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1. Introduction

Most examples of Poisson manifolds come through symplectic geometry (sym-
plectic manifolds, symplectic fiber bundles), Lie theory (linear Poisson structures,
Poisson Lie groups, Poisson structures on homogeneous spaces), reduction from
symplectic, Poisson, Dirac, quasi-Hamiltonian geometry (and also the more flexible
cases in dimensions 2 and 3). We would like to put Poisson structures on compact
manifolds. We are most interested in Poisson structure the closure of whose support
is all the manifold (we know we can build non-trivial Poisson structures localized
at will).

Trying to construct on a given closed manifold a (non-symplectic) Poisson struc-
ture the closure of whose support is M is basically hopeless. What seems feasible
is to construct some of this structures in large families of manifolds (not fixed a
priori) by adapting gluing techniques from differential topology. In that way at
least we may be able to explore aspects of whether the topology of a manifold may
obstruct the existence of certain kind of Poisson structures.

2. Gluing constructions in differential topology.

In differential topology gluing to manifolds M,M ′ to produce a new one roughly
means finding gluing data φ : U → U ′, U ⊂M,U ′ ⊂M ′ open, to construct

M#φM
′ := M

∐
M ′/U

Φ∼ U ′

Observe that not any U will do, because we may get a non-Hausdorff manifold:
Glue for example two copies of R2 by a diffeomorphism of the unit open disks.
In all our examples of gluing constructions to be described, we ask (i) U to be
diffeomorphic to K × (−1, 1), where K is a submanifold (often compact), (ii) the
closure Ū is a submanifold diffeomorphic to the K × [−1, 1), so only points near
one end are added, and (iii) the diffeomorphism Φ is a product map (φ, f) with
φ : K → K ′, and f : (−1, 1)→ (−1, 1) orientation reversing, i.e. for example

Φ(x, t) = (φ(x),−t)

What makes each of the instances we are to present different is the way in which the
gluing data is obtained, which one would like to be as “economic” as possible, also
to be able to draw results about uniqueness of the diffeomorphism type of M#ΦM

′

(or uniqueness up to some choices).

Remark 1. One can weaken the diffeomorphism type of U , by requiring it to have
two ends so that the closure only adds a submanifold of points near one of the ends,
and Φ interchanges them. The advantage of asking (U,Φ) to be a product as above
is that the diffeomorphism type of M#ΦM

′ will only depend on the isotopy class
of φ (though we also fixed the product structure on U), rather than on just the
diffeomorphism Φ, as it would be the case for general (U,Φ).
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Remark 2. There is a second way of understanding a gluing with gluing data as
above: We are removing K× (0, 1), K ′× (0, 1) to obtain manifolds with boundaries
K,K ′ respectively, and then identifying the boundaries via φ.

Example 1. Connected sum: If we have two manifolds M,M ′ and we fix points
p, p′ one on each, then the connected sum amounts to doing the following: choose
about each point coordinates x1, . . . , xm and x′1, . . . , x

′
m. Then U,U ′ are the punc-

tured unit ball Bm(1)\{0} ' Sm−1 × (−1, 1). The map φ is the restriction to
any level sphere of a orthogonal map from one coordinate set to the other. Notice
that there are two possible isotopy classes, according to whether the orientation is
preserved or reversed. This is actually the only indeterminacy. The choice of coor-
dinates does not affect, since any two such balls are isotopic. If for example the two
manifolds are oriented, one chooses the linear map so that the resulting manifold
is oriented extending the restricted orientation. Since the group of diffeomorphisms
of a manifold acts transitively on points for oriented manifolds the connected sum
is uniquely defined.

Recall that a particular example of connected sum is the complex/symplectic blow
up. At the level of differential topology blowing up a point x ∈ Xn gives Xn#−CPn,
the minus meaning a reversal of the (complex) orientation.

Example 2. Family connected sum or normal connected sum: Rather than points
this time we pick (i) N,N ′ (compact) submanifolds, and (ii) an isomorphism of the
normal bundles; it restricts to an identification of sphere bundles. Then we use it to
identify ν(N)\N with ν(N ′)\N ′ so fibers are identified as in the connected sum. As
we mention, the diffeomorphism type depends on the isotopy class of identifications
of sphere normal bundles; as a matter of fact one normally fixes ϕ : N → N ′ (or
a isotopy class of diffeomorphisms) and lets φ to vary among lifts, so that isotopy
classes of such φ correspond to homotopy classes of maps to the corresponding
orthogonal group.

