rm is continuous and injective, and therefore open according to Brouwer’s, but
that is a contradiction.

�

In particular, we see that the only information that we can extract by looking at
arbitrarily small neighborhoods of a point in a connected manifold M is its dimen-
sion (i.e. it is the unique local invariant). Therefore, characteristic information
of a manifold can only be seen at the global level.

We can easily get on the same topological manifold different -but diffeomorphic-
Cr-manifolds structures, r ≥ 1.

Example 1. In R we consider two different smooth structures. The first one is
the canonical one coming from the vector structure. The second one is given by the
global chart

R → R
t 7→ t3

The identity from the canonical smooth structure to the latter is a homeomor-
phism which is not even C1, because if so x→ x1/3 should be C1.

More generally, given M,N Cs-manifolds, s ≥ 1, and φ : M → N a Cr-
diffeomorphism r < s (which is not of class Cr+1), we can push the Cs-structure
on M to one on N (and viceversa), obtaining a new one which is not the same as
the original one, but Cr-diffeomorphic. In particular, if for any Cs-manifold M we
can find a self Cr-diffeomorphism (see remark 20), then we can change the original
structure into a different one, which is diffeomorphic.

In the previous example we spoke of Cr-functions between Cs-manifolds, for r <
s. To make this precise notice that any Cs-atlas on (X, TX) canonically induces a
Cr-atlas in (X, TX), by just considering the Cs-transition functions as Cr-transition
functions. One sees that this gives rise to the following
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lem:forgetful Lemma 1. There are for each s, r, r < s forgetful functors

Fr,s : MANs → MANt,

so that
Fr,s ◦ Fs,t = Fr,t

A fundamental question in the topology of manifolds is to study the fibers of
Fr,s. One of the main results we will prove is theorem 1 below. But before, we will
make the following assumption which will be valid from now on (and will also be
strengthened): all manifolds are to be Hausdorff and paracompact.

thm:diffsmooth Theorem 1. Let 1 ≤ r < s. Then to any Cr-manifold structure on M we can
assign a Cs-structure to M which is both compatible with the initial Cr-structure
and unique up to Cs-diffeomorphism. In other words, at the level of objects, we
have maps Us,r : MANr → MANs/ ' which invert Fr,s.

So in many cases questions about Cr-manifolds, r ≥ 1, reduce to questions about
smooth manifolds.

As we see from theorem 1 the fibers -at least at the level of diffeomorphism
classes- of Fr,s, r, s ≥ 1 have exactly one element. On the other hand, the fibers of
F0,∞ can exhibit very different behaviors, and the following results are known:

(1) In dimensions 0,1,2 and 3, the fiber is exactly one orbit. In other words,
every topological manifold of the aforementioned dimensions admits -up to
diffeomorphism- exactly one smooth structure (compatible with the topo-
logical structure).

(2) In dimensions ≥ 5 a compact topological manifold admits at most a finite
number of smooth structures. It can also admit no smooth structures. In
the case of the spheres Sn, n ≥ 5, these numbers are known: for example it
is a famous result that the 7-sphere admits 28 different (non-diffeomorphic)
smooth structures.

(3) In dimension 4 the fiber can be empty (for certain compact simply con-
nected manifolds), finite and infinite (and even non-countable!). If the
manifold is open, then the fiber is non-empty. Being compact does not
imply that only a finite number of smooth structures exist.

(4) The Euclidean space Rn admits exactly one smooth structure if n 6= 4. R4

admits uncountable many smooth structures.
Other natural questions:
• If M,N are homotopic, are they Cr-diffeomorphic? (i.e. how much infor-

mation algebraic topology can give us?).
• An embedding f : M ↪→ N is a Cr-map which is an immersion (if r ≥ 1 )

and a homeomorphism onto its image. Given M,N , can we embed M in
N?. If so, in “how many ways”?.

For example, we may define an equivalence relation between embeddings
f, f ′ by requiring the existence of g : (N, f(M))→ (N, f ′(M)) a diffeomor-
phism. When N = S3,M = S1, we are led to knot theory.

• Do (homotopic) invariants for manifolds have extra properties?. Do homo-
topy type invariants have Cr-versions/ Cr-constructions?.

• The same question applies for constructions of general topology (i.e., how
much we can get by working with differentiable functions rather than with
continuous ones).

2. More definitions and basic results

Definition 8. Given a continuous function f : U ⊂ Rm → Rn, U open, a property
P(f) is called
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• local if for any open cover {Ui}i∈I of U P(f) holds iff P(f|Ui
) holds for all

i ∈ I;
• Cr-diffeomorphic invariant if P(f) holds iff P(Ψ ◦ f ◦ Φ) holds, for

Φ: U ⊂ Rm → Rm , Ψ: V ⊂ Rn → Rn, f(U) ⊂ V,
any Cr-diffeomorphisms.

Given A ⊂ Rm, a property P(A) is
• local if for any open cover {Ui}i∈I of A P(A) holds iff P(A∩Ui) holds for

all i ∈ I;
• Cr-diffeomorphism invariant if P(A) holds iff P(Φ(A)) holds, for

Φ: U ⊂ Rm → Rm

any Cr-diffeomorphism, A ⊂ U .
Notice that local properties are inherited by the restriction to open subsets .

Definition 9. A subset A ⊂ Rm is a Cr-submanifold (of Rm) if there exists open
subsets {Ui}i∈I with A ⊂ ∪i∈IUi, and adapted coordinates ϕi : Ui → Rm of
class Cr-such that

A ∩ Ui = Φ−1(Rn) , n ≤ m
The codimension of A (connected) in M (connected) is dimM − dimA.

ex:submanifold Exercise 2. Show that a Cr-submanifold inherits a Cr-manifold structure so that
the inclusion i : A ↪→ Rm is a Cr-embedding (here you can use that being a subset
of Rm, the topology on A will be both Hausdorff and second countable, and thus
paracompact; see also the beginning of subsection 2.4).

Example 2. The sphere

Sm−1 := {x ∈ Rm | |x|2 = 1}
is a submanifold of Rm. At each x ∈ Sm−1 define the hyperplane

Hx := {y ∈ Rm | 〈y, x〉 = 0}
The map

ϕx : Rm −→ Hx × R
y 7−→ (y − 〈y, x〉, 〈x, x〉 − 1)

has invertible differential at x, so by the inverse function theorem in a neighborhood
of x it defines a diffeomorphism. It is then clear that such a restriction is an adapted
chart.

Definition 10. A Cr-map, r ≥ 1, f : U ⊂ Rm → Rn is called an
• immersion if for all x ∈ U , Dfx : Rm → Rn is an injective (linear) map.
• submersion if for all x ∈ U , Dfx : Rm → Rn is a surjective (linear) map.

Lemma 2. The following properties are local Cr-invariant by diffeomorphism.
• For f : U ⊂ Rm → Rn, being of class Cr in U .
• Being a submanifold.
• If r ≥ 1, then being an immersion, submersion are local properties. More-

over, by the implicit function theorem being a submanifold is equivalent to
the existence of local submersions fi : Ui → Rn so that A ∩ Ui = f−1

i (0).

Proposition 2. Local properties invariant by Cr-diffeomorphism can be transferred
to Cr-manifolds, where they become also local (recall that any open subset of a
manifold carries a canonical manifold structure) and invariant by diffeomorphism.

Indeed, for f : U ⊂ M → Rn, we say that P(f) holds if for some (and hence
any) cover of U by charts {(Ui, ϕi)}i∈I , P(f ◦ ϕ−1

i ) holds for all i ∈ I.
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If now we have f : M → N , then it is defined to hold if for some Cr-atlas
{Vj , ψj)}j∈J of N (and hence for any), ψj ◦ f : Mj → Rn holds for j ∈ J , where
Mj := f−1(ψ−1

j (Rn)).

Definition 11. For M,N Cr-manifolds, the set of Cr-maps from M to N is de-
noted by Cr(M,N). We also denote by Embr(M,N), Immr(M,N),Subr(M,N),Diffr(M,N)
the subsets of embeddings, immersions, submersions and diffeomorphisms.

2.1. Submanifold vs. embedding. Recall that a differentiable map f : M → N
is an embedding if it is an immersion (r ≥ 1) and a homeomorphism onto its image.
Bijectivity is a global property, but being open is local.

Any submanifold A ⊂ N , inherits a manifold structure from the adapted charts
(this is essentially exercise 2 together with the definition of a submanifold of a
manifold); once more, paracompactness of A follows from results of general topology
(subsection 2.4).

pro:embsub Proposition 3.
(1) If A ⊂ N is a submanifold then the inclusion i : A→ N is an embedding.
(2) If f : M → N is an embedding r ≥ 1, then f(M) is a submanifold.

Proof. Regarding point 1, bijectivity is clear and openness holds because the mani-
fold structure on A is for the underlying inherited topology. Regularity is Cr-local
and Cr-diff. invariant, so it can be checked in adapted charts, where it is clear (it
reduces to exercise 2).

To prove point 2 we need to construct adapted charts about any point in f(M).
Use the embedding property to find charts Ui, Vi so that f(Ui) = Vi ∩ f(M), so
it is enough to show that ψi(f(Ui)) ⊂ Rn is a submanifold, therefore the situation
reduces to having an embedding in Euclidean spaces, and this follows from the
implicit function theorem. �

rem:enbsameimage Remark 2. Therefore, an embedding f : M → N gives a diffeomorphism from M
so the submanifold f(M). There can be different embeddings f, g : M → N so that
f(M) = g(M). One sees that given one embedding f any other g with that property
is of the form g = f ◦ φ, with φ a diffeomorphism of M .

Remark 3. Once more there are differences between the topological case and the
differentiable one regarding the issue of submanifolds and embeddings. In the differ-
entiable setting we can use infinitesimal information (being an immersion), which
is transformed into local information (adapted charts). In the topological case the
situation is much more involved. Alexander’s Horned sphere is an example of
embedding f : S2 → R3 whose image is not a submanifold.

ssec:tangent
2.2. The tangent bundle of a Cr-manifold, r ≥ 1. For each x ∈ M , and
c : (−ε, ε)→M , c(0) = x, a Cr-curve through x, we can make sense of d

dtc(t)|t=0:
we say that c, d Cr-curves through x are equivalent if for some local coordinates ϕ
about x ,

d

dt
ϕ ◦ c|t=0 =

d

dt
ϕ ◦ d|t=0 (1) eq:equivcurves

Exercise 3. Show that if equation 1 holds for some local coordinates ϕ, then it
holds for any local coordinates having x inside its domain.

Definition 12. TxM is the set of equivalence classes of such curves [c]x.

One easily proves

Lemma 3. TxM carries a canonical vector space structure.
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def:tgbundle Definition 13. The tangent bundle of M is

TM :=
∐
x∈M

TxM,

with π : TM → M the obvious projection, and with the following Cr−1-manifold
structure:

The cover is {π−1(Ui)}i∈I and the coordinate chart is defined

Dϕ−1
i : ϕi(Ui)× Rm −→ π−1(Ui)

(x, v) 7−→ [ϕ−1
i (x+ tv))]ϕ−1

i (x)

To be more precise, TM carries in principle no topology, but for the bijections
{(π−1(Ui), Dϕ−1

i )}i∈I there is a unique topology making them into a Cr−1-atlas.
One easily observes:
• The manifold structure does not depend on the atlas, so it is induced by

the manifold structure on M .
• π : TM →M is a Cr−1-surjective submersion.
• Each vector space TxM is sent by Dϕi to Rn with its canonical vector

space structure (and the Cr−1-manifold structure only considers compatible
atlases which are linear on tangent spaces, i.e. it carries a Cr−1-vector
bundle structure). Another way to say this is that the vector structure is
compatible with the differentiable structure in the sense that if P is a Cr−1-
manifold, s1, s2 ∈ Cr−1(P, TM) with π ◦ s1 = π ◦ s2, λ1, λ2 ∈ Cr−1(P,R),
then

λ1s1 + λ2s2 ∈ Cr−1(P, TM)

• The 0-section {0x | x ∈ M} is a submanifold of TM , or by proposition 3
M embeds as the 0-section

M −→ TM

x 7−→ 0x

• For a Cr-map f : M → N , there is an induced differential map (of class
Cr−1) commuting with the projections

Df : TM −→ TN

[c] ∈ TxM 7−→ [f ◦ c] ∈ Tf(x)N

The differential is a Cr−1-map which restricts to a linear map

Dfx : TxM → Tf(x)N, ∀x ∈M

We will also use the notation f∗ := Df .
In particular, if i : A ↪→ M is a submanifold, using adapted charts

Di : TA −→ TM is easily seen to be an embedding, so that for each x ∈ A
the vector space TxA is linearly sent to a linear subspace of TxM .

Observe also that f : M → N , r ≥ 1, is an immersion (resp. submersion) iff

Dfx : TxM → Tf(x)N

is injective (resp. surjective) for all x ∈M .

def:vfield Definition 14. A map s ∈ Cr−1(M,TM) with π ◦ s = Id is called a (Cr−1)
vector field (or a section, a name also valid for any vector bundle).

Note that the set of vector fields Xr−1(M) is a module over Cr−1(M).
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2.3. Transversality and submanifolds.

Definition 15. Let f : M → N a Cr-map, r ≥ 1, and A ⊂ N a submanifold. We
say that f is transversal to A if for every x so that f(x) ∈ A,

Tf(x)N = f∗TxM + Tf(x)A

Notice that for f : M → N , x ∈ N is a regular value iff f is transversal to x.

Proposition 4. Let f : M → N a Cr-map, r ≥ 1, transversal to A ⊂ N . Then
f−1(A) -if non-empty- is a submanifold of M of codimension the codimension of A
in N .

Proof. Go to charts, reduce it to the case of a point by projecting, and apply the
known statement coming from the implicit function theorem. �

Example 3.
(1) In Rm the unit sphere is f−1(0), for f(x) = |x|2−1, with 0 a regular value.
(2) In R2 the canonical open book decomposition B0 is the partition given

by the origin and all the open rays emanating from the origin. Each subset
in the partition is a submanifold. An open book decomposition on an arbi-
trary manifold is defined to be a map f : M → R2 which is transverse to
all submanifolds of B0, and contains 0 in its image. By pulling back each
of them, we get another partition of M by submanifolds. The projection
(x1, x2, x3) 7→ (x1, x2) restricted to the unit sphere S2, gives an open book
decomposition. An open book decomposition for S3 produces a fibred link
f−1(0).

ssec:funct
2.4. Topology with Cr-functions. Our manifolds are being assumed to be Haus-
dorff and paracompact. A stronger assumption is to require second countability
rather than paracompactness, which we take from now on. They are almost equi-
valent, because any connected component of a Hausdorff paracompact manifold is
second countable. Notice also that most of our results are to be proved working
on a single connected component on a manifold. Observe for example that by
defining a submanifold by just requiring it to have adapted charts, we recover the
Hausdorff and paracompactness properties: indeed, each connected component of
the manifold is second countable, hence the intersection of the submanifold with
that component is Hausdorff and paracompact, and therefore the submanifold is
Hausdorff and paracompact. In any case the reader is invited to verify which of our
results hold when only paracompactness is assumed.

Being our manifolds second countable, we have a countable basis {Wl}l∈N. We
wonder how “good” it can be chosen to be.

lem:nicebasis Lemma 4. Given any open cover {Ui}i∈I we can find {Zj}j∈N a countable basis
so that

(1) Zj is subordinated to Ui.
(2) Each Z̄j is in the domain of local coordinates (Vj , ϕj) and ϕj(Zj) = B(0, 1).

Proof. The topology of M for each point a basis of compact neighborhoods, since
for any point we can use local coordinates and transfer the closed balls centered at
the image.

Keep only those Wl such that
• Wl is in some Ui(j),
• Wl has compact closure.

It is still a basis. Indeed, regarding the first condition, given any open subset
U ′, and x ∈ U , consider U ′i := U ′ ∩ Ui. If x ∈ U ′i , since Wl is a basis we have
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x ∈Wl(i) ∈ Ui. Regarding the second if x ∈ U ′, then x ⊂ K ⊂ U ′, and some Wl(K)

must be contained in intK.
Now each of the Wl we keep is in the domain of local coordinates landing inside a

compact neighborhood inside the image of the coordinates. Therefore, we can write
it as the union of a countable family of balls whose closure is still in the domain
of local coordinates, and the union of all then for the Wl verifying the above two
properties is Zj . �

rem:nicebasis Remark 4. A basis is a notion that belongs to the realm of topological spaces.
When we are in the manifold setting we would like all our objects to belong to
the differentiable category. It is clear that any open subset of a manifold is a
submanifold, but we are often interested in looking at closures of these open subsets.
Thus, it makes sense to ask them to be submanifolds (nec. with boundary 18). It
will also become clear (construction of partitions of unity and proposition 7) why
their being diffeomorphic to closed balls is also very useful.

It is convenient to think of non-compact manifolds as countable increasing union
of compact pieces.

def:exha Definition 16. A compact exhaustion of M is given by a sequence Mj, j ∈ N,
such that

Mj compact, Mj ⊂ intMj+1, M =
⋃
j∈N

Mj

lem:compactexh Lemma 5. A Cr-manifold admits compact exhaustions.

Proof. Take a countable basis Zj as in lemma 4.
Then define M0 = Z̄0. we assume by induction that

Mj =
d(j)⋃
j=1

Z̄j , d(j) ≥ j

Add a finite number of Z ′js (not in intMj) with non-empty intersection with Mj

and covering it. Define d(j + 1) to be the highest index of them. Then

Mj+1 :=
d(j+1)⋃
j=1

Z̄j

gives the solution. By construction Mj ⊂ intMj+1. Also Mj+1 is compact and
d(j + 1) ≥ j + 1, the latter implying

M =
⋃
j∈N

Zj ⊂
⋃
j∈N

Mj

�

lem:nicecover Lemma 6. Given any open cover {Ui}i∈I we can find {Vl}l∈N a countable cover
so that

(1) Vl is subordinated to Ui.
(2) Each V̄l is in the domain of local coordinates (U ′l , ϕ

′
l) and ϕ′j(Vl) = B(0, 1).

(3) Vj is locally finite.

Proof. We take Zl a basis as in lemma 4 and a compact exhaustion Md. Out of the
compact exhaustion we build another open cover

Qd := intMd+1\Md−1

We can assume w.l.o.g. that the basis Zk is subordinated to both Ui and Qd.
The refinement is constructed by carefully adding by induction a finite number of
Vj := Zl(j). In the first induction step we take a finite number of open subsets
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covering M0. Next, we cover M1\intM0, compact, by a finite number of them
with non-empty intersection with M1. The (d+1)-th step amounts to covering
Md+1\intMd by a finite number of Z ′ls. Being subordinated to Qk they must be
inside Qd ∪Qd+1 ∪Qd+2. Observe that open sets added at the (d+1)-th step only
intersect those added at the (d-1)-th,d-th, (d+2)-th and (d+3)-th steps, which are
a finite quantity. Therefore, the cover is locally finite. �

Fundamental results on general topology assert that certain properties of the
topological space M are equivalent to the existence of very particular functions
(Urysohn’s lemma, partitions of the unity). Since we have a Cr-manifold structure,
it seems feasible that those functions can be taken to be Cr, i.e, the richness of
C0(M) should also appear in Cr(M) (and in general in Cr(M,N)).

In manifolds, we have bump functions, which we use to transfer function theory
results from Euclidean space to manifolds.

lem:bump Lemma 7. Given any r′ > r > 0, y ∈ Rm, we can find a smooth function µ : Rm →
R such that

(1) µ|B(y,r) ≡ 1, µ ≤ 1,
(2) supp(µ) ⊂ B(y, r′),

Proof. Start with the (flat) function at the origin

f(t) =

{
exp−

1
t2 , t ≥ 0

0, t ≤ 0
(2)

Then we translate. Next we get a function starting with the reflection of the
original one, so that the product has support in (−r′,−r). Then we integrate to
get the right step. Next we do the same with another copy to get the right support.

Now use the radius as coordinate to go to more variables. �

Remark 5. Notice that we can arrange µ−1(1) = B(y, r).

rem:uryson Remark 6. Notice that since we are dealing with normal spaces, given any to
closed subsets A,B ⊂M we can find a continuous function f : M → [0, 1] such that
f|A ≡ 0, f|B ≡ 1. We would like f to be Cr, and lemma 7 is a step in that direction
(the solution appears in exercise 32).

We can use bump functions to easily produce Cr-partitions of the unity:
firstly, we take a locally finite cover {(Ui, ϕi)}i∈I such that the balls B(yi, ri) ⊂
ϕi(Ui) and ϕ−1

i (B(yi, ri)) is a cover of M . Then we take bump functions µi by
pulling back the bump functions as in lemma 7 (with support in Ui) and attaining
the value 1 at ϕ−1

i (B(yi, ri)); then divide each function by the total sum. It we want
the partition of the unity subordinated to a given cover {Vj}j∈J , we may always
find a refinement as above, and then use a function k : I → J so that Ui ⊂ Vk(i) to
transfer it by taking

µj =
∑

i∈k−1(j)

µi

Now we can use Cr-partitions of the unity to build differentiable metrics.
Any local coordinates ϕ = (x1, · · · , xm) on U ⊂M produce a frame of Xr−1(U).

Indeed, if e1, . . . , en is the basis of Rn used to decompose ϕ, we define
∂

∂xi
(x) := [ϕ−1(ϕ(x) + tei)]x

If we use other coordinates ϕ′ = (x′1, . . . , x
′
m), then

∂

∂xi
(x) =

m∑
j=1

∂(ϕ′ ◦ ϕ−1)j
∂xi

(ϕ(x))
∂

∂x′i
(x) (3) eq:changecoord
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Definition 17. A Cr−1-metric on a Cr-manifold is a Cr−1-map x 7→ InnPr(TxM),
where InnPr(TxM) are inner products, a convex cone of the vector space of sym-
metric bilinear forms on TxM . In other words, in coordinates x1, . . . , xm and in the
basis ∂

∂x1
, . . . , ∂

∂xm
it is given by a symmetric, strictly positive definite matrix with

Cr−1-entries. Notice that if we change the basis to another one so that the matrix
of change of basis has Cr−1-entries, the previous property still holds. In particular
this is the case for the matrix of change of coordinates, so being Cr−1 is coordinate
free.

