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1. Open book decompositions and differential topology

1.1. Introduction and definitions. In the sequelMm will be a smooth
compact oriented manifold, with empty boundary unless otherwise
stated. All functions and tensors to appear are smooth,

We find useful to give decompositions/presentations of M . Examples
of them are:

• Handlebody decompositions: this is a diffeomeorphism M ' H,
where H - a handlebody- is the result of attaching handles

h0
1 ∪ · · · ∪ h0

i0
∪ h1

1 ∪ · · · ∪ hmim
(Recall that the result of attaching a handle to a manifold with
boundary is a manifold with corners which inherits a canonical
smooth structure up to diffeomorphism). Handlebody decom-
positions can be associated to Morse functions in M . The link
with function theory is very useful. In particular results of Cerf
[6] tell us how to relate two different handlebody decompositions
associated to the same manifold M . There might be changes
in the isotopy class of the gluing maps, in the order in which
handles are attached, and more importantly births/deaths of
canceling pairs of handles can occur. Applications include com-
putation of H∗(M), definition of geometric structures by ex-
tending them across the gluing (for example some problems are
seen to abide an h-principle in that way [11]), Kirby calculus
for 4-manifolds (this with an additional result that allows to
neglect 3 and 4 handles up to diffeomorphism [15]).
• Round handle decompositions: this time a k-handle is S1×Dk×
Dm−1−k with core S1×Sk−1×{0}. Asimov proves that if m>3
round handle decompositions for M exist iff χ(M) = 0. These
decompositions are applied in dynamical systems to prove the
existence of non-singular Morse-Smale flows [2], in foliation the-
ory to prove the existence of codimension 1 foliations [20], and
to study Engel structures [22].
• Lefschetz pencils for closed projective varieties: it amounts to

present M ⊂ CPN as a CP1 family of complex hypersurfaces.
This is done slicing M with an appropriate pencil of complex
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hyperplanes λH0 + µH1 to get

M\B −→ CP1

x 7−→ [λ(x) : µ(x)], x ∈ λH0 + µH1, B = X ∩H0 ∩H1

where a finite number of fibers present quadratic singularities.
Lefschetz pencils always exist, perhaps having to consider de-
gree 2 hypersurfaces rather than hyperplanes [13].

• Open book decompositions
1:1←→ relative mapping torus.

Recall that for F a closed manifold a mapping torus P is a surjective
submersion P → S1 with F the fibre over 1 say. Let θ be the periodic
coordinate in S1. Any lift of ∂

∂θ
is a vector field transverse to the fibers.

We cut open along F and use it to trivialize the resulting manifold
with boundary as F × [0, 1]. To recover P we must identify (0, x) ∼
(1, φ(x)), φ the (inverse of the) return map associated to the vector
field. Changing the vector field amounts to isotoping the return map.
Therefore, a mapping torus with fiber F is given by a pair (F, φ),

φ ∈ Diff(F )/
isot∼ .

Definition 1. Let F be a compact manifold with boundary. A re-
lative mapping torus P with page F is a surjective submersion which
restricted to the boundary is a relative surjective submersion with trivial
monodromy. In other words, we can choose a lift of ∂

∂θ
in P whose re-

turn map is the identity near ∂P . Therefore, a relative mapping torus

with fiber F is given by a pair (F, φ), φ ∈ Diffcomp(F, ∂F )/
isot∼ .

A relative mapping torus is a manifold with boundary. There is a
canonical way of turning it into a closed manifold: it is the boundary
connected sum of P and ∂F × D2. The boundary of the former is
identified with ∂F × S1, and we glue via the identity map.

Definition 2 (OBI). An open book decomposition B on M is a dif-
feomorphism from M to the closed manifold associated to a relative
mapping torus.

The page of the open book is the image of the fiber F . The binding
is the image of ∂F .

Since our manifold is oriented, the canonical orientation of S1 co-
orients the page, and by the outward/positive normal first rule, it ori-
ents the page. For the same reason the binding inherits an orientation
from B. Conversely, if the page is abstractly oriented, we choose the
rotation direction so that it becomes the induced orientation.

One can give an alternative definition:

Definition 3 (OBII). An open book decomposition is given by a codi-
mension 2 submanifold B ⊂M , the binding, with trivial normal bundle,
and a fibration M\B → S1 such that for a trivialization ν(B) = B×D2

it coincides with the angular coordinate in ν(B)\B.
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There is a third very useful definition, because it brings function
theory.

In R2 = C the standard open book decomposition Bstd has the origin
as binding and the half lines as pages.

Definition 4 (OBIII). An open book decomposition on M is given
by a function f : M → C which is transverse to Bstd and whose image
contains the origin. The binding and pages are the inverse images of
the binding and pages respectively of Bstd.

Remark 1. If M has boundary an open book decomposition must have
binding and pages transverse to ∂M , so it induces an open book decom-
position there.

Remark 2. Definition 4 is very useful in the following sense: often
geometric structures are given by sections of bundles associated to M .
If we want to define some sort of compatibility of an open book w.r.t. it,
it might possible that the compatibility might be expressed by choosing
suitable classes of functions.

Example 1 (Odd Spheres). Look at S2n+1 ⊂ Cn+1 ⊂ CPn+1. Take
H any projective hyperplane intersecting the sphere. H ∩ S2n+1 is the
binding. Pages are intersections with each of the real half hyperplanes
through H. They are diffeomorphic to Cn. A nice way of seeing this
is using the projection π : Cn+1\{0} → CPn. A complex line through
the origin, if not in H, cuts a fixed real half hyperplane in a half line,
therefore the sphere in a point which is in the corresponding page. Thus
each page is identified with the complement of H in the projective space
at infinity. One can check easily the associated function by using a
complex line transverse to H in Cn+1. For S3 ⊂ C2 with coordinates
(z0, z1), take f(z) = z0.