Example 3. Boundary gluing: We expand on remark 2. For two manifolds with
boundary M,M ′, a diffeomorphism φ : ∂M → ∂M ′ determines a new manifold

M
∐

M ′/∂M
φ∼ ∂M ′

What we have is a topological manifold. To put the smooth manifold structure we
need to use product structures near the boundaries, ∂M× (−1, 1), ∂M ′× (−1, 1) (so
we enlarge a bit each manifold), and then glue using the obvious extension of the
boundary diffeomorphism to a product, so we are back in our gluing construction
setting. The diffeomorphism type only depends on the isotopy class of φ, not on the
product structures near the boundary. Observe also that the resulting manifold has
no boundary.

Example 4. Partial boundary gluing: There is a variant of the last construction
where in the two manifolds one identifies two codimension 0 submanifolds (with
boundary) φ : W →W ′. With the aid of product structures one enlarges the mani-
folds to M∪(W×(−1, 1)) (so what one really adds is W×(0, 1)), M ′∪(W ′×(−1, 1)),
and glues using for example

(w, t) 7→ (φ(w), 1/2− t), t ∈ (1/2, 1),
in such a way that one creates a “neck”. What we produce is a manifold with
corners, and then corners are canonically smoothened to produce a manifold with
boundary (you will never find a proof of how to canonically smoothen corners in a
single book; but it is actually true. It is just very tedious to write down).

This is by far the most important example of gluing, because it contains all
handle attachings. An n-dimensional k-handle is topologically an n-ball, but
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written as the manifold with corners Bk(1)×Bn−k(1) = Bk×Bn−k. The boundary
is Sk−1×Bn−k ∪Bk×Sn−k−1. The core ball is Bk×{0}, and its boundary is the
attaching sphere. Given M an n-manifold with boundary, attaching a k-handle
is just doing partial boundary sum with the k-handle, where the submanifold of the
boundary of the k-handle that we glue is Sk−1 × Bn−k. What is useful is that we
can encode the gluing data as follows: we think of being gluing first the core ball,
this being done by prescribing an attaching map of its boundary the attaching sphere
ϕ : Sk−1 ↪→ ∂M . This is giving an embedded parameterized (k-1)-sphere. Next we
have to glue Sk−1 × Bn−k to a tubular neighborhood of the embedded sphere; that
is saying that the normal bundle of the sphere in ∂M is trivial, and moreover we
are giving a specific way of trivializing it, a framing.

When we have a Morse function f on a manifold M , and we have x a critical
value so that no other critical value lies in [f(c)−ε, f(c)+ε], then f−1((−∞, f(c)+ε])
is the result of attaching to f−1((−∞, f(c)− ε]) a k-handle, where k is the index of
the critical point (and the stable manifold is the attached core k-ball).

Therefore via Morse theory we see that any compact manifold is just the result
of a finite sequence of handle attachings.

If now W is an m-manifold, and we give an embedded (k-1)-sphere with a framing
of its trivial normal bundle, we can attach an (m+1)-dimensional k-handle to the
trivial cobordism W × [0, 1] in W × {1}. The new boundary component that we get
is what we call the result of performing surgery on the framed (k-1)-sphere. In
the previous Morse theory setting, f−1(c + ε) is the result of surgery on the stable
(k-1)-sphere of f−1(c− ε).

The importance of handle attachings and surgery is that we can use it to modify
the homotopy groups of a manifold; if a homotopy class can be represented by an
embedded sphere with trivial normal bundle, by attaching a handle along it it be-
comes trivial in the cobordism manifold, and a bit of diagram chasing tells us what
happens in the new boundary of the cobordism (for a most beautiful illustration of
this see [5]).

3. Gluings for regular Poisson structures

If one wants to make gluing constructions compatible with Poisson structures,
the one should choose gluing data so that Φ: U → U ′ is a Poisson morphism for the
induced Poisson structures. That means that the induced Poisson structure should
be such that among all the possible gluing maps in the isotopy class, at least one is
a Poisson diffeomorphism, and possibly many. At this point we should agree that
this is more feasible if the Poisson structure is regular (though some gluings with
non-regular gluing data are possible).

Regular Poisson geometry is a blend of foliation theory and symplectic geometry.
Let’s start with gluings in foliation theory.