Lemma 8. Any Cr-manifold M posses Cr−1-metrics.

Proof. Take a cover made of local coordinates {(Ui, ϕi)}i∈I with {µi}i∈I a Cr-
partition of the unity. Now we define a global metric

g =
∑
i∈I

µigi,

where gi is a Cr−1-metric on Ui, for example the Euclidean one in the canonical
basis associated to the coordinates.

Since the supports give a locally finite cover, to know how g acts in a couple
of vectors we just need to compute a finite sum, so g is well defined, and clearly
symmetric and strictly definitive positive. Regarding regularity, in the basis associ-
ated to the local coordinates ϕi, µigi is obviously Cr−1. By equation 3 so the µjgj
are. �

pro:emb1 Proposition 5. Let M be a compact Cr-manifold, r ≥ 1. Then it embeds in Rq
for some q ∈ N.

Proof. Consider any finite cover {(Ui, ϕi)}, i = 1, . . . , d, and bump functions µi by
pulling back a bump fuction µ, i = 1, . . . , d, with µ−1(1) = B(0, 1), and so that
ϕ−1
i (B(0, 1)) cover M .
Define the function

f : M −→ Rm(d+1)

x 7−→ (µ1(x)ϕ1(x), µ1(x), . . . , µd(x)ϕd(x), µd(x))

Observe that f is well defined and injective. Since M is compact it is an home-
omorphism over its image. �

We state Sard’s theorem.

thm:sard Theorem 2. Let f : M → N be a Cr-map, r > max{0,m − n}. Then the subset
of regular values is dense.

Remark that if m < n then z ∈ N is regular iff z /∈ f(M).

thm:emb2 Theorem 3. Let M be a compact Cr-manifold. If r ≥ 2 then
(1) For any n≥ 2m it immerses in Rn;
(2) For any n≥ 2m+1 it embeds in Rn.

Proof. We consider the embedding case. Start with any embedding in Rq as in
proposition 5. The idea is to reduce the dimension of the target Euclidean space
by composing the embedding with an orthogonal projection onto a hyperplane H,
so the composition is still an embedding.

One easily check that πH : M → H is injective iff ±vH -the unit vectors ortho-
gonal to H- do not belong to the image of the Cr-map

L : M ×M\∆ −→ Sq−1

(x, y) 7−→ (x− y)
|x− y|



TOPOLOGY OF DIFFERENTIABLE MANIFOLDS 13

Therefore, if q ≥ 2m+1, we are in the hypothesis of Sard’s theorem (we actually
only need r ≥ 1) and we can deduce that W -the complement of ImL- is dense, so
any of those directions is adequate to project and still get an injective map.

Regarding the infinitesimal result, notice that inside of the tangent bundle TRq
we have the unit sphere bundle S(TRq) = Rq × Sq−1. Another way to define it is
to consider

| · |2 : TRq −→ R
v 7−→ |v|2

This map is Cr−1 and the value 1 is regular, and its inverse image is the sphere
bundle. Now if M ↪→ Rq, we can see TM ↪→ TRq, and define the sphere bundle as

S(TM) := {v ∈ TM | |v|2 = 1}
Since 1 is a regular value of the restriction of | · |2 to TM -which is Cr−1- it

follows that S(TM) is a submanifold.
The infinitesimal condition about being an immersion is equivalent to ±vH being

in W (1) := Sq−1\ImL(1), where

L(1) : S(TM) −→ Sq−1

(x, ux) 7−→ ux

�

Sard’s theorem implies the density of W (1). Since it is also open, we conclude
that W ∩W (1) is dense thus proving the theorem.

rem:approx Remark 7. Theorem 3 becomes an approximation theorem as follows:
First notice that in theorem 3 what is relevant are the directions ±vH along which

we project. And we can do it over H or any other hyperplane transverse to the line
containing ±vH .

Given f : M → Rn a Cr-map, then for any ε > 0 we can find g : M → Rn an
embedding such that |f − g| ≤ ε. To do that, embed it in Rq with and consider
the product map H : M → Rn × Rq. Notice the original map is πRn ◦ H, so our
task is approximating this linear projection by a linear map giving an embedding;
but now we write it as a composition of projection onto (coordinate) hyperplanes.
Then we use the density part result in Sard’s theorem (and the observation that
we can project onto any transverse subspace, in particular onto the fixed coordinate
hyperplanes).

Exercise 4. Given an embedding M ↪→ N , use adapted charts to show that any
differentiable metric on TN induces a differentiable metric on TM .

Remark 8. In theorem 3 the Euclidean metric induces a metric on M , and we
compute the sphere bundle w.r.t. it. For any differentiable metric the norm square
is differentiable and the sphere bundle is a differentiable manifold.

2.5. Manifolds with boundary. Recall that for any subset B ⊂ Rm we define a
Cr-function

f : B → Rn

as a function with a Cr-extension defined in a (open) neighborhood of B in Rm.

def:manboundary Definition 18. A structure of a Cr-manifold with boundary on (X, TX) is
given by an Cr-atlas of charts modeled on Hm

+ = Rm−1 × [0,+∞). In other words,
we want {(Ui, ϕi)}i∈I so that

• {Ui}i∈I is an open cover of M .
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• ϕi : Ui → Hm
+ maps Ui homeomorphically onto an open subset of Hm

+ .
• ϕij : ϕj(Ui ∩ Uj) : Hm

+ → ϕi(Ui ∩ Uj) ⊂ Hm
+ is a Cr-diffeomorphism.

Remark 9.
• For each transition function ϕij, there must be a Cr-extension Φij to an

open set of Rm. The same should happen for ϕji, but the extensions need
not be inverse of each other. In any case one can refine the cover so that
this property holds, so that can be assumed in the definition.
• The boundary ∂M is well defined. In the differentiable case the contrary

would imply the existence of a differentiable map

f : (B(0, 1), 0)→ (Hm
+ , 0)

which is a homeomorphism over its image and has invertible differential
at the origin. Then take c a curve through 0 which represents a direction
transverse to Df−1(T0∂H

m
+ ). Then f ◦ c′m(0) 6= 0, but on the other hand 0

is a minimum for f ◦cm, and that leads to a contradiction; in the topological
case one uses invariance of domain.
• The definition of Cr-map, tangent bundle, regular point for a map, regular

value (for target manifold without boundary) go through. For example if
x ∈ ∂M , then a Cr-curve through x is a Cr-map

c : ([0, ε), 0)→ (M,x)

By definition this means that on any chart has some extension to a Cr-
map. Obviously, the vector represented does not depend on the extension,
so the equivalence class will be well defined.
• For a positive half space, a (closed) ball is the intersection of an Euclidean

(closed) ball with the positive half space (so depending on the intersection
with the boundary there are to homeomorphism types). The existence of
countable basis with open sets with closure diffeomorphic to closed balls
(lemma 4) equally holds in our more general setting. Similarly, one has
compact exhaustions, nice locally finite countable covers as in lemma 6 and
differentiable partitions of the unity. Using them one proves the embedding
result in Euclidean space given by proposition 5.

Exercise 5. Show that ∂M inherits a Cr-manifold structure (with empty boundary)
and the inclusion

i : ∂M →M

is a Cr-embedding.

From now on manifold will boundary will be referred to as manifold, and we will
specify the absence of presence of boundary if necessary.

def:bsubmnfd Definition 19. A submanifold A of Hm
+ is a manifold (with or without boundary)

so that it carries adapted charts. In other words, for points in the interior of the
half space the chart about it extends to a diffeomorphism of Rm sending Ui ∩ A to
the corresponding open set of Hn

+ (perhaps a boundary point). For points in the
boundary of Hm

+ , the point in A will also be a boundary point and the chart again
extends to a local diffeomorphism of Hm

+ so that ∂A ∩ Ui goes to Hn
+ ⊂ Hm

+ , with
Hn

+ t ∂H
m
+ .

Exercise 6. Show that the notion of a submanifold of Hm
+ is local and Cr-diffeomorphism

invariant (this time the diffeomorphism Ψ: U ⊂ Hm
+ → Hm

+ ), and therefore it can
be transferred to manifolds.

thm:regbound Theorem 4. Let f : M → N a Cr-map, r ≥ 1, so that both f, f|∂M are transversal
to A ⊂ N , ∂A = ∅. Then f−1(A) is a submanifold of M with boundary f−1

|∂M (A).
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Proof. Apply the implicit function theorem with a bit of care, noticing that

kerDfx t ∂Hm
+ ,

so the new coordinates can be chosen to be (f ′, p), where
• f ′ is the composition of f with a projection which in adapted coordinates

has image a subspace complementary to A,
• p is the projection onto x+ kerDfx parallel to a subspace inside of ∂Hm

+ .
�

rem:moresubmnfd Remark 10. There are two more situations for which A ⊂ Hm
+ could be considered

a submanifold; namely when it does not meet the requirements of definition 19, but
A ⊂ Rm is a submanifold. The two possibilities are

• ∂A = ∅ and A∩∂Hm
+ 6= ∅. By theorem 4 intersection points must be tangent

to the boundary.
• ∂A = ∅ and A ∩ ∂Hm

+ 6= ∅. Again, intersection points cannot be transverse
to the boundary.

In any case, since A is a submanifold of Rm one can always obtain adapted
coordinates for A, but in which the image of Hm

+ is not a positive half space anymore
unless a neighborhood of x in A is entirely contained in the boundary.

Exercise 7. Prove the assertions of remark 10.

We do not have a full analog of 3.

Exercise 8. Prove that for manifolds M,N possibly with boundary, if r ≥ 1 then
for a Cr-embedding f : M → N the subset f(M) of N is a Cr-submanifold as
in definition 19 iff f t ∂M . Show that if x ∈ N is such that f(x) ∈ ∂N but
Dfx(TxM) ⊂ Tf(x)∂N (i.e. there is not transversality to ∂N at x), then f(M)
is in the situation of remark 10, meaning that we get the adapted charts described
there.

ex:boundfunc Exercise 9.
• On a differentiable manifold with non-empty boundary, use a suitable par-

tition of unity to construct ζ : M → R+ a differentiable function such that:
(1) ζ−1(0) = ∂M .
(2) For each x ∈ ∂M , vx ∈ TxM\Tx∂M (vx direction transverse to the

boundary), Dζx(vx) > 0.
Hint: As usual, see how one would solve the problem for the model
Hm

+ . There the natural choice is the coordinate xm that defines Hm
+ =

x−1
m ([0,∞)). It has the right properties near the boundary. Then one

can use a partition of unity µ1, µ2 subordinated to

x−1
m ([0, 1)), x−1

m ((1/2,∞))

to produce the desired result

µ1xm + µ2

To go to manifolds one can use a locally finite family Ui ⊂ M , i ∈ I,
of open subsets covering ∂M , and extend the result in H+

m by using a
partition of the unity subordinated to Ui, i ∈ I,M\∂M .

• Use the function ζ as an extra coordinate to prove an analog of proposition
5 of the following kind: If M is compact, ∂M 6= ∅, for q large enough there
exist f : (M,∂M) → (Hq

+, ∂H
q
+) an embedding so that f t ∂Hq

+ (in other
words x ∈ ∂M is sent to ∂Hq

+, and vectors in TxM\Tx∂M are sent to
vectors transverse to Tf(x)∂H

q
+).



16 D. MARTÍNEZ TORRES

thm:emb2bd Theorem 5. Let M be a compact Cr-manifold. If r ≥ 2 then it embeds in Rq,
for any q ≥ 2m + 1 and it has immersions in Rq, for any q ≥ 2m. Moreover, we
obtain similar results for embeddings of (M,∂M) in (Hq

+, ∂H
q
+), so that M embeds

transverse to ∂Hm
+ .

Proof. Notice that when we construct M ×M , we get a manifold with corners,
i.e. modeled on [0,+∞)d × Rm−d (in this case d = 2). Sard’s theorem also holds
for them, but we will see other proofs of the theorem later (see remark 21). �

2.6. 1-dimensional manifolds. Let r ≥ 1. A Cr-diffeomorphism

f : (0, 1)→ f(0, 1) ⊂ R

is called orientation preserving if f ′ := d
dtf > 0. Recall also that f is a dif-

feomorphism iff it is an immersion (f ′ never vanishes), because it is injective and
open (it locally sends open intervals into open intervals, and those are a basis for
the topology).

pro:1dimext Proposition 6. Let f : (0, a) ∪ (b, 1) → (0, a′) ∪ (b′, 1), 0 < a < b < 1, 0 < a′ <
b′ < 1 be a Cr-diffeomorphism, sending the first interval to the first and the second
to the second and preserving the (canonical) orientation of both. Then for any ε > 0
there exist F : (0, 1)→ (0, 1) a Cr-diffeomorphism such that

F|(0,a−ε) = f, F|(b+ε) = f

Proof. f ′ : (0, a) ∪ (b, 1)→ (0,∞) is a Cr−1-function. Given any δ > 0, we can use
a partition of unity µ1, µ2, µ3 subordinated to (0, a), (a− ε, b+ ε), (b, 1) and define

gδ = µ1f|(0,a) + µ2δ + µ3f|(b,1)

Then consider Fδ(t) :=
∫ t

0
g(s)ds, s ∈ (0, 1) (where the integral might be im-

proper). It is clear that Fδ has the required regularity in (0, 1). We can adjust δ
so that Fδ(b+ ε) = f(b+ ε). �

cor:1dimext Corollary 1. Given f : (0, a) → (0, b), 0 < a, b ≤ 1 an orientation preserving
Cr-diffeomorphism, we can find F a Cr-diffeomorphism of (0, 1) extending f in
(0, a− ε). We can also arrange it to satisfy F ≥ f in (0, a).

thm:1man Theorem 6. Let M be a Cr-manifold connected and of dimension 1. Then M is
Cr-diffeomorphic to

(1) S1 if ∂M = ∅ and M compact.
(2) (0, 1) if ∂M = ∅ and M not compact
(3) [0, 1] if ∂M 6= ∅ has M compact.
(4) [0, 1) if ∂M 6= ∅ has M compact.

Proof. We will proof the second point. Let {(Ui, ϕj)}j∈N be a Cr-atlas so that each
open is diffeomorphic to an open interval. We can assume w.l.o.g. that no interval
in the cover is contained in a finite union of other intervals.

We start by choosing U0, and then at each step we consider Uj+1 so that

Wj := Uj+1 ∩ Vj 6= ∅, Vj :=
j⋃
i=0

Ui

We assume that we have
φj : Vj → (0, 1)

a diffeomorphism. We want to show the existence of

φj+1 : Vj+1 → (0, 1)
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so that
φj+1|Vd(j)

= φj|Vd(j)
,

where d : N → N is order preserving, and for each m there exists j(m) such that
d(j) ≥ m, for all j ≥ j(m) (d is proper w.r.t. the topology whose closed sets are
finite subsets). If that it the case, then

φ = limj→∞φj : M → (0, 1)

is clearly a diffeomorphism over its image. It may in principle fail to be onto, but
that is not important (in any case, by carefully choosing the stepwise extensions
we can arrange it to be onto).

We claim that Wj is an interval which both inside Uj+1 and Vj does not separate.
The intersection Wj is an open subset, and hence a union of intervals (inside

both Uj+1, Vj). Assume an interval I ⊂ Wj separates inside Uj+1. Then inside
Uj+1 it has two accumulation points y, z not in Wj . Similarly inside Vj it must
have at least an accumulation point w not in W . Then we can find {xn}n∈N ⊂Wj

a sequence such that

• it has no accumulation point in Wj , and
• xn → w.

But then xn ⊂ Ī ∩ Uj+1 ⊂ Uj+1 compact, and hence has an accumulation point
that must be either y, z. But any of them differs from w, and that contradicts
the Hausdorffness assumption. So Wj has at most two connected components.
Use the charts φj and ϕj+1 to induce orientations on Uj+1 and Vj . If Wj has
two connected components, we can assume w.l.o.g that the change of charts is
f : (0, a) ∪ (b, 1)→ (0, a′) ∪ (b′, 1), 0 < a < b < 1, 0 < a′ < b′ < 1, sending the first
interval to the first and the second to the second. We claim both orientations must
be reversed, because otherwise we contradict Hausdorfness. But if both orientations
are reversed, using proposition 6 one easily proves

Uj+1 ∪ Vj ' S1

This is not possible: indeed, the next interval Uj+2 must once more intersect in
a open set with an accumulation point in Uj+2 and not in the intersection. Then
we can select a sequence in S1 which converges to this point not in S1; but by
compactness it must have another limit in S1.

Therefore the intersection is one interval that does not separate. We can w.l.o.g.
suppose that the change of chart ϕ ◦ φ−1

j is given by

f : (0, a)→ (b, 1) ' (0, 1)

preserving the orientation, so corollary 1 gives the desired result. �

Remark 11. We have exactly the same result for the topological case. The reason
is that even though there is no differential, homeomorphisms can be characterized as
maps which are strictly monotone, and also make sense of being orientation preserv-
ing or reversing. That allows us to easily prove a topological analog of proposition
6 (even better, since we can actually extend wothout modifying), and therefore the
proof of theorem 6 goes through with minor modifications. In particular we deduce
that each topological (Hausdorff and paracompact) 1-dimensional manifold admits
a unique compatible smooth structure.

Exercise 10. Describe a smooth manifold structure on Gr(k,m) (resp. GrC(k,m))
the Grassmannian of k-planes in Rm. (resp. complex k-planes in Cm). Notice that
in particular one gets smooth manifold structure on RPm (resp. CPm).
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Exercise 11. Let Gl(m,R) be the group of invertible m ×m matrices. Show that
it inherits a manifold structure as an open subset of some Euclidean space. Prove
that the subgroup of symmetric and orthogonal and special orthogonal matrices are
submanifolds of Gl(m,R), and compute their dimension.

Show that the group of unitary matrices is a submanifold of the group of invertible
m×m complex matrices, and compute its dimension.

Exercise 12. Let Ω ⊂ Rm be a compact m-dimensional differentiable submanifold
with non-empty boundary. Suppose that there exist x0 ∈ intΩ such that for every
x ∈ Ω the segment [x, x0] is inside of Ω and (after prolonging it a bit near x)
transverse to ∂Ω. Show that

∂Ω ' Sm−1

.
Let Q be any inner product on Rm. Show that for any positive c,

Q−1(c) := {v ∈ Rm |Q(v, v) = c}

is a smooth submanifold of Rn and it is diffeomorphic to

Sm−1 := {v ∈ Rm | |v|2 = 1}

Exercise 13. Let M,N be Cr-manifolds. Show that M × N carries a canonical
Cr-manifold structure, and that T (M ×N) ' TM × TN .

Exercise 14. Let N be a a Cr-manifold, M a topological space, and f : M → N
a local homeomorphism (i.e. for each x ∈ M there exist U a neighborhood so
that f : U → f(U) is a homeomorphism). Prove that M can be given a canonical
Cr-manifold structure so that f becomes a local Cr-diffeomorphism.

Exercise 15. Prove that a Cr-map which is a C1-diffeomorphism it is a Cr-
diffeomorphism.

Exercise 16. Show that
SO(3) ' RP3

It is enough to exhibit a homeomorphism. It is convinient to think of RP3 as
the ball B(0, π) ⊂ R3 with antipodal points on its boundary identified. To find out
to which point of RP3 one should send A ∈ SO(3), use that any such map acts by
fixing an axis in R3 and rotating in the orthogonal plane.

Exercise 17.

(1) Prove that for any C1 manifold M every f ∈ C1(M,R) has at least 2
critical points.

(2) For any sphere Sm, m ∈ N, find a smooth function with exactly 2 critical
points.

Exercise 18. Let M,N be differentiable manifolds with non-empty boundary. Prove
that a C1 map takes regular points in M\∂M into points in N\∂N .

Exercise 19. Any compact surface embeds in R5. The 2-torus is the surface

T2 := S1 × S1

Exhibit an embedding
j : T2 ↪→ R3

Hint: Embed it as a surface of revolution.
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Exercise 20. Consider CPm with homogeneous coordinates [X0 : · · · : Xm] and let
dk = k!

n!(k−n)!

Show that the maps

fdk
: CPm −→ CPdk

[X0 : · · · : Xm] 7−→ [X0 : · · · : Xm : 0 : · · · : 0]

and

Vk : CPm −→ CPdk

[X0 · · · : Xm] 7−→ [Xk
0 : Xk−1

0 X1 : · · · : Xm−1X
k−1
m : Xk

m]

are embeddings

Exercise 21. For f, g ∈ Cr(M,R), r ≥ 1, prove the Leibniz rule

D(f · g) = Df · g = f ·Dg
Hint: Write f · g as a composition (of three functions) and apply the chain rule.

3. Function spaces

We aim at understanding how continuous maps can be approximated by differ-
entiable ones, and among the latter trying to describe how “good” can “nearby”
maps to a given map be. We need a topology which accounts for the degree of
differentiability.

For M,N topological spaces, the weak or compact open topology has a
subbasis

B(K,V ) = {f | f(K) ⊂ V, K ⊂M compact, V ⊂ N open}
In other words, it is the smallest topology containing as open subsets the B(K,V )
(C(M,N) is union of them, so it is a subbasis); the topology open subsets are
unions of finite intersections of subsets B(K,V ). The corresponding topological
space is denoted by CW (M,N) (or C0

W (M,N)).

Exercise 22.
(1) One can be more economic and use open subsets V ⊂ N belonging to a

given basis.
(2) When the manifold M is compact we can equally use as basis of the topology
B(M,V ), where V may be chosen to run in a fixed basis.

rem:homotopy Remark 12. If M is locally compact and Hausdorff, then a function

F : P → CW (M,N)

is continuous iff

F ev : P ×M −→ N

(p, x) 7−→ F (p)(x) (4)

is continuous. Therefore, under such conditions a homotopy H connecting maps
f, g : M → N is a continuous curve I → CW (M,N) connecting f and g. In other
words, homotopy classes of maps can be identified with path connected components
of CW (M,N)

[M,N ] 1:1←→ π0(CW (M,N))

In the manifold setting an equivalent description of the compact open topology is
given as follows: Take (U,ϕ), (V, φ) charts for M,N respectively, a compact K ⊂ U ,
f a function so that f(K) ⊂ V , and ε > 0, and consider

N (f,K,U, V, ε) = {g | |φ ◦ f ◦ ϕ−1 − φ ◦ g ◦ ϕ−1|K < ε} (5) eq:co
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This is a sub-basis for the compact open topology: Indeed, if f ∈ B(K,V ), then
we can find U1, . . . , Ud, V1, . . . , Vd local coordinates so that U i are still the domain
of local coordinates, Vi ⊂ V and f(Ki) ⊂ Vi, with Ki := K ∩ U i. Then

f ∈
d⋂
i=1

B(Ki, Vi) ⊂ B(K,V )

It is also clear that for ε > 0 small enough,

B(f,Ki, Ui, Vi, ε) ⊂ B(Ki, Vi),

so one inclusion follows. The other is proven similarly.

def:rcopen Definition 20. The weak Cr-topology is defined by the subbasis as an equation 5
but using the Cr-norm in Euclidean spaces. The corresponding topological space is
denoted CrW (M,N).