If n=2, then stereographic projection sends the open book to a pencil
of real planes.

Definition 5. Given an annulus A with coordinates θ, t, t ∈ [−1, 1],
a Dehn twist is the compactly supported isotopy class of maps defined
by τ(θ, t) = (β(t) + θ, t), β : [−1, 1] → [0, 2π] a step function sending
-1 to 0 and 1 to 2π. Otherwise said it is one of the generators of

Diff(A, ∂A)/
isot∼' Z.

Example 2 (Hopf Bands). For S3 as above take the function z0z1

(resp. z0z̄1). The monodromy is a Dehn twist. The resulting open book
is denoted B±H . (see http://sketchesoftopology.wordpress.com/2008/09/04/a-
product-disk-for-the-hopf-band/).

Lemma 1. If (M,B), (M ′,B′) are open books, then the connected sum
(for the identity map in the sphere) carries a canonical open book de-
composition B#B′. One just needs to drill out the m-ball centered at
the binding and written as Dm = Dm−2 ×D2 ⊂ B ×D2 = ν(B). The
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page of B#B′ is the boundary connected sum F#F ′ and the monodromy
φ#φ′.

1.2. Applications.

• Foliation theory: any 3-dimensional closed manifold admits a
codimension 1 foliation if it carries an open book decomposition.
One needs to introduce a Reeb component on a neighborhood of
each component of the link. More generally, for and open book
with binding B so that B × D2 admits a codimension 1 folia-
tion tangent to the boundary, one can construct codimension 1
foliations [14].
• Twisted doubles and cobordism: A twisted double is a general-

ization of a Heegard splitting of a 3-manifold. M is presented
as the result of gluing two copies of the same manifold W by a
diffeomorphism of its boundary. If a manifold admits an open
book decomposition then it admits a twisted double. Using that
one concludes
(1) A manifold admitting an open book decomposition is cobor-

dant to a manifold that fibers over the circle.
(2) For a given homotopy sphere Σ one can construct M such

that M is diffeomorphic to M#Σ [23].

There is a long list of applications in appendix A5 in [18].

1.3. Existence.

Theorem 1. [1] Any closed oriented 3-manifold admits an open book
decomposition. The binding=link is also called a fibred link.

In particular this gives another proof of Lickorish’ result on the ex-
istence of codimension 1 foliations on surfaces.

How about uniqueness of open book decompositions, or relations
among them?. Recall that for Heegard decompositions/ handlebody
structures we know that two of then differ by isotopy and introduction
or elimination of pairs of cancelling 1 and 2 handles [6].

By lemma 1 (M3,B)#(S3,B±H) is an open book in M#S3 = M3.
More generally one can modify (M3,B) = (F, φ) as follows: add a
1-handle to the page, and compose the resulting monodromy φ with
Dehn twist about a curve γ cutting once the core of the 1-handle. That
produces an open book on a manifold M ′. But M ′ is cobordant to M
and the cobordism W amounts to add a 1-handle, and then a 2-handle
with attaching circle γ and certain framing. Hence the two handles
are a canceling pair and the cobordism is trivial; this is known as the
Murasugi sum.

Remark 3. One can actually perform the Murasugi sum inside M .
Otherwise said the diffeomorphism between the ends of W can be fixed
up to isotopy. To isotope the two dynamical systems relative to M one
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would have trouble near critical points due to the absence in general
of smooth normal forms (Grobman-Hartman), so they have to be im-
posed by asking the metrics giving rise to the gradients to be standard in
Morse coordinates; then one isotopes the cores of the cancelling pair;
this is possible because they fit do fit a disk, whose intersection with
M is γ. The same can be done for the union of unstable manifolds;
then one can isotope the dymanical systems in a neighborhood of the
union of stable and unstable manifolds (because of the aforementioned
imposed normal forms); the complement has a couple of non-singular
flows matching in the boundary, and one can isotope so that the cor-
responding Morse functions to coincide, that giving an isotopy between
the diffeomorphisms induced by both gradient flows.

Theorem 2. [10] Homologous open books in M3 (with oriented page)
are isotopic up to stabilizations.

Any open book carries an associated oriented plane field. Away from
the binding if determined by the foliation, or by dθ; in B × D2 with
coordinates b, r, θ, take the 1-form (1−ρ(r))db+ρ(r)dθ, where ρ(r) is a
bump function that vanishes near zero and equals 1 near the boundary
of the tubular neighborhood. Plane fields are homologous if their graph
in the sphere bundle S(TM) define the same homology class.

Theorem 3. [17] Let M be a compact orientable of dimension ≥ 6,
and let B∂M an open book decomposition in the boundary. Then

(1) If M has odd dimension the open book decomposition extends to
B an open book decomposition in M .

(2) If M has even dimension 2n then B∂M defines an element

i(M) ∈ W (Z[π1])

This is roughly associated to an intersection form on Hn(M,F ),
F the page in ∂B, with values on Z[π1]. The vanishing of the
obstruction is equivalent to the possibility of extending the open
book.

(3) If M is odd dimensional of dimension ≥ 5, then for any i ∈
W (Z[π1]) and any open book decomposition B, one can find
another book decomposition such that the induced one on ∂(M×
[0, 1]) has invariant i.