3.1. Gluings in foliation theory. Roughly speaking, the gluings which are com-
patible correspond to choices of U = K × (−1, 1) for which the boundary ∂U =
K × {−1} ' K is either a leaf or it is transverse to the foliation. Let us start by
the first case, which we may call tangential gluing.

3.1.1. Tangential gluing: Because the ∂U is a leaf we are working with codimension
1 foliations. Because the gluing map is a product and should be compatible with
the foliations induced on U = K × (−1, 1), U ′ = K ′ × (−1, 1), the obvious thing
is to assume is that the induced foliations coincide with the product structures
that we chose. Thus we are considering the situation of boundary gluing as in
section 2 such that the foliations near the boundaries are also given by products
structures. Normally rather than imposing the foliation to be a product one looks
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for sufficient conditions so that this is true; typically we assume H1(∂M ; Z) to be
torsion, so by Reeb-Thurston stability the product foliation condition holds. As
a matter of fact it is more interesting to apply the partial boundary gluing but
so that the result has no boundary: we pick N ⊂ F with torsion H1; clearly
ν(N) = νF (N) × (−1, 1) with the product structure being the induced foliation;
we consider as new manifolds with boundary νF (N)× (−1, 0], νF (N)× [0, 1), and
look for a diffeomorphism φ : νF (N) → νF (N) which is the identity near the end
νF (N). The new foliated manifold we construct is

M\(νF (N)×(−1, 1))
∐

(νF (N)×(−1, 1)
∐

νF (N)×(−1, 1))/νF (N)×(−1, 1) Φ→ νF (N)×(−1, 1)

Otherwise said, we cut M open along νF (N) and glue back rather than with
the identity, with φ. The result is a new foliated manifold. This kind of gluing can
change drastically the topology.

Example 5. Pick (M3,F) foliated by surfaces and co-oriented. Take N to be an
embedded circle α

ϕ
' S1 in a leaf. The leafwise normal bundle is the cylinder

S1 × (−1, 1)

Use as φ a Dehn twist (a compactly supported map that sends each segment {θ} ×
(−1, 1) to a curve that wraps around the cylinder once, so if we add the boundary
of the cylinder the homology class relative to the boundary changes from zero to a
generator, meaning that the Dehn twist cannot be isotopic to the identity relative to
the boundary). The new manifold is as follows: to the trivial cobordism M × [0, 1]
glue a 2-handle D2 ×D2 so that the core disk D2 × {0} attachs to α × {1} via ϕ,
and the framing we use is one of the boundary components of the leafwise normal
bundle of α (plus the co-orientation). Our new manifold is the result of surgery on
α with its canonical framing.

Generalized Dehn twist are compactly supported diffeomorphism defined in T ∗Sn,
for any n>1. For any (M2n+1,F2n) co-oriented and Sn

ϕ
↪→ F ∈ F so that νF (Sn) '

T ∗Sn, it is possible modify the foliated manifold by cutting open along νF (Sn) and
gluing back using the generalized Dehn twist. It also holds that the resulting manifold
is surgery on the parametrized sphere with an associated canonical framing.

3.1.2. Transverse gluing: For a transverse gluing we want U = K× (−1, 1) foliated
so that ∂U = {−1} ×K is transverse to the foliation. To make our life easier we
ask K = K×{0} to be transverse to the foliation, and then the flow of the interval
coordinate to be tangent to F . There is a second simplification, which is that we will
ask the induced foliation on K to be a fibration. The advantage is that we increase
our chances of giving normal forms for the extra leafwise symplectic structure to
be considered. The drawback is that if codimension 1 transverse submanifolds -
other than sphere bundles of the normal bundle of a transverse curve- are scarce in
foliations, and even more difficult is to find them so that the induced foliation is a
product.

Example 6. Leafwise family or normal connected sum: We start by taking N t F
so that the induced foliation is a fibration N → B. Recall that because N t F we
can assume that a tubular neighborhood

Ψ: ν(N)→ V

has been chosen in such a way that fibers are sent inside leaves. Otherwise said,
the normal bundle ν(N) is the result of putting together all the leafwise normal
bundles for each of the fibers of N → B. We now take N ′ ↪→ M ′ with the same
properties and assume we have a diffeomorphism N → N ′ which lifts to a bundle
isomorphism of the corresponding sphere bundles φ : K → K ′. Then we can glue



GLUING CONSTRUCTIONS IN POISSON GEOMETRY 5

K × (−1, 1) to K ′ × (−1, 1) as in the family connected sum, and by the choice of
tubular neighborhoods we are sending leaves to leaves.