The weak C∞-topology is defined as the initial topology for the inclusions

C∞(N,M) ↪→ Cr(N,M),

i.e. the smallest making continuous all inclusions.

rem:rnorm Remark 13. One way to define the Cr-norm of a function f : A ⊂ Rm → Rq is
as follows:

|f |Cr(A) := maxx∈A,|I|≤r‖
∂If

∂xI
‖

Since we are measuring always over compact subsets, there are equivalent ways
of defining the Cr-norm.

rem:convergence Remark 14.
• CrW (M,N) is second countable and has a complete metric.
• The weak topology accounts for uniform convergence on compact subsets.

Indeed, fn → f in CrW (M,N), if for any compact, once we break it into
smaller compact subsets K1, . . . ,Kd fitting into charts (Ui, ϕi), i = 1, . . . , d
(also sent into charts), then we have

|φi ◦ fn ◦ ϕ−1
i − φi ◦ f ◦ ϕ

−1
i |Cr(ϕi(Ki)) → 0, i = 1, . . . , d

For r =∞ the above condition holds for all r ∈ N.
• When M is compact, N = Rn, and r 6=∞, then is a Banach vector space,

i.e. the topology is given by a norm for which the vector space operations
are continuous (see exercise 25) and Cauchy sequences converge (complete-
ness); for r =∞ or when M is not compact, it is not any more a Banach
vector space, but a Frechet one.

rem:boundck Exercise 23. Check also that definition 20 makes perfect sense for manifolds with
boundary as well, so we also have CrW (M,N) in this case.

We can rephrase remark 7 as the following:

Theorem 7. For r ≥ 2 and M compact
(1) Immr(M,Rn) ⊂ CrW (M,Rn) is dense for every n ≥ 2m.
(2) Embr(M,Rn) ⊂ CrW (M,Rn) is dense for every n ≥ 2m+ 1.

If M is non-compact, the weak topology does not measure how “far apart are
two functions in the whole manifold”.

Definition 21. The strong Cr-topology is defined by the basis whose elements
are given by taking for i ∈ I a locally finite family of charts (Ui, ϕi) (it does not
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need to be an atlas), a family Ki ⊂ Ui of compacts, (Vi, φi) charts and f so that
f(Ki) ⊂ Vi, and εi > 0, and then considering the subset

N r(f,Ki, Ui, Vi, εi) = {g | |φj ◦ f ◦ ϕ−1
i − φj ◦ g ◦ ϕ

−1
i |Cr,Ki < εi, ∀i ∈ I}

The strong C∞-topology is defined as the initial topology for the inclusions

C∞(N,M)→ Cr(N,M)

Remark 15.
• When M is non-compact the strong topology has much more opens than the

weak one, to the extent of not being metrizable, second countable. Still, it
keeps a nice feature which is being a Baire space.

• Convergence of a sequence in the strong topology is uniform convergence in
the Cr-norm in the whole manifold, and this is made precise as in remark
14 by taking a locally finite family of compacts covering M . Actually the
topology being non second countable implies that sequences are not the right
tools to detect continuity of functionals. As a matter of fact converging
sequences must be constant outside a compact subset; the family {Ui}i∈I in
the definition has to be locally finite to avoid getting a topology in which
convergence would only occur for constant sequences (by taking Kn = K,
Un = U , Vn = V , εn = 1

n).

For non-compact manifolds, the functions which are “well behaved” w.r.t. the
strong topology are the proper functions.

Definition 22. Let M,N (Hausdorff) topological spaces. A function f : M → N
is proper if it pullbacks compact subsets to compact subsets.

Exercise 24. A proper function is closed.

Proper functions are very much related to compact exhaustions. If f : M → R+

is proper then Mj := f−1([0, j]) defines a compact exhaustion. To check that
Mj ⊂ intMj+1 observe that f−1(([0, j + 1)) is open, and

Mj ⊂ f([0, j + 1)) ⊂ intMj+1

More generally

lem:properexh Lemma 9. f ∈ C0(M,N) is proper iff it pulls back compact exhaustions to compact
exhaustions.

Proof. That proper functions pull back compact exhaustions to compact exhaus-
tions follows from the above considerations for N = R.

In the other direction, notice that since Nj ⊂ intNj+1, then the intNj+1 provide
an open cover and any compact K is contained in a finite union, and hence in the
one with biggest index. Therefore, f−1(K) is a closed contained in a compact and
thus compact. �

To construct a proper function we may take Ui, U ′i , i ∈ I, open subsets and
{µi}i∈I partition of the unity so that

• U i ⊂ U ′i , ∀i ∈ I,
• {U ′i}i∈I is a locally finite cover,
• µi is supported in U ′i and so that µi > 0 on U i, ∀i ∈ I.

One can define an exhaustion {Mj}j∈N by stepwise adding new Ūi’s as in lemma
5, but noticing that this time we can add just all open subsets with non-empty
intersection (being locally finite it is a finite number). Next define j(Ui) to be the
step of the exhaustion procedure in which U i is added. Set

f =
∑
i

j(Ui)µi
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We claim f is proper. Indeed, if x /∈ Mj , then if x ∈ Ui, then j(Ui) > j, and
therefore f(x) > j.

We can take {µj}j∈N a partition of the unity for R so that suppµj ⊂ (j−1, j+1).
Then we can pull it back to a partition of the unity f∗µj , and then construct

χj =
j∑
l=0

f∗µl, (6) eq:charfunct

such that for Mj := f−1([0, j]), χj |Mj
≡ 1, suppχj ⊂ intMj+1 (so they are close

to be step functions for the subsets of the compact exhaustion, and are useful to
locallize problems in these subsets).

ex:ring Exercise 25. For any r ≥ 0, show that
(1) for any f ∈ Cr(N,Q), the map

CrS(M,N) −→ CrS(M,Q)
h 7−→ f ◦ h,

is continuous;
(2) prove that if f ∈ Cr(P,M) is proper, then

CrS(M,N) −→ CrS(P,M)
h 7−→ h ◦ f,

is continuous.
In particular conclude that
• Diffr(M,M) acts on CrS(M,M) by homeomorphisms.
• For a given submanifold A ⊂ M so that the embedding is proper, the

restriction map

CrS(M,N)→ CrS(A,M)

is continuous (in fact the are submanifolds -even open subsets- for
which the restriction map is not continuous).

(3) Use the previous results to prove that the ring operations

+, · : CrS(M,R)× CrS(M,R)→ CrS(M,R)

are continuous.
Hint: Use what you know about the product topology to show that

CrS(M,P )× CrS(N,Q) −→ CrS(M ×N,P ×Q)
(f, g) 7−→ f × g

Then apply the first part of the exercise having into account that

f + g = ∆∗(+ ◦ (f × g)),

where

+: R× R −→ R
(a, b) 7−→ a+ b,

∆: M −→ M ×M
x 7−→ (x, x)

rem:nicecompex Remark 16. One further comment is that a compact exhaustion is a notion which
is entirely defined using the topology, and the manifold structure does not enter
at all. One might think whether in the manifold setting the Mj’s can be chosen
with “better” properties. In particular we would like them to be submanifolds with
boundary. This is always possible. One strategy is to take a Cr-proper function. If
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m > r then we can apply Sard’s theorem to get the desired result. The general case
is not that straightforward (see remark 18).

One can for example use these compact exhaustions to show that CW (M,Rn) is
a Frechet space by just using the Banach space result for compact manifolds (remark
14).

pro:localop Proposition 7. Let K ⊂ Rm any compact. Then for r ≥ 1
(1) If f ∈ Immr(U,Rn), there exist ε > 0 so that if

|f − g|Cr(K) ≤ ε

then g|K is an immersion.
(2) If f ∈ Subr(U,Rn), there exist ε > 0 so that if

|f − g|Cr(K) ≤ ε

then g|K is a submersion.
(3) If f ∈ Embr(U,Rn), there exist ε > 0 so that if

|f − g|Cr(K) ≤ ε

then g|K is an embedding.

Proof. Points one and two follow from compactness.
Point three is more interesting. If the result does not hold we would have se-

quences fn, an, bn, εn, εn → 0, so that

|fn − f |C1(K) ≤ εn, fn(an) = fn(bn)

By compactness of K we can assume an → a, bn → b, an − bn/|an − bn| → v
Therefore, since f(a) = f(b), a = b and

|fn(an)− fn(bn)−Dfn(bn)(an − bn)|
|an − bn|

→ 0, (7) eq:derivative

it follows that Df(b)v = 0, which contradicts f being an immersion.
Notice that for equation 7 to hold we need the C1-condition. In one variable,

and using the mean value theorem for functions with derivative we have

fn(an)− fn(bn)
an − bn

= f ′n(cn),

and continuity of the derivative implies the result. The property of K being used
is (local) convexity of a neighborhood in which f is defined, so K can be indeed
any compact. �

We would like to point out the following interesting consequence:

thm:invest Theorem 8. Let f : B(0, r) ⊂ Rm → Rm of class Cr so that Df(x) is invertible
fora all x in the ball. Then f is invertible in B(0, r).

Proof. We will show that the map is injective. Let x, y be distinct points in the
ball. By the mean value theorem

f(x)− f(y) = Df(c)((x− y)/|x− y|)|x− y|,

where c belongs to the segment joining x, y. By assumption the r.h.s. never vani-
shes, and this finishes the proof.

Now we can apply locally about each point the known inverse function theorem to
show that the map is open and the inverse has the right regularity. More generally
if n > m we equally conclude injectivity from the hypothesis. �
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rem:convexity Remark 17. In proposition 7 we can be more precise and say that if f is an em-
bedding of the closed ball in Euclidean space, and g is close enough in C1-norm so
that it is an immersion, then g is another embedding.

Notice also that this explains that to go from a ball to a manifold we only need
to care about checking injectivity (and closedness or openness of the map) in points
“far apart”.

Convexity is the crucial condition, as seen in the following example:

z2 : B(0, 1)\{0} ⊂ C −→ B(0, 1)\{0} ⊂ C
z 7−→ z2

Exercise 26. Show that theorem 8 and remark 17 hold for any K ⊂ Rm which
is convex. Deduce then that they hold for intersections of balls with positive half
spaces.

thm:openness Theorem 9. For r ≥ 1, Immr(N,M),Subr(N,M),Embr(N,M) are open in CrS(N,M).

Proof. Take a locally finite open cover {Ui}i∈I as in lemma 6, subordinated to
local coordinates {(U ′i , ϕ′i)}i∈I which contain their closure and such that ϕ′i(Ui) =
B(0, 1), ∀i ∈ I. We also suppose the existence of {Vi}i∈I a cover of N so that
f(U ′i) ⊂ Vi, ∀i ∈ I.

We will prove the embedding result. It is clear that for appropriate εi if

g ∈ N1 := N r(f, U i, U ′i , Vi, εi),

then g is an immersion.
By theorem 8 we know that g|Ūi

is an embedding, so we must impose further con-
ditions to make sure that points (or rather regions) far apart in M (this, measured
using a compact exhaustion) are nor sent to the same one.

We next assume w.l.o.g. that Vi (i) are adapted to f(M) and cover it, and (ii)
have compact closure in the domain of φi, the latter sending Vi to B(0, 1) ⊂ Rn,
∀i ∈ I.

One remark is that by talking of adapted charts we are using proposition 3, which
was proven for manifolds without boundary. Recall that when the boundary is not
empty, we were dealing had a more restricted notion of submanifold, so proposition
3 does not go through; in any case, and according to remark 10, the embedding
condition still grants the existence of local coordinates sending f(M) locally to Rn,
but not necessarily into Hm

+ . Still, these charts are enough for our purposes.
Notice we can start with such a family of open sets with the last two properties,

and then we ask {U i}i∈I to be subordinated to {f−1(Vi)}i∈I (and perhaps repeat
many times each Vi so that indices sets match).

The last assumption is the existence of {Zi}i∈I open cover so that Zi ⊂ Ui
diffeomorphic to a closed ball.

Now we claim we can separate the subsets f(Zi), f(M\Ui), i.e. they are con-
tained respectively in open subsets Ai, Bi with empty intersection. Notice that
inside of M the closed subsets Zi and M\Ui can be separated by open subsets
Ci, Di. Since f is an embedding, f(Ci), f(Di) are open subsets in f(M) with
empty intersection. In particular also f(Ci) and f(Di) ∩ Vi, both inside Vi. These
are open subsets for the subspace Rm in the adapted chart. Clearly, if we thicken
them a bit along the remaining n-m coordinateswe get Ai, B′i open subsets so that

Ai ⊂ Vi , Ai ∩B′i = ∅

Finally we can find V ′i a closed ball inside Vi containing Ai. Then we define
Bi = B′i ∪ (N\V ′i ).



TOPOLOGY OF DIFFERENTIABLE MANIFOLDS 25

Next we claim that if we define

N0 := {g ∈ Cr(M,N) | g(Zi) ⊂ Ai, g(M\Ui) ⊂ Bi},
then N := N1 ∩N0 is a neighborhood of f in CrS(M,N).

Assuming this for a second, we will prove that any g ∈ N is an embedding.
Firstly, the map is injective: let x ∈ M belong to some Zi; recall that then

g(x) ∈ Ai. If y ∈ Ui, then since g ∈ N1 we get g(x) 6= g(y). If y ∈ M\Ui, then
g(y) 6= Ai, so g(x) 6= g(y). Regarding the openness of g, a system of neighborhoods
for the induced topology about g(x) consists of the intersection of a system of
neighborhoods in N about g(x). Since g(x) ∈ Ai ⊂ V ′i , we can take neighborhoods
inside V ′i . In particular, since V ′i ∩ Bi = ∅, the intersection is contained in Ui. So
we can assume that our manifold is in fact Ui, but for it we know that the induced
topology is the given one on Ui, and this proves the desired result.

We still need to check that N is a neighborhood of f in CrS(M,N). If M compact
just cover each M\Ui by finite number of {Wij}j∈Ji diffeomorphic to open balls,
with closure subordinated to some charts {(Uij , ϕij)}j∈Ji , the latter sent into some
other charts {(Vij , φij)}j∈Ji

, and so that⋃
j∈Ji

W ij ⊂ f−1(Bi)

Then for ε > 0 small enough

N r(f,W ij , Uij , Vij , ε)) ∩N1 ⊂ N0

Notice that we clearly make sure that g(M\Ui) ⊂ Bi. To get g(Zi) ⊂ Ai we just
need to adjust the εi’s in the definition of N1.

In the non-compact case take {Yl}l∈N an open cover as in lema 6. It can be chosen
subordinated to Qd := intMd+1\Md−1, where {Md}d∈N is a compact exhaustion.
By induction we may assume that on the d-th step we add a finite number of Y l
to cover each Md\intMd−1.

For all those Yl added at the d-th step, we find a finite number of of Wlij ⊂ Ulij ,
j ∈ Jli, subordinated to Qd, whose union covers f−1(Bi) ∩ Y l, fix an appropriate
εd, so that it selects functions sending the union of the Wlij ∩ Y l into Bi. Notice
that in this way {Ulij}j∈Jli

is a locally finite open cover, so

N r(f,W lij , Ulij , Vlij , εd(lij)) ∩N1 ⊂ N0

is open.
Just remark that we obtain a subset of N0, because for x /∈ Ui, x must belong

to some Yl, and thus x ∈ f−1(Bi) ∩ Y l, so we deduce g(x) ⊂ Bi. �

Exercise 27. Prove theorem 9 for submersions.

lem:propopen Lemma 10. Propr(M,N) is open in CrS(M,N).

Proof. Take a compact exhaustion Nj , j ∈ N, and pull it back with f to a compact
exhaustion Mj (lemma 9). Then take the subset

N = {g ∈ Cr(M,N) | g(Mj\intMj−1) ⊂ intNj+1\Nj−2},
which is open. By construction for any g ∈ N , g−1(Nj) ⊂ Mj+2, and then by
lemma 5 the result follows.

Exercise 28. Prove that N as defined in lemma 10 is open in CS(M,N). Show
also that proper maps are closed in the strong topology.

Since f is proper d is onto. Therefore, functions in N are proper, since we can
take k as in lemma 9 to be the biggest right inverse of d. �
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thm:diffopen Theorem 10. Assume that M,N are manifolds without boundary. Then Diffr(M,N)
is open in CrS(M,N), for r ≥ 1. If there is non-empty boundary then the diffeo-
morphisms are open Cr((M,∂M), (N, ∂N)) with theinduced topology.

Proof. If M,N connected and without boundary then

Diffr(M,N) = Embr(M,N) ∩ Subr(M,N) ∩ Propr(M,N)

If we only put the first two subsets, we may obtain diffeomorphism of Euclidean
space onto open balls of finite radius, thoughts as elements in Cr(Rm,Rm). The
failure to be surjective is measured by the failure to be proper.

A proper map is closed, a submersion open, so surjective on connected compo-
nents.

In the non-connected case a diffeomorphism φ acts bijectively on connected com-
ponents, and one sees that in can be reduced to the connected case.

The presence of boundary makes the previous proof fail because submersions are
open for the induced topology in the image, which might not be open itself. Just
think of the sequence

fn : [0, 1] −→ [0, 1]

t 7−→ n

n− 1
t

This is fixed once we assume that boundaries go to boundaries.
�

ex:concomp Exercise 29. Let M,N be Cr-manifolds, r ≥ 1 so that there is a decomposition
on connected components

M =
∐
γ∈Γ

Mγ , N =
∐
λ∈Λ

Nλ

Define for each γ, λ,

Cr(M,N)γ,λ = {f ∈ Cr(M,N) | f(Mγ) ⊂ Nλ},
and show that Cr(M,N)γ,λ are open and close in CrS(M,N).

Deduce that U ⊂ CrS(M,N) is open/closed iff for all γ, λ

Uγ,λ := U ∩ Cr(M,N)γ,λ
is open/closed. Conclude that in theorem 10 there is no loss of generality in assum-
ing that M is connected.

The topological case is more difficult, but rather interesting. In general the set
of embeddings and homeomorphisms is not open. For example take an eight and
degenerate it to a nodal curve.

Exercise 30. Use the previous idea of the nodal curve to construct f : R2 → R2

maps arbitrary close to the identity not being homeomorphisms.

Theorem 11. For M without boundary a homeomorphism has a neighborhood of
surjective maps in C0

S(M,M).

Proof. By exercise 25 we can assume w.l.o.g. that the homeomorphism is the
identity. Take any x ∈M , and a charts about it. to make sure that B(x, 1/2) is in
the image of nearby maps, we impose conditions of proximity in B(x, 1). If such a g
is not surjective, we get a map from Bn to Sn, which the above conditions force to
be homotopic to a retraction. By theorem 14 we can assume the initial map to be
C1. If we knew it is a retraction, we can apply corollary 5 to conclude the desired
result. In general �

So putting together what we know, we have for example:
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thm:compembed Theorem 12. If M is compact and n ≥ 2m + 1, r ≥ 2, then Embr(M,Rn) ⊂
Cr(M,Rn) is open and dense (and the same result holds for embeddings in Hn

+

transverse to the boundary).

4. Approximations

We saw in theorem 12 an approximation result, in which certain maps are ap-
proximated by others of “better quality”. We will see that approximation is also
possible gaining regularity. In this section manifolds are assumed to have empty
boundary unless otherwise stated.

These are results based on behavior on Euclidean space, that we globalize using
partitions of unity and more refined patching arguments.

Recall that if f ∈ Cr(Rm,Rn), g ∈ Cs(Rm,R), g compactly supported, then the
convolution of f by g is

g ∗ f(x) =
∫
g(y)f(x− y)dy (8) eq:convol

So we may think of being averaging f using g as a weight.
If g is non-negative, has compact support and

∫
g = 1, then it is called a convo-

lution kernel. It is feasible that convoluting f with a convolution kernel supported
near zero produces a function which approximates f . Similarly, since there is an
integration involved we expect to gain regularity.

Indeed, if we make the measure preserving change of variables z = x− y, then 8
becomes

g ∗ f(x) =
∫
g(x− z)f(z)dz

so if g is Cs then so g ∗ f is.
Notice as well that if f is Cr then we can take derivatives inside the integral sign

in 8 and then
Dl(g ∗ f) = g ∗Dlf, 0 ≤ l ≤ r

Hence, if we are able to approximate in the C0-topology then we should also get
approximation in the Cr-topology.

thm:eucapprox Theorem 13.
Let f : U ⊂ Rm → V ⊂ Rn be a Cr-function, r ≥ 0. Then it can be approximated
in CrS(U, V ) by functions in CsS(U, V ), r ≤ s ≤ ∞.

Proof. We can assume w.l.o.g V = Rn, being CrS(U, V ) open in CrS(U,Rn). If we
use a convolution kernel θ we obtain:

|(θ ∗ f − f)(x)| =
∫
θ(y)|f(x− y)− f(x)|dy

We can play with the support of the kernel. If we are on a compact K by uniform
continuity -arranging the the support to be small enough neighborhood of 0- we
can make

maxx∈K,y∈suppθ|f(x− y)− f(x)| ≤ ε
To go from compacts to the strong topology in U , we fix h : U → R+ proper and

µj , j ∈ N, a partition of the unity of R with µj supported in (j − 1, j + 1). Define

Kj := h−1([j − 1, j + 1]), Uj = h−1((j − 1, j + 1))

One can check that any open set in CsS(Rm,Rn) containing f contains a neigh-
borhood of the form

N r(f,Kj , εj)
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Next construct gj ∈ Cs(Rm,Rn) so that

|h∗µjf − gj |Cr(Kj) <
1
3

min{εj−1, εj , εj+1}, suppgj ⊂ Uj ⊂ Kj ,

and define g =
∑
j∈N gj , which is Cs because the supports are locally finite.