Moreover, the open books above can be chosen to have almost canon-
ical page F , that is

(1) πj(M,F ) = 0, j < [m/2], j > [m/2]

Sketch of the proof. We mention the key parts of Quinn’s proof in the
closed case. It is about “guessing” a submanifold F that can be the
page. It is done as follows: if F is indeed a page of an open book then

W := M\(F × (0, 1/2))
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is a manifold with boundary

∂W = (F × {0}) ∪ (F × {1}) ∪ ([0, 1]× ∂F )

That is to say that W is a relative cobordism. By hypothesis it is
trivial. Quinn’s idea is find F such that W can be checked to be trivial
by applying the h-cobordism or s-cobordism theorem.

In the odd dimensional case m=2k+1 one picks the k-1 skeleton, by
gluing product/ribbon handles (a product d-handle is Dd×Dm−(d+1)×
[0, 1/2]), so the result is F ′ × [0, 1/2], F ′ a hypersurface with boun-
dary. We assume for simplicity π1(M) = 0. The complement W will
have no homotopy (general position) and also boundary component
(diffeomorphic to F ′) simply connected. By construction (F ′, ∂F ′) is
k-connected, so up to degree k the relative homology of the inclu-
sion (F ′, ∂F ′) ↪→ (W,F ′) is H∗(W,F

′), which by excision is H∗(M,F ′).
Therefore it vanishes up to degree k-1. By Poincaré duality it would be
enough to kill the k-th homology. So one possibility might be removing
some k-handles from W , which is to say adding them to F ′×[0, 1/2]. Of
course, they have to be product k-handles, so that the product struc-
ture F ′× [0, 1/2] is extended; because (F ′, ∂F ′) was k-connected there
is no trouble is sliding the attaching sphere to ∂F ′, so the gluing can
be assumed w.l.o.g. to extend the product. Here it is important that
we are in odd dimensions, so general position grants that by remov-
ing k-handles we do not change the j-th homotopy, j<k, and that the
k-handles to be removed can be chosen to be disjoint. Therefore this
gives open books with almost canonical pages.

In the even dimensional case 2k, to extend open books from the
boundary one uses the same approach. This time the product k-handles
may intersect. Those intersections, arranged in a suitable way deter-
mine a pairing of Hk(M,F ) with values in W (Z[π1M ]). In the simply
connected case it is easy to understand geometrically: By Poincaré
duality Hk(M,F ) ' Hk(M,∂M\F ), and pushing by the flow of the
monodromy we get Hk(M,∂M\F ) ' Hk(M,F ). In other words, given
two relative classes, we use the return map to “double” one of them
and compute the pairing. If M has empty boundary, then we are just
speaking of the intersection pairing in the middle homology. In this
case the obstruction is exactly the signature. �

Regarding uniqueness and construction of open books (in odd di-
mensional manifolds) using functions: the analogy with handlebody
decompositions and Morse functions does not go through. Let

M = {f ∈ C∞(M), | df t 0 ⊂ T ∗M}

B(M) = {f ∈ C∞(M,C), | f t Bstd}
The inclusion of Morse functions

M ↪→ C∞(M)



OPEN BOOK DECOMPOSITIONS AND CONTACT GEOMETRY 7

is dense in the C1-topology. So we can construct a handlebody decom-
position by picking a function and perturbing it a bit. Even more, we
know how we can relate two different handlebody decompositions [6].

If M is even dimensional and with non-zero signature then B(M) =
∅, so there is no way to perturb any given function to one giving a
book. Even when there are open book decompositions for the manifold,
B(M) ⊂ C∞(M,C) need not be dense.

Lemma 2. Let M be a oriented manifold and B ⊂M a null-homologous
codimension 2 submanifold which is known not to be the binding of an
open book decomposition of M (there are knots known to be not fibered).

Then for any f : M → C, f t 0, f−1(0) = B, we have f /∈ B(M).

Proof. BecauseB is null-homologous we know we have functions f : M →
C transverse to zero with zero subset M . Any small enough perturba-
tion will have zero subset isotopic to B. But by hypothesis it cannot
give an open book decomposition. �

A natural way to compare structures is to call for a bordism relation.
Open books B,B′ in M are bordant if the induced open book in the
boundary of M × [0, 1] extends. This a substitute for a “reasonable”
path joining open book decompositions. Of course, for each t ∈ [0, 1]
the induced slice need not carry an open book, but we would like the
situation to be as generic as possible.

For open books Quinn proves that any open book is bordant to one
with almost canonical page. Recall that if for to such books B,B′ the
induced invariant i(M×I) does not vanish, they are not bordant. Even
for bordant almost canonical open books, it is not clear to me whether
they can be related by a sequence of elementary surgeries. One such
possibility is stabilization, which is defined pretty much as in the 3-
dimensional case:

Definition 6. Given Sn a sphere, a generalized Dehn twist is a com-
pactly supported class of diffeomorphisms of T ∗Sn with a representative
defined by taking all planes through the origin and perform on each in-
tersection - which is T ∗S1- a Dehn twist in a compatible way. In a
different way, fix the round metric and the pick the normalized geo-
desic flow for time π near the 0-section and decreasing to the identity
as the distance=norm goes far away

To stabilize an open book with page F n we attach an n-1-handle to
∂F . Next we need to complete the core n-1-disk to a n-1-sphere in F
such that TFS

n−1 ' T ∗Sn−1. Next we compose φ with a generalized
Dehn twist along the sphere. In that way we obtain M ′ with an open
book decomposition. Again M ′ is cobordant to M and the cobordism
amounts to adding a cancelling pair of n-1 and n-handle.

Remark 4. One should also check how to put an open book decompo-
sition on the cobordism associated to the stabilization.
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2. Open book decompositions in contact geometry

It is often the case that when studying the space of certain structures
we may obtain information by understanding the way in which they
can degenerate. This can go for example by embedding our space as a
subspace of a topological space, an interpret convergence to points in
the boundary (or perhaps just to some of them) in a geometric sense
(e.g. Thurston compactification of Teichmuller space [21]); degenera-
tions into geometries on other associated manifolds are also considered
(tropical geometry [16], degenerations of metrics with some curvature
properties).