Observe that if the family connected sum is just connected sum with extra compact
parameter, the leafwise version is family connected sum for each fiber of N → B
with extra parameter B, which after all is just family connected sum with a bit of
care in the choice of tubular neighborhoods.

In general any kind of gluing for manifolds that behaves well for compact pa-
rameters (i.e. that is allows consistent choices of gluing maps) has a version for
foliations as a transverse gluing.

3.2. Gluings in symplectic geometry. In a regular Poisson manifold (M,π) =
(M,F , ωF ), if we want to arrange a transverse gluing to be compatible with the
Poisson structure, we have to make sure that for each fiber of K → B the corre-
sponding leafwise gluing is symplectic. So we are led to analyze symplectic gluings.

3.2.1. Blowing up: The classical complex blowing up has a symplectic version. Per-
haps the cleanest way to see it is to realize it as a symplectic quotient (Lerman’s
symplectic cut [6]). As a matter of fact by blowing up the origin one is looking at
the orbit space of

Cn\{0} × C, λ(z, w) = (λz, λ−1w), (1)
which is then complex. A diffeomorphic reduced space is obtained by just keeping
the Hamiltonian action of S1 and taking the reduction at any positive level of the
moment map; therefore is it also symplectic. There is a (symplectic) dependence on
the level set, since this in particular affects at the volume of the resulting manifold.

By Darboux’ theorem about point in a symplectic manifold we can find local
complex coordinates z1, . . . , zn so that the symplectic form is the standard Kähler.
This defines the symplectic blowing up of any point. For a symplectic submanifold
N one uses a similar strategy: one works in the normal bundle ν(N); the restriction
of the symplectic form has a linearization along the fibers, each of which can be
identified with Cm in such a way that the structural group reduces to U(n) and the
symplectic form in the fiber Cn is the standard one. By theorems of Weinstein [8]
(or results on coupling forms by Guillemin et all) if we pick a unitary connection
we can find an invariant closed 2-form restricting to the fibers to the standard
one. By U(m)-averaging near the zero section we can also achieve U(m)-invariance
(so the symplectic annihilators of the fibers define another U(m)-connection, so
in particular at the zero section they are the tangent space to N). Then after
pulling back the symplectic form from the base we get a very nice model for the
symplectic form near the zero section, because it is U(m)-invariant and the diagonal
S1-action is Hamiltonian with momentum map one half of the norm square. Then
one considers (ν(N)\N)×C with symplectic form ω+wstd, Hamiltonian action as
in equation 1, and momentum map (x,w) 7→ 1

2 ||x||
2 − 1

2 ||w||
2.

3.2.2. Normal connected sum. This is the only possible symplectic version of the
family connected sum. Notice that for any symplectic structure on B2n, n > 1,
there cannot be a symplectic transformation of the punctured open ball inverting
the ends. If so, one would get a symplectic structure on the manifold which results
from gluing two copies of the ball using that transformation. This manifold is
homeomorphic to the sphere S2n, so cohomological reasons prevent its existence.

For the disk of radius ε, and the standard symplectic form, in polar coordinates
(r, θ) there is a unique such map of the form iε(r, θ) = (f(r),−θ), where one gets
f(r) by solving the O.D.E. resulting form the symplectomorphism and boundary
conditions.

What Gompf did [3] was not only showing that this family gluing parametrized by
a symplectic manifold was possible in the symplectic category, but more important
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he showed how to use it to build an enormous amount of symplectic (mosty 4)
manifolds with a wide variety of topological properties. In particular he arranged
any finitely presented group to be the fundamental group of a symplectic 4-manifold.

The construction. That the construction works has an easy case. When N en-
ters symplectically in (M,ω) and (M ′, ω′) with codimension two trivial line bundle,
then by Weinstein’s theorem the trivial disk bundle N ×D2(ε) with product sym-
plectic form ωN + ωstad is mapped symplectically to tubular neighborhoods V, V ′

by maps Ψ,Ψ′. Therefore the composition Ψ′ ◦ (Id× iε) ◦Ψ−1 is the desired gluing
symplectomorphism.