Then
|f − g|Cr(Kj) ≤ |h∗µj−1f − gj−1|Cr(Kj−1∩Kj)+

+ |h∗µjf − gj |Cr(Kj) + |h∗µj+1f − gj+1|Cr(Kj∩Kj+1) < εj

�

thm:dense Theorem 14. CsS(M,N) is dense in CrS(M,N), for all r ≤ s ≤ ∞.

Proof. To prove this result, we need more than theorem 13; if we want to build an
approximation by induction using an appropriate cover, we need to make sure that
when we make a new (local) perturbation we still get a solution over the subset
associated to the union of previous open subsets of the cover.

thm:releucapprox Theorem 15. Let U ⊂ Rm, V ⊂ Rn, and let B,K ⊂ U closed subset with f ∈
CrS(U, V ) already Cs in K ∩ B. Then f can be approximated by a function which
equals f on B, and is Cs in K.

Proof. Use a smooth partition of the unity µ1, µ2, µ1|B = 1, and such that the part
of the support of µ1 in K\B are points which are Cs for f .

It is a straightforward consequence of exercise 25 that the map

G : CrS(U,Rn) −→ CrS(U,Rn)
g 7−→ µ1f + µ2g (9)

is continuous.
Therefore any neighborhood of T (f) = f contains a function T (g), where by

theorem 14 g can be chosen to be Cs. By construction T (g) satisfies the required
conditions. �

To globalize one needs to observe that given f ∈ Cr(M,N), U ⊂ M,V ⊂ N
domains of local coordinates with f(U) ⊂ V , for any open subset W with W ⊂ U
the map

T : G −→ CrS(M,N)
g 7−→ g|U , f|M\W (10)

is continuous, where

G := {g ∈ CrS(U, V ) | g|U\W = f}
A globalization argument using an appropriate locally finite cover proves the re-

sult. Indeed any neighborhood of f contains one of the formN := N (f,W j , Uj , Vj , εj),
where the Wj contain compacts Lj which cover M .

Order the subsets and by induction use theorem 15 and the continuity of the
patching map 10 to construct gj so that

• gj |M\Wj
= gj−1,

• gj is Cs in
⋃j
d=0 Ld, and

• gj ∈ N
The function g(x) is gk(x)(x), where k(x) is an integer bigger than any of the

indices of subsets Uj containing x. By the local finiteness g matches gk(x)(x) in a
neighborhood of x, so it is Cs. It also belongs to N since the gj do and at some
stage we do not further perturb in Uj . �
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Exercise 31. Show that the map in equation 9 is continuous.

cor:density Corollary 2.

• For any s > r ≥ 1, Imms(M,N) (resp. Subs(M,N),Props(M,N),Embs(M,N),Diffs(M,N))
is dense in Immr(M,N) (resp. Subr(M,N),Propr(M,N),Embr(M,N),Diffr(M,N)).

• If r = 0 we have density of smooth surjective maps on homeomorphisms.
• In particular, to Cs-manifolds are Cs-diffeomorphic iff they are Cr-diffeomorphic,
r ≥ 1.

In order to raise differentiability of charts, we need something slightly better than
the relative approximation result, namely we need to have freedom to “approximate
on open sets with fixed boundary conditions”, rather than just with conditions in
a neighborhood of the boundary.

thm:extension Theorem 16. Let M be a Cr-manifold, 0 ≤ r <∞, W ⊂M , V ⊂ Rn open subsets
and f ∈ Cr(M,V ) with f(W ) = V ′. Then there exist N an open neighborhood of
f|W in CrS(W,V ′) so that the map

T : N −→ CrS(M,V )
g 7−→ g, f|M\W (11)

is continuous.

Proof. Cover ∂W with {Ui}i∈I a locally finite cover, so that it contains {Li}i∈I
compacts also covering the boundary. Take functions g ∈ CrS(W,V ′) such that for
y ∈M\W , y ∈ Li

|f ◦ ϕ−1
i (ϕi(y))− g ◦ ϕ−1

i (ϕi(y))|Cr ≤ d(ϕi(y), ϕi(Ui\W )) (12) eq:rnomdist

This defines N an open subset. The reason is that we can take a locally finite
cover Kj by compacts, and since only a finite number of Li intersect each Kj , for
suitable εj equation 12 holds for all the relevant i.

It is easy to see that T (g) defines a Cr-function, because is we subtract f from
it we get a function which vanishes at M\W , and whose derivatives up to order r
go to zero as points approach M\W .

Continuity is also straightforward, very much as for equation 10.
�

exe:urysohn Exercise 32. Prove that the methods of theorem 16 allow us to construct for any
A ⊂M a closed subset, a bounded positive function f : M → R+ such that f−1(0) =
B. Even more, given A,B disjoint closed subsets we can find f : M → [0, 1] so that
f−1(0) = A, f−1(1) = B.

Hint: If r < ∞, then out of a proper function h : M\A → R+ and a partition
of the unity {µj}j∈N of R+ as in theorem 13, we can find integers n(j) so that
following the proof of theorem 16 we conclude that∑

j∈N

1
n(j)

h∗µj

can be extended by zeros to A giving a Cr-function. In the smooth case the procedure
has to be more elaborate. One needs to pick a locally finite covering {(Ui, ϕi)}i∈I
of the boundary of M\A. It is clear that the difficulty in defining the function
on M\A tending fast enough to zero near A is concentrated in those points inside
W :=

⋃
i∈I Ui ∩ (M\A). We cover W by {Zj}j∈N open subsets subordinated to

{Ui}i∈I , and so that
ϕi(j)(Vj) = B(xj , δj) ⊂ Rm,
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where 2δj = d(xj , ϕi(j)(M\A)). Then if µ : Rm → [0, 1] is the standard step func-
tion with support B(0, 1), one can use the pullback of the step function

δjjµ(2δ−1
j (x− xj)),

and the sum on j ∈ N yields the desired result.

Now we are ready to prove one of the main results stated in the introduction.

thm:smoothen Theorem 17. Let M be a Cr manifold, r ≥ 1. Then for any s ∈ N̄, s ≥ r,
M admits a Cs-structure compatible with the Cr-structure, which by corollary 2 is
unique up to Cs-diffeomorphism.

Proof. We consider open subsets U ′ ⊂M which can be endowed with a Cs-manifold
structure so that the inclusion i : U ′ ↪→M is a Cr-diffeomorphism, and we put the
obvious order (inclusion among them is a Cs-diffeomorphism). It is clear that for
an ascending chain the union of the open subsets with the union of all charts is an
open subset admitting a compatible Cs-structure, and majorating any element in
the chain. Then by Zorn’s lemma there is maximal one U ′. We will extend it by
taking a Cr-chart (U,ϕ) with non trivial overlap and modifying ϕ suitably.

Let V = ϕ(U), W = U ′ ∩ U , V ′ = ϕ(W ). To extend the Cs structure to U ′ ∪ U
in a compatible way, we need to substitute the local Cr-coordinates ϕ : U → V by
a new Cr-diffeomorphism ψ which is Cs on W . Consider f := ϕ|W ∈ CrS(W,V ′).
Then by theorem 16 we have a neighborhood N of f in that CrS(W,V ′) whose
elements can be patched with ϕ|U\W so that the map

T : N → CrS(U, V )

is continuous.
In particular, by corollary 2 we can take elements g ∈ N such that g is a

Cs-diffeomorphism. Continuity of the patching map 11, together with openness
of Cr-diffeomorphisms, implies that g can be chosen so that ψ := T (g) is a Cr-
diffeomorphism, solving thus the problem.

�

rem:diffcompexh Remark 18. The possibility of endowing any Cr-manifold, r ≥ 1, with a compa-
tible smooth structure is extremely powerful. For example, we know that we cannot
always apply Sard’s theorem for Cr(M,R), if m ≥ r. We can use a compatible
smooth structure, apply it to smooth functions. In this way we show that we always
have compact exhaustions so that each Mj is a Cr-submanifold (with boundary) of
M .

So far we have (i) openness results for distinguished classes of maps, like immer-
sions, embeddings, submersions, proper maps and diffeomorphisms, and a density
theorem 14 for Cs maps in Cr maps in the strong topology, and other density
results for M compact (remark 7). The latter density result can be extended to
obtain density of Imms(M,N),Embs(M,N) in CrS(M,N), r ≥ 1, under certain
assumptions. One needs:

(1) A local weak density result, which is the case M = U ⊂ Rm, N =
V ⊂ Rn and the weak topology. It is based in remark 7, which is an
approximation result for M compact, f at least C2, and n ≥ 2m and
n ≥ 2n+ 1 respectively. In remark 7 compactness is used in two places. To
embed the manifold in some Euclidean space -which we do not need in the
local setting- and to obtain one dense subset coming from Sard’s theorem
which is also open, because it is the complement of the image of a compact.
We can apply Sard’s to any open subset containing a given compact K,
and then restrict to the sphere bundle over K to get the desired open dense
subset; if f is just C1, we can approximate it by a C2-function.
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(2) A local density result for the strong topology. That can be done by
using an strategy similar to theorem 13. One uses an annular partition
of the unity µj , and approximates by induction the compactly supported
functions using the previous point, and taking projections close enough to
the identity so that injectivity of the differential in previous strips survives.
Once more since we projection decreases support, the modification only
affect certain strips, so for each compact in U after a finite number of steps
the function is not perturbed there any further. To prove the embedding
result properness of f is needed, so it can actually be used to construct
the annular partition of unity which will allow inductive perturbations for
which global injectivity (as opposed to the one obtained in compacts) is
possible.

(3) An extension result -which is given via theorem 16 (or in a less clean way
by an induction process for a locally finite cover by compacts following the
ideas of the previous point)- and which makes possible and induction step
in the construction of the solution. One chooses a locally finite covering
by charts U ′j ' B(0, 1), so that Uj ' B(0, 1/2). Then if gj approximates
f and is an immersion already in U1 ∪ · · · ∪ Uj , inside U ′j+1 we patch the
restriction of gj to U ′j+1\Uj+1 with an approximation of gj |Uj+1

which by
the previous point can be chosen to be an immersion/embedding on Uj+1.
Then gj+1 is the result of adding the restriction of gj to M\U ′j+1. Notice as
well that if r = 1 we can choose a compatible C2 structure and use density
of C2 maps to perform the construction.

(4) A continuity principle which grants that g := lim gj becomes a solution.
For immersions this holds because the property is checked pointwise. For
embeddings again properness of f is needed.

In this way one gets the following results:

thm:maindensity Theorem 18. For all s ≥ r ≥ 1 we have:

(1) Imms(M,N) is dense in CrS(M,N) if n ≥ 2m.
(2) Embs(M,N) is dense in CrS(M,N) if n ≥ 2m + 1 and M compact. If

f ∈ Cr(M,N) is proper then Embs(M,N) is dense in a neighborhood of f .

cor:closedemb Corollary 3. For r ≥ 1 any Cr manifold M embeds as a closed manifold in Rn,
n ≥ 2m+ 1.

Proof. Take any proper function and apply theorem 18. To produce the proper
function just notice that the composition of proper functions is proper. Then use
any proper function f : M → R and compose is with any linear injective map
R→ Rn. �

rem:anyemb Remark 19. One can extend corollary 3 and prove that any Cr manifold M em-
beds as a closed submanifold of a Cr-manifold N , provided n ≥ 2n+1. We only need
to produce a proper function h : R+ → N . This can be done by taking a compact
exhaustion by submanifolds (remark 18), constructing the dual graph associated to
it -one vertex for each connected component of Mj\intMj−1 and one segment for
each common boundary connected component- where each vertex is labeled with the
obvious natural number. Connectivity of N implies connectivity of the graph. A
maximal tree can always be chosen. It cannot be compact, because a maximal tree
contains all vertices. We can produce the copy of R+ by induction. We start with a
vertex at height zero. The induction step is as follows. The vertex vj boundary of sj
the last segment added (in the first step just the vertex) disconnects, giving rise to a
finite number of subtrees. At least one of those not containing vj has to be infinite.
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We then chose vj+1 the segment in that tree. The corresponding embedding of R+

has to be proper, because we only have a finite number of vertices at each height.

rem:difforbit Remark 20. One can also show for any s ≥> r1 that the inclusion

CsS(M,M) ↪→ CrS(M,M)

does not fill any neighborhood of the identity. Therefore, for any Cr-manifold r ≥ 1,
we can find different Cr-manifold structures which are Cr-diffeomorphic.

rem:boundfunct Remark 21. One has similar results for manifolds with boundary and also to ma-
nifold pairs (M,A). The main difference is the use of an appropriate convolution
kernel to approach a Cr-map f ∈ Cr((U,U ∩ Hm

+ ), (V, V ∩ Hn
+)) in a compact by

another such Cs-map.
Indeed, if we use coordinates (x, xm) in Rm−1× [0,∞), we just consider the map

π : Rm −→ Hm
+

(x, xm) 7−→ (x, |xm|)
Then given K ⊂ U ⊂ Hm

+ , f ∈ Cr(U, V ), we approximate π∗f in π−1(K) using
convolution kernels symmetric w.r.t. the xm-coordinate to obtain g ∈ C∞(π−1(U), V ),
that we restrict to U . Notice that π∗f will not be Cr in xm = 0, but the approxi-
mation result holds because the original f extends over the hyperplane, and for that
the result holds true using convolution kernels supported in a half ball say.

One then obtains density results for Cs maps in Cr maps. There are similar
results for manifold pairs. This time they are based in the use of a convolution
kernels plus a further correction which amounts to add the orthogonal projection
onto the target submanifold of the domain submanifold.

Regarding the density results in 18, their are proven using the same pattern,
following from the local density result, which can be shown as follows:

(1) Given f : (Hm
+ , ∂H

m
+ )→ (Hn

+, ∂H
n
+), f = (f∂ , fn), one approximates f∂(x1, . . . , xm−1, 0)

by g and then defines

G(x1, . . . , xm) = (g +
∫ xm

0

∂f∂
∂xm

dxm, fn + εxm)

For ε small enough G approximates f in the Cr-norm in the thickening of
a closed ball in the boundary. It sends just the boundary to the boundary. By
construction it is an embedding in the points of ∂Hm

+ , so it is an embedding
in a small thickening. Then we can apply theorem 16 to modify G uniformly
far from the ∂Hm

+ (and overlapping slightly with the thickening where it
is an embedding). Since the image is also uniformly far from ∂Hn

+, one
concludes that the resulting map is still injective (due to the small C0-size
of the deformation).

So one gets density of embeddings of M in H2m+1
+ , and also of (M,∂M)

in (H2m+1
+ , ∂H2m+1

+ ) transverse to the boundary.

5. Sard’s theorem and transversality

def:critpts Definition 23. Let f : M → N be a Cr-map, r ≥ 1. The set of critical points is

Σf := {x ∈M |KerDfx 6= {0}}
The set of critical values is f(Σf ).

We want to understand as much as possible f(Σf ).
Differentiable maps can be very complicated. Let us start in Euclidean space

and with the simplest map. Let f : R→ R be a polynomial. Df is a polynomial of
smaller degree and there are two possibilities:
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• Df = 0, so Σf = R and f(Σf ) = z0.
• Df 6= 0, and thus Σf is a finite collection of points, and so f(Σf ) is.

The upshot is that the set of critical values is very simple because the set of critical
points is already very simple.

For a polynomial f : Rm → R the set of critical points Σf is described as the
zero set of a finite number of polynomial equations. It is known that the solution of
such systems decomposes into a finite number of smooth varieties, each locally pa-
rametrized by analytic functions (the inverse function theorem holds in the analytic
setting). Hence

Σf =
d∐
i=1

Σf,i,

each subset being a connected analytic manifold.
If x, y are distinct points in Σf,i, then we can joint then by a smooth (analytic)

curve c(t) and
d

dt
(f ◦ c(t)) = Df(c(t))c′(t) = 0,

so the curve f ◦ c is constant. Therefore, the map f shrinks Σf,i to a point.
So (deep) results on real algebraic geometry give a very precise description of

Σf , out of which the finiteness of f(Σf ) follows.
For a general differentiable function Σf will not have a nice structure. For

example take any closed subset A ⊂ R. According to exercise 32 we can find h with
h−1(0) = A. Define f(t) :=

∫ t
0
h(x)dx. Then Σf = A.

At any rate, the general idea is for a given subset A ⊂M , to estimate the “size”
of f(A) using Cauchy’s theorem and Taylor’s formula.

First observe that out of the Lebesgue measure in Euclidean space, one cannot
in principle induce a measure on a given differentiable manifold M , for the former is
not Cr-diffeomorphism invariant (the jacobian of the diffeomorphism enters in the
formula). At any rate the notion of a subset A ⊂ Rm having (Lebesgue) measure
zero is Cr-diffeomorphism invariant.

lem:sard1 Lemma 11. Let f ∈ C1(U, V ), with U, V ⊂ Rm open, and let A ⊂M have measure
zero. Then f(A) has measure zero.

Proof. We can assume w.l.o.g. that A is inside a compact ball K contained in U
(because the countable union of measure zero sets has measure zero). Therefore
Df will be uniformly bounded in K. That means

|f(x)− f(y)| ≤ Df(c)((x− y)/|x− y|)|x− y| ≤ C|x− y| (13) eq:taylor

Therefore the image of any ball of radius ε will be inside a ball of radius Cε, and
the result follows. �

cor:sard1 Corollary 4. Let M be a Cr-manifold, r ≥ 1. Then the notion of a subset having
measure zero is well defined. Moreover, if f : M → N is differentiable and (i)
both manifolds have the same dimension, then the image of a measure zero set has
measure zero; if (ii) m < n then f(M) has measure zero.

Proof. Having Lebesgue measure zero is a local property, and by lemma 11 Cr-
diffeomorphism invariant. Then it gives rise to the corresponding notion for mani-
folds.

Since our manifolds are second countable, lemma 11 implies an analogous result
for manifolds. When m < n, and assuming w.l.o.g. that our manifolds are open
subsets U, V in Euclidean spaces, we have

Rm π−→ Rm f−→ Rn,
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and f(U) = f ◦ π(i(U)), where i(U) is the obvious inclusion, which has measure
zero. Then by lemma 11 the result follows. �

To prove Sard’s theorem we will apply induction on m,n (first fixing n and
allowing m to increase). In particular we proved the result for m − n = 0. So we
need to prove the case n ≤ m. Let us define

Σ(k)
f = {x ∈ Σf | Dfk(x) ≡ 0}

By using Taylor theorem, if we stay at a point x ∈ Σ(k)
f we obtain

Vol(f(x+ Imε )) ≤ Cεkn,

as long as the function in Ck+1, where Imε is the m-cube of side ε centred at the
origin. The set of such critical points can always be covered by C(1/ε)m cubes of
radius ε, where C does not depend on ε. Then

Vol(f(Σ(k)
f )) ≤ C ′εkn−m,

so if kn−m > 0 the volume tends to 0 as ε does.
But then one can write

Σf = Σ(k)
f ∪ Σ(1)

f ∪ Σ(0)
f

Since m ≥ n, we have k ≥ 2. Assume that x ∈ Σ(1)
f \Σ

(k)
f , then we have some

multiindex I with 1 ≥ |I| ≥ k − 1, and an index j, so that

∂

∂xI
f(x) = 0,

∂

∂xj
∂

∂xI
f(x) 6= 0 (14) eq:sardhyp

So we can construct the hypersurfaces HI,j of points for which equation 14 holds.
We have

Σf ∩HI,j ⊂ Σf|HI,j

But dimHI,j < m, so by induction on m (with n fixed) we have

f|HI,j (Σf|HI,j ) = f(Σf|HI,j
)

has measure zero.
Regarding Σ(0)

f , we can find coordinates in Rn in which a component of f is one
of them, say xn. Then the result holds for each fxn

, and by Fubini’s theorem for f .

cor:noretract Corollary 5. There exist no continuous retraction f : Bm(0, 1)→ Sm−1

Proof. We can assume w.l.o.g. that f is smooth: firstly we compose on the right
with a self map of the ball shrinking a neighborhood of the sphere into the sphere,
so we obtain a retraction which is smooth in a neighborhood of Sm−1. Next we use
relative approximation to obtain the smoot retraction. By Sard’s theorem there is
a regular value z for f , and hence f−1(z) ⊂ Bm(0, 1) is a compact 1-dimensional
submanifold. Then theorem 6 implies that it must be a finite collection of copies of
S1 an closed intervals, so it cannot just have a boundary consisting on 1 point. �

In general, the same proof forbids the existence of a C1-retraction M → ∂M for
any compact differentiable manifold.
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5.1. Transversality. Let f : Rm → Rn be a differentiable (enough to apply Sard’s)
map. We can think of Sard’s theorem the other way around, and rather than saying
that we can approximate any value, say 0, by regular ones zn, we can approximate
f by f − zn which are transverse to 0.

Let M,N be manifolds, A ⊂ N a submanifold. Recall that a residual subset of
a topological space is one containing an intersection of countably many dense open
subsets.

Let
trK (M,N ;A) := {f ∈ Cr(M,N) | f|K t A},

and also denote trM (M,N ;A) =tr (M,N ;A).

thm:transversality Theorem 19.
(1) tr (M,N ;A) is residual in CrS(M,N).
(2) Let A be closed. If L ⊂ M is closed (resp. compact) then trL (M,N ;A) is

open in CrS(M,N) (resp. CrW (M,N)).

The proof is based on the following local result:

Lemma 12. Let K be a compact inside an open set U ⊂ Rm. Let V ⊂ Rn open
and A = P ∩V , where P is a linear subspace. Then trK (U, V ;A) is open and dense
in CrW (U, V )

Proof. We can assume V = Rn, since Cr(U, V ) is open in CrW (U,Rn). Transversa-
lity is clearly an open condition in the weak C1-topology. We just need to prove
the density result. Take f ∈ Cr(U,Rn), which can be assumed to be smooth. By
projecting onto Rn/A, we obtain f̃ , that we can approximate by maps transversal
to zero by adding constants z̃n; one can clearly choose constants zn converging to
zero and projecting into z̃n, and then f − zn is the desired sequence. �

The globalization result needed to prove theorem 19 is left for the reader; one
also needs to know that CrS(M,N) has the Baire property, so that residual
subsets are dense.

def:genpos Definition 24. Let A,B differentiable submanifolds of M . They are said to be
in general position if iA is transverse to B (or the other way around since the
definition is symmetric in A,B).

cor:denseemb Corollary 6. Let f ∈ Propr(M,N), A ∈ N submanifold, and n ≥ 2m+1. Then f
can be approximated in CrS(M,N) by embeddings transversal to A. In particular for
A,B submanifolds of M then A say can be approximated by embeddings transversal
to B.