2.1. Open book decompositions in 3-dimensional contact geo-
metry. For a three dimensional manifold M we let Ω1

cont(M) ⊂ Ω1(M)
be the space of (positive) contact 1-forms with the C1-topology. The
so called Giroux correspondence [9] can be interpreted as follows:

(1) An open book B gives rise to θB ⊂ ∂Ω1
cont(M) (as a matter of

fact there are choices involved but the corresponding subset of
1-forms is convex). More precisely it gives rise to αB ∈ Ω1

cont(M)
(again there are choices but the corresponding subset is path
connected) such that

λθB + (1− λ)αB ∈ Ω1
cont(M) iff λ ∈ [0, 1)

(2) There is a precise test for α ∈ Ω1
cont(M) to be such that λθB +

(1−λ)α ∈ Ω1
cont(M), λ ∈ [0, 1) (for some of the θB). The contact

form has to be adapted to B (see definition in the statement of
theorem 4).

(3) The space of contact forms adapted to B and close enough to θB
is convex. That is for any two α0, α1 adapted to B (plus some
extra condition near the binding) and for all λ close enough to
1 (depending on α0, α1)

t(λθB + (1− λ)α0) + (1− t)(λθB + (1− λ)α1) ∈ Ω1
cont(M), t ∈ [0, 1]

In particular (because the condition near the binding can be
attained by isotopy) the isotopy class of contact structures as-
sociated to contact forms adapted to B is unique.

Seen from B it means that for any θB there exist a subset of
Ω1

cont(M) ⊂ TθBΩ1(M) whose intersection with a ball of small
enough radius is convex (if the two directions fulfilled the afore-
mentioned condition near the binding; in general it is just path
connected). For all θB associated to B the union of this direc-
tions is exactly the contact forms adapted to B.

(4) For any α ∈ Ω1
cont(M) there exist B so that α is adapted to B.

That is to say there is a direction in TαΩ1
cont(M) (actually the

directions defined by many of the θB as in point 1) so that the
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segment in that direction hits ∂Ω1
cont(M) in the corresponding

θB.
(5) If α is adapted to B and B′, then the two open books are the

same up to positive stabilization.
(6) In short, there is a one to one correspondence between isotopy

classes of contact structures and open books up to positive sta-
bilization, and that correspondence is proven by understanding
a subset of ∂Ω1

cont(M).

Remark 5. Other interesting 1-forms in ∂Ω1
cont(M) are those defining

taut foliations [7].

We start to give details of the correspondence by constructing the
contact 1-forms αβ. This in particular reproves the result of Martinet
on the existence of contact structures on closed oriented 3-manifolds.

Theorem 4. [19] Any open book B in an oriented 3-manifold induces
a co-oriented contact structure ξB on M . A positive contact form αB
(or just α to ease the notation a bit) can be chosen so that:

(1) The binding is a contact submanifold (ξB t B) and dα makes
the pages into symplectic manifolds; that is to say the Reeb vec-
tor field of α is transverse to the pages (in M\B).

(2) dα induces the given orientation in the page and α is positive
in the binding.

We say that B carries ξB and that α is adapted to B.

Proof. Fix ω a symplectic form in F .
1. Normal form for a potential for ω: Parametrize ν(∂F ) with b ∈ ∂F

coordinate and r ∈ [1, 2] inwards pointing transverse coordinate so that
ω = −dr ∧ db. Because F has no second cohomology, w = dβ. Writing
w = ωc + ϕ(r)dr ∧ db and applying Poincaré’s lemma to compactly
supported forms, one can assume

(2) β|ν(∂F ) = (a− r)db, a ∈ R
2. Contact structure in the relative mapping torus: In F × R, with

real coordinate θ, consider the 1-form

α = β + dθ

This is clearly a contact form, since

α ∧ dα = dθ ∧ ω
Assume for the moment that φ∗β = β. Define

Φ: F × [0, 1] −→ F × [0, 1]

(x, θ) 7−→ (φ(x), θ + 1)(3)

By construction
Φ∗α = α,
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and thus the quotient -which is the relative mapping torus- inherits a
positive contact form α (its associated volume form defines the fixed
orientation) whose Reeb vector field is transverse to the pages, and
with positive symplectic pages.

3. Extending the contact form to the open book: We parametrize
ν(B) using the coordinates r, θ, b as above, but with r ∈ [0, 2]. For
r ≥ 1 we have

(4) α = (a− r)db+ dθ

We are going to extend it to a 1-form

α = f(r, θ, b)db+ g(r, θ, b)dθ,

The conditions

α|B > 0, α ∧ dα|B > 0,

are equivalent to

(5) f|B > 0, g = r2G, G|B > 0

On ν(B)\B the conditions to be positive contact and restrict to a
positive symplectic form are

(6) f
∂g

∂r
− ∂f

∂r
g > 0,

∂f

∂r
< 0

We can extend f = a− r > 0, r ≥ 1, to a function f(r) with f ′ < 0
and f = 1 − r2 near zero; we can extend g = 1, r ≥ 1, to a function
g(r) with g′ > 0 and g = r2 near zero. By equations 5 and 6 α is a
contact form adapted to the open book.