When the normal bundle is not trivial there is more work to do, simply because
we do not have a normal form; we just know that all symplectic structures matching
at the zero section have symplectomorphic tubular neighborhoods. Firstly the ori-
ented normal bundles must have opposite Chern class in order for the differentiable
gluing to produce an oriented manifold compatible with the symplectic orientations.
Next one picks one of the normal bundles E and compactifies it to a sphere bundle
with structural group S1; this is just the projectivized bundle

G := P(E ⊕ C),

the latter summand being the trivialized complex line bundle. Each fiber of E ⊕C
carries the diagonal S1-action, which descends to the usual action on S2 = CP1.

A bit of work constructs a symplectic form on G which matches at the zero sec-
tion s0 and section at infinity s∞ the ones given by the respective embeddings. By
Weinstein’s theorem the symplectic forms near the embeddings coincide with the
symplectic form in neighborhoods V0, V∞ of s0, s∞. If for each fiber the neighbor-
hoods had non-empty intersection (an annulus), we would be done, but this is not
in general the case. What Gompf does is sliding an annular neighborhood V∞\V ′∞
symplectically towards the zero section to get non-empty intersection Doing this
requires a very nice choice of symplectic form on G, namely an S1-invariant one and
such that on each fiber matches Fubini-Study. It is important that all the tools he
uses to produce symplectic forms, symplectomorphisms,...do not resort to patching
techniques, it is possible to do things globally via homotopy operators...

The main applications. Gompf’s contruction is specially interesting for 4-manifolds.
A symplectic codimension 2 submanifold is a symplectic surface. Notice that by
Moser’s theorem the restriction of the symplectic form to the surface is determined
by its symplectic area. The first Chern class of the normal bundle is the self inter-
section of the surface. Plenty of examples are provided by complex submanifolds of
Kähler manifolds. For example in CP2 the (smooth) zero set of a homogeneous poly-
nomial of degree d. The genus of the surface is 1

2d(d− 1) and the self-intersection
d2, the latter by Bezout’s theorem.

One can symplectically blow down a symplectic sphere of self intersection
-1. Simply observe that CP1 ⊂ CP2 has self intersection 1 (Bezout). Topologically
the blow down is replacing the curve by a point, with is the same thing as making
normal connected sum with CP2 along CP1. Observe that the only requirement to
perform it is the matching of the areas, so one (i) orients the surface so that the
area is positive, and (ii) rescales Fubini-Study accordingly.

One can as well blow down a symplectic sphere with self intersection -4, some-
thing which has no analog in complex geometry. Just recall that by the degree
formula a smooth quadric Q is a sphere, but with self intersection 4. The blowing
down by definition is the normal connected sum with CP2 along a smooth quadric.

It is possible to realize any finitely presented group as the fundamental
group of a symplectic 4-manifold. If we have g generators and r words (rela-
tions), we take the manifold Σg × T2. Let αi, βi, i = 1, . . . , g be a symplectic basis
of H1(Σ). We take embedded curves βi (representing the βi), and γj representing
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the r words in the αi. Denote by α, β embedded curves with α×β = T2. To get the
desired group we have to kill the curves representing βi, γj , and α, β. We consider
the embedded tori α×βi, α×γj , α×β. Equivalently, we must kill the fundamental
group of those g + j + 1 tori. On can slightly perturb the product symplectic form
in Σg×T2 so that the previous tori are symplectic and with triviall normal bundle.
Now the crucial step is the existence of a symplectic manifold, the elliptic surface
E(1) with the following property: it is a fibration by symplectic tori (some of them
singular) so that the complement of a regular fiber is simply connected. Then it
follows that each time we make normal connected sum along one of the g + j + 1
tori Tl and a fiber of the elliptic surface, by Seifert Van-Kampen the fundamental
group of the new symplectic manifold amounts to introduce relations killing the
homotopy of Tl.

3.2.3. Boundary gluings. We mention -without giving details- that boundary glu-
ings are also possible in symplectic geometry (so we have a notion of symplectic
cobordism). What we need is conditions so that the symplectic structure in collars
of the boundary is the same. This works under the assumption of product struc-
tures given by very special vector fields: either Liouville (LXω = ω,LX′ω′ = −ω′)
or symplectic (LXω = LX′ω′ = 0). In the first case we glue a convex contact boun-
dary component to a concave boundary component; in the second we glue along
Poisson (actually cosymplectic) boundary components. The advantage is that a
contact isomorphism. (resp. Poisson isomorphism) determine a symplectic diffeo-
morphism of the collars. It is possible to devise a handle attaching compatible
with the symplectic structure, but the attaching spheres and framings have to be
of a special nature (coisotropic); the new boundary also inherits a contact (resp.
Poisson) structure (see [8, 7]).