Proof. Again we can assume f to be smooth, and then approximate by embeddings,
and since each is open it can be approximated by a map in tr (M,N ;A) which is
still an embedding. �

Theorem 19 is very interesting, but not really “economic”. Sometimes we are
interested in approximating by transverse maps within a much smaller family of
maps, typically parametrized by a (finite dimensional) manifold.

Let P be a manifold, and F : P → Cr(M,N) a map.

Theorem 20. Let M,N by differentiable manifolds without boundary, and A ⊂M
a submanifold without boundary. Assume that

(1) F ev is Cr;
(2) F ev is transversal to A;
(3) r > max{0,m+ a− n}.
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Then the set {p ∈ P | Fp t A} is residual and hence dense. If A is closed and F
continuous for the strong topology then it is open.

Proof. By conditions 1 and 2 F ev−1(A) is a Cr-submanifold of P ×M of dimension
p+m− a. Restrict the first projection P ×M → P to this submanifold. The third
hypothesis allows us to apply Sard’s theorem, to obtain a residual subset of regular
values. By construction those are exactly the values p ∈ P for which Fp t A.

The second statement follows from the continuity of F and theorem 19 �

6. Tubular neighborhoods, homotopies and isotopies

One of the aims of this section is to further understand the relation between the
topological space CrS(M,N) and homotopies. The way to do that is using “tubular
neighborhoods”.

Given a submanifold i : A → M , informally speaking the normal bundle are
those vectors at the points of A which belong to directions “normal to A”.

In a more invariant way, inside π : TM → M we can consider the restriction
of TM to A

TM|A :=
∐
a∈A

TaM

• It has a submanifold structure because TM|A = π−1(A), and π is a surjec-
tive submersion. For such a differentiable structure, the restriction of the
projection

π : TM|A → A

is differentiable.
• Each fiber π−1(a) = TaM has a vector structure, which is compatible with

the differentiable structure as described in subsection 2.2 (so it is a vector
bundle). Notice that this property holds because it holds for TM .

We have an embedding TA ↪→ TM|A which is linear on fibers TaA. Therefore
we can consider the quotient (topological) space

ν(A) :=
∐
a∈A

TaM/TaA

Lemma 13. Assume that ν(A) admits a differentiable structure so that the projec-
tion p : TM|A → ν(A) is a submersion. Then the differentiable structure is unique
and makes ν(A) into a vector bundle over A

The proof of the uniqueness is straightforward (and it holds for any quotient
space of a differentiable manifold). Notice that for such a smooth structure the
projection ν̃(A) → A trivially becomes a surjective submersion, and each fiber
νa(A) carries a vector space structure (the quotient vector structure) for which the
vector space operations are clearly compatible with the smooth structure (because
this same property holds for TM|A).

We can find such a differentiable structure as follows: consider f : M → Rn an
embedding; if M has non-empty boundary we select an embedding into a posi-
tive half space transverse to the boundary. Then we have the following obvious
identifications

TM = {(y, v) ∈ TRn = Rn × Rn | (y, v) = (f(x), f∗(x)u) | u ∈ TxM}
TM|A = {(y, v) ∈ TRn = Rn × Rn | (y, v) = (f(a), f∗(x)u), a ∈ A, u ∈ TxM}
TA = {(y, v) ∈ TRn = Rn × Rn | (y, v) = (f(a), f∗(x)u), a ∈ A, u ∈ TaA}
Now we can use the Euclidean metric to consider the submanifold of TM|A

TA⊥TM := {(y, v) ∈ TRn = Rn × Rn | y = f(a), v ⊥ f∗TaA}
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It is clear that the map
q : TM|A → TA (15) eq:normalprojection

projecting orthogonally w.r.t. Euclidean metric each tangent fiber TaX into TaA
w.r.t. Euclidean metric is differentiable. Then TA⊥TM = q−1(0), and the result
follows.

Exercise 33. Prove that the map in equation 15 is differentiable.

Notice also that
(i) the parallel projection along TA gives a differentiable map TM|A → TA⊥TM ,

(ii) we have an obvious bijection TA⊥TM → ν(A), and
(iii) the composition of the two is p : TM|A → ν(A).

def:nbundle Definition 25. The normal bundle is q : ν(A) → A with the above differential
structure.

rem:triv Remark 22. The normal bundle admits charts of the form

Φi : q−1(Ui)→ ϕi(Ui)× Rm−a

sending the fibers linearly in to the copies of Rm−a. Indeed, on a point a ∈ A take
a frame u1, . . . , um−a in TaM complementary to TaA. Extend it constantly to Rq.
Then project each vector orthogonally into TM and restrict to the points of A. In
that way we get local differentiable maps Ua → TM|A which are right inverses of
the projection (sections). By continuity, in a neighborhood of a they project onto
a basis of ν(A). The chart Φi sends each vector to its coordinates in this basis.

Remark 23. Given any Cr−1-metric on TM , going to adapted charts one sees
that the collection

∐
a∈A TaA

⊥g of vector subspaces is a submanifold of TM|A, and
the restriction of the projection is a bijection. Therefore, it gives another model of
normal bundle.

What is relevant about the normal bundle is that it models appropriate neigh-
borhoods of A in M . If M has boundary we consider A to be a submanifold with
non-empty boundary, A = ∂M or A a submanifold with boundary include in ∂M .

def:tub Definition 26. A tubular neighborhood of A ↪→ M is given by a diffeomorphism
f : ν(A)→M over its image -an open neighborhood UA of (the image of) A- sending
the zero section to the given embedding of A. Sometimes one identifies a tubular
neighborhood with its image UA.

We can construct a tubular neighborhood as follows: let us assume that A has
no boundary (nor it is the boundary of M) and consider TA⊥TM as model of ν(A).
Take the map

TM −→ Rn

(y, v) 7−→ y + v

We want to modify this map to land in M . Notice that since y+TyM is the tangent
space to M , there exists an open neighborhood Vy ⊂M such that it is mapped by
the orthogonal projection diffeomorphically to an open subset of TyM : the inverse
function theorem holds with Cr-parameters (and because the radius we the map
has inverse is given in terms of C1-data), by collecting the inverses we are defining
a differentiable map F : V ⊂ TM → M , V a neighborhood of the 0 section. We
now define

f : VA ⊂ TA⊥TM ↪→ TM
F→M

This is a differentiable map defined on a neighborhood of the zero section, and
restricts to the identity (or the embedding) to the zero section. Even more, its
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diferential at the zero section restricts to the identity. This implies that f is open
and that for each a in the zero section there is a neighborhood in TA⊥TM in which f
is a diffeomorphism over its image. A priory, we might not have injectivity because
of points far away in TA⊥TM , but this trouble does not appear because A is a
submanifold for which we have adapted charts.

So we conclude that f : VA →M is a diffeomorphism over its image. Now observe
that we can find h ∈ Cr(A) strictly positive so that

TA⊥TM −→ TA⊥TM

(y, v) 7−→ y + h(v)

sends TA⊥TM in VA. The map is obviously a diffeomorphism over its image, so by
composing it with the previous one we get the desired tubular neighborhood.

rem:retract Remark 24. Each tubular neighborhood comes equipped with a retraction

r : UA → A

This is so because we have such a canonical retraction on ν(A) sending each fiber
to the origin. Moreover, the retraction is homotopic to the identity map, by taking
their convex combination (we can add along the fibers).

The previous construction can be applied to a manifold with boundary M , where
the submanifold we consider is ∂M . Notice that the normal bundle ν(∂M) has 1-
dimensional fibers. Even more, using the embedding in (Hq

+, ∂H
q
+) transverse to

the boundary we can consider the map

T∂M⊥TM −→ ∂M × R
(a, v) 7−→ (a,±|v|)

where the sign is positive if the vector is outwards pointing and negative otherwise.
If we apply the tubular neighborhood theorem projecting along ∂Hq

+, we get a
map

f : ∂M × (−∞, 0]→ Rm

which is a diffeomorphism over its image contained in M .

thm:collar Theorem 21. Let M be a differentiable manifold with boundary. Then we can
always find a collar of the boundary, i.e. a transverse coordinate t defined in a
neighborhood of ∂M . In particular any manifold with boundary admits an enlarge-
ment to a manifold M ′ with empty boundary (so that M enters as a submanifold).

ex:tubularbound Exercise 34. Show how to construct a tubular neighborhood for a submanifold with
boundary (A, ∂A) ↪→ (M,∂M).

6.1. Homotopies, isotopies and linearizations.

def:isotopy Definition 27. Let M,N differentiable manifolds. Recall that a homotopy be-
tween Cr-maps f, g is a Cr-map

H : M × I → N

such that H0 = f , H1 = g. H is called an isotopy if each Ht is a diffeomorphism.

rem:collarextension Remark 25. Notice that due to the existence of collars, if M is compact and with-
out boundary, we can think of an isotopy as a map Ψ: M × (−ε, 1 + ε) → N . To
enlarge the map (that does not require compactness) we embed N in Euclidean space.
Next take a locally finite cover of ∂M with a partition of the unity subordinated to
it. Extend -using the collar- each open subset to an open subset Ui in the collar
crossing by a small open interval of radius εi, and pull each function µi to it. By
definition, we have a function

Ψi : Ui → N ⊂ Rq,
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so that on the overlaps in M the functions match. Define

M1 = M
⋃
i∈I

Ui ⊂M ′

which is an open subset of M ′.
Define Θ1 =

∑
i µiΨi on ∪i∈IUi. This is a differentiable function which on a

neighborhood of ∂M in M coincides with Ψ, so it gives a function Θ2 : M1 → Hq

extending Ψ. This function may not land in N . Let UN be a tubular neighborhood
of N in Hq. By construction Θ−1

2 (UN ) is a neighborhood M2 of M in M ′. Now
according to remark 24 we have a differentiable retraction r : UN → N . Consider
Ψ′ : M2 → N to be r ◦Θ2. It is clear that we are extending Ψ, and if M is compact
then M2 contains an open subset of the desired form.

lem:locpathc Lemma 14. Let M,N be a Cr-manifolds. Then for any f ∈ Cr(M,N) there exist
a neighborhood in C0

S(M,N) all whose maps are homotopic to f . In particular
CrS(M,N) is locally path connected.

Proof. Embed N in Hq. Clearly, we can take a neighborhood N of f in C0
S(M,Rq)

such that if g ∈ N then the segment [g(x), f(x)] ⊂ Hq lies inside a tubular neigh-
borhood UN of N . Then we have the homotopy

H : M × I −→ N

(x, t) 7−→ r((1− t)f + tg),

where r : UN → N is the retraction. �

cor:diffhomot Corollary 7. Let M,N be a Cr-manifolds . Then any f ∈ C0(M,N) is homotopic
to a Cr-map. Moreover, any to such maps are Cr-homotopic.

Proof. Any to such maps give rise to a map H : M × I → N which is Cr in a
collar of the boundary (we can make the homotopy stationary near end points).
Then we can approximate H by a Cr-function relative to a neighborhood of the
boundary. Indeed, if µ is a bump function taking the value 1 near the boundary,
we can approximate the homotopy by a Cr-map H ′, and take as final homotopy

r(µH + (1− µ)H ′)

�

6.2. Linearizations. Let f : U ⊂ Rm → Rn be a differentiable function.
Since TxRm, TyRn are canonically identified with Rm,Rn, we can think of Df(x)

-after restricting it- as a map in Cr(U,Rm), and we can canonically homotope one
into the other by the convex combination

tf + (1− t)Df(x)

Even more, we have:

lem:isolin Lemma 15. Let f : B(0, r) ⊂ Rm → Rm be a differentiable map with invertible
derivative at the origin. Then there exists r′ > 0 such that f,Df(0) : B(0, r′)→ Rm
are isotopic.

Proof. Take Ψ′(t, x) = tf + (1− t)Df(0). Since the derivative is continuous, there
exists r′ > 0 so that the derivative of Ψt in B(0, r′) is invertible, as the result
follows (sometimes we maybe interested in making the isotopy stationary at end
points. Then we take a smooth non-decreasing funtion χ : [0, 1] → [0, 1] so that
χ(ε) = 0, χ(1− ε) = 1). �
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There is a second -also canonical- way of homotoping a map into its derivative,
which extends to more general situations.

Let f : R → R be an analytic function, and let us also assume for simplicity
f(0) = 0. Then the previous homotopy between f and f ′(0) reads

f ′(0)x+ t
∑
j≥2

f (j)(0)
j!

xj

We can also consider

f ′(0)x+
∑
j≥2

f (j)(0)
j!

tj−1xj , (16) eq:lin1

which is nothing but
f(tx)
t

(17) eq:lin2

Notice that smoothness of the latter equation is not entirely obvious. It becomes
so when we use equation 16, or even better when we write f(x) = xg(x), where
g is another analytic function. This is possible because we do have the division
property for analytic functions.

Fortunately, the division property also holds for differentiable functions.

pro:diffdiv Proposition 8. Let f : B(0, r) ⊂ Rm → R be a Cr-function with f(0) = 0. Then
there exist Cr-functions g1, . . . , gm so that

(1) f(x) = x1g1(x) + · · ·+ xmgm(x)
(2) gi(0) = ∂f

∂xi
(0), i = 1, . . . ,m

Proof. We apply the fundamental theorem of calculus to the restriction of f to the
segment [0, x].

Write

f(x) =
∫ 1

0

d

ds
f(sx)ds =

∑
i

xi

∫ 1

0

∂f

∂xi
(sx)ds

�

Corollary 8. Let f : B(0, r) ⊂ Rm → Rn be a differentiable function, f(0) = 0.
Then

H : B(0, r)× I −→ Rn (18)

(x, t) 7−→ f(tx)
t

is a differentiable homotopy joining f with Df(0). If Df(0) is invertible, the for
an appropriate r′ is an isotopy when restricted to B(0, r′)× I

Let f : ν(A)→ ν(A) so that f|A = Id. We want to linearize f in the points of A
and along normal directions.

Inside ν(A) we have the submanifold A, the zero section. We can try to repeat
the normal bundle construction. First we consider Tν(A)|A, and then we have the
space ∐

a∈A
Taν(A)/TaA,

which the unique differential structure making the projection a differentiable map.
We claim that

∐
a∈A Taν(A)/TaA is canonically diffeomorphic to ν(A).

Indeed, consider the injective differentiable map

eq:fibderν(A) −→ Tν(A)|A
(a, ua) 7−→ (a, [sua]),
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where [sua] is the class of the curve s 7→ sua (which is ua!; in trivializations this
map is the identity). When composing with the projection we get a bijection linear
on fibers, and hence a diffeomorphism with the normal bundle.

Let f : ν(A) → ν(A) be a differentiable map such that f|A = Id. Then we can
compute the differential Df : Tν(A)→ Tν(A), and restrict it to

Df : Tν(A)|A → Tν(A)|A

But notice that by equation 19 ν(A) enters as a submanifold, so we can restrict
the map to obtain Df : ν(A) → Tν(A)|A. Finally, we can project into the normal
bundle which by equation 19 again can be identified with ν(A) Notice that at each
a ∈ A, we have TaA ⊂ Taν(A)

def:fibder Definition 28. The previous map is the so called fiber derivative of f

Dfv : ν(A)→ ν(A)

lem:fibder Lemma 16. The fiber derivative is computed by the formula

Dfv : ν(A) −→ ν(A) (19)

x 7−→ lim
s→0

f(sx)
s

(20)

Proof. We start by noticing that the expression on the r.h.s. of 19 makes sense,
since we can multiply due to the vector space structure. If we go to a trivialization
(remark 22) the curve f(sx) is given by

I −→ Ra × Rm−a (21)
s 7−→ (f1(sx), f2(sx)) (22)

with fs(0) = 0.
To compute the fiber derivative, we keep the base point of the curve f1(x) and the

second component of (f ′1(0), f ′2(0)), and this coincides with lims→0(f1(sx), f2(sx)/s) =
(f1(x), f ′2(0)).

�

prop:isot Proposition 9. Let f : ν(A) → ν(A) be a differentiable map such that f|A = Id.
Then f is canonically homotopic to Dfv. If f is a diffeomorphism, then there is
VA a neighborhood of A so that the restriction to VA × I is an isotopy.

Proof. We use the map

H : ν(A)× I −→ ν(A)

(x, t) 7−→ f(tx)
t

When we go to charts, it is the division lemma what grants regularity. Similarly,
the existence of UA is granted because of trivializations all maps are seen to have
invertible derivative at the points of A. �

Now suppose we are given (f, ν(A),UA) a tubular neighborhood of A in M . Let
(g, ν(A),UA) be another such. We would like to know whether we could isotope one
into the other. We cannot quite do that, but almost. Let φ = g−1◦f : ν(A)→ ν(A).
We can assume w.l.o.g. that φ, and the isotopy H connecting it with is fiber
derivative are defined in the whole ν(A), otherwise we would shrink ν(A) into the
neighborhood of the zero section in which it is defined. Then

g−1 ◦H(x, 1− t)

is an isotopy -through tubular neighborhoods- between f and another one so that
when composed with g−1 it gives a linear isomorphism.
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7. Degree, intersection number and Euler characteristic

7.1. Orientations. In a vector space V , the set of basis B(V ) -after a choice of
base point- can be identified with GL(V,R). Therefore, it inherits a topology (a
manifold structure) from the latter, because this is seen to been independent from
the choice of base point. In particular B(V ) has two connected components.

Definition 29. Given a differentiable manifold M , an orientation of TxM is a
choice of one connected component B+(TxM) of B(TxM). A basis on the chosen
component is called positive.

Definition 30. A manifold is orientable if a locally constant orientation of all
B(TxM) is possible. In other words, about each x there has to be coordinates
x1, . . . , xm so that if { ∂

∂x1
, . . . , ∂

∂xm
} is positive (resp. negative) at x, then it is

positive (resp. negative) at all points in the domain of the chart.
An orientation of M is such a choice of positive basis.

Take a map γ : (I, ∂I)→ (M,x) and choose a cover U1, . . . , Us so that I can be
broken into consecutive intervals I1, . . . , Is with γ(Ij) ⊂ Uj .
Definition 31. We say that γ reverses orientations if

ϕs,s1 ◦ · · · ◦ ϕ1,2

{
∂

∂x1
, . . . ,

∂

∂xm

}
∈ B(TxM)

belongs to the same connected component as { ∂
∂x1

, . . . , ∂
∂xm
} . We say that is re-

verses orientations otherwise.

One checks that the previous definition does not depend on the cover by going
to a common refinement of two given ones. For a given curve γ and a cover as
above, there exists N ∈ C0((I, ∂I), (M,x)) so that for each γ′ ∈ N , one also has
γ′|Ij
⊂ Uj . Therefore γ′ preserves the orientation iff γ does it. As a consequence

reversing or preserving the orientation is a property of the homotopy class of the
curve.

Hence we can define a map

π1(M,x)→ Z2, (23) eq:orientationcurve

for which [γ] is sent to 1 if preserves orientations, and to 0 otherwise. This is clearly
a group homomorphism, and its kernel is a normal subgroup of π1. Therefore, it
has a well defined 2 : 1 covering space Mor.

Corollary 9. M is orientable iff all homotopy class -at x say- preserve the orien-
tation, or equivalently if the kernel of equation 23 is trivial. This is equivalent to
saying that Mor is the trivial cover, i.e. just two copies of M .
Mor is always orientable.

Corollary 10. M is orientable iff there exists an atlas (Ui, ϕi)i∈I for which the
determinants of the jacobian of all change of coordinates are positive.

lem:contbasis Lemma 17. If M is orientable and oriented, for any path γ : I → M -since the
two connected componets of the general linear group are connected- we can always
choose basis b(t) ∈ B(Tγ(t)M) varying continuously (in charts the matrix of b(t)
w.r.t. the canonical basis have continuous entries). Then b(0) is positive (resp.
negative) iff b(1) is positive (negative).

Definition 32.
• Let M an oriented manifold. Then ∂M is orientable and carries a canonical

orientation by the rule “outward normal first”.
• Let M,N oriented manifolds. Then the product M,N carries an obvious

product orientation.
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7.2. The degree of a map. In this subsection we consider M,N compact oriented
differentiable manifolds of dimension m. Let f ∈ Cr(M,N) and z a regular value
for f . Then f−1(z) is a finite collection of points x1, . . . , xs. We define di the local
degree of f at xi to be 1 if Df(xi) preserves the orientation and −1 otherwise.

def:localdeg Definition 33. The degree of f at z is the sum of the local degrees at xi

deg(f, z) =
∑
i

(−1)di

We want to prove that the degree does not depend neither on the regular value,
nor on the homotopy class of f . To do that we show

lem:welldef Lemma 18. Let f, g ∈ Cr(M,N) be homotopic maps so that z is regular value for
both, then

deg(f, z) = deg(g, z)

Proof. We put on I ×M the product orientation of −I and M , so that

{0} ×M = M, {1} ×M = −M,

as oriented manifolds.
By corollary 7 we may assume the homotopy H to be differentiable (at least C2),

and we can further approximate it by a map relative to a collar of the boundary
with is transverse to z. Since H|∂(I×M) is already transversal to z, we conclude
that H−1(y) is a 1-dimensional submanifold of I ×M . Hence it will have l disjoint
copies of S1, and k copies of I. Take one such interval γ : I ↪→ I ×M . Obviously,
the endpoints of the interval are sent to H−1(y). We claim that for both end points
the local degrees -w.r.t. the boundary orientation- have opposite sign. Or in other
words

0 = deg(H|∂(M×I), z) = deg(f, z)− deg(g, z)

Cover γ(I) by adapted coordinates, so that ∂
∂x1

is tangent to γ(I), and for i(0)
is outward pointing. It is clear that γ̇(t) is a negative multiple of ∂

∂x1
. Again using

adapted charts we can choose a continuously varying basis of the form {−γ̇(t), b(t)} ∈
B(Tγ(t)M), where b(t) can be seen as a base of the normal space. Assume b(0) is
possitive for the boundary orientation and the local degree is possitive. That im-
plies that dHγ(t)(b(t)) must be a positive basis, and in particular the image of b(1).
But by lemma 17 {γ̇(1), b(1)} ∈ B+(Tγ(1)M), which is the same as saying that b(1)
is a negative basis for the induced orientation of the boundary, so the local degree
at γ(1) is negative.