4. Avoiding the assumption φ∗β = β: By Moser’s lemma within the
compactly supported isotopy class of the monodromy we can always
choose a representative so that φ∗ω = ω. That implies φ∗β − β is
closed. If it is exact choose a function h so that

dh = β − φ∗β,

h positive, h = 1 near ∂F .
Then just modify the map in 3 into

Φ(x, θ) = (φ(x), θ + h(x))

Then α descends to F × R/ ∼ Φ, which is diffeomorphic to the
relative mapping torus of (F, φ), inducing a contact form which makes
the pages symplectic. Notice that because h = 1 near ∂F step 3 can
be carried with no change.

We can isotope φ so that γ = φ∗β − β is exact: the result has to be
φ ◦ ψs, s ∈ [0, 1], ψs the flow of a vector field X.

Take C any loop (1-chain). We want

〈φ ◦ ψ∗1β, C〉 = 〈β, C〉
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If A is the annulus ψs(C), we can always compare

〈φ ◦ ψ∗1β − φ∗β, C〉 = 〈ω,A〉 =

∫ 1

0

〈iXω, φ ◦ ψs∗C〉

The form µ := iXω can be chosen at will, and if closed we get

[φ ◦ ψ∗1β − φ∗β] = [φ∗µ]

By choosing µ = φ∗β − β we are done. �

Remark 6. The effect of moving φ within the symplectic isotopy class
for a fixed open book (M3,B) produces a family of contact forms αt,
t ∈ [0, 1]. All the contact forms are adapted to B and are such that
dαt = dα0 restricted to any page. Similarly, changing the function
Φ that defines the mapping cone can be seen as an produces another
contact from α1; they can be connected by a family αt of contact forms
with exactly the same properties as above.

Definition 7. Let r, θ, b, r ∈ [0, 1] be coordinates in ν(B) so that the
pages are the fiber of θ. Let ρ(r, θ) ≥ 0 which is constant for r near
1, vanishes exactly at r = 0, and it is monotone along radial segment.
Define the 1-form

(7) θB = ρ(r, θ)dθ

Observe that
θB ∧ dθβ = 0

Notice that for fixed coordinates the choices gives rise to a convex
subset of 1-forms. Changing the b, r coordinates does not affect the
definition (we assume the θ coordinate to be fixed). Typically on the
fixed coordinates we take ρ to be independent of θ.

Remark 7. One could also allow functions ρ vanishing near the bind-
ing. We made our choice because θ vanishes exactly along B, and
defines the pages away from the binding.

Observe that ρ is not a 1-form defining a classical structure on a
manifold; the reasonable limits are the non-continuous “closed” 1-forms

(8)

{
adθ, r > 0

0, r = 0,

a > 0. They can be made smooth at the expense of modifying the
manifold. One possibility is blowing up B along normal directions,
but this produces a non-orientable manifold. The second is capping off
each page with a disk, or equivalently performing Dehn surgery along
B with the framing defined by the page. This is a different way of
saying that an open book decomposition on M3 canonically defines an
oriented M̂3 which fibers over S1 (and so that we have M\B ↪→ M̂
and the fibration restricts to the fibration coming from the open book
decomposition); note that M and M̂ are cobordant.
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We next state a lemma which explains the geometric meaning/consequence
of α|B > 0.

Lemma 3. Let α be a contact form adapted to B. Then (1−λ)α+λθB,
λ ∈ [0, 1), is a contact form adapted to B provided ρ in 7 has support
closed enough to the binding.

Proof. Fix coordinates r, θ, b so that the pages are given by θ. By
sliding along the b coordinates we can arrange in ν(B)

α = f(r, θ, b)db+ g(r, θ, b)dθ

with the properties in equations 5 and 6. By reducing the domain of
the r coordinate if necessary we may assume f > 0. We then take θB
so that the support of ρ is contained in the subset for which f > 0.
Then the segment

(1− λ)α + λθB

is by contact forms except for λ = 1. Away from the tubular neighbor-
hood the wedging with the exterior derivative we get

(1− λ)2α ∧ dα + λ(1− λ)θB ∧ dα > 0, λ < 1

Also the restriction to the pages of the exterior derivative is (1−λ)dα,
therefore positive. In the tubular neighborhood we have

(1− λ)fdb+ ((1− λ)g + λρ)dθ

Because convex combination preserves signs equations 5 and 6 are ful-
filled. �

Remark 8. In the coordinates r, θ, b, and along Legendrian segments
in the radial direction the contact distribution rotates from the b to the
θ coordinates (actually towards the −b direction); by moving towards θB
so that for very large values of ρ the contact distribution becomes very
close to the foliation by the pages. That the result is contact depends
heavily on α|B > 0 (equivalently f > 0). This implies that the Reeb
vector field is not in the sector (in the b, θ planes) whose area decreases
as the the kernel of (1− λ)α + λθB approaches the pages.

In particular this proves assertions (1), (2) at the beginning of this
section. Point (3) is the following:

Theorem 5. [9] If α0, α1 are carried by B and B has a normal bundle
whose disks have Legendrian rays for both contact structures, then for
suitable θB and ε > 0, the segment

(9) t((1− λ)α0 + λθB) + (1− t)((1− λ)α1 + λθB), t ∈ [0, 1]

is by contact forms adapted to B for all λ ∈ (1 − ε, 1). In particular
co-oriented contact structures carried by the same book are isotopic.
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Proof. By our assumptions we have coordinates r, θ, b of ν(B) such that

αi = fidb+ gidθ, i = 0, 1

with equations 5 and 6 fulfilled and fi > 0. We take θB defined by ρ sup-
ported where the coordinates are defined. Then in that neighborhood
the forms in 9 are contact and adapted to B for all t ∈ [0, 1], λ ∈ [0, 1).
Away from the neighborhood the restriction of the exterior derivative
to each page is the convex combination of (1 − λ)dα0), (1 − λ)dα1,
therefore symplectic. Regarding the 3-form we obtain

A(t, λ) + λ(1− λ)θB ∧ (tdα0 + (1− t)dα1),

and as λ approaches 1 the second summand becomes dominant.
For fixed coordinates r, θ, b by just sliding along the b coordinate we

can arrange the radial segments to be isotropic. That means that for
two given contact forms adapted to B we can change one of them (by
ambient isotopy) so that the hypothesis in the statement are fulfilled.