3.3. Gluings in Poisson geometry. We let (M,F , ω) be our regular Poisson
manifold. If we want to perform a tangential gluing by cutting open along νF (N)
and gluing back via φ, then it should be an element of Sympcomp(νF (N), ω). But
that is not enough. Recall that locally the foliation is νF (N)× (−1, 1), and leafwise
symplectic form is the family of symplectic forms ωt, t ∈ (−1, 1). After the gluing
we still need to have a smooth family, and that is not granted by just asking
φ∗ω0 = ω0. We may lose the smoothness when moving along transverse directions.
Exactly as we do to put a smooth structure when gluing along the boundary, a
sufficient condition is choosing a product structure so that ωt is independent of t.
But that is equivalent to saying that there exist Ω ∈ Ω2(νF (N)× (−1, 1)) such that

(1) ΩF = ωt
(2) dΩ = 0

Interestingly enough, under such conditions if N is a lagrangian sphere in a
leaf, then its leafwise normal bundle is isomorphic to T ∗N , so we can perform a
generalized Dehn twist. The good news is that within the (compactly supported)
isotopy class of such maps there are symplectic representatives, so generalized
Dehn surgery provides a gluing construction for regular Poisson manifolds of
codimension 1 whose leafwise symplectic form lifts to a closed 2-form [7].

Regarding transverse gluings, any gluing in symplectic geometry that admits a
version with parameters (a manifold of parameters, which implies having consistent
choices) works in (regular) Poisson geometry. Therefore for any Dirac submanifold
N ↪→M , N t F so that the induced foliation is a fibration with compact fibers, we
can blow up along its normal directions inside the symplectic leaves. Similarly, if we
have N embedding in two Poisson manifolds (M,F , ωF ), (M ′,F ′, ω′F ′) as above,
and so that the two induced structures are Poisson isomorphic and the normal
bundles opposite, we can perform normal connected sum.



8 D. MARTÍNEZ TORRES

For example, suppose (M,F , ωF ) is five dimensional, F co-oriented, and N3

embeds as a Dirac submanifold intersecting F transversely. Assume further that
the induced foliation has a sphere. Then by Reeb-Thurston stability the symplectic
foliation on F is the product S2 × S1. Assume finally that one sphere inside its
symplectic leaf has self intersection -1 or -4. Then the same happens for all the
family. Then if we take S1 × CP2, with the pullback of Fubini-Study conveniently
rescaled on each leaf, we can perform normal connected sum along S1×CP1, S1×Q
respectively, and we can say that we are blowing down the corresponding family of
spheres.

We can also construct five dimensional Poisson manifolds with codimension 1
leaves and any finitely presented fundamental group. For any such group G we
start with one of Gompf’s symplectic manifolds X having G as fundamental group.
Then we move onto the Poisson manifold S1 ×X. Observe that the issue is killing
a copy of S1 via a surgery. To do that with normal connected sum we must find
another such five dimensional manifold with a transverse curve α which is trivial
in homotopy. The answer is given by the Reeb foliation R of S3. Then one shows
that normal connected sum of S1 ×X and T2 × (S3,R) along certain embedding
of S1 × T2 does the job. [4]

4. Singular gluings

There is a possibility of performing connected sum for singular Poisson manifolds
under very special circumstances. We need to have to singular points so that the
linearization is semi-simple of compact type. We use Conn’s to find coordinates
in which the Poisson structure is linear. We also insist on using an orthonormal
basis for the negative of the Killing form. Then we can perform the connected sum
using the identity as gluing map for some sphere. Still, a modification is needed.
The corresponding Poisson structure is not smooth; we have to use appropriate
smooth functions on the quadratic Casimir given by the norm square. The effect is
that in a chart as we approach the origin the Poisson structures restricted to each
sphere, which in principle varies linearly on the distance, will do it depending on a
function that will achieve a critical point, and at that sphere we change chart and
start moving far from the origin.

Blowing up and down in 4-manifolds with a generalized complex structure are
also examples of singular surgeries (for the underlying Poisson structures) [1, 2].
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