Therefore the result follows. �

Definition 34. Let f ∈ C0(M,N), N connected, Then degf is defined to be the
degree for any homotopic differentiable map at any regular point.

By corollary 7 and the previous lemma, it does not matter which homotopic
differentiable map we use, as long as we prove independence on the regular point.
To prove the latter we need an isotopy Ψ: N × I → N starting at the identity,
and sending any given w to any given z. Because then we form the homotopy
Ht = Ψt ◦ f , and clearly

deg(f, w) = deg(H1, z)
To prove the existence of the latter isotopy it is enough to do it on Euclidean

space, because then in general we can compose a finite number of the local ones to
reach the desired point.

For the local case we use the theory of O.D.E. Given any autonomous Cr-system

ẋ(t) = Y (x(t)),
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if the entries of the matrix Y (x) are compactly supported, then a solution exists
for all time giving a Cr+1-flow (i.e. isotopy starting at the identity)

Ψ: Rm × I → Rm

For any embedded curve i : I → Rm, it is possible to find Y : Rm → Rm so that

Y (i(t)) =
d

dt
i(t),

and this solves the problem.

Remark 26. Notice that the compactness of N was not used anywhere. It is just
that if N is not compact, f cannot be onto and the degree is then zero.

rem:contdeg Remark 27. Another way to say things is that we have a continuous map

deg : C0(M,N)→ Z
This is because about any point we have a small neighborhood which is path con-
nected (lemma 14) and hence homotopy invariance is equivalent to continuity.

ex:circle Example 4. For a map f : S1 → S1 its degree or winding number is defined
by lifting it to a map F : [0, 1] and taking F (1) − F (0). It is easy to see that it is
our degree Since it is a homotopy invariant, and any map is homotopic to e2πik,
then it is also our degree.

ex:spheres Example 5. Let P : C→ C be a polynomial. Then it continuosly extends to a map
P̄ : S2 → S2, where the spheres are oriented by the orientation (any) of the plane.
A value (different from zero) z is regular iff the zeroes of P − z are simple. Since
the map is holomorphic, local degrees are always one, so degP̄ is the degree of the
polynomial.

WhenN is a sphere, the degree classifies path connected components of C0(M,Sm).

thm:degree Theorem 22. f, g ∈ C0(M,Sm), M connected, are homotopic iff deg(f) = deg(g).

Proof. We just need to prove the existence of a homotopy when the degrees are
equal. In other words, we need to prove the existence of a map H : M × I → Sm

so that H|M×{0} = f , H|M×{1} = g.
Since the degree of H|∂(M×I) is zero, for a regular value z being M×I connected

we can join the points of in the inverse image of z by arcs γi : I → M × I so that
the end points are points of opposite local degree. If m > 1, then we can assume
the maps γi to be embeddings. If M is the circle, we can arrange the crossings to
be transversal, and change the arcs to avoid intersections.

Let us fix one of them γ, and consider its normal bundle ν(I) together with a
tubular neighborhood k : ν(I)→ UI

In T (M × I)|I choose a smooth basis {γ̇(t), v(t)}, so that v(0), v(1) are made of
vectors tangent to the boundary. One can see that a model for ν(I) is given by
I × Rm1 via the map

Φ: I × Rm −→ ν(I)
(t, u1, . . . , um) 7−→ (γ(t), [u1v1(t), . . . , umvm(t)]),

which is differentiable because it lifts (in the obvious way) to TM|I .
Therefore, we have a diffeomorphism Θ: I × Rm → UI .
We will extend the map to UI . We have two maps

F = ψz ◦ f ◦Θ0, G = ψz ◦ g ◦Θ0 : Rm ◦ V → Rm,
where ϕz are local coordinates about z. We can apply lemma 15 to both maps to
find an isotopy joining each map with its differential at the origin (perhaps reducing
the domain to U ′ ⊂ Rm−1, a closed ball). Since the end points have opposite sign,
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the jacobian of both differentials has the same sign, therefore we can join them.
The result is a smooth isotopy Ψ: U ′ × I joining F,G.

We now extend H to U ′I := Θ(U ′ × I) as follows:

H : U ′I −→ Sm

x 7−→ ψ−1
z ◦Ψ ◦Θ−1(x)

We do the same for all intervals (the tubular neighborhoods do not intersect, if we
choose them to be a tubular neighborhood U of the union of intervals), so we get a
map

H : ∂(M × I) ∪ U ′ → Vy ⊂ Sm

Obviously M × I\H−1(z) is a manifold and hence a normal topological space.
In that space we have a map

H : ∂(M × I) ∪ U ′\H−1(z)→ Sm\{z}

Since the domain is closed and the target homeomorphic (diffeomorphic) to Rm, by
Tietze’s extension theorem it extends to M × I\H−1(z). Clearly, this defines the
desired homotopy. �

Remark 28. When we do not have orientability we have a Z2-valued degree and a
result analogous to theorem 22. This is because a compact 1-dimensional manifold
has 0 (mod2) boundary points.

7.3. Intersection number and Euler characteristic. Let M be compact ori-
ented manifold, N an oriented manifold and A ⊂ N a closed oriented submanifold
so that n = m+ a. Let f : M → N a map transverse to A.

Definition 35. The local intersection number of (f,A) at xi -denoted #(f,A, xi) is
±1 if {f∗b(xi), v(f(xi))} belongs to B±(Tf(xi)N), where b(xi), v(f(xi)) are positive
basis of Txi

M,Tf(xi)A respectively.
The intersection number #(f,A;N) is the sum of local intersection numbers.

Lemma 18, together with the ideas showing the independence of the degree on
the regular value, gives:

Proposition 10. The intersection number does not depend on the homotopy class
of f , nor on the isotopy class of A, meaning that we can substitute A by Ψ1(A),
where Ψ is an isotopy of N starting at the identity (see theorem 11).

Remark 29. When f is an embedding, we speak about the intersection number of
the submanifolds (f(M), A).

Remark 30. The degree deg(f, z) is recovered as

#(graphf,M × {z};M ×N)

with the obvious orientations.

rem:doubleor Remark 31. When N has even dimension and A middle dimension, we can com-
pute the intersection number #(A,A), which is independent of the orientation cho-
sen on A.

Let M be an oriented compact manifold. Then the product M ×M carries a
canonical orientation. It contains ∆, which is a copy of M and hence oriented.

Definition 36. the Euler characteristic of M is

χ(M) = #(∆,∆;M ×M)

Observe that it is independent of the chosen orientation.
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Remark 32. The Euler characteristic is well defined also for non-orientable ma-
nifolds. Firstly observe that at the points of ∆ the tangent space of M × M is
canonically oriented (take to copies of any basis on TxM . Secondly to compute a
local degree we need a local orientation of T(x,x)∆, which comes from such local
orientation of TxM . But as noticed in remark 31 a change of the local orientation
does the same for the deformed diagonal, so the local degree does not change.

def:lefschetz Definition 37. Given M a compact manifold and f : M → M the Lefschetz
number is

L(f) = #(graphf,∆;M ×M)

It is a signed count of the fixed points. In particular χ(M) = L(id).
So again we may regard the Lefschetz number as a continuous map

L : C0(M,M)→ Z

Notice that L 6= deg, because χ(M) = L(id) 6= 1

7.4. Vector fields. Let M be a differentiable manifold. Recall from definition 14
that a vector field X ∈M is a differentiable function

X : M → TM

so that π ◦X = Id (i.e. it is a section of the tangent bundle).
As we mentioned the diagonal embedding M →M ×M has ∆ as image. Either

of the projections, say p1 : M ×M →M , induces a diffeomorphism from ν(∆) into
TM , so we get tubular neighborhoods of the form f : TM → U∆ ⊂M ×M .

A zero of a vector field is an intersection of X(M) with the 0 section of TM .
The zero is called transversal in the intersection is so.

Notice that any vector field is homotopic to the zero section by the rescaling
homotopy tX. In particular, if a vector field X is transverse to the zero section,
then the map

f ◦X : M →M ×M

is homotopic to the diagonal and transverse to it. Therefore we conclude.

thm:zeroes Theorem 23. If a vector field has only transverse zeros, then its signed count
equals χ(M). In particular it does not depend on the vector field.

Notice that we can compute χ(Sm) as follows. We consider a vector field ema-
nating from the north pole to the south pole, going along geodesics. After rescaling
and around the north pole, a model for it is the Euler vector field, whose local
degree at the origin is 1. For the other zero a model is minus the Euler vector field
(recall the local orientation of the sphere does not matter), and therefore the degree
is (−1)m. Hence, we conclude

thm:zeroesvfield Theorem 24.

(1) Any vector field on an even sphere must have zeros.
(2) Any vector field in the upper hemisphere Em+ ⊂ Sm transverse to the equator

must have a zero in the interior (and this is nothing but the non-existence
of retractions from balls onto their boundaries).

Proof. For the second statement we take a collar of the equator and use bump
functions to deform the given vector field into the one above computing the Euler
characteristic (after averaging we orthogonally project form Euclidean space to the
sphere). Then the result follows. �
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8. Isotopies and gluings and Morse theory

Recall that a vector field X ∈ X(M) is a section X : M → TM .

lem:isotvfield Lemma 19. Any vector field X with compact support can be uniquely assigned a
map

ΨX
t : M × R→M

such that

• d
dtΨ

X
t (x) = X(ΨX

t (x))
• Ψ0 = Id

Moreover, such an isotopy satisfies Ψt+s = Ψt ◦ Ψs. Conversely for such an
isotopy (perhaps not defined on the whole real line) we get such a vector field, and
this establishes a 1 to 1 correspondence.

Proof. Locally the flow is the one associated to an autonomous equation, so locally
for small time the flow exists with the required properties. Since the support is
compact the result follows.

The converse is also clear. �

More generally, differentiable 1-parameter family of vector fields is a differen-
tiable map
X : M × I → TM , so that each Xt is a vector field

thm:isotvfield Theorem 25. There is a 1 to 1 correspondence between compactly supported iso-
topies and compactly supported vector fields.

Proof. The assignment is as follows. Let Ψ: M × I →M be an isotopy. Since it is
compactly supported we can assume it is defined on M × (−ε, 1 + ε) (see remark
25). Moreover, for each t we still have a diffeomorphism. Define

Ψ̃ : M × I −→ M × I
(x, t) 7−→ (Ψ(x, t), t)

which is in the hypothesis of lemma 19. Therefore it is in correspondence with a
vector field X̃ = X(x, t) + ∂

∂t , and hence with X(x, t) = Xt(x). One checks that
the equation

Xt(Ψt(x)) =
d

ds
Ψs(x)|s=t

holds (characterizes the correspondence). To go in the other direction we construct
X̃ out of Xt(x), and define Ψ = p1 ◦ Ψ̃. �

Theorem 25 is an extremely powerful tool in differential topology

thm:isotext Theorem 26. Let W ⊂ M open and Ψ: W × I → M . Suppose that we have
another open subset U ⊂W such that Ψ−1(U) ⊂W . Then for any compact subset
K ⊂ U there exists an isotopy Ψ′ : M × I →M with Ψ′|K×I = Ψ|K×I .

Proof. Since Ψ−1(U) ⊂ W , we can define X ∈ X(U × I). Next we use a partition
of the unity to extend it to X ′ ∈ X(M × I) so that

X ′Ψ−1(K) = XΨ−1(K), X
′
|(M\W )×I ≡ 0,

and observe that Ψ−1(K) is compact. �

cor:subisot Corollary 11. Let ψ : A×I →M be a differentiable map such that for each t is an
embedding, A compact ψ0 = Id. Then it extends to an isotopy of Ψ: M × I →M .
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Proof. Over the submanifold ψ(A × I) ⊂ M × I the isotopy gives a vector field
whose projection is ∂

∂t . Then one can easily extend it to a vector field on M × I
supported on an tubular neighborhood, and then correct by adding the appropriate
multiple ∂

∂t . �

8.1. Gluings. A basic strategy in the study of manifolds, is breaking them into
simple pieces, or rather thinking of them as the result of gluing these, and then
deduce consequences out of this.

def:gluing Definition 38. Let M,N be differentiable manifolds with non-empty connected
boundary, and let f : ∂M → ∂N be a diffeomorphism. Define the topological space

M#fN = M
∐

N/x v f(x)

M#fN carries a canonical topological structure for which the inclusions of M ,
N are homeomorphisms. Putting a differentiable structure is slightly more subtle,
and as a matter of fact only exists up to diffeomorphism.

Lemma 20. M#fN carries a canonical differentiable structure up to diffeomor-
phism for which the inclusions of M , N are differentiable.

Proof. We will only prove it in the case of compact boundaries. Choose collars so
that we have

M ′g = M
∐
g

∂M × R, N ′α = N
∐
α

∂N × R

We glue the collar via the diffeomorphism

(x, t)→ (f(x),−t)
We must prove that for other collars

M ′h = M
∐
h

∂M × R, N ′β = N
∐
β

∂N × R

we get diffeomorphic manifolds.
Clearly, we can assume only one of the collars differ, because then we would take

the composition
M ′g

∐
Nα →M ′g

∐
Nβ →M ′h

∐
N ′β

Let us suppose α = β. Next observe that it suffices to find a diffeomorphism

M
∐
g

∂M × R→M
∐
h

∂M × R

which in the triviallized normal bundle is the identity for t � 1, because then we
can extend it by the identity in N\V∂N .

We want to start defining the diffeomorphisn M ′g → M ′h to be the identity on
M . That means that a point in x ∈ ∂M × R ⊂ M ′g is sent to h−1 ◦ g(x) ∈
∂M × R ⊂ M ′h. We want to modify this map near the boundary so when read in
the trivialized normal bundles it becomes the identity near the zero section, rather
than h−1 ◦ g(x). Notice first that for the composition h−1 ◦ g(x) to be possible we
must have U∂M,g ⊂ U∂M,h. This can be assumed w.l.o.g. because otherwise we can
find a diffeomorphism of g−1(U∂M,h) into the trivialized normal bundle with does
not alter points with positive t-coordinate.

By remark 25, we can extend h−1 ◦ g to a map defined also in a neighborhood of
the zero section. Since its differential at each point of the zero section is invertible,
by shrinking the neighborhood -for points of positive t-coordinate- we can assume
we have a diffeomorphism. Next we can find another self diffeomorphism of ∂M×R
with the following properties.
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• It preserves fibers, an it is supported is an arbitrary neighborhood off the
zero section.
• It is such that the differential of h−1 ◦ g at the zero section is the identity.

We now apply proposition 9 to the restriction of h−1 ◦ g to a small tubular
neighborhood of the zero section in ∂M × R. We get Ht an isotopy so that

H1 ◦ h−1 ◦ g = Id

Now we use compactness to extend it to an isotopy Ht of ∂M × R which is the
identity for |t| � 1. We modify (and extend) the previous map by considering
instead

H1 ◦ h−1 ◦ g : ∂M × R ⊂M ′g → ∂M × R ⊂M ′h
Observe that points whose t-coordinate is very negative are not in the support

of H1, and therefore the definition coincides with the one sending each point of
M ⊂M ′g to the same one in M ′h. Hence, we have defined an isomorphism, which it
is also the identity for t� 1, and this finishes the proof. �

def:double Definition 39. Let M be manifold with non-empty boundary. Then the double is
M#IdM .

cor:reflection Corollary 12. Any manifold with boundary is the quotient of space of a manifold
without boundary endowed with a Z2-action.

Proof. Just remind that an action of a (Lie) group on a differentiable manifold M
is a differentiable map G×M →M satisfying the usual axioms.

In our case, the double M#IdM carries an obvious Z2-action so that the quotient
map is differentiable. �

Lemma 21. If f, g : ∂M → ∂N are isotopic, then M#fN and M#gN are diffeo-
morphic.

Proof. We take a collars, so that a neighborhood of ∂N in N is of the form ∂N ×
[0,−∞). Then we define ψ : M#fN and M#gN as follows:

ψ|M∪(N\∂N×[0,−∞)) = Id

Let H be the homotopy between f−1 ◦ g and the identity, and χ : [0, 1]→ [0,∞] a
differentiable monotone function with χ|[0,ε] = 0, χ|[1−ε,∞) = 1

Then on the collar we define

ψ(x, t) = (H(χ(−t), x), t)

and this completes the proof. �

ex:functcobor Example 6. Let M with ∂M = ∅, and f : M → R a (proper) function. Let z be a
regular value, so Wz := f−1(z) is a hypersurface. Then M = f−1(−∞, z]#Idf

−1[z,∞)
(up to diffeomorphism).

8.2. Morse functions. We saw in example 6 how to use regular values of functions
to break a manifold into blocks. If the function has additional properties, we can
say more about how certain blocks look like.

Let f : M → R be a differentiable function. We can define ∇f the gradient
(vector field) of f (w.r.t. the metric induced by the Euclidean one) as follows:

extend f to a function on a collar by pulling back using the retraction, compute
the usual gradient, and then orthogonally project onto TM . If is clear that critical
points of f coincide with those of the extension, and also with zeros of the gradient.

If z is regular value, then Wz := f−1(z) is a hypersurface transverse to ∇f .
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Lemma 22. If the interval (z0, z1) contains no critical value then for any z in the
interval

M(z0,z1) := f−1(z0, z1) 'Wz × (z0, z1)

Proof. Define the isomorphism x 7→ (y, f(x)), where y is the point in Wz in the
same integral curve of ∇f as x. �

Define M≤z := f−1((−∞, z]).
Corollary 13. Suppose that the interval [z0, z1] contains no critical value. Then
there exist an isotopy Ψ: M≤z1×I →M≤z1 starting at the identity, and pushing the
closed manifold down (w.r.t. values of f) along gradient lines so that Ψ1(M≤z1) =
M≤z0 .

Therefore, it is the critical points of a function what produces changes in the
diffeomorphism type, and therefore we would like to have functions whose behavior
around critical points is easy to describe.

Recall that the cotangent bundle of a manifold M is

T ∗M =
∐
x∈M

T ∗xM

and has a vector bundle structure. Given a cover (Ui, ϕ), the tangent bundle is
given by ∐

ϕ(Ui)× Rm/ ∼
where if x ∈ Ui ∩ Uj , we identify

(ϕj(x), u) ∼ (ϕi(x), Dϕij(ϕj(x))u)

The cotangent bundle is then∐
ϕ(Ui)× Rm∗/ ∼

where we identify

(ϕj(x), α) ∼ (ϕi(x), Dϕij(ϕj(x))−1∗u)

Given f ∈ Cr(M,R), r ≥ 1, then Df = df defines a section of T ∗M . In
coordinates x1, . . . , xn, denote by dx1, . . . , dxm the basis dual to ∂

∂x1
, . . . , ∂

∂xm
.

Then
df =

∑
i

∂f

∂x1
dx1 + · · ·+ ∂f

∂xm
dxm

Observe then that x ∈M is a critical point of f iff the graph of df hits the zero
section and that point.

Remark 33. Let g be a metric in TM . The gradient w.r.t. g can be defined as
follows: the metric induces a map

g# : TM −→ T ∗M

v 7−→ g(v, ·)
linear on fibers. Non-degeneracy of g is equivalent to g# being an isomorphism on
fibers.

Then we define ∇gf = g#−1df .

Definition 40. f ∈ Cr(M,R), r ≥ 2 is a Morse function if (the graph of) df
intersects the zero section of T ∗M transversely.

Recall that for f : Rm → R of class C2, the Hessian Hf is the symmetric
matrix (

∂2f

∂xi∂xj

)
i,j
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Lemma 23. df has transverse intersection with the zero section at x iff in some
(and hence in any) coordinates Hf(x) is non-degenerate.

Proof. In coordinates we get a trivialization of the form U × Rm, with the zero
section U×{0}. The transversality at x is equivalent to the projection of Txdf onto
Rm × {0} being surjective. A basis of Txdf is given by{

∂

∂xj
+
∑
i

∂

∂xj
(
∂f

∂x1
dx1 + · · ·+ ∂f

∂xm
dxm)

}
j=1,...,m

,

and hence the result follows. �

How abundant are Morse functions? Since they are defined by a transversality
property, one expects then to be a residual subset of Cr(M,R).

thm:densemorse Theorem 27. Morse functions are and open residual subset of CrS(M,R).

Proof. Openness is clear, because transversality of df to the zero section is a C2-
condition. On a compact on the domain of local coordinates, C2-close function to
a Morse one will be Morse.

Regarding density we only prove the local result. We may assume f to be smooth
as well. If f : U ⊂ Rm → R, then consider the map

F : Rm −→ C∞(U, TU)
y 7−→ df(x) + 〈x, y〉 = d(f + 〈x, y〉)

Then since F ev is a submersion, we deduce the existence of a dense subset of
parameters for which transversality holds. �

A Morse function f : U ⊂ Rm → R with a critical point at zero has a Taylor
expansion starting with a non-degenerate quadratic form. The following impressive
result says that in some coordinates there are no higher terms.

thm:morsecoord Theorem 28. Let f : U ⊂ Rm → R be a Morse function and zero a critical point.
Then there exist coordinates w1, . . . , wm centered at zero so that

f(w) = f(0) +
λ∑
i=1

−w2
i +

m∑
i=λ+1

w2
i

where λ is the signature of the Hessian.

Proof. By applying the division property twice (proposition 8), we can write

f(x)− f(0) = xtGx,

where G(0) is the Hessian Hf(0).
In one variable we would have

f(t)− f(0) = t2G(t) = (t
√
G(t))2,

and t
√
G(t) is a coordinate about zero because its derivative is

√
G(0).