�

Points (4) and (5) will not be discussed here. A proof can be found
in [8].

2.2. Open book decompositions and Liouville structures. Given
an open book B on M2n+1, we need some extra structure to produce a
contact form as in theorem 4.

Definition 8. A Liouville structure on F is a pair (ω,X) where ω is
a symplectic form and X a Liouville vector field LXω = ω transverse
to ∂F . It is often given as just the 1-form β where ω = dβ, β = iXω.
We will consider Liouville structures making the boundary convex, i.e.
with outwards point Liouville vector field.

The 1-form γ := β|∂F is contact. For r ∈ [1, 1 + δ] an appropriate
inwards pointing transverse coordinate (the result of a suitable orien-
tation reversing change of coordinates of the coordinate associated to
X), r = 1 defining the boundary, then

(10) β = (2− r)γ

Definition 9. The completion of F is the result of gluing to F the
symplectization of (∂F, γ), which can be done in a unique way. The
result is a complete Liouville manifold convex at infinity. This is the
same as saying that we allow −r to go to ∞.

Once more if we have an open book with oriented page, we assume
that the manifold is oriented so that the open book is positively co-
oriented.

Theorem 6. [9] Given a Liouville manifold (F, β,X) and a compactly
supported symplectomorphism φ, the open book M -which is oriented
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since the page is oriented by the Liouville volume form- carries a canon-
ical positive contact structure ξB co-oriented. More precisely one can
build α a positive contact form for which

(1) The binding is a contact submanifold (ξB t B) and dα makes
the pages into symplectic manifolds; that is to say the Reeb vec-
tor field of α is transverse to the pages (in M\B).

(2) The orientations on the pages induced by dα are positive (and
the Liouville structure in the page is strictly pseudoconvex).

The contact 1-form is said to be adapted to B, and B carries ξB.

Proof. We just need to repeat the four steps in theorem 4. For surfaces
a nice normal form for β near ∂F followed for free. Here we have to
use the Liouville structure to write as in equation 10

β|ν(∂F ) = (2− r)γ,
γ the induced contact form in ∂F .

Step 2 is exactly the same using α = β + dθ.
In step 3 one again looks at 1-forms in ν(B)

α = f(r, θ, b)β + g(r, θ, b)dθ, b ∈ B
with g = r2G, G(0, b) > 0 for the contact condition to hold along B,
f|B > 0 (γ is a contact form on the binding).

The good news is that the contact condition and compatibility with
B in ν(B)\B are exactly the same equations

f
∂g

∂r
− ∂f

∂r
g > 0,

∂f

∂r
< 0,

so one can extend the contact form α defined in ν(∂F ) exactly as we
did in the 3-dimensional case.

Step 4 again is the same, because once we have φ∗ω = ω, we only use
the symplectic nature of the page to make the necessary adjustment.

�

Remark 9. One of the complications in higher dimensions is the need
of asking for a Liouville structure which makes ∂F strictly convex.
That gives the right sign for ∂f

∂r
near ∂F so it can be extended to the

open book. With a concave structure one does not know how to do
it. This difference between concave and convex does not appear in the
3-dimensional case. The reason -apart from simply noting that the nor-
mal form procedure gives the right answer- is that there is no difference
between convex and concave ends in dimension 2 because we can send
the punctured disk (annulus) inside out symplectically. The only result
is the reversal of the orientation of the boundary.

Theorem 7. [9] Let ξ be a co-oriented contact form carried by an open
book B. Then if a is a positive form representing ξ and carried by B,
then ξ is isotopic to ξB as in theorem 6 for a suitable Liouville structure
on the page F .
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Proof.
1. Normal form near the binding: We fix coordinates r, θ, b, b ∈ B,

r ∈ [0, 1] adapted to B. Let γ denote α|B. Recall that without altering
the polar coordinates we can arrange

α = f(r, θ, b)γ + g(r, θ, b)dθ

Indeed, by Gray’s theorem we can obtain the restriction of ξ to any fiber
over a point of the disk (r, θ) to match kerγ. We further need to make
sure that the radial segments are isotropic. We choose as new normal
disks the only ones which are tangent to the symplectic orthogonal
to kerγ (at B) and are made of isotropic rays. By construction the
transformation on each fiber is a contactomorphism (follows from the
choices together with Cartan’s formula).

By making the radial coordinate smaller if necessary we can assume

∂g

∂r
> 0, f > 0

2. Recognizing the Liouville structure in the open page: The restric-
tion of α defines a non-complete Liouville structure (F\B, β). In our
previous coordinates, the Liouville vector field is

(11) X =
f
∂f
∂r

∂

∂r

Assume for the moment that f only depends on r, so the Liouville
vector field has the same property. Because the latter goes to infinity
the Liouville structure is not complete, but it defines a complete unique
structure up to completion: we just take parallel copies of B for small
values of the radial coordinate. In that way we get a Liouville structure
in a compact manifold, as in definition 8. Of course, different values
give different structures, but with diffeomorphic completion. It is clear
that for any two choices we can apply theorem 6 to produce a one
parameter family of contact forms adapted to B.

In general we can always modify a given f to f̂ which only depends
on r near the binding. Then β and β̂ := f̂γ again define the same
Liouville structure up to completion and the resulting contact 1-forms
can be joined by a 1-parameter family of contact 1-forms adapted to B
(this is easily seen by taking f̂ so that f̂/∂f̂

∂r
≤ f/∂f

∂r
)

It is also clear that the choice of different radial coordinates (different
tubular neighborhoods of B) has the effect of producing diffeomorphic
completions; just take a function f which only depends on the initial
radial coordinates. Isotope one radial coordinate into the other, and use
the isotopy ϕs, s ∈ [0, 1] to push the function giving rise to fsγ a family
of Liouville structures. Clearly ϕ∗sfsγ = fγ, s ∈ [0, 1]. Obviously the
isotopy extends to a diffeomorphism of the completions.

3. Modifying the contact form to obtain a suitable Liouville structure
and returm map: we start by modifying f to f̂ which only depends on
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r if r ≤ 1/2 and coincides with f if r ≥ 1. and consider

α̂ := f̂γ + gdθ

Notice that (1 − t)α + tα̂ are all contact forms adapted to B. We

will use the Liouville structure (F, β̂) for which the radial coordinate
is a multiple of the coordinate associated to −X.

The monodromy associated to α̂ is generated by

Rγ − f ′

g′
∂
∂θ

and therefore not compactly supported. To correct it we modify g into
ǧ which is monotone on r but constant for r ≤ 1/2. That produces α̌
a contact form away from B but still adapted to B. In any case the
restriction to each page is still β̂ so this amounts to no change in the
Liouville structure.

The Reeb vector field of α̌ is transverse to the pages, and by cons-
truction has for r ≤ 1/2 closed orbits bounding the normal disks asso-
ciated to the coordinates r, θ, b. Let φ denote the return map which is a
symplectomorphism, and let αφ the contact 1-form adapted to (M,B)

constructed as in theorem 6 out of (F, β̂, φ), that we now see as a con-
tact 1-form on M . We claim that α̂ and αφ can be connected by a path
of 1-forms adapted to B.

As before, we want to use the segments

(12) t(λθB + (1− λ)α̂) + (1− t)(λθB + (1− λ)αφ),

where ρ as in remark 8 but now constant for ρ ≥ 1/2. Recall that by
construction

αφ|r≤1/2 = Fγ +Gdθ

with F strictly decreasing, G increasing monotone until it becomes
constant for r ≥ 1/2. Convexity considerations imply that for all
t ∈ [0, 1], λ ∈ [0, 1), the forms in equation 12 are contact and adapted
to B if r ≤ 1/2. If r ≥ 1/2 we recall by construction and remark 6 on
each page

dα̂ = dαφ

Then exactly the same argument used in the 3-dimensional case shows
that for some ε > 0 and λ ∈ (1 − ε, 1), t ∈ [0, 1], the corresponding
1-form is contact and adapted to B. �

Remark 10. What we saw is that there we have two ways of producing
a complete Liouville manifold starting with data in a compact manifold
F : one possibility is a Liouville structure as in definition 8. Another is
a one form β which is contact in the boundary and produces a Liouville
structure in the interior.
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3. Applications and examples of open book carrying
contact structures

An interesting application of the existence of open book is the fol-
lowing

Theorem 8. [3] If M admits a co-oriented contact structure then so
M×Σ does, where Σ is any closed orientable surface different from the
sphere. In particular T2n+1 admits a contact structure.

Proof. One first proves that Σ = T2 admits a contact form making
all the copies of M contact submanifold. Then a argument using a
ramified cover Σ→ T2 yields the desired result.

Let β be a contact form on M and fix f : M → C2 an open book
decomposition adapted to it. In coordinates (r, θ, b) of ν(B) we assume
f = (h(r), θ) where h is the identity near the binding and constant near
the boundary. We let ϑ1, ϑ2 be the angular coordinates of the torus.
Then for a small enough domain of the radial coordinate the 1-form

α := f1ϑ1 + f2ϑ2 + β

is contact, where f = (f1, f2) in the coordinates of the plane R2 =
C. �

Remark 11. Unfortunately α is not adapted to any of the natural
open books that we can put in M × T2 once f has been fixed (For
g : N → S1 a mapping torus, we have open book decompositions in
M×N by composing f×g with either the projection of the multiplication
C× S1 → C).

3.1. Open book decompositions for Boothby-Wang contact struc-
tures. We go back for a second to open book decompositions, with no
reference to contact structures.

Let M be a closed manifold endowed with the action of a (compact)
group G. We would like to construct -if possible- G-invariant open
books. Here the point of view of functions (OBIII) seems the most
appropriate. Assume G acts in C preserving Bstd (fixing the binding
and sending pages to pages). Then we look for G-equivariant functions
providing open books f ∈ B(M)G. The case that gives nice results is
G = S1 acting on C∗ by complex multiplication. As a matter of fact we
find useful to consider the full C∗-action. On the side of the manifold
we “extend” it to its cone C(M), and observe that once we remove the
apex we get C(M)∗ a manifold with a C∗-action.

The following to elementary lemmas are quite useful:

Lemma 4. Let M be a manifold endowed with a locally free S1-action,
so its cone carries a locally free C∗-action. Let F : C(M) → C be a
C∗-equivariant function, which can always be written as the cone of
f : M → C an S1-equivariant function. Then the following statements
are equivalent:
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(1) F is transverse to Bstd.
(2) F is transverse to 0.
(3) f is transverse to 0.
(4) f is transverse to Bstd.

Lemma 5. Let M be a principal S1-bundle over X, and let L be the as-
sociated complex line bundle. Then there is a one to one correspondence
between C∗-equivariant functions of L∗-and sections of L→ X, and this
correspondence takes functions transverse to 0 to sections transverse to
the zero section.