In general apply induction, by fixing x1, . . . , xm−1, and then applying the result
to all lines orthogonal to the hyperplane xm = 0. First, a linear change of coor-
dinates is required so that ∂2f

∂xm∂xm (0) 6= 0 Then we get a new coordinate wm so
that

f(x1, . . . , xm−1, wm)− f(0) = ±w2
m + f(x1, . . . , xm−1, 0)

�



52 D. MARTÍNEZ TORRES

Remark 34. So Morse’s lemma is a result about the possibility of “taking squares
roots” of certain smooth functions. Notice as well that since taking the square root
is an analytic operation the lemma holds also in Cω(M).

We will assume that M is compact from now on. We can assume w.l.o.g. that
our Morse functions on theorem 27 take different values on critical points. For
example use the Morse coordinates of theorem 28, to check that f(w) + aµ(x),
where µ is a bump function and a tends to zero, has only zero as critical point, but
the critical value changes to a.

Let us fix Morse coordinates x1, . . . , xm about a critical point of f with index λ,
so that

f(x) =
λ∑
i=1

−x2
i +

m∑
i=λ+1

x2
i

We will assume that in Morse coordinates the metric in the Euclidean one, so
the gradient of f is the usual one

∇f =
λ∑
i=1

−xi
∂

∂xi
+

m∑
i=λ+1

xi
∂

∂xi

The stable manifold W s(0) (resp. unstable manifold W u(0)) to the union
of the trajectories of ∇f converging to 0 as t goes to infinity (resp. minus infinity).

It is clear (assuming f to be defined in Rm) that

W s = Rλ × {0}, W u = {0} × Rm−λ

By changing f to −f , we exchange stability into unstability. We will only define
concept for the former, being those for the latter obtained by applying the definition
to −f .

rem:noeuler Remark 35. On Morse coordinates the degree of ∇f at the origin is (−1)λ. There-
fore if cλ is the number of critical points of index λ, we conclude

χ(M) =
m∑
λ=0

(−1)λcλ

If we now do the same for −f we get

χ(M) =
m∑
λ=0

(−1)m−λcλ

and adding up

2χ(M) =
m∑
λ=0

((−1)λ + (−1)m−λ)cλ

and one concludes that if m is odd then

χ(M) = 0

Define for z < 0, W s
z = W s ∩M≥z, which is the ball Bλ(0,

√
z). Then

Sλ−1√
z

:= ∂Bm−λ(0,
√
z)

The flow of the gradient vector field pushes stables spheres into stable spheres.
For each z < 0 < ε consider

Mz,ε := {x ∈ Rm | f(x) ≤ z} ∪ {x ∈ Rm |
m∑

i=λ+1

x2
i ≤ ε}
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The boundary ofMz,ε is made of pieces of the hypersurfacesWz and
∑m
i=λ+1 x

2
i =

ε -which are transversal to the gradient- and its flow induces a homotopy

Ψ: M−z × I →M−z

so that Ψ1(M−z) = Mz,ε.
In some sense the information carried by Mz,ε “should be the same” as the one

carried by M−z. The problem is that the former is not a manifold.
Recall that a manifold with corners was defined by having charts modeled on

Hm
d,cx := Rm−d × (−∞, 0]d

We will call that for the moment manifold with convex corners (see remark 39).
We similarly define a manifold with concave corners if the charts take values
on

Hm
d,cv := Rm\intHm

d,cx

Remark 36. Notice that Hm
d,cx determines a positive cone in R∗m consisting on

forms which are positive on it. By duality, we have positive vector, which are posi-
tive combinations in any (positive) basis of vectors in the positive half hyperplanes.
If there exists a linear isomorphism interchanging Hm

d,cx with Hm
d,cv in particular

it exchanges positive half hyperplanes, sending thus a positive basis into a positive
basis. Therefore, it fixes Hm

d,cx, so we conclude that there is no diffeomorphism from
the convex to the concave model (see again remark 39).

Remark 37. The convex model appears when taking products of manifolds with
boundary. We will see latter an appearance of the concave (see also lemma 24).

lem:mcorners Lemma 24. Let f, g : U ⊂ Rm → R be differentiable maps such that zero is a
regular value for (f, g). Then the subset

E = {x ∈ Rm | f(x) ≤ 0 or g(x) ≤ 0}

carries a canonical structure of manifold with concave corners.

Proof. Call A = {f = g = 0}, which by hypothesis is a codimension 2 submanifold.
About each a ∈ A, take adapted charts x1, . . . , xm−2, xm−1, xm. Then the coordi-
nates x1, . . . , xm−2, xm−1, f, g locally send E onto an open subset of Hm

2,cv. �

Remark 38. If we define E as an intersection rather than as a union, we get a
manifold with convex corners.

As a consequence of lemma 24 we conclude that Mz,ε is a manifold with concave
corners.

A standard folklore theorem in differential topology says that “corners can be
smoothenned”.

thm:smoothing Theorem 29. Let M be a manifold with concave corners. Assume that the boun-
dary is compact. Then there exists a canonical manifold with boundary M ′ -up to
diffeomorphism- such that M embeds in M ′.

Sketch of the proof. We will only proof the case of codimension two corners.
We start by looking at the codimension one part of the boundary, which is a

codimension 2 submanifold A. In the general case is a submanifold with corners.
Step 1: (Regular) submanifolds in the boundary of manifolds with corners also

have tubular neighborhoods. For each a ∈ A, inside νa(A) -which is a vector space-
we have the subset Ma(A) of vector fields that represent curves in M . There exists
a linear isomorphism

(νa(A),Ma(A) ' (Rd, Hd
d,cv)
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It is clear -going for example to charts a centered at a- that M(A) ⊂ ν(A) is a
manifold with corners.

More precisely, the claim is the existence of an embedding

f : (M(A), A)→ (M,A)

extending the identity on A. To show this we observe that using the embedding
M ⊂ Rn, we have a map

g : VA ⊂ ν(A)→M

which is a diffeomorphism over its image, a neighborhood UA of A in M . It is
straightforward that VA is itself a manifold with concave corners so that νa(A)∩VA
is a manifold with concave corners inside νa(A) (recall that by definition near a
corner point -in chart- the embedding locally extends to an embedding of a neigh-
borhood of the origin in Rm, so locally there is an embedded piece of Rm containing
a neighborhood of a in M , so we can project over it; this only defines the map for
those points sent into M , and our claim follows form the local analysis). Each
codimension 1-component at the origin is tangent to a coordinate hyperplane Li.
By using the flow line of the orthogonal vector field we can isotope νa(A) ∩ VA
into another manifold with concave corners one of whose codimension 1 boundary
components is Li. By repeating the procedure d times we find an diffeomorphism
(isotopic to the identity) in a neighborhood of 0 ∈ νa(A) into νa(A), such that

νa(A) ∩ VA →Ma(A)

This can be done on a coordinate chart about a ∈ A, and the construction globalizes
giving a diffeomorphism

φ : WA ⊂ ν(A)→W ′A
so that φ(VA) =W ′A ∩M(A).

Therefore, the existence of a tubular neighborhood follows.
In the general case, one proves the existence of tubular neighborhoods for closed

submanifolds in the boundary, by induction starting by the submanifold of greatest
codimension and then extending to higher dimensional ones.

Step 2: Smoothen M(A) ⊂ ν(A). We select any vector field X ∈ X(ν(A)) defined
in a open neighborhood ZA of A in ν(A), such that (i) it is transverse to ∂M(A)\A,
and (ii) it is outward pointing. Next Define LX to be the intersection with ZA of
the collection of all hyperplanes orthogonal to X. This is a hypersurface in ν(A)
and by choosing a smaller tubular neighborhood of A we can assume that X is
transverse to LX in ZA. In particular each flow line from LX hits once ∂M(A).
Let

h : LX → R+

be the function which measures the time h(x) to flow from LX to ∂M(A). Notice
that h is differentiable away from A.

We define M ′(A) to be a manifold with boundary with the following properties:
• M ′(A) ∩ (ν(A)\ZA) = M(A).
• There exists a differentiable function h′ : LX → R>0 and YA a tubular

neighborhhod of A in LX such that h′ ≥ h and h′|LX\YA
= h|LX\YA

=.

It is an easy exercise to show that such a M ′(A) always exists.
Then we define

M ′ = M ′(A)
∐
f

M

This is clearly a manifold with the required properties.
In the general case we have to substitute LX by a more complicated hypersurface

(basically do it for each stratum and interpolate correctly to get one with the right
properties).
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Step 3: Prove uniqueness up to diffeomorphism. We have to understand the
effect of different choices.

Firstly, and for any Z ′A a tubular neighborhood of the zero section, we can push
back along the flow lines of X to define an isotopy

Ψ′ : M ′(A)× I →M ′(A)

sending M ′(A)\M into ZA (i.e. we can connect µAh with h′, where µA is a bump
function with arbitrary small support near A). Therefore, we can assume that the
gluing occurs in an arbitrarily small tubular neighborhood of A.

Secondly, if we pick another tubular neighborhood (g, ν(A),UA), we obtain a self
diffeomorphism of M(A) into itself. One shows that this extends to a diffeomor-
phism of ν(A) near the zero section. By the previous observation, we can pick this
neighborhood to be the one in which the gluing occurs. As a result, we can assume

g−1 ◦ f : ν(A)→ ν(A)

As usual the idea is to perturb the isomorphism close to the zero section, to have the
required properties. Notice that g−1 ◦ f(LX) and LX are tangent at the points of
A, and are contained in M(A). As a consequence, we can find an isotopy supported
in M(A) sending g−1 ◦ f(LX) to LX in a neighborhood of A in ν(A). Now we have
two vector fields X and g−1 ◦f∗X transversal to LX and ∂M(A)\A. It is also clear
that we can find an isotopy

Ψ′′ : ν(A)× I → ν(A)

with arbitrary small support sending g−1 ◦ f∗X to X and being the identity on
LX . Obviously, Ψ′′(M ′(A)) ' M ′(A). Notice that after the isotopy the smooth
function h′′ defining the new boundary may fail so be greater or equal than h, but
the inequality holds in A and hence in a neighborhood. So we can connect them as
above and isotope Ψ′′(M ′(A)) so that we only get contribution for those in which
the vector field matches X, and where h′′ ≥ h, and this finishes the proof. �

Now the following result is straightforward

Corollary 14. The subset E defined in lemma 24 is such that its smoothing E′ is
diffeomorphic to M−z

rem:cxcv Remark 39. One can also smoothen convex corners by removing an appropriate
tubular neighborhood. Also, concave corners can be turned into concave ones, so that
the smoothings are isomorphic (so then we understand the corresponding manifolds
with corners as isomorphic).

ex:cxcv Example 7. Take B3(0, 1) and pull from the equator to produce B3
cx a manifold

with convex corners. Similarly press towards the inside to get B3
cv. Both manifolds

have as smoothing B3, so up to diffeomorophism they are the same.

We want to describe Mz,ε as the result of gluing M≤z with something else.
LetM be a manifold with concave corners of codimension 2 at most (and compact

boundary). Let A be the codimension 2 boundary strata, that we suppose has trivial
normal bundle, i.e. two everywhere linearly independent sections giving

φ : ν(A)→ A× R2

Observe that this is not automatic. Repeat example 7 for RP3. Then a neigbor-
hood of the equator in the boundary becomes a mobius band with a corner along
the circle.

Let us suppose that A, ∂M are connected. Then one checks
that ∂M\A has two connected components. Let W be the union of one of

them with A. The normal bundle ν(A; ∂M\intW ) is canonically isomorphic to
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ν(W )|A, and both normal bundles are trivial. One checks the existence of a tubular
neighborhood

f : (ν(W ), ν(W )|A, A)→ (M,∂M\intW,A)
which is doing nothing but putting a collar about W . As usual, this collar is unique
up to isotopy (an isomorphism if we add the part for t > 0).

pro:cornergluing Proposition 11. Let M be a manifold with compact boundary, and Y m−1 ⊂ ∂M a
submanifold with boundary B. Let N a manifold with compact connected boundary
and codimension 2 convex corners, such that the submanidols of corners A ⊂ ∂N
is connected and has trivial normal bundle. Let f : Y → W , W the closure of one
of the components of ∂N\A, be a diffeomorphism. Then on

M#fN := M
∐

N/x ∼ f(x)

there exists a canonical -up to diffeomorphism- structure of manifold with codimen-
sion 2 concave corners.

If we glue with g isotopic to f the result is the same. Similarly, if we isotope Y
into Y ′ the result does not change.

Proof. Use a collar on ∂M and W to glue in the obvious way. One proves that up
to diffeomorphism there is no dependence on the choice of collars. �

Definition 41. An m-dimensional k-handle is the manifold

hmk := Bk(0, 1)×Bm−k(0, 1)

The core of the k-handle is Bk ↪→ Bk(0, 1) × {0}. Its boundary Sk−1 is the
attaching sphere.

The cocore is Bm−k and its boundary Sm−k−1 is the belt sphere.

Let M be a manifold with boundary an i : Sk−1 ↪→ ∂M and embedding. Suppose
further that ν(i(Sk−1); ∂M) is trivial, and we fix a trivialization

φ : Sk−1 × Rm−k → ν(i(Sk−1); ∂M)

Choose further a tubular neighborhood

f : ν(i(Sk−1); ∂M) ↪→ Ui(Sk−1) ⊂ ∂M
Then we have an isomorphism

ψ : Sk−1 ×Bm−k(0, 1) ⊂ ∂hmk −→ ∂M

x 7−→ f ◦ φ(x)

def:khandle Definition 42. The result of adding a k-handle to M along i(Sk−1) with framing
f ◦ φ is the manifold

M#f◦φh
m
k

Lemma 25. M#f◦φh
m
k is independent of the tubular neighborhood and on the

isotopy class of φ.

Proof. This follows from the independence of the gluing of isotopies changing the
tubular neighborhood, and isotopies of the gluing map. �

Corollary 15. M−z is the result of attaching a λ-handle to the stable sphere Sk−1√
z

(with its canonical parametrization) and the only framing extending to W s
z . Notice

that the core goes to W s
z and the cocore to W u

z .

Corollary 16. A compact (connected) manifold M without boundary can be built
inductively by attaching a finite number of handles.
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Proof. Just find a Morse function (with critical points corresponding to different
critical values). The minimum provides a 0-handle, and then we keep on attach-
ing until we close the manifold with the m-handle -and m-ball- associated to the
maximum. �

8.3. More on k-handles and smoothings. So far we used the Morse coordinates
centered at a critical point x, with very particular metrics, to fully understand the
behavior of the function when crossing the critical value f(x). We want this time
to understand the global behavior of ∇f .

Lemma 26. Every integral curve trajectory of ∇f converges to a critical point
when t→ ±∞, and those limits differ.

Proof. Just notice that |∇f |2 = df(∇f), so f∗∇f is an strictly positive multiple of
∂
∂s away from critical points.

Therefore is c(t) is an integral curve, f(c(t) is strictly growing away from critical
points. By compactness, f(c(t)) converges to z ∈ f(M). Also, by compactness

|DfX(v)| ≤ C|v|

, so since f∗∇f converges to zero and |∇f | is bounded, we conclude that |∇f(c(t))|
converges to zero. �

For any critical point x, we define the stable manifold exactly as in the model
in Morse coordinates

W s(x) = {y ∈M | lim
t→∞

cy(t) = x}

lem:hslide1 Lemma 27. Let x be a critical point of signature λ, z < f(x), and suppose that
all trajectories in W s(x) converge for t→ −∞ to critical points with values smaller
than z. Then W s(x)z := W s(x) ∩M[z,f(x)] is an embedded submanifold diffeomor-
phic to Bλ(0, 1).

Proof. Take a small δ an consider K a (small) compact neighborhood of W s(x) ∩
M[z,f(x)−δ]. Fix also Morse coordinates Ux (with the metric being the Euclidean
one). We claim there exists h ∈ Cr(M,R+) so that −h∇f is supported in K, and
the flow carries the annulus Bλ(0, 2δ)\Bλ(0, 2δ) onto W s(x) ∩M[z,f(x)−δ].

The corresponding isotopy extends to a global one Ψ, sending the submanifold
Bλ(0, 2ε) onto W s(x)z, and that finishes the proof. �

In particular the above isotopy gives an embedding

Sλ−1
δ = Sλ−1 ↪→Wz

as the boundary of W s(x)z. Even more, for ε > 0 small enough it sends

Sλ−1
δ ×Bm−λ(0, ε) ⊂ ∂(Bλ(0, δ)×Bm−λ(0, ε))

diffeomorphically into a tubular neighborhood of ∂W s(x)z in Wz. So we conclude

Corollary 17. M≤z ∪Ψ1(Bλ(0, δ)×Bm−λ(0, ε)) ⊂M is

M≤z#φh
m
k

Moreover, we still have ∇f transverse to the boundary (because that was the case
for Bλ(0, δ)×Bm−λ(0, ε)).

Remark 40. Notice that the condition on lemma 27 is equivalent to saying that
for all y critical point with f(y) ∈ [z, f(x)), we have W s(x) ∩W u(y) = ∅.
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Given a Morse function f , and values z0 < f(y) < f(x) < z1 such that no critical
points other than y, x lie in M[z0,z1], we know

M≤z1 ' (M≤z0#φh
m
λ )#φ′h

m
λ′ (24) eq:2cobord

Suppose for the moment that W s(x) ∩W u(y) = ∅. Then

∂W s(x)z0 ∩ ∂W s(y)z0 = ∅

and we may take isotopies as in lemma 27 supported over non intersecting tubu-
lar neighborhoods of W s(x)z0 and W s(y)z0 . If we call Ψ to the composition, we
conclude that

M≤z0 ∪Ψ1(Bλ(0, δ)×Bm−λ(0, ε) ∪Bλ′(0, δ′)×Bm−λ′(0, ε′)) ⊂M≤z1
is a subset diffeomorphic to

M≤z1 ' (M≤z0#Φ(hmλ
∐

hmλ′)

Moreover, once smoothened inside M the gradient is transverse to the boundary.
Therefore, we can flow the smoothing, and since we have no more critical points on
M[z0,z1] we get a diffeomorphism onto M≤z1 .

Corollary 18. Under the above conditions, M≤z1 is obtained from M≤z0 by adding
two handles, and the attaching can occur in any order (or both at a time).

Observe that W s(x) ∩ (W u(y) = ∅ is equivalent to picking f(y) < z < f(y) and
on Wz verify

∂W s(x)z ∩ ∂W u(y)z = ∅
Those are spheres of dimension m−λ−1 and λ′−1, so if m−λ−1+λ′−1 < m−1,

i.e. λ ≥ λ′, then we expect them to have empty intersection.

def:ms Definition 43. A metric g is called Morse-Smale if for all critical points x, y

∂W s(x) ∩ ∂W u(y) = ∅

Proposition 12. Morse-Smale metrics are dense (and even more).

Proof. We just do the case where we have to critical points x, y in M(z0,z1). If
there is intersection we must have f(x) > f(y). That intersection appears as the
intersection of Sm−λ−1 and Sλ

′−1 in Wz. By an isotopy in Wz with small C1-size,
we can separate the spheres. We assume the isotopy to be the identity near the
end points of the interval. Since M[z,z+δ] ' Wz × [z, z + δ] using the gradient, we
can extend the isotopy to the whose manifold. We are going to substitute ∇f by
Ψ(∇f ). It is easy to make it the gradient of f w.r.t. a new metric. We just need
to declare the new vector field orthogonal to the level hypersurfaces of f , and scale
it appropriately. �

cor:perfect Corollary 19. A compact m manifold is the result of attaching handles in increas-
ing dimension.

Remark 41. Neglecting the order of suitable handles can be also achieved at the
level of Morse functions. In particular corollary 19 translates into the existence of
perfect Morse functions, defined by the property f(x) = λ if x is a critical point
with index λ.

prop:cancel Proposition 13. Let M be a (compact) connected manifold. Then it admits a
handle decomposition with just one 0-handle and one m-handle (or a Morse function
with a unique local minimum and maximum).
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Proof. Let us give a perfect Morse function. If we have two index 0 critical points
y0, y1, connectivity implies that we must have x and index 1 critical point whose
stable manifold is the union of the critical point x, and two trajectories which
converge to y0, y1 in negative time.

Therefore, a small neighborhood of W s ∪ y0 ∪ y1 is diffeomorphic to the result
of attaching a I × Bm−1(0, 1) to Bm(0, 1)

∐
Bm(0, 1). The attaching sphere is

S0 = a, b. We can send a to any point in the boundary of the first ball, and choose
any isotopy class of attaching map. Rather than choosing the ball as 0-handle, we
choose an upper half ball Em+ . We can do that because its smoothing is clearly seen
to be diffeomorphic to the ball. Then the attaching map Bm(0, 1)→ ∂Em+ can be
chosen to be go to the hyperplane in the boundary, and to be linear. By changing
the orientation in the one handle, it can be assumed to preserve it, and hence we
may choose ρId, where ρ is very close to 1. Once we smoothen, we easily see that
we get a copy of Em+ . Similarly, we glue to the other one identifying points (up to
scaling), and once we smoothen we get the sphere. �

cor:handlebody Corollary 20. Let m ≥ 3. There is a unique -up to diffeomorphism- way of gluing
d 0-handles and k 1-handles so that we obtain a connected oriented m-manifold
(with boundary), and in fact only depends on k − d− 1 ≥ 0.

Proof. We know that the attaching spheres are pair of points in the disjoint union
of d Sm−1, so the attaching order does not quite matter. By connectivity there
must be at least d− 1 1-handles, connecting the balls hm0 . By proposition ??

hm0
∐ (d)
· · ·
∐

hm0 #(hm0
∐ (d−1)
· · ·

∐
hm0 ) ' hm0

The attaching spheres of the remaining k − d − 1 1-handles are 2(k − d − 1)
points. We know that any two such set of points in Sm−1 = ∂hm0 are transformed
into each other by an isotopy starting at the identity (compose isotopies each for
each pair of points, so that the support of the each one does not include the points
already moved). Therefore, there is no dependence on the points.

For each 1-handle I ×Bm−1(0, 1), we know that the attaching maps

{0} ×Bm−1(0, 1)→ Sm−1, {1} ×Bm−1(0, 1)→ Sm−1

are one orientation reversing and one orientation preserving. To extend the isomor-
phism to the 1-handle we can -if necessary- reflect the 1-handle on the hyperplane
t = 1/2, so that the 1-handle in both manifolds is glued by isotopic attaching maps,
and therefore gives diffeomorphic manifolds. �

def:csum Definition 44. Let M,N connected oriented manifolds without boundary. Con-
sider M

∐
N × I (oriented so that M

∐
N × I inherits the given orientation).

Attach a 1-handle to M
∐
N × {1} with one point of the attaching sphere going to

each connected component, and so that the manifold we obtain is orientable (and
connected). Then the connected sum M#N is the boundary component different
from M

∐
N × {0} with the induced orientation.

The connected sum is well defined. There is no dependence on when the 1-
handle is attached. Also since we must get an oriented manifold, very much as in
corollary 20 we see that we get diffeomorphic manifolds, and therefore diffeomorphic
boundaries.

Remark 42. There is other way of defining the connected sum: pick x ∈M,y ∈ N
and Ux,Uy small (tubular) neighborhoods. Now take diffeomorphisms

(Ux, x)→ (B(0, 1), 0) (Uy, y)→ (B(0, 1), 0)
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one orientation preserving and the other orientation reversing, and then using
spherical coordinates identify

(θ, r) 7→ (θ,
√

1− r2)

away form the origin.

9. 2 and 3 dimensional compact oriented manifolds

9.1. Compact, oriented surfaces. Let M be a compact, connected and oriented
surface.

lem:circleiso Lemma 28. Any orientation preserving diffeomorphism of S1 is isotopic to the
identity.

Proof. We know that such a map has degree one, and hence it is already homotopy
to the identity, and we want to improve the quality of the homotopy.

By a rotating we can assume it fixed the identity. Go to the universal cover R
and the isomorphism f appears as F : R→ R with F (t+1) = F (t)+1 and F (t) ≥ t.
Then the convex combination solves the problem. �

Corollary 21. For an oriented surface, a 2-handle (a disk) can be glued in a unique
way up to diffeomorphism so that the orientation extends. Or in other words, every
diffeomorphism od S1 extends to the unit disk (because the identity does extend).

cor:no2hand Corollary 22. In a handle decomposition (Morse function) of M , the diffeomor-
phism type is entirely determined by the 0 and 1 handles.

Definition 45. The genus g of M is one half the minimum number of 1-handles
in a decomposition. One has

χ(M) = 2− 2g

Corollary 23.

(1) The sphere S2 is characterized by having a Morse function with only a
minimum and a maximum as critical points, or by χ(S2) = 2.

(2) The torus T2 is characterized by having a Morse function with a minimum
and a maximum and two saddle points as critical points, or by χ(T2) = 0.

Proof. By proposition 13 we can take a Morse function for M with just one 0-handle
and one 2-handle. If χ(M) = 0, then M is just determined by the 0-handle (we
just have to cap off the 0-handle with another disk), and then M = S2.

Notice that χ(M) can never be odd. The reason is that each time we attach
a 1-handle, the number of connected components of the boundary increases by 1
(mod 2), an hence the result follows because after attaching all we must obtain just
one connected component.

Hence, the second smallest χ(M) is 2. The manifold M is determined by the
way we attach the 1-handles. The attaching spheres go to pair of points x, x′ and
y, y′ in S1 = ∂h2

0, so the diffeomorphism type of M is determined by the isotopy
type of (S1, x, x′, y, y′). Notice that if two points belonging to the same attaching
sphere follow each other, after gluing we do not get a boundary with one connected
component.

Hence, the surface is unique up to isomorphism, and one checks is it T2. �

Consider i : S1 ↪→M an embedding with image A.

Definition 46. A is said to separate M if M\A has two connected components.
It is called nonseparating otherwise.
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When we cut M open along A we get an oriented surface with two boundary
components. It can be capped of uniquely to an oriented surface M̃ by adding a
2-handle an a 0-handle. When we add the two disks we can define a function which
has a minimum and a maximum on each, and other critical points in M\A. We
can clearly adapt it if we glue back to M so that it is still Morse and with the same
critical points except for the local maximum and minimum. Therefore

χ(M̃) = χ(M) + 2

If A is non-separating then M̃ is connected, and has two connected components
otherwise.

thm:classsurf Theorem 30. M is determined up to diffeomorphism by χ(M), and

M ' T2#
χ(M)/2
· · · #T2

Proof. We prove it by induction. The surface M is characterized by the isotopy
type of (S1, x1, x

′
1, . . . , xk, x

′
k), where k = χ(M)/2. We may think of them as pairs

of points of the same color, each pair of a different one. Any such pair splits S1 in
two intervals. One checks that it is not possible for an interval to contain just pairs
of points, otherwise connectivity of the boundary would not be possible.

Hence, we can find four points x1, x
′
1, xs, x

′
s so that (S1, x1, x

′
1, xs, x

′
s) is as in

the torus. It is easy now to find an embedded S1 splitting the 0-handle and the
union of the two 1-handles form the rest of the surface. Hence we get

M = M ′#T2,

with χ(M ′) = χ(M) + 2, and this proves the result. �

rem:clasbound Remark 43. Notice in particular that theorem 30 also yields a classification of
connected, compact, oriented surfaces with boundary. Indeed, we can cap them
uniquely to one without boundary. Notice as well that two surfaces M,M ′ with
diffeomorphic boundary and diffeomorphic capping are diffeomorphic. The reason
is that they appear by removing some d disks, but two different embeddings of d
closed disks are diffeomorphic (because it is the case for points).

In particular any surface with two boundary components whose capping is the
sphere must be an annulus S1 × I.

cor:spherecurv Corollary 24.
(1) Any differentiable curve in the sphere separates.
(2) Two disjoint curves in S2 split it into two disks and and annulus.

Proof. Suppose the curve does not separate. Then we get M̃ with χ(M̃) = 4,
but that is not possible according to our classification. So even more we get a
diffeomorphism of the sphere sending the curve to the equator, and according to
lemma 28 we can further isotope to reach any parametrization inducing the same
orientation.

Regarding the second assertion, we know that the first curve A splits in two
disks, E2

+, E
2
−. The second belongs to one of them, so it again splits into two disks.

So we get D,E2
+ and a third subset that we claim it is clearly connected (because

it is so when we add E2
+).

So it is an oriented, connected, surface with two boundary components whose
capping is S2. By remark 43 it must be the annulus. �

Definition 47. A system of non-separating curves is an embedding i
∐d
i=1 S

1 ↪→
M such that M\(i

∐d
i=1 S

1) is connected.
It is maximal is no other curve can be added so that the non-separation property

remains.



62 D. MARTÍNEZ TORRES

Lemma 29. Maximal systems of non-separating curves in a surface of genus g
have g curves, and given any two there is a self-diffeomorphism of M sending one
to the other (neglecting orientations of the curves)

Proof. Each curve produces a new surface M̃ whose Euler characteristic increases
by two. Besides, it appears with two disks whose boundaries are the curves. If we
select a different curve we get another surface diffeomorphic to M̃ . The diffeomor-
phism can be arranged to send the disks to the disks. Therefore, it extends to the
connected sum along each pair of disks, giving thus a diffeomorphism of the original
surface sending one non-separating curve to the other.

By induction one sees that when we have g curves we arrive at a surface whose
capping is the sphere. By corollary 24 no further curve can be added. �

9.1.1. Diffeomorphisms of oriented surfaces. We start by proving the following fun-
damental theorem of Waldhausen.

ref:isotsphere Theorem 31. Any orientation preserving diffeomorphism of S2 is isotopic to the
identity.

Proof. Let f be such an isomorphism. We know it has degree 1 so it is homotopic
to the identity. But we want to improve this result. We first isotope so that the
poles are fixed. Due to the orientability assumption we can further isotope so that
we get matching in neighborhoods of the poles. So we are led to prove the result for
the annulus M = S1 × [−1, 1] and a map which is the identity in a neighborhood
of the boundary.

Let us use coordinates θ, t, and assume as well that the subset θ ∈ [−ε, ε] is fixed.
We will associate to the identity map the vector field X = ∂

∂t and to the map f
Z = f∗X. Both are vector field whose trajectories are closed. The advantage is
that we can parametrize the annulus as follows

[0, 1]× [−1, 1] −→ M

(θ, t) 7−→ cYt (θ)

where cYt is the integral curve through (0, t) of the vector field Y = X,Z.
We want to interpolate between X and f∗X. Consider for each t the map

GZt : S1 −→ S1

θ 7−→ ċZt (θ)
|ċZt (θ)|

We claim that this map has degree zero. Indeed, for t = 1 is constant, and as t
moves we get homotopic maps, so the degree is the same.

For each such map we have a canonical homotopy to the constant one. It is
induced form convex combination in the universal cover (contraction, since one
lifted map is constant). Therefore we get a smooth family of non-vanishing vector
fields Xs(cZt (θ)), so that X0 = Z and X1 = hX. Of course we can assume h = 1.

Let ΨXs the corresponding isotopy. The initial idea is define our isotopy

Φ: M × I −→ M

(θ, t, s) 7−→ Ψs(Ψ−1
0 (θ, t)) (25)

The problem is that for the intermediate vector fields, we may get integral curves
which are not closed (and if so of the right period), but that can be fixed.

Notice that near θ = 0 all vector fields coincide with X. We claim that every
integral curve goes around the cylinder. Indeed, the vector fields do not vanish
and have norm uniformly bounded by below. If it stays in the annulus, since it is
defined for infinite time it must go back and forth and up and down, so it has infinite
vertical and horizontal tangencies. In particular there are accumulation points. Let



TOPOLOGY OF DIFFERENTIABLE MANIFOLDS 63

x be one such, and pick a box flow. Being an accumulation point means that an
integral curve c(t) enters in the interior of the flow box at time t0, stays until time t1
then wanders around and goes back in time t2. But this is not possible. Otherwise
we can use a small segment transverse to the flow to close c|[t0+ε,t2+ε] into a closed
curve c′. Now we now that in particular it bounds a disk. It is routine to slightly
modify the integral field to make it tangent to the smoothing of c′. The result is
a vector field in a disk tangent to the boundary (and with closed integral curves
nearby). By doubling we get one in the sphere with no zeros, but that contradicts
theorem 24.

Hence, all integral curves go around the annulus. We get a one parameter family
of return maps on the interval. We can isotope them to the identity, and use a
collar of θ = 0 to modify the vector fields so that the return map is the identity.
So they all have integral curves, and we can scale them to have the same period.
Therefore, the isotopy Φ in equation 25 is well defined and solves our problem.

We still need to prove that we can isotope the segment θ = 0 so it is fixed. We
observe that any two embeddings of S1 in S2 are isotopic. This is because they can
be made disjoint, and then by corollary 24 they bound an annulus, so we can use
the transverse coordinate to isotope one into the other. In our case we do it with
the image by f of a meridian (the full geodesic). Since f is orientation preserving,
once we isotore the curves to have the same image, we can use another isotopy so
that the parametrization agrees. Then we can arrange things in the poles relatie
to the meridian (since the homotopies are convex sums along meridians).

�

cor:no3handle Corollary 25.

(1) Any diffeomorphism of S2 = ∂h3
3 extends to h3

3.
(2) The only information needed to attach three handle in a three manifold is

the degree of the attaching map (i.e., whether it preserves the orientation
or not). In particular, for compact orientable manifolds (without boundary)
three handles can be attached in a unique way, so they can be neglected.

In T2 we consider to curves A,B so that #(A,B) = ±1. We know they cannot
be isotopic.

Given a diffeomorphism f : T2 → T2 consider the matrix

Hf =
(

#(A, f(A)) #(B, f(A))
#(A, f(B)) #(B, f(B))

)
Theorem 32. Two diffeomorphism f, f ′ are isotopic iff Hf = Hf ′ .

Proof. The composition of maps is multiplicative w.r.t. the matrices, so we can
assume f ′ = Id.

Now it is enough to show that we can isotope f(A)∪f(B) into A∪B, because if
that is the case we can arrange the map to be the identity on a tubular neighbor-
hood. What is left is a disk, with a map matching the identity near the boundary,
and we proved in theorem 31 that can be isotoped to the identity.

Take a curve A ⊂ T2. The torus has π1(T2) = Z ⊕ Z, and a basis is given
by the curves A0 := S1 × {1} and B0 := {1} × S1. To compute the homotopy
class of A in such basis we just have to compute the homotopy class of the map
S1 → A

pi→ S1. This is nothing but the degree of the corresponding map. If the
curve A is transverse to both elements in the basis, then for both projections 1 is
a regular value, and the degree of one projection is the intersection number with
the other curve of the basis. In particular the information about the matrix implies
that f(A0) is homotopic to A0 and f(B0) to B0 (we may suppose f fixed the
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common base point of A0, B0). So actually the matrix Mf is also the isomorphism
f∗ induced on π1.

We are going to show it for f(A0). Let C → T2 be the cover whose fundamental
group is Z〈A0〉. This is a cylinder in which the preimage of B0 is a real line.

Since f(A0) is homotopic to A0 it lifts to A′0. We are going to fing periodic
isotopies on C so that A′0 is closer to A0 (a lift of A0 at the fixed base point).
We will call Ck to S1 × [k, k + 1] ⊂ C. By compactness A′0 reaches a maximal
and a minimal height. Assume the maximal height belongs to Ck, k > 1. We will
inductively push it down by periodic isotopies. The intersection Ck ∩A′0 is a finite
number of oriented arcs. We can close each arc Is with one of the two segments
in S1 × {k}. Since we are in the annulus either we get a curve bounding a disk or
non-trivial in homotopy. We close with I ′s so that the curve (with corners) bounds
a disk. Then we isotope in Ck so that Is is pushed into I ′s. This can be extended
to a periodic isotopy. The result is an isotopy in T2 so that the lifted curve does
not enter in Ck any more. By induction, we may assume that A′0 only enters in the
negative part, apart from a small segment I0 near he base point in which it matches
A0. Now we repeat the process but pushing up. The observation is that when we do
it for a segment Is, we also push the ones of bigger height whose translates appear
in the disk. But none of then has height −1, for otherwise it will come form a piece
of positive height; the only possibility is the one coming by prolonging I0, but this
is excluded because then then corresponding translation of I0 would intersect Is.
Therefore, we end up with a curve isotopic to f(A0) which does not intersect A0.
By cuuting open along A0, we are in the cylinder and our curve separates (it is
non trivial in homotopy), so we can find a transverse coordinate to push it into A0.
the segmentnested ones If we tranaslate the curve A′0 by the Z-acion we must get
disjoint copies. We claim that no pieces of the translates enter in the disk region.
If that was not the case, we would have a piece Il coming from Ck′ , k′ < k. Now
we can reach Il by moving from I. But since A′0 comes from an embedded curve in
the torus. Once we have solve it for a curve, we can arrange the other to match B0

near the base point, and repeat the previous process relative a tiny neighborhood
of A0 in which B0 does not enter any more. �

Definition 48. Let Mg be a compact, connected, orientable surface of genus g.
Then the mapping class group of Mg is

Diff(M)/Isot

The mapping class group is obviously a group. What we saw for S2 and T2,
appart from an explicit computation, is that

Diff(M)/Isot = Diff(M)/ ∼

We will only state the generalization of the above result.

Theorem 33. For any closed, connected, orientable surface, two diffeomorphisms
are isotopic iff they are homotopic.

The proof is based on the fact that on such surfaces two curves are isotopic iff
they are homotopic. Once we know this result, we can cut open along a maximal
system of non-separating curves, and then apply the result for the (punctured)
sphere.

9.2. Compact, oriented three manifolds.

9.3. Heegard decompositions. Let M be a closed, oriented and connected three
manifold. Let us fix f a perfect Morse function with one local minimum and one
local maximum. Let us consider M = M≤3/2#fM≥3/2
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Then M≤3/2 is made of a 0-handle and g-1handles. By corollary 20 up to diffeo-
morphism it is determined by the number g. We will call it a genus g handlebody,
and denote it by Hg. Notice that ∂Hg 'M2

g .
By reversing the Morse function,

M≥3/2 ' H ′g
By remark 35 χ(M) = 0, but χ(M) = g′ − g, so we conclude that

M ≈ Hg#φHg (26) eq:heegard

where
φ : ∂Hg → ∂Hg

is orientation preserving.

Definition 49. A Heegard decomposition of M is a decomposition as in equation
26

rem:mcg Remark 44. The importance of the study of mapping class groups of surfaces stem
from the fact that in a Heegard decomposition of M , the diffeomorphism class of M
only depends on [φ] ∈ Diff(Mg)/Isot.

def:3genus Definition 50. The genus of M is the minimal genus on a Heegard decomposition
of M .

Remark 45. The genus can always be artificially augmented by adding pairs of
cancelling handles ********Show genus decomposition of the sphere***********

thm:genus0 Theorem 34. The only genus 0 zero three manifold is the sphere.

Proof. This is theorem ?? or corollary 25 that says that two 3-handles can be glued
in a unique way up to diffeomorphism to yield and orientable manifold. �

9.4. Lens spaces.

Definition 51. Genus 1 three manifolds are called lens spaces.

Example 8. RP3 and circle bundles over S2 are lens spaces.

Notice that there is a surjective map from Diff(T2)/Isot = SL(2,Z) to lens
spaces.

To understand these spaces better we fix two genus 2 handles bodies H2,a, H2,b =
B2(0, 1)× S1

Let

Hf =
(
q p
s r

)
Mφ be the matrix associated to the gluing map. It is best to think that we start
with H2,b and then glue H1,a using φ. We will do the gluing in two stages:

Firstly we select the disk D = B2(0, 1) × {1}. Its boundary in m ∈ T2 belongs
to the homotopy class of the meridian. Notice that if we slightly thicken the disk
to UD = D × [−ε, ε], then

H2,a\intUD ' h3
3

after smoothing. Now according to corollary 25 3-handles can be glued in a unique
way, therefore what determines the isomorphism class is the gluing of the 2-handle
UD, which in turn is totally determined by the attaching map restricted to the
meridian curve ∂D. In other words, by the pairwise prime pair pair (p, q). We
denote the corresponding lens space L(p, q)

Proposition 14.
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(1) π1(L(p, q)) = Zp.
(2) L(p, q) ' L(−p,−q), L(p, q) ' L(p, q + kp), k ∈ Z
(3) L(p, q) ' L(p, q′).

Proof. The first assertion is obvious.
Point two follows because there are certain transformations of SL(2,Z) trnas-

forming one matrix into the other, and those maps extend to the solid torus. In the
first case the isomorphism in question is −Id, obtained by reflecting on each circle
of T2 and extending in the obvious way to H2,b. In the second we must transform
the longitud curve l := {1} × S1 into l + km. But this follows from cutting along
the diks, twisting the required number of times, and then gluing back.

The third point is obtained by duality, i.e. gluing in the opposite order, and q′

is obtained by just inverting the gluing matrix. �

9.5. Higher genus. What we have done for lens spaces also works for higher genus.
On a handlebody Hg we can find m1, . . . ,mg a maximal family of non-separating
curves, each of which bounds a disk, and such that removing an open neighborhood
of these disks results in a 3-handle.

Therefore, to determine M3 we just need to know f(m1), . . . , f(mg) ⊂ ∂Hg,b,
which we know must be a maximal family of non-separating curves.

Corollary 26. A Heegard decomposition for M3 is given by two maximal families
of non-separating curves on M2

g (assumed to bound disks that once removed give a
ball in the respective handlebodies).

Remark 46. Since we know that homotopic curves are isotopic, the two families
can be given up to homotopy.

10. Exercises

Exercise 35. Describe a smooth manifold structure on Gr(k, n) (resp. GrC(k, n))
the Grassmannian of k-planes in Rn. (resp. complex k-planes in Cn). Notice that
in particular one gets smooth manifold structure on RPn (resp. CPn).

Exercise 36. Let Gl(n,R) be the group of invertible n × n matrices. Show that
it inherits a manifold structure as an open subset of some Euclidean space. Prove
that the subgroup of symmetric and orthogonal and special orthogonal matrices are
submanifolds of Gl(n,R), and compute their dimension.

Show that the group of unitary matrices is a submanifold of the group of invertible
n× n complex matrices, and compute its dimension.

Exercise 37. Let Ω ⊂ Rn be a compact n-dimensional differentiable submanifold
with non-empty boundary. Suppose that there exist x0 ∈ intΩ such that for every
x ∈ Ω the segment [x, x0] is inside of Ω and (after prolonging it a bit near x)
transverse to ∂Ω. Show that

∂Ω ' Sn−1

.
Let Q be any inner product on Rn. Show that for any positive c,

Q−1(c) := {v ∈ Rn |Q(v, v) = c}

is a smooth submanifold of Rn and it is diffeomorphic to

Sn−1 := {v ∈ Rn | |v|2 = 1}

Exercise 38. Let M,N be Cr-manifolds. Show that M × N carries a canonical
Cr-manifold structure, and that T (M ×N) ' TM × TN .
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Exercise 39. Let N be a a Cr-manifold, M a topological space, and f : M → N
a local homeomorphism (i.e. for each x ∈ M there exist U a neighborhood so
that f : U → f(U) is a homeomorphism). Prove that M can be given a canonical
Cr-manifold structure so that f becomes a local Cr-diffeomorphism.

Exercise 40. Prove that a Cr-map which is a C1-diffeomorphism it is a Cr-
diffeomorphism.

Exercise 41. Show that
SO(3) ' RP3

Exercise 42.
(1) Prove that for any C1 manifold M every f ∈ C1(M,R) has at least 2

critical points.
(2) For any sphere Sn find a smooth function with exactly 2 critical points.

Exercise 43. Let M,N be differentiable manifolds with
non-empty boundary. Prove that a C1 map takes regular points in M\∂M into

points in N\∂N .

Exercise 44. Any compact surface embeds in R5. The 2-torus is the surface

T2 := S1 × S1

Exhibit an embedding
j : T2 ↪→ R3

Hint: Embed it as a surface of revolution.

Exercise 45. Consider CPm with homogeneous coordinates [X0 : · · · : Xm] and let
dk = k!

n!(k−n)!

Show that the maps

fdk
: CPm −→ CPdk

[X0 : · · · : Xm] 7−→ [X0 : · · · : Xm : 0 : · · · : 0]

and

Vk : CPm −→ CPdk

[X0 · · · : Xm] 7−→ [Xk
0 : Xk−1

0 X1 : · · · : Xm−1X
k−1
m : Xk

m]

are embeddings
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