Thus we obtain

Corollary 1. Given M a closed principal S1-bundle with associated
complex line bundle p : L → X, any section s of L∗ transverse to the
zero section provides open book decomposition for M . The binding is
the restriction of the principal bundle to the zero set Z(s), the projection
p sends any page diffeomorphically into X\Z(s), and the free S1-action
interchanges pages.

Recall that we have a diffeomorphism of fibrations L∗\0 ' L\0
which restricts to circle bundle for a hermitian metric and its dual.
Therefore using this diffeomorphism a section s of L also defines an
equivariant open book decomposition on M (for the S1-action in the
opposite direction). One checks that

(1) The binding is as before M|Z(s).
(2) The positive real page is

F = { s(x)|s(x)| |x ∈ X\Z(s)}

(3) The return map is a family Dehn twist. That is, the end of
F is ν(Z(s))\Z(s). The circle bundle intersects each normal
annulus, which is oriented by pulling back the orientation of
the complex fiber. Then the circle is oriented using the outward
normal first convention (outwards w.r.t. X\Z(s)). Then one
performs a Dehn twist in these family of curves.

Let M be a principal S1-bundle with base X. A Boothby-Wang
contact form is a connection 1-form A ∈ Ω1(X)S

1
which is contact, or

equivalently whose curvature is a symplectic form on X. Let p : L→ X
be the complex line bundle associated to M : we have the relation

−dA
2π

= p∗c1(L)

For a fixed integral symplectic form ω on X the previous process can be
reversed. Because any two Boothby-Wang connection forms differ by
the action of the Gauge group, we simply speak of the Boothby-Wang
structure associated to the symplectic base (X,ω).
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Proposition 1. Let M be a closed manifold and let A be a Boothby-
Wang contact form with associated complex line bundle L → (X,ω).
Then any section s : X → L∗ (i) transverse to the zero section, (ii) for
which Z(s) is a symplectic submanifold of (X,ω), and (iii) for which
∇s : ν(Z(s))→ L∗ sends the symplectic orientation of normal disks to
the complex orientation of fibers, defines an open book decomposition
adapted to A.

Proof. By corollary 1 s defines an open book. Because Z(s) is symplec-
tic the binding M|Z(s) is contact. Because the pages are transverse to
the infinitesimal generator of the S1-action, and this equals the Reeb
vector field, the pages are symplectic. The orientation condition (iii) in
the statement of proposition 1 is equivalent to the orientation condition
required for an open book to be adapted to a contact form. �

Remark 12. Following theorem 7 the page admits a Liouville structure
and the return map is a symplectomorphism. In these case the (non-
complete) Liouville structure is the one in the complement of Z(s) with
potential p∗A. In suitable coordinates about Z(s) the circle bundles of
ν(Z(s)) associated to the radial coordinates inherit contact forms of
Boothby-Wang type which up to a multiplicative constant c(r) they are
A|Z(s) (this is an standard fact for the neighborhood of any symplectic
divisor Y for which c1(ν(Y )) lifts [ω|Y ]). Up to isotopy of the section
near its zero set this is exactly the Liouville structure in the open end
of the hyperplane section induced by p∗A. A symplectic representative
for the family Dehn twist is chosen by starting to rotate along the Reeb
vector fields as the radial coordinate approaches zero until a full turn
on each normal disk has been completed).

Remark 13. If (X,w) is a Hodge manifold and s is a holomorphic
section of L∗, then proposition 1 is a special case of the construction of
Milnor open books in [5]. The complex manifold with isolated singular-
ity is the result of collapsing the zero section of L to a point. Because
we only allow C∗-equivariant holomorphic functions the proof becomes
much simpler.

Remark 14. One may try to find invariant open books for contact
toric manifolds by restricting to the Boothby-Wang case. For that one
restricts to contact toric actions of Reeb type which are regular [4]. The
quotient is a symplectic toric manifold. The existence of an invariant
open book implies that the binding is itself a toric contact manifold, and
therefore fibers over a union of facets of the symplectic toric base with
non-empty intersection. Those facets should represent the Poincaré
dual of the toric symplectic form. This might also be a sufficient con-
dition (for the family Dehn twist appears to be equivariant w.r.t. toric
action). Projective spaces are example of such symplectic toric vari-
eties, but we do not know how frequent these symplectic toric varieties
are (for example among Hirzebruch surfaces CP2 is the only one).



20 D. MARTÍNEZ TORRES

References

[1] Alexander, James W.; Note on Riemann spaces. Bull. Amer. Math. Soc. 26
(1920), no. 8, 370–372.

[2] Asimov, Daniel Round handles and non-singular Morse-Smale flows. Ann. of
Math. (2) 102 (1975), no. 1, 41–54.

[3] Bourgeois, Frdric Odd dimensional tori are contact manifolds. Int. Math. Res.
Not. 2002, no. 30, 1571–1574.

[4] Boyer, Charles P.; Galicki, Krzysztof A note on toric contact geometry. J.
Geom. Phys. 35 (2000), no. 4, 288–298.

[5] Caubel, Clment; Nmethi, Andrs; Popescu-Pampu, Patrick Milnor open books
and Milnor fillable contact 3-manifolds. Topology 45 (2006), no. 3, 673–689.

[6] Cerf, Jean La stratification naturelle des espaces de fonctions diffrentiables
relles et le thorme de la pseudo-isotopie. (French) Inst. Hautes tudes Sci. Publ.
Math. No. 39 (1970), 5–173.

[7] Eliashberg, Yakov M.; Thurston, William P. Confoliations. University Lecture
Series, 13. American Mathematical Society, Providence, RI, 1998.

[8] John B. Etnyre, Lectures on open book decompositions and contact structures.
math.SG/0409402